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Abstract

In open societies of agents, where agents
are autonomous and heterogeneous, it is
not realistic to assume that agents will
always act so as to comply to interaction
protocols. Thus, the need arises for a for-
malism to specify constraints on agent in-
teraction, and for a tool able to observe
and check for agent compliance to inter-
action protocols. In this paper we present
a Java-Prolog software component which
can be used to verify compliance of agent
interaction to protocols written in a logic-
based formalism (Social Integrity Con-
straints).

1 Introduction

Agent interaction in multiagent systems is usually
ruled by interaction protocols. In open societies
of agents, where agents can be heterogeneous and,
in general, their internals cannot be accessed, it is
not realistic to assume that agents are built so as
to always be compliant to interaction protocols. In
this perspective, the need arises for a formalism to
constrain agent observable behaviour rather than
internal (mental) structure or state, and for a tool
to verify compliance of agent interaction to a given
specification.

The social approach to the definition of interac-
tion protocols and semantics of Agent Communi-
cation Languages is a noteworthy attempt to meet
these requirements. Significant contributions have
been given by Yolum and Singh [2002], Fornara
and Colombetti [2003], Verdicchio and Colombetti
[2003] and Artikis et. al. [2002].

In previous work [Alberti et al., 2003c], we pro-
posed a logic-based formalism, called Social In-

tegrity Constraints (ICS). ICS can be used to
provide semantics to communicative actions and
protocols which define the agent interaction in an
open social environment. Such a semantics is given
in terms of expectations about the behaviour of
agents based on a history of observed actions. ICS

can be viewed as integrity constraints in an ab-
ductive framework [Alberti et al., 2003b], so as
to exploit well-established results from Abductive
Logic Programming [Kakas et al., 1993], and de-
fine a correct proof-procedure that can be used for
verification of compliance of agent behaviour to a
specification. The specification can, thus, also be
interpreted as an abductive logic program for veri-
fication of compliance. This approach is described
in [Alberti et al., 2003d].

In this paper, we describe a tool (SOCS-SI) that
is a Java-Prolog-CHR based implementation of the
proof-procedure defined in [Alberti et al., 2003d].
The intended use of SOCS-SI1 is in combination
with agent platforms, such as PROSOCS [Stathis
et al., 2004], in a way that allows for on-the-fly ver-
ification of compliance to protocols. In SOCS-SI,
the proof-procedure is part of an integrated en-
vironment, which also contains interface modules
to allow for such a combination, and a Graphical
User Interface (GUI). The GUI provides an intu-
itive way to observe the actual behaviour of the
society members with respect to their expected be-
haviour, and to detect possible deviations. To the
best of our knowledge this is the first work in which
a fully implemented operational social framework
is presented, aimed at the automatic verification
of agent interaction. Building on a formal ground,

1“SOCS” is the acronym of the EU-funded project
(IST-2001-32530) that partially supported this work
[SOCS, 2002]. SI stands for Social Infrastructure.



out work contributes towards bridging the gap be-
tween theory and implementation of multi-agent
systems.

The paper is structured as follows. In Sect. 2,
we give a brief, informal introduction to the frame-
work and to the proof-procedure. In Sect. 3,
we present the implementation of the proof-
procedure. Discussion of related work and con-
clusions follow.

2 Logic-based Specification and

Verification

In this section we give the necessary background
on the formal framework proposed by Alberti et
al. [2003a; 2003c; 2003b] for the specification of
agent interaction in open2 societies of agents. The
reader is referred to those papers for a complete
description.

The framework assumes the existence of an en-
tity (Social Compliance Verifier or SCV, for short)
which is external to agents, and is devoted to check
their compliance to the specification of agent inter-
action.

The SCV is aware of the ongoing social agent
interaction: this is represented by a set of (ground)
facts called events, and indicated by functor H.

For example, H(request(ai, aj , give(10$), d1), 7)
represents the fact that agent ai requested agent
aj to give 10$, in the context of interaction d1 (di-
alogue identifier) at time 7.3

In open agent societies, the agent behaviour
is unpredictable, because agents are autonomous;
however, when interaction protocols are defined,
we are able to determine what are the possible ex-
pectations about future events. This represents
in some sense the “ideal” behaviour of a society.
Expectations can be positive (events expected to
happen, indicated by the functor E) or negative
(events expected not to happen, functor EN). Ex-
pectations have the same format as events, but
they will, typically, contain variables, to indicate
that expected events are not completely specified.
CLP [Jaffar and Maher, 1994] constraints can be
imposed on variables to restrict their domain.

For instance,
E(accept(ak, aj , giv(M), d2), Ta) : M ≥ 10, Ta ≤ 15

2We intend openness in societies of agents as Artikis
et al. [2002], where agents can be heterogeneous and
possibly non-cooperative.

3We make the simplifying assumption about time
of events, that the time of sending a message is the
same as receiving it, and that such time is assigned by
the social framework.

represents the expectation for agent ak to accept
giving agent aj an amount M of money, in the
context of interaction d2 (dialogue identifier) at
time Ta; CLP constraints say that M is expected
to be greater or equal than 10, and Ta to be less
or equal than 15.

The way expectations are generated, given the
happened events and the current expectations, is
specified by means of Social Integrity Constraints
(ICS).

Let us consider an example with two agents in-
volved (although ICS can be applied to any-party
agent interaction):

H(request(A,B, P,D), T1)

→E(accept(B,A, P,D), T2) : T2 ≤ T1 + τ

∨E(refuse(B,A, P,D), T2) : T2 ≤ T1 + τ

(1)

states that, if agent A makes a request of P to
agent B, in the context of interaction D at time
T1, then agent B is expected to accept or refuse P
by τ time units after the request.

The following ICS :

H(accept(A,B, P,D), T1)

→EN(refuse(A,B, P,D), T2) : T2 ≥ T1

(2)

H(refuse(A,B, P,D), T1)

→EN(accept(A,B, P,D), T2) : T2 ≥ T1

(3)

express, instead, mutual exclusiveness between
accept and refuse: if an agent performs an accept,
it is expected not to perform a refuse with the
same content after the accept, and vice versa. In
this way, we are able to define protocols as sets of
forward rules, relating events to expectations.

Abduction [Kakas et al., 1993] is a reasoning
paradigm which consists of formulating hypotheses
(called abducibles) to account for observations; in
most abductive frameworks, integrity constraints
are imposed over possible hypotheses in order to
prevent inconsistent explanations. The idea be-
hind our framework is to formalize expectations
about agent behaviour as abducibles, and to use
Social Integrity Constraints such as (1), (2) or (3)
to prevent such agent behaviour that is not com-
pliant with interaction protocols.

Given the partial history of a society, an ab-
ductive proof procedure (SCIFF, [Alberti et al.,
2003d]) generates expectations about agent be-
haviour so as to comply with Social Integrity Con-
straints. SCIFF is inspired by the IFF proof pro-
cedure, [Fung and Kowalski, 1997] augmented as
needed to manage CLP constraints. The most dis-
tinctive feature of SCIFF, however, is its ability to



Figure 1: Overview of the SOCS-SI architecture

check that the generated expectations are fulfilled
by the actual agent behaviour (i.e., that events
expected (not) to happen have actually (not) hap-
pened), which cannot be assumed a priori in an
open society of autonomous agents.

3 The SOCS-SI Tool

In this section, we describe the implementation
of the SOCS-SI tool for compliance verification of
agent interaction. The tool is composed of an im-
plementation of the proof-procedure specified in
[Alberti et al., 2003d], interfaced to a graphical
user interface and to a component for the observa-
tion of agent interaction.

The SOCS-SI software application is composed
by a set of modules. All the components except
one (the proof-procedure) are implemented in the
Java language.

The core of SOCS-SI is composed by three main
modules (see Fig. 1), namely:

• Event Recorder : fetches events from differ-
ent sources and stores them inside the History
Manager.

• History Manager : receives events from the
Event Recorder and composes them into an
“event history”.

• Social Compliance Verifier : fetches events
from the History Manager and passes them
to the proof-procedure in order to check the
compliance of the history to the specification.

In our model, agents communicate by exchang-
ing messages, which are then translated into H
events (see Sect. 3.3). The Event Recorder fetches
events and records them into the History Man-
ager, where they become available to the proof-

procedure (see Sect. 3.1). As soon as the proof-
procedure is ready to process a new event, it
fetches one from the History Manager. The event
is processed and the results of the computation
are returned to the GUI. The proof-procedure
then continues its computation by fetching another
event if there is any available, otherwise it sus-
pends, waiting for new events.

A fourth module, named Init&Control Module
provides for initialization of all the components in
the proper order. It receives as initial input a set
of protocols defined by the user, which will be used
by the proof-procedure in order to check the com-
pliance of agents to the specification.

3.1 Implementation of the
proof-procedure

For the implementation of the society proof-
procedure, SICStus Prolog [SICStus, 2000] has
been chosen, for the following reasons:

• the Prolog language offers built-in facilities
for the implementation of dynamic data struc-
tures and (customizable) search strategies;

• SICStus Prolog allows for state-of-the-art
CLP; in particular, the CLPB, CLPFD and
CHR libraries have been exploited;

• SICStus Prolog features a bidirectional Java-
Prolog interface (Jasper), which has been nec-
essary to interface the proof-procedure with
the other modules of the social demonstrator.

As the IFF proof-procedure [Fung and Kowalski,
1997], the social proof-procedure described in [Al-
berti et al., 2003d] specifies the proof tree, leav-
ing the search strategy to be defined at implemen-
tation level. The implementation is based on a
depth-first strategy. This choice, enabling us to
tailor the implementation for the built-in compu-
tational features of Prolog, allows for a simple and
efficient implementation of the proof.

The Prolog-CHR module implements the tran-
sitions of the proof procedure. CHR [Frühwirth,
1998] is a rewriting system for implementing new
constraints. It is based on forward rules that
rewrite constraints into other constraints. By im-
plementing the data structures of the proof pro-
cedure (eg. PSIC, EXP) as CHR constraints, the
transitions can be implemented as CHR rules.

3.2 The Java-Prolog Interface

The main task of the Java portion of the Social
Compliance Verifier is to interact with the proof-
procedure. The SICStus Runtime libraries are ac-



cessed from Java using the Jasper package and na-
tive interfaces. All data exchanged between the
Java sides and the Prolog program is translated
into String objects. In order to process and fil-
ter the String objects, Java regular expressions
are extensively used. These expressions are de-
fined in a configuration file, loaded at initialization
time. Our software application can deal with dif-
ferent proof-procedure implementations, without
any a priori assumption about the format of the
exchanged parameters. It is sufficient to properly
re-define the regular expressions in the config file,
and a new proof-procedure can be easily integrated
into the software application.

3.3 Messages vs. Events

While the proof-procedure can deal with events of
any format that can be represented by a Prolog
term, for the purposes of this work we can assume
that the agents communicate by exchanging “mes-
sages”, where a message is defined by the following
data set:

• a sender
• a receiver (one or more than one)
• a dialogue identifier
• a time
• a communication performative
• a list of parameters of such a performative

Our software can deal with any platform for
agents, as long as the communication between
agents can be represented in such a way. Inside
the application, each message is translated into an
“event”.

3.4 The Recorder Interface

The Event Recorder fetches events from the ex-
ternal world using modules, each module being
specialized for a specific source. For testing and
debugging purposes, we developed modules to in-
teract with the user prompt as well as with the file
system; it is possible to add as many specialized
modules as desired, provided that they implement
the interface RecorderInterface. In order to in-
tegrate our application with an already existing
platform the user should:

1. create a Java class that implements the
RecorderInterface

2. select it as message source during the applica-
tion configuration (through the configuration
GUI, or modifying the config file).

The RecorderInterface that we propose de-
fines three methods, where the class SOCSEvent is
our internal representation of events:

Figure 2: A screenshot of the application

• public SOCSEvent listen(). Returns an
instance of the SOCSEvent class if a message
is available, or it waits (suspends) until a mes-
sage arrives.

• public long speak(SOCSEvent aMsg).
Gives our application the capability to com-
municate with agents, by sending a message.
It returns the time the message is sent.

• public long getTime(). Returns the actual
time. It is used to check temporal deadlines.

The RecorderInterface has originally been de-
fined as a subset of the low level communication
API defined in the PROSOCS platform [Stathis
et al., 2004], which is used to perform controlled
experiments in the context of global computing ap-
plications, within the SOCS project [SOCS, 2002].
However, one of the design specifications we strove
to obtain was to have an interface general enough
to allow integration with most agents platforms
currently available.

3.5 The Graphical User Interface

The Graphical User Interface is implemented by
using the Swing graphic library, and implements
the Model-View-Control programming pattern.
The main window is composed of three areas (or
sub-window), and of a button bar that contains
the controls (see Fig. 2).

The bottom area contains the list of all the mes-
sages received by the SOCS-SI: the next message
to be processed by the proof-procedure is empha-
sized (in Fig. 2 it is the third row, which is darker).
The area on the left contains the list of agents
known by the society, i.e. , agents that have per-
formed at least one communicative action. The



larger frame on the right contains the results of
the computation, returned by the proof-procedure.
These results are expressed in terms of society ex-
pectations about the future behavior of agents,
and also in terms of fulfilled expectations and vio-
lations of social rules. By selecting an agent from
the left pane, it is possible to restrict the infor-
mation shown on the larger pane to be only that
relevant to that particular agent. Among other
features, it is possible to execute step-by-step the
application, so that it elaborates one message at a
time and then waits for a user acknowledge (simi-
larly to the debug interface of modern compilers).

4 Related work

The social approach to the definition of interaction
protocols and semantics of Agent Communication
Languages has been documented in several note-
worthy contributions of the past years. Among
them, Artikis et al. [2002] present a formal frame-
work for specifying systems where the behaviour of
the members and their interactions cannot be pre-
dicted in advance, and for reasoning about and ver-
ifying the properties of such systems. The frame-
work relies upon a deontic logic formalism, and
on the concepts of permission, prohibition, and
empowerment. The paper also describes a Soci-
ety Visualizer to demonstrate animations of proto-
col runs in such systems. A noteworthy difference
with [Artikis et al., 2002] is that we do not explic-
itly represent the institutional power of the mem-
bers and the concept of valid action. “Permitted”
are all social events that do not determine a viola-
tion, i.e., all events that are not explicitly “forbid-
den” are “allowed”. Being detached from any de-
ontic infrastructure, our framework can be used for
a broader spectrum of application domains, from
intelligent agents to reactive systems.

Yolum and Singh [2002] apply a variant of
Event Calculus [Kowalski and Sergot, 1986] to
commitment-based protocol specification. The se-
mantics of messages (i.e., their effect on commit-
ments) is described by a set of operations whose
semantics, in turn, is described by predicates on
events and fluents; in addition, commitments can
evolve, independently of communicative acts, in
relation to events and fluents as prescribed by a set
of postulates. Such a way of specifying protocols
is more flexible than traditional approaches based
on action sequences in that it prescribes no initial
and final states or transitions explicitly. It only re-
stricts the agent interaction in that, at the end of
a protocol run, no commitment must be pending;

agents with reasoning capabilities can themselves
plan an execution path suitable for their purposes,
by means of an Abductive Event Calculus plan-
ner. Our notion of expectation is more general
than that of commitment adopted by [Yolum and
Singh, 2002] or by other work, such as [Fornara
and Colombetti, 2002]: it represents the expecta-
tion about a (past or future) event, without any
reference to specific roles of agents (such as a com-
mitment’s debtor and creditor), and it does not
necessarily need to be brought about by a specific
agent.

Finally, several other frameworks in the liter-
ature aim at verifying properties about the be-
haviour of social agents at design time. Often, such
frameworks define structured hierarchies, roles,
and deontic concepts such as norms and obliga-
tions as first class entities. Notably, ISLANDER
[Esteva et al., 2002] is a tool for the specifica-
tion and verification of interaction in complex so-
cial infrastructures, such as electronic institutions.
ISLANDER allows to analyze situations, called
scenes, and visualize liveness or safeness proper-
ties in some specific settings. The kind of verifica-
tion involved is static and is used to help design-
ing institutions. Although our framework could
also be used at design time, its main intended use
is for on-the-fly verification of heterogenous and
open systems.

5 Conclusions and future work

In current years, there is a considerable ongoing
effort in the area of interaction specification, and
the domain seems to be well suited for formal
approaches. In this paper, we presented a soft-
ware component for the verification of compliance
of agent interaction to a specification given in a
logic-based formalism. The component features
a graphical user interface, and can receive input
from several possible sources. The portion of the
software devoted to verification of compliance im-
plements an abductive proof-procedure by using
SICStus Prolog and, in particular, its CHR library.

Future work will be devoted to studying prop-
erties of agent interaction at runtime and at de-
sign time, in combination with PROSOCS, to
developing a methodology for designing the in-
teraction space of multi-agent systems (protocols
and semantics of communicative acts), by using
SOCS-SI possibly in combination with other ex-
isting methodologies, and to interfacing the com-
ponent to other existing agent platforms such as
JADE [JADE, 2000], so to act as a further ver-



ification layer. It would be interesting to study
the possibility to distribute the proof-procedure,
so that some partial abducibles can be abduced
on separated nodes of a networked environment,
observing only a subset of an interaction. Finally,
we would like to investigate two further applica-
tions of SOCS-SI: (i) to support the generation
and management of agent reputation and trust,
by discriminating complying agents from those be-
having in unexpected ways, and (ii) as a facilita-
tor for agents entering new societies, by feeding
agents with expectations and therefore providing
them with knowledge about the society protocols.
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