
 263

Chapter XI
Modelling Interactions via

Commitments and Expectations

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

ABSTRACT

Organizational models often rely on two assumptions: openness and heterogeneity. This is, for instance,
the case with organizations consisting of individuals whose behaviour is unpredictable, whose internal
structure is unknown, and who do not necessarily share common goals, desires, or intentions. This
fact has motivated the adoption of social-based approaches to modelling interaction in organizational
models. The idea of social semantics is to abstract away from the agent internals and provide a social
meaning to agent message exchanges. In this chapter, we present and discuss two declarative, social
semantic approaches for modelling interaction. The first one takes a state-oriented perspective, and
models interaction in terms of commitments. The second one adopts a rule-oriented perspective, and
models interaction in terms of logical formulae expressing expectations about agent interaction. We use
a simple interaction protocol taken from the e-commerce domain to present the functioning and features
of the commitment- and expectation-based approaches, and to discuss various forms of reasoning and
verification that they accommodate, and how organizational modelling can benefit from them.

Paolo Torroni
University of Bologna, Italy

Pınar Yolum
Boğaziçi University, Turkey

Munindar P. Singh
North Carolina State University, USA

Marco Alberti
University of Ferrara, Italy

Federico Chesani
University of Bologna, Italy

Marco Gavanelli
University of Ferrara, Italy

Evelina Lamma
University of Ferrara, Italy

Paola Mello
University of Bologna, Italy

264

Modelling Interactions via Commitments and Expectations

INTRODUCTION

Organizations can be seen as sets of entities regulated by mechanisms of social order and created by
more or less autonomous actors to achieve common goals. If we consider open agent societies from an
organizational point of view, we can identify a number of basic elements that design methodologies for
agent societies should account for. These include formalisms for the description, construction and control
of normative elements such as roles, norms and social goals, and mechanisms to formalize the expected
outcomes of roles and to describe interaction in order to verify the overall behaviour of the society.

Interaction is one of the main elements of multi-agent organizational models, since it is the main—if
not the only—way for agents to coordinate with one another (see the chapter “Modelling dimensions
for agent organizations” by Coutinho et al. for more information). In the literature, multi-agent com-
munication has been the subject of a vast research activity addressing semantic and engineering aspects
of multi-agent organizations. Two main approaches have emerged. In the early days of multi-agent
research, a seemingly promising way to model agent interaction was largely inspired by Grice’s and
Searle’s speech acts theory. This is now called the mentalistic approach since its focus is on the minds
of the individuals participating in the interaction. Agent mental states would give motivation to mes-
sage exchange, which in turn would affect the mental states of those participating in the exchange. This
idea has been behind prominent Agent Communication Language (ACL) proposals such as KQML and
FIPA-ACL. However, it became apparent that a semantics of agent communication based on mental
states would necessarily impose significant restrictions on the architecture and operational behaviour
of interacting parties, while making it difficult, at the same time, for an external observer to understand
to what extent a message exchange would conform to such a semantics (Singh 1998).

Social approaches to agent communication seek to overcome these shortcomings and quickly gained
large popularity. The idea of social semantics is to abstract away from the agent internals and provide a
social meaning to agent message exchange. In other words, interaction is not motivated by the effect it
may have on the mind of the agent, but instead on its visible effects on the agent’s social environment.
Besides paving the way to the development of a number of techniques aimed to make agent interaction
verifiable by external observers, social semantics have proven to be a viable approach to accommodate
truly open agent societies, since they do not pose restrictions of any sort on the nature and architecture
of interacting parties. These are key factors that made social semantics much more widely adopted than
mentalistic approaches, especially in the context of organizational models.

The second aspect we mentioned relates to multi-agent systems engineering and design. Again, social
semantics of agent interaction has been successfully applied to Multi-Agent System (MAS) design, both
with respect to methodologies and formal reasoning about models. Current Agent-Oriented Software
Engineering methodologies—see for example Gaia (Zambonelli et al. 2003), MaSE (DeLoach et al.
2001), Prometheus (Padgham & Winikoff, 2004) and the Hermes methodology presented earlier on in
this book (see chapter “Hermes: A pragmatic approach to flexible and robust agent interaction design
and implementation,” by Cheong & Winikoff)—include, at some design stage, modelling of actions,
events, roles, normative relations and interaction protocols. It is possible to give a social semantics to
these elements of a MAS by modelling them or their effect in terms of socially meaningful concepts.
Modelling greatly benefits from the social semantics being declarative. A declarative, as opposed to
procedural, semantics specifies what actions should be brought out in an interaction, rather than how
they are brought out, and by doing so it helps to focus on the aims of the interactions and thus avoid
designing unnecessarily over-constrained interaction patterns and modalities, as pointed out by Yolum
& Singh (2002b).

 265

Modelling Interactions via Commitments and Expectations

Social semantics can be approached in two ways: by taking a state-oriented perspective, or a rule-
oriented perspective. The main elements of these two approaches are, respectively, commitments and
expectations. They both provide a formal, conceptually well-founded basis for modelling the interaction
of agents while respecting their autonomy.

Commitments

The main motivation behind the commitment-based semantics of agent interaction, as opposed to, e.g.,
using AUML interaction protocol diagrams (Bauer et al. 2001), comes from the observation that to ensure
flexibility in handling opportunities and exploiting opportunities, the agents should be able to deviate
from rigid scripts. Representing the commitments that the agents have to one another and specifying
constraints on their interactions in terms of commitments provides a principled basis for agent interac-
tions. From a MAS modelling perspective, a role can be modelled by a set of commitments. For example,
a seller in an online market may be understood as committing to its price quotes and a buyer may be
understood as committing to paying for goods received. Commitments also serve as a natural tool to
resolve design ambiguities. In general, the designers of the individual agents would be different from
the designers of the roles in the multiagent system. For example, an online market would only specify
the roles of buyer, seller, and broker and their associated commitments, but individual participants may,
and would often prefer to, use differently implemented agents to play these roles. Finally, the formal
semantics enables verification of conformance and reasoning about the MAS specifications to define
core interaction patterns and build on them by reuse, refinement, and composition.

Central to the whole approach is the idea of manipulation of commitments, specifically, their cre-
ation, discharge, delegation, assignment, cancellation, and release. Commitments are stateful objects
that change in time as events occur. Time and events are, therefore, essential elements of commitment
conditions. The commitments present in the system and their state capture the state of the overall system,
as obtained through the socially relevant actions performed thus far.

Commitments capture the social meaning of what agents have achieved so far, and can be used to
judge their conformance and as a basis to reason about possible future evolutions of their interaction.
An advantage of this approach is that the evolution of commitment state can be easily expressed us-
ing a finite state machine, which in turn has a direct implementation. Such an implementation can be
used to create and manipulate commitments at run-time and directly verify whether the system is in a
conformant state or not. Moreover, from the commitments, both designers and concerned agents can
identify pending obligations and, in case of violation, the responsibilities of the debtors.

Commitments can be given various underlying semantics, depending on their intended use, such as
on the modelling aspects that one wants to capture and on the types of verification that one wants to
achieve. Some examples are temporal logics (linear or branching), nonmonotonic causal logic, and the
event calculus, all of which have been applied to symbolically represent commitment machines.

Expectations

Social expectations have a similar motivation but a different purpose. Similar to commitments, the
idea is to provide formal tools to specify and verify the good behaviour of an open MAS, based on the
externally observable agent behaviour. Differently from commitments, expectations are not objects
with a state, but abstract entities that model the possible events that would make the system evolve in

266

Modelling Interactions via Commitments and Expectations

conformance with a set of protocols. The main idea of expectation-based semantics is that in open and
dynamic MAS, a large share of information is unknown: either because it is not specified or it is private
knowledge, or—especially in the case of events—because it has not (yet) been observed by anyone or is
still to occur. To capture the unknown, the reasoning conducted to manipulate expectations is intrinsi-
cally hypothetical, and the social semantics of expectations is based on abductive reasoning.

To model MAS interaction, expectation-based semantics specifies the links between the observed
events and the possibly observable, yet unknown, events. It does so by setting constraints on the model,
called social integrity constraints (SICs). (Integrity) constraints are ubiquitous in organizational modelling
theory and they are at the core of other approaches presented in this book (see, for instance, the chapter
“A formal framework for modeling and analysis of organizations” by Popova & Sharpanskykh). SICs
are declarative representations of invariants, which can be used to specify the set of “good” execution
traces, also called histories. Expectations are a general notion, to model events of any sort, and do not
necessarily refer to specific roles. Events are expected to happen or not to happen, independently of the
responsibility of the agents involved in the production or avoidance of such events. There are no explicit
roles of debtors and creditors. However, it is possible to represent attributes of actions of any sort, such
as the sender and recipient of a message, and finite domains and CLP constraints (Jaffar & Maher, 1994)
over action elements, such as the content of messages. Time is also modelled as a variable with a finite
domain. Using SICs, it is possible to represent typical patterns of interaction, such as alternatives, parallel
execution, sequences, mutual exclusions, and deadlines. Finally, like in commitment-based approaches,
the formal semantics enables verification of conformance and reasoning on the MAS specifications, to
define core interaction patterns and build on them by reuse, refinement, and composition.

Indeed, one of the main features of the expectation-based semantics is the ability to reason at run-
time on the evolution of a system in terms of happening events. Such a feature enables monitoring and
run-time verification of the agent behaviour’s conformance to protocols and can be used to indicate
possible (future or past) sequences of events that would ensure overall conformance. Although expec-
tations—differently from commitments—are not linked to the notion of responsibility, they do have a
possible reading in relation with the deontic concepts of obligation, prohibition, fulfillment, and viola-
tion. As such, they are suited to model institutional facts: an essential element of organizations which
will be discussed in detail in the following parts of this book (in particular, see chapters “Specifying
artificial institutions in the event calculus,” by Fornara & Colombetti, and “Dynamic specifications for
norm-governed computational systems,” by Artikis et al.).

The formal semantics of SICs is given in a computational logic framework called SCIFF. Such a
semantics is based on abduction: expectations are modelled as abducibles and SICs are represented as
integrity constraints. The SCIFF operational semantics is defined by an abductive proof procedure.
Verification is performed by the proof procedure operating directly on the specification. At every point
in time, expectations define the possible evolutions of the externally visible MAS behaviour that would
ensure overall system conformance to protocols. Since there can be many ways to achieve a confor-
mant behaviour, every event that adds to the previously observed ones does not in general produce a
single set of expectations, but a number of alternative sets, and it can rule out other sets by identifying
inconsistencies (e.g., events that are expected both to happen and not to happen).

Commitment-based and expectation-based semantics are complementary modelling paradigms,
capturing two important perspectives on social interaction, and they can both be beneficial to the design,
specification, and verification of agent organizations. The objective of this chapter is thus to provide
an overview of the social semantics of agent interaction using commitments and expectations and to
motivate its adoption in the context of organizational modelling.

 267

Modelling Interactions via Commitments and Expectations

In the next section, we provide some definitions and a brief literature review, to demonstrate the
topicality of social semantics in a broad sense. Then we will elaborate more on the inspiring principles
that motivate the adoption of social approaches in various areas, with an emphasis on methodological
and verification issues that provide further motivation to the work presented here. In the following sec-
tion, we will present the NetBill protocol: a running example to use throughout the chapter. We will
then review two bodies of work, dealing with social semantics in two different ways: Yolum and Singh’s
commitment-based semantics and the SCIFF framework for expectation-based specification and verifi-
cation of agent interaction. In the concluding sections, we discuss implementation and resources related
to the presented approaches and conclude by briefly describing research directions, opportunities, and
new trends, and the application of social semantics to new emerging areas such as the Semantic Web
services and business process management.

BACKGROUND

Traditionally, finite state machines and Petri Nets have been the main formalisms for specifying net-
work protocol. These formalisms are advantageous mainly because they are easy to be followed by the
protocol participants. These formalisms are useful in enumerating the allowed sequences of messages,
but do not capture the semantics of the messages that are exchanged. Hence, these formalisms leave
no opportunity for the enacting agents to reason about the protocol. Obviously, this is not acceptable
in open multiagent systems, where agents are autonomous and can and will decide how they will carry
out their interactions. Thus, declarative approaches are needed to specify the meaning of messages and
to provide agents means to reason about their messages.

Another important aspect of protocols is verification. Guerin & Pitt (2002) distinguish three possible
types of verification, depending on the available information about the protocol players. A first type
aims to verify that an agent will always comply. This type of verification can be performed at design
time: given a representation of the agent, by means of some proof technique (such as model checking),
it is possible to prove that the agent will always exhibit the desired behaviour. This kind of verification
requires knowledge on the agent internals or specifications. A whole body of research is devoted to
agent verification; a good introduction to it is given by Bordini et al. (2004).

More directly related to organizational modelling are the other two types of protocol verification:
verify compliance by observation and verify protocol properties. The goal of the former is to check that
the behaviour being observed is compliant with some specification. It does not require any knowledge
about the internals, but only the observability of the agent behaviour. Since it is based on observations,
this type of verification can be performed at run-time (or, if key events are logged, after execution). This
type of verification is of the uttermost importance in real-life systems, whose heterogeneity and com-
plexity are such that protocols must allow participants adequate freedom in order to enable an effective,
open organization: too many strict rules could result in over-constrained protocols of little use.

The last type of verification instead can be performed at design time, and aims to prove that some
property will hold for all the interactions that correctly follow the protocol. This type of verification
is again crucial in organizations defining many complex protocols, where it would be difficult (if not
impossible) to manually verify that a given protocol guarantees a given property. Protocol specification
languages for agent organizations should offer (or at least support) tools for expressing formal proper-
ties, and verifying them.

268

Modelling Interactions via Commitments and Expectations

The formalisms that we present in this chapter mainly accommodate compliance by observation and
design-time verification of interaction properties. Later in this book, Viganò & Colombetti present alter-
native logic-based tools to verify organizations ruled by institutions, with an emphasis on reasoning on
normative constructs (see chapter “Model checking agent organizations regulated by institutions”).

Running Example: The NetBill Transaction Protocol

NetBill, proposed by Cox et al. (1995), is a security and transaction protocol optimized for the selling
and delivery of low-priced information goods, like software programs, journal articles or multimedia
files. The protocol rules transactions between two agents: a Merchant (MR), and a Customer (CT).

A NetBill server is used to deal with financial issues such as those related to credit card accounts
of customer and merchant. In this example, we focus on the NetBill protocol version designed for non
zero-priced goods, and do not consider the variants that deal with zero-priced goods. A typical protocol
run is composed of three phases:

1. Price Negotiation. The customer requests a quote for some goods identified by a Product ID
(PrID):

 priceRequest(PrID)

 and the merchant replies with the requested price (Quote):
 priceQuote(PrID, Quote)

2. Goods Delivery. The customer requests the goods:
 goodsRequest(PrID, Quote)

 and the merchant delivers it in an encrypted format:
 delivery(crypt(PrID, Key), Quote)

3. Payment. The Customer issues an Electronic Payment Order (EPO) to the merchant, for the amount
agreed for the goods:

 payment(epo(Customer, crypt(PrID, Key), Quote))

 the merchant appends the decryption Key for the goods to the EPO, signs the pair and forwards it
to the NetBill server:

 endorsedEPO(epo(Customer, crypt(PrID, Key), Quote), Key, MR)

 the NetBill server deals with the actual money transfer and returns the result to the merchant:
 signedResult(Customer, PrID, Price, Key)

 who will, in turn, send a receipt for the goods and the decryption key to the customer:
 receipt(PrID, Price, Key).

The Customer can withdraw from the transaction until she has issued the EPO message payment. The
Merchant can withdraw from the transaction until she has issued the endorsedEPO message.

COMMITMENT-BASED SEMANTICS

Commitments are made from one agent to another agent to bring about a certain property (Castel-
franchi, 1995; Singh, 1991; Singh, 1999). Commitments result from communicative actions. That is,
agents create commitments and manipulate them through the protocol they follow. We can differentiate

 269

Modelling Interactions via Commitments and Expectations

between two types of commitments: unconditional and conditional. An unconditional commitment is
denoted as C(x, y, p) and means that the debtor x commits to creditor y to bring about condition p (Singh,
1999). A conditional commitment is denoted as CC(x, y, p, q) and means that if the condition p is satis-
fied, then x will be committed to bring about condition q. Conditional commitments are useful when
a party wants to commit only if a certain condition holds or only if the other party is also willing to
make a commitment.

Let us consider some example commitment from the NetBill protocol. The unconditional commit-
ment,

C(merchant, customer, receipt(PrID, Price, K))

means that the merchant commits to sending the receipt for the given product. The conditional com-
mitment,

CC(merchant, customer, payment(epo(customer, crypt(PrID, K), Quote)), receipt(PrID, Price, K))

specifies that the merchant commits to sending the receipt if the customer pays the money.
Singh (1999) defines six operations on commitments. In the following, x, y, z denote agents, and c,

c’ denote commitments.

1. create(x, c) establishes the commitment c. This operation can only be performed by the debtor of
the commitment.

2. discharge(x, c) resolves the commitment c. The discharge operation can only be performed by the
debtor of the commitment to mean that the commitment has successfully been carried out. Dis-
charging a commitment terminates that commitment.

3. cancel(x, c) cancels the commitment c. The cancel operation is performed by the debtor of the
commitment. Usually, the cancellation of a commitment is accompanied by the creation of another
commitment to compensate for the cancellation.

4. release(y, c) releases the debtor from the commitment c. It can be performed by the creditor to mean
that the debtor is no longer obliged to carry out his commitment.

5. assign(y, z, c) assigns a new agent as the creditor of the commitment. More specifically, the credi-
tor of the commitment c may assign a new creditor z to enable it to benefit from the commitment.
Operationally, commitment c is eliminated and a new commitment c’ is created for which z is the
creditor.

6. delegate(x, z, c) is performed by the debtor of commitment c to replace itself with another agent
z so that z becomes responsible to carry out the commitment. Similar to the previous operation,
commitment c is eliminated, and a new commitment c’ is created in which z is the debtor.

The creation and manipulation of commitments is handled via the above operations. In addition to
these operations, reasoning rules on commitments capture the operational semantics of our approach.
Some of these operations require additional domain knowledge to reason about. For example, canceling
a commitment may be constrained differently in each domain. Or, delegating a commitment to a third
party may require agreements between agents. We abstract from these details to focus on the general
approach. The reasoning rules we provide here only pertain to the create and discharge operations and
the conditional commitments.

270

Modelling Interactions via Commitments and Expectations

Discharge Axiom: A commitment is no longer in force if the condition committed to holds.

The following axiom captures how a conditional commitment is resolved based on the temporal
ordering of the commitments it refers to.

Progress Axiom: When the conditional commitment CC(x, y, p, q) holds, if p becomes true, then the
original commitment no longer relevant. Instead, a new commitment is created, to reflect that the debtor
x is now committed to bring about q. Conversely, if q occurs when the conditional commitment CC(x,

y, p, q) holds, the original commitment is terminated and no other commitment is created.

Modelling the NetBill Protocol

Rather than exploring the entire NetBill protocol, let us view a representative part of the protocol to
explain how a commitment protocol is specified and executed. The two basic roles in the NetBill protocol
are merchant (MR) and customer (CT). The commitments that exist in the NetBill protocol are inherently
conditional. That is, both the customer and the merchant promise to bring about certain conditions if
the other party also commits to bring about certain conditions.

The following abbreviations capture the conditional commitments that exist in the NetBill proto-
col.

• accept(i, m) abbreviates CC(CT, MR, goods(i), pay(m)), which means that the customer commits to
paying amount m if he receives the goods i

• promiseGoods(i, m) abbreviates CC(MR, CT, accept(i, m),goods(i)), which means that the merchant
commits to sending the goods if the customer promises to paying the agreed amount

• promiseReceipt(i, m) abbreviates CC(MR, CT, pay(m), receipt(i)), which means that the merchant com-
mits to sending the receipt if the customer pays the agreed-upon amount

• offer(i, m) abbreviates (promiseGoods(i, m)  promiseReceipt(i, m))

These commitments are created by exchange of messages. That is, each message corresponds to an
operation on commitments. By exchanging messages, participants manipulate their commitments. The
following lists the messages in the NetBill protocol and the commitments they create:

• priceQuote(PrID, Quote): promiseGoods(PrID, Quote), and promiseReceipt(PrID, Quote)

• goodsRequest(PrID, Quote): accept(PrID, Quote)

• delivery(crypt(PrID, Key), Quote): promiseReceipt(PrID, Quote)

In addition to creating the above commitments, the messages also bring about certain propositions.
The following lists the messages and the propositions that they realize:

• delivery(crypt(PrID, Key), Quote): goods(crypt(PrID, Key))

• payment(epo(C, crypt(PrID, K), Quote)): pay(Quote)

• receipt(PrID, Price): receipt(PrID)

 271

Modelling Interactions via Commitments and Expectations

Executing the NetBill Protocol

Commitment protocol specification can either be used at run time to reason about the actions (Yolum &
Singh, 2002b) or can be compiled into a finite state machine at compile time (Yolum & Singh, 2002a;
Chopra & Singh, 2004). If it is used at run time, then agents working from the same commitment pro-
tocol specification can reason about the protocol logically and each can choose actions appropriate for
its current situation. This is especially useful when exceptions arise since the agents can find alterna-
tives to complete their interactions. A useful method for generating alternatives is planning. Since an
agent knows its current state and its desired state, it can apply a planning algorithm to derive the actions
that need to be executed to reach a goal state. This way, if the agent moves to an unexpected state (as
a result of an exception), it can still construct plans to reach a final state. For example, assume that in
the NetBill protocol, a customer wants to buy an item without learning the price first. Current NetBill
specification requires the customer to ask the price first, hence will not allow this scenario. However, in
the commitment-based specification, agents are not restricted to specific sequences of actions. Any agent
can start the protocol, and at whatever state holds then. Hence, the customer can send the goodsRequest
action above and thereby make a conditional commitment to pay if the merchant delivers the goods
and promises the receipt. The merchant can then reason about the rest of the protocol to determine its
actions, e.g., that if it wants to sell the item then it needs to send the goods, and so on.

However, if agents are not equipped with tools to reason about a commitment protocol specification,
then the commitment protocols can be compiled into a finite state machine. Finite state machines are
easy to execute. As a result of the compilation, agents only need to follow the transitions in the finite
state machine.

Verifying Commitment Protocols

Verifying the compliance of protocols at run time means checking if agents follow the protocol by their
actions. In terms of commitment protocols, an agent follows the protocol if it discharges its unconditional
commitments. By observing the commitments operations, an agent can decide whether agents comply
with a given commitment protocol. The observing agent can be a dedicated agent that keeps track of
all the messages in the system. Conversely, each agent in the system may track the commitments in
which it is involved and verify that the corresponding agents comply (Venkatraman & Singh, 1999).
The main idea underlying this type of verification is to compose a trace of the current protocol execution
and compare this to the protocol specification. One successful way of performing this comparison is
with model checking at run time. By representing the protocol specification and the protocol execution
in temporal logic, one can use existing model checking tools to find out if a particular execution is a
legal outcome of the protocol.

Commitment-based semantics of protocols makes it possible to verify the properties at design time
(Yolum, 2007). More specifically, given a commitment-based protocol, one can check important prop-
erties such as effectiveness, consistency, and robustness. The effectiveness of a commitment protocol
captures if a given specification allows continual progress to reach a desired state. The consistency of
a protocol shows whether the protocol can yield conflicting computations. Ideally, the participants of
a protocol should not be able to execute actions that lead the protocol to enter an inconsistent state. By
studying the effects of allowed commitment operations, one can infer whether the protocol is consistent.
The robustness of a protocol shows how well the protocol tolerates exceptions. That is, if the protocol

272

Modelling Interactions via Commitments and Expectations

can be carried out in alternative ways, then the protocol will be more likely to succeed in completing
the necessary transactions. One can study the robustness of protocols, by investigating how well it of-
fers alternative execution paths.

All these aspects of commitment protocols can be studied by first representing a protocol in terms
of a commitment graph in which the nodes represent possible commitments in the protocol and the
edges represent the operations between the commitments. Using a commitment graph, one can check
whether infinite loops can occur such that the effective progress of the protocol is endangered or exist-
ing operations are enough to ensure that the commitments created by the protocol can be discharged.
Algorithms for detecting these properties have been implemented in a tool to study organizations (Shah
Nawaz, 2007).

EXPECTATION-BASED SEMANTICS

Social expectations are a logic tool to give semantics to agent interactions. Intuitively, a set of expectations
represents a possible evolution of the agent system towards a correct situation. In general, many possible
evolutions of the MAS are coherent with its semantics, all of them being conformant. An expectation-
based system should not commit to a predefined evolution, but provide a set of possible hypotheses
on the future correct evolution of the system. For this reason, it is quite natural to give expectations a
hypotheses-based semantics, such as an abductive semantics.

Abduction is one of the fundamental forms of inference identified by the philosopher Peirce (Harts-
horne & Weiss, 1965), and is naturally embedded in logic programming as abductive logic program-
ming (ALP) (Kakas et al. 1993). An abductive logic program includes a knowledge base KB, that is, a
set of clauses that may contain predicates without definition, whose truth cannot be proven, but only
assumed. Such predicates are called abducibles and are typically identified syntactically. The truth of
a sentence, or a goal, G is decided as G being a logic consequence (indicated with the symbol |=, that
stands for logic entailment) of the knowledge base and a set of assumptions:

KB   |= G

However, hypotheses cannot be assumed freely, because, depending on the application domain, some
combinations of hypotheses should be forbidden, e.g., because they contradict each other. Thus, a set of
integrity constraints typically restricts the combinations of predicates that can be abduced at the same
time. Integrity constraints (IC) must all be entailed at all times by the union of the KB and the set of
assumptions being devised:

KB   |= IC

The KB defines the structural description of the society. It includes for example the rules for joining
and leaving the society, the definition and assignment of roles, and the organizational rules. Therefore,
it has strong similarities with the organizational level identified by Dignum et al. (2002). The goal (G)
can be considered as a “global goal” of the agent organization, external to the goal of each individual
agent (Dignum & Dignum, 2007). In SCIFF, expectations are mapped on to abducible literals. Expec-

 273

Modelling Interactions via Commitments and Expectations

tations can be positive, as in E(p,t), meaning that it is expected that an event p happens at some time t.
They can also represent the need to avoid inconsistent behaviour, by stating that an action p should not
be performed: EN(p,t) is a negative expectation saying that p should not happen at any time t.

In order for a MAS to comply with a specification, the events it produces must match the expecta-
tions. To this end, a literal H(p,t) is used to model an event p occurring at time t. To achieve a compliant
history of events, if E(p,t) (resp. EN(p,t)) is in the set of expectations, then H(p,t) should be (resp. not
be) in the set of events.

Integrity constraints serve, as is usual in ALP, to avoid combinations of assumptions that do not
make sense. But they also have two important purposes for modelling interaction: from a declarative
perspective, they associate actual events and expectations; from an operational perspective, they intro-
duce forward reasoning into the machinery of resolution-based logic programming. For example, the
integrity constraint

H(p,T)  E(r,T1)  T1 ≤ T+5
 EN(s,T2)

states that if an event p happens at some time T, then an event r is expected to happen within 5 time
units, or else no event s should happen at any time. Operationally, specifications written in SCIFF are
interpreted and executed in a corresponding proof-procedure, which monitors the evolution of happened
events and processes them on-the-fly, providing as output sets of expectations. In the example above,
upon the occurrence of event p at time 1 (i.e., H(p,1)), the forward evaluation of the IC generates two
alterative sets of expectations: {E(r,T1)  T1 < 6} and {EN(s,T2)}. Such sets grow monotonically during
the evolution of the interaction: as more events happen, they are recorded in a set called history, and
are matched with the expected behaviour. In case of matching, the expectations are fulfilled, otherwise
they are violated.

The SCIFF proof-procedure is an extension of the IFF proof-procedure defined by Fung & Kowalski
(1997). It is based on a rewriting system, which applies a set of transitions to exhaustion, generating
a derivation tree. In each node of the tree, the status records the important information, such as hap-
pened events, pending, fulfilled and violated expectations, and active CLP constraints. According to
the declarative semantics, the MAS evolution is considered to be compliant to the specification if, and
only if, there is at least one leaf node of the tree whose expectations are fulfilled.

Compared to other abductive languages, SCIFF shows unique features: use of variables in abduc-
ibles, ability to reason on evolving histories, expectations, concepts of fulfillment and violation, and a
capability to reason about both existentially and universally quantified variables, also involving CLP
constraints and quantifier restrictions (Bürckert, 1994). An in-depth description of language and proof-
procedure is given by Alberti et al. (2008).

Alongside SCIFF, a generative version of the proof-procedure, called g-SCIFF (Montali et al., 2008),
can be used to perform an analysis of the formal properties of the protocols. It works by generating
sets of compliant histories in a compact, intensional form. The set of generated histories can be then
analysed and reasoned about formally.

Let us now show a possible SCIFF specification of the NetBill protocol and of one of its proper-
ties.

274

Modelling Interactions via Commitments and Expectations

NetBill Protocol Specification in SCIFF

We can model the NetBill protocol using the SICs shown in Box 1. We assume that the network layer
is reliable and that transmission time is negligible, so that the times of sending and receiving can be
considered to be the same.

[SIC1-SIC7] are backward SICs, i.e., integrity constraints that state that if some set of events happens,
then some other set of events is expected to have happened before. [SIC1], for example, imposes that if
MR has sent a priceQuote message to CT, stating that MR’s quote for the goods identified by PrID is Quote,
in the interaction identified by ID, then we expect that CT has sent to MR a priceRequest message for the
same goods, in the course of the same interaction, at an earlier time.

[SIC8-SIC10] instead are forward SICs. [SIC9] imposes that an endorsedEPO message from MR to the
NetBill server be followed by a signedResult message, with the corresponding parameters. Note that we
impose forward constraints only from the payment message onwards, because both parties (merchant
and customer) can withdraw from the transaction during Price Negotiation and Good Delivery: hence
the uttering of messages in the first part of the protocol does not lead to any expectation to utter further
messages.

Box 1.

[SIC1] H(tell(MR, CT, priceQuote(PrID, Quote), ID), T)
 → E(tell(CT, MR, priceRequest(PrID), ID), T2) ∧ T2 < T.

[SIC2] H(tell(CT, MR, goodsRequest(PrID, Quote), ID), T)
 → E(tell(MR, CT, priceQuote(PrID, Quote), ID), Tpri) ∧ Tpri < T.

[SIC3] H(tell(MR, CT, delivery(crypt(PrID, K), Quote), ID), T)
 → E(tell(CT, MR, goodsRequest(PrID, Quote), ID), Treq) ∧ Treq < T.

[SIC4] H(tell(CT, MR, payment(epo(CT, crypt(PrID, K), Quote)), ID), T)
→ E(tell(MR, CT, delivery(crypt(PrID, K), Quote), ID), Tdel) ∧ Tdel < T.

[SIC5] H(tell(MR, netbill, endorsedEPO(epo(CT, crypt(PrID, K), Quote), K, MR), ID), T)
→ E(tell(CT, MR, payment(epo(C, crypt(PrID, K), Quote)), ID), Tpay) ∧ Tpay < T.

[SIC6] H(tell(netbill, MR, signedResult(CT, PrID, Quote, K), ID), Tsign) ∧ MR ! = netbill
 → E(tell(MR,netbill, endorsedEPO(epo(CT,crypt(PrID, K), Quote), K, M), ID),T) ∧ T < Tsign.

[SIC7] H(tell(MR, CT, receipt(PrID, Quote, K), ID), Ts)
 → E(tell(netbill, MR, signedResult(CT, PrID, Quote, K), ID), Tsign) ∧ Tsign < Ts.

[SIC8] H(tell(CT, MR, payment(epo(CT, crypt(PrID, K), Quote)), ID), T)
 → E(tell(MR, netbill, endorsedEPO(epo(CT, crypt(PrID, K), Quote), K, MR), ID), Tepo) ∧ T < Tepo ∧ MR ! = netbill.

[SIC9] H(tell(MR, netbill, endorsedEPO(epo(CT, crypt(PrID, K), Quote), K, MR), ID), T)
 → E(tell(netbill, MR, signedResult(CT, PrID, Quote, K), ID), Tsign) ∧ T < Tsign.

[SIC10] H(tell(netbill, MR, signedResult(CT, PrID, Quote, K), ID), Tsign)
 → E(tell(MR, CT, receipt(PrID, Quote, K), ID), Ts) ∧ Tsign < Ts.

 275

Modelling Interactions via Commitments and Expectations

Forward and backward SICs have a different purpose. The former can be used to produce specifica-
tions in line with the philosophy of commitment-based semantics. They model a reactive behaviour and
describe a step-by-step evolution of the interaction similarly to what we could do with a state machine.
For example, the purpose of SIC1 is to prevent unsolicited quotes (a priceQuote must always follow a
priceRequest). If we deleted SIC1 from the NetBill specification, we would enable unsolicited quotes.
Conversely, if we replaced SIC1 with the following forward SIC:

H(tell(CT, MR, priceRequest(PrID), ID), T)
→ E(tell(MR, CT, priceQuote(PrID, Quote), ID), T2) ∧ T < T2.

the semantics would be, instead, that a merchant must always respond to a priceRequest. Therefore, if
we want to specify the protocol in such a way that agents can start at any time, skipping the previous
steps, then forward SICs is what we want to use. Backward SICs instead can be used to give a protocol
specification that more closely follows NetBill’s original, rigid specification. Both types of SICs are
well-suited to run-time verification. While each time there is a new communicative action forward SICs
tell what should happen (or should be avoided) later, backward SICs instead tell what should have hap-
pened before for the system to be in a compliant state. Sometimes it is useful to have both SICs. This is
the case, e.g., with SIC5 and SIC8. We can use SIC5 for run-time verification and SIC8 to specify the next
message needed to keep the system compliant. Forward SICs can also be used to implement compliant
agents, as it is shown by Alberti et al. (2006a).

Verifying Expectation-Based Protocols

Compliance to expectation-based protocols specified in the SCIFF language can be verified at run-time
using the SCIFF proof-procedure. Design-time verification instead can be done using g-SCIFF.

A sample protocol property that can be verified using g-SCIFF is the following:

As long as the protocol is respected, the merchant receives the payment for some goods G if and only if
the customer receives the goods G. (goods atomicity property, GAP)

To this end, we model payment by way of a signedResult message issued from the NetBill server,
and goods receipt by way of two messages addressed to the customer, containing the encrypted goods
(delivery message) and the encryption key (receipt message). Then, GAP can be expressed with a double
implication:

H(tell(netbill, MR, signedResult(CT, PrID, Quote, K), ID), Tsign)
⇔ H(tell(MR, CT, delivery(crypt(PrID, K), Quote), ID), T)
 ∧ H(tell(MR, CT, receipt(PrID, Quote, K), ID), Ts)

and its validity can be automatically proven as shown by Chesani (2007). Design-time verification can
address consistency to show that there exists at least one possible way to execute a protocol correctly.
The existence of alternative protocol runs that bring the protocol to correct completion, which is related
to the property of robustness mentioned earlier, is modelled via disjunctive SICs.

276

Modelling Interactions via Commitments and Expectations

One of the advantages of the expectation-based approach is that there is a single language to specify
protocols, verify their run-time execution and their properties at design-time. For run-time verification,
SCIFF does not resort to model checkers, which can become quite costly in terms of memory use. In-
stead, SCIFF reasons on intensional state descriptions and it makes extensive use of a constraint solver.
In this way, it is possible to model deadlines and, e.g., identify violations as soon as they expire without
an expected event occurring.

SCIFF is embedded in the SOCS-SI interaction monitoring and verification system.1 A protocol
repository2 contains a number of protocols modelled in SCIFF and some experimental results.

CONCLUSION

Mechanisms to describe and verify interaction are indispensable elements of engineering methodologies
for agent societies. Commitment-based and expectation-based semantics are declarative approaches for
specifying interaction protocols. Since both of these approaches are based on social semantics, they are
verifiable without knowing the agents’ internals.

Commitment protocols associate commitment operations with the messages of the agents so that
by sending messages agents create or manipulate their commitments. Agents that follow these proto-
cols can choose their actions by generating plans. This enables protocols to be executed flexibly. By
maintaining the list of commitments in the system, an agent can verify whether others comply with the
given protocol.

 Expectation-based protocols use logic-based forward rules and a knowledge base to associate so-
cially relevant events, such as agent messages, with expectations about what else should or should not
happen. This enables protocols to be easily verified at run-time. It also enables reasoning with events
together with other facts or hypotheses that can be made about the components and behaviour of an
organization.

Expectations and commitments are important elements of organizational multi-agent systems.
They exist outside of individual agents to specify and regulate the behaviour of an agent organization’s
members, and as such they could be used to express the organizational element inside a social artifact
(Dignum & Dignum, 2007; Omicini et al. 2004).

The approaches presented in this chapter rely on the notions of openness and heterogeneity in MAS
and are proposed to support organizational design and a positive integration of organizational and
individual perspectives. Agents can reason upon the status of commitments and social expectations to
plan and deliberate about future courses of actions. The fulfillment status of expectations and commit-
ments can be verified to monitor the behaviour of a system and decide about reachability of goals in an
organization-centric coordination perspective, while preserving the autonomy of the individuals.

While practical applications of agents to organizational modelling are being widely developed, work
presented in this chapter answers to the need of formal theories to describe interaction. Interaction
models often need to refer to other elements of the domain knowledge that are central in organizational
models, such as roles and organizational facts. Formal theories should aim to bring together all these
elements to accommodate design, monitoring, reasoning and verification. Previous work by Yolum &
Singh (2002b) has shown how commitments can be embedded in a logical framework based on the event
calculus. Expectations are an essential element of a general logical framework that integrates reactivity
and rationality in the context of hypothetical reasoning and relying on the strengths of constraint-based

 277

Modelling Interactions via Commitments and Expectations

reasoning. This poses the interesting question of how to gain the most benefit from the combination
of commitments and expectations in an organizational modelling context, and paves the way to new
interesting lines of research.

FUTURE RESEARCH DIRECTIONS

Commitments and expectations have different strengths and weaknesses with respect to expressive
power and verification capability. Therefore, an interesting future direction would be a thorough study
of their differences, to understand if and how these languages can be mapped to one other and how can
be used together for protocol execution, monitoring, and verification.

A promising research direction being undertaken using both approaches is the application of such
paradigms to the domain of Service Oriented Computing, especially in connection with advanced cross-
enterprise service engagements. MAS and services have much in common (Singh & Huhns, 2005). Both
aim to facilitate the integration of new applications, overcoming difficulties due to platform, language,
and architecture heterogeneity and component autonomy. And when we think of services as real-life
business services rather than merely as technical (web) services, the benefits of MAS organization
modelling become more apparent. Services must both support individual perspectives, expressed in
terms of policies, and overall notions of correctness and compliance, expressed via protocols. Viewed
in this manner, the above discussions of commitments and expectations—although cast in the terms of
protocols—apply to service composition in its broadest sense.

A real-life service engagement involves both commitments and expectations. The commitments
encode the high-level contractual relationships among the participants and the expectations encode the
rules of interaction as well as de facto modes of behaviour. Further, we can identify the protocols as
patterns of interaction, which can be used to succinctly and reusably specify service engagements. In
this manner, the design, modelling, verification, and enactment of organizations of business partners
may readily be built on the approaches surveyed in this chapter. Take for example two possible can-
didate roles for a service engagement that we want to design. Are these two profiles interchangeable,
with respect to the task at hand? Interoperability checking helps us define a set of possible alternatives
that we can later evaluate based on extra-logical criteria in the economy of the organization. The adop-
tion of a social approach for specifying and verifying interaction enables us to declaratively specify a
minimal set of constraints that guarantee a fruitful collaboration, while respecting the autonomy of the
individuals and avoiding harmful over-specification.

We and our colleagues have already begun work along this research path and have obtained several
promising results. Recently, Singh and colleagues have applied the concept of commitment-based pro-
tocols to the service oriented architecture and business process management contexts, by addressing
the problem of business process adaptability (Desai et al. 2006a) and of protocol composition (Desai et
al. 2006b). Alberti et al. (2006b, 2007a) and Chesani et al. (2007) have applied social expectations to
the specification of individual services and choreographies, to the formal study of the conformance of
services to choreographies and of the interoperability of services. Further, expectations have been used
to study goal reachability in the context of service contracting (Alberti et al. 2007b).

Another interesting issue concerns the declarative semantics of the approaches. Chopra & Singh
(2004) and Xing et al. (2003) show how commitments can be mapped to various underlying logic-based
formalisms. In these logics, the proof of properties for the specified system is usually done via model

278

Modelling Interactions via Commitments and Expectations

checking. Expectations, instead, adopt the abductive logic programming semantics. A future research
direction is the investigation of how these different formalisms relate. In particular, in the context of
organizational modelling and interaction verification, it is interesting to study the combination of model
checking and proof-theoretic techniques to perform a variety of different verification tasks, such as
conformance checking, static verification of properties, and interoperability between global and local
models.

ACKNOWLEDGMENT

This work has been partially funded by the following projects: MIUR-PRIN 2005-011293,3 MIUR-FIRB
TOCAI.it,4 TÜBİTAK-105E073.

REFERENCES

Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., & Mello, P. (2006a). A verifiable logic-based agent
architecture. In F. Esposito, Z. W. Ras, D. Malerba, G. Semeraro (Eds.), Proceedings of the 16th Inter-
national Symposium on Foundations of Intelligent Systems, LNAI 4203 (pp. 188–197). Berlin, Germany:
Springer.

Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., & Montali, M. (2006b). An abductive
framework for a-priori verification of web services. In A. Bossi, M. J. Maher (Eds.), Proceedings of the
8th ACM SIGPLAN Conference on Principles and Practice of Declarative Programming (pp 39-50).
New York, NY: ACM Press.

Alberti, M., Chesani, F., Gavanelli ,M., Lamma, E., Mello, P., Montali, M., & Torroni, P. (2007a). A
rule-based approach for reasoning about collaboration between smart web services. In M. Marchiori, J.
Z. Pan, C. de Sainte Marie (Eds.), Proceedings of the 1st International Conference on Web Reasoning
and Rule Systems, LNCS 4524 (pp. 279–288). Berlin, Germany: Springer.

Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Montali, M., & Torroni, P. (2007b). Web
service contracting: Specification and reasoning with SCIFF. In E. Franconi, M. Kifer, W. May (Eds.),
Proceedings of the 4th European Semantic Web Conference, LNAI 4519 (pp. 68–83). Berlin, Germany:
Springer.

Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., & Torroni, P. (2008). Verifiable agent
interaction in abductive logic programming: The SCIFF Framework. ACM Transactions on Computa-
tional Logic, 9(4), Article 29.

Bauer, B., Müller, J. P., & Odell, J. (2001). Agent UML: A formalism for specifying multiagent soft-
ware systems. International Journal of Software Engineering and Knowledge Engineering, 11(3),
207–230.

Bordini, R. H., Fisher, M., Visser, W., & Wooldridge, M. (2004). Model checking rational agents. IEEE
Intelligent Systems 19(5), 46–52

 279

Modelling Interactions via Commitments and Expectations

Bürckert, H. J. (1994). A resolution principle for constrained logics. Artificial Intelligence, 66, 235–
271.

Castelfranchi, C. (1995) Commitments: From individual intentions to groups and organizations. In V.
R. Lesser, L. Gasser (Eds.): Proceedings of the First International Conference on Multiagent Systems
(pp. 41–48). Cambridge, MA: The MIT Press.

Chesani, F. (2007). Specification, execution and verification of interaction protocols. Unpublished
doctoral dissertation, University of Bologna, Department of Computer Engineering (DEIS), Italy.

Chesani, F., Mello, P., Montali, M., & Storari, S. (2007). Agent societies and service choreographies: A
declarative approach to specification and verification. In M. Baldoni, C. Baroglio, V. Mascardi (Eds.),
Agents, Web-Service, and Ontologies: Integrated Methodologies. Proceedings of the International
Workshop MALLOW-AWESOME’007. Durham, September 6th-7th, 2007. Retrieved May 26, 2008, from
http://awesome007.disi.unige.it/proceedings.html

Chopra, A. K., & Singh, M. P. (2004). Nonmonotonic commitment machines. Advances in Agent Com-
munication, International Workshop on Agent Communication Languages, LNCS 2922 (pp. 183–200).
Berlin, Germany: Springer.

Cox, B., Tygar, J. C., & Sirbu, M. (1995). NetBill security and transaction protocol. In D. E. Geer Jr
(Ed.): Proceedings of the First USENIX Workshop on Electronic Commerce. Retrieved on May 26,
2008, from http://www.usenix.org/publications/library/proceedings/ec95/cox.html

DeLoach, S. A., Wood, M. F., & Sparkman, C. H. (2001). Multiagent systems engineering. International
Journal of Software Engineering and Knowledge Engineering, 11(3), 231–258.

Desai, N., Chopra, A. K., & Singh, M. P. (2006a). Business process adaptations via protocols. In J.
Zhao, M. Blake, P. Hung (Eds.), Proceedings of the Third IEEE International Conference on Services
Computing (pp. 103–110). Washington, DC: IEEE Computer Society.

Desai N., Mallya, A. U. Chopra, A. K., & Singh, M. P. (2006b). OWL-P: A methodology for business
process development. In M. Kolp, P. Bresciani, B. Henderson-Sellers, M. Winikoff (Eds.), Agent-Ori-
ented Information Systems III, 7th International Bi-Conference Workshop, LNCS 3529 (pp. 79–94).
Berlin, Germany: Springer.

Dignum, V., & Dignum, F. (2007). Coordinating tasks in agent organization or: Can we ask you to
read this paper? In P. Noriega, J. Vázquez-Salceda, G. Boella, O. Boissier, V. Dignum, N. Fornara, E.
Matson (Eds.): Coordination, Organisations, Institutions and Norms in Agent Systems II, LNCS 4386
(pp. 32–47). Berlin, Germany: Springer.

Dignum, V., Meyer, J.-J. Ch., Wiegand, H., & Dignum, F. (2002). An organisational-oriented model
for agent societies. In: G. Lindemann, D. Moldt, M. Paolucci, B. Yu (Eds.), Proceedings of the RASTA
Workshop at AAMAS’02, Communications Vol. 318 (pp. 31–50). Hamburg University, Faculty of Infor-
matics, Germany.

Fung, T. H., & Kowalski, R. A. (1997). The IFF proof-procedure for abductive logic programming.
Journal of Logic Programming, 33(2), 151–165.

280

Modelling Interactions via Commitments and Expectations

Guerin, F., & Pitt, J. (2002) Proving properties of open agent systems. In: C. Castelfranchi, W. Lewis
Johnson (Eds.), Proceedings of the First International Joint Conference on Autonomous Agents and
Multi-Agent Systems (pp. 557–558). New York, NY: ACM Press.

Hartshorne, C., & Weiss, P. (1965). Collected papers of Charles Sanders Peirce, 1931–1958. Cambridge,
MA: Harvard University Press.

Jaffar, J., & Maher, M.J. (1994). Constraint logic programming: A survey. Journal of Logic Program-
ming, 19–20, 503–582.

Kakas, A. C., Kowalski, R. A., & Toni, F. (1993). Abductive logic programming. Journal of Logic and
Computation, 2(6), 719–770.

Montali, A., Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., & Torroni, P. (2008). Verification from
declarative specifications using Logic Programming. In M. Garcia de la Banda & E. Pontelli (Eds.),
Proceedings of the 24th International Conference on Logic Programming, LNCS. Berlin, Germany:
Springer.

Omicini, A., Ricci, A., Viroli, M., Castelfranchi, C., & Tummolini, L. (2004). Coordination artifacts:
Environment-based coordination for intelligent agents. In: C. Castelfranchi, W. Lewis Johnson (Eds.),
Proceedings of the First International Joint Conference on Autonomous Agents and Multi-Agent Systems
(pp. 286–293). New York, NY: ACM Press.

Padgham, L., & Winikoff, M. (2004). Developing intelligent systems: A practical guide. Hoboken, NJ:
John Wiley & Sons, Inc.

Shah Nawaz, S. (2007). Commitment-based analysis of organizations: Dealing with inconsistencies.
Unpublished Master Thesis. Boğaziçi University, Department of Computer Engineering, Istanbul,
Turkey.

Singh, M. P. (1991). Social and psychological commitments in multiagent systems. In AAAI Fall Sym-
posium on Knowledge and Action at Social and Organizational Levels (pp. 104–106). Menlo Park, CA:
AAAI Press.

Singh, M. P. (1998). Agent communication languages: Rethinking the principles. IEEE Computer,
31(12), 40–47.

Singh, M. P. (1999). An ontology for commitments in multiagent systems: Toward a unification of nor-
mative concepts. Artificial Intelligence and Law, 7, 97–113.

Singh, M. P., & Huhns., M. N. (2005). Service-Oriented Computing, Hoboken, NJ: John Wiley & Sons,
Inc.

Venkatraman, M., & Singh, M. P. (1999). Verifying compliance with commitment protocols: Enabling
open Web-based multiagent systems. Autonomous Agents and Multi-Agent Systems, 2(3), 217–236.

Xing J., & Singh, M. P. (2003). Engineering commitment-based multiagent systems: A temporal logic
approach. In: J. S. Rosenschein, T. Sandholm, M. Wooldridge, M. Yokoo (Eds.), Proceedings of the
Second International Joint Conference on Autonomous Agents and Multi-Agent Systems (pp. 891–898).
New York, NY: ACM Press.

 281

Modelling Interactions via Commitments and Expectations

Yolum, P. (2007). Design time analysis of multiagent protocols. Data and Knowledge Engineering, 63,
137–154.

Yolum, P., & Singh, M. P. (2002a). Commitment machines. In J.-J. Ch. Meyer, M. Tambe (Eds.): Pro-
ceedings of the 8th International Workshop on Agent Theories, Architectures, and Languages, LNAI
2333 (pp. 235–247). Berlin, Germany: Springer.

Yolum, P., & Singh, M.P. (2002b). Flexible protocol specification and execution: Applying event calculus
planning using commitments. In: C. Castelfranchi, W. Lewis Johnson (Eds.), Proceedings of the First
International Joint Conference on Autonomous Agents and Multi-Agent Systems (pp. 527–534). New
York, NY: ACM Press.

Zambonelli, F., Jennings, N. R., & Wooldridge, M. (2003) Developing multiagent systems: The Gaia meth-
odology. ACM Transactions on Software Engineering and Methodology (TOSEM), 12(3), 317–370.

ADDITIONAL READING

On Multi-Agent Organizational Paradigms

Horling, B., & Lesser, V. (2004). A survey of multi-agent organizational paradigms. The Knowledge
Engineering Review, 19, 281–316.

On Agent-Oriented Software Engineering Methodologies

Zambonelli, F., & Omicini, A. (2004). Challenges and research directions in agent-oriented software
engineering. Autonomous Agents and Multi-Agent Sytems, 9, 253–283.

Desai, N., Mallya, A.U., Chopra, A.K., & Singh, M.P. (2005). Interaction protocols as design abstractions
for business processes. IEEE Transactions on Software Engineering, 31(12), 1015–1027.

Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., & Perini, A. (2004). Tropos: an agent-oriented
software development methodology. Autonomous Agents and Multi-Agent Systems, 8(3), 203–236.

Bergenti, F., Gleizes, M.-P., & Zambonelli, F. (Eds.). Methodologies and software engineering for
agent systems: The agent-oriented software engineering handbook. Boston, MA: Kluwer Academic
Publishers.

On Commitments

Desai, N., Chopra, A.K., & Singh, M.P. (2007). Representing and reasoning about commitments in busi-
ness processes. In A. Howe and R. Holt (Eds.): Proceedings of the 22nd AAAI Conference on Artificial
Intelligence, (pp. 1328–1333). Menlo Park, CA: AAAI Press.

Flores, R.A., Pasquier, P., & Chaib-draa, B. (2007). Conversational semantics sustained by commit-
ments. Autonomous Agents and Multi-Agent Systems 14(2), 165–186.

282

Modelling Interactions via Commitments and Expectations

Fornara, N. & Colombetti, M. (2002) Operational specification of a commitment-based agent communi-
cation language. In: C. Castelfranchi, W. Lewis Johnson (Eds.), Proceedings of the First International
Joint Conference on Autonomous Agents and Multi-Agent Systems (pp. 535–542). New York, NY: ACM
Press.

Singh, M.P. (2008) Semantical considerations on dialectical and practical commitments. In D. Fox, C.
Gomes (Eds.): Proceedings of the 23rd AAAI Conference on Artificial Intelligence. Menlo Park, CA:
AAAI Press.

Yolum, P., & Singh, M.P. (2007). Enacting protocols by commitment concession. In E. H. Durfee, M.
Yokoo, M. N. Huhns, O. Shehory (Eds.): Proceedings of the Sixth International Joint Conference on
Autonomous Agents and MultiAgent Systems (AAMAS). (pp. 116–123). New York, NY: ACM Press.

Wan, F. & Singh, M.P. (2005). Formalizing and achieving multiparty agreements via commitments. In
F. Dignum, V. Dignum, S. Koenig, S. Kraus, M. P. Singh, M. Wooldridge (Eds.): Proceedings of the
Fourth International Joint Conference on Autonomous Agents and MultiAgent Systems. (pp. 770–777).
New York, NY: ACM Press.

Winikoff, M. (2007). Implementing Commitment-Based Interaction. In E. H. Durfee, M. Yokoo, M.
N. Huhns, O. Shehory (Eds.): Proceedings of the Sixth International Joint Conference on Autonomous
Agents and MultiAgent Systems (AAMAS). (pp. 868–875). New York, NY: ACM Press.

Winikoff, M., Liu, W., & Harland, J. (2005). Enhancing commitment machines. In J. A. Leite, A. Omicini,
P. Torroni, P. Yolum (Eds.): Proceedings of the Second International Workshop on Declarative Agent
Languages and Technologies, LNAI 3476 (pp. 198–220). Berlin, Germany: Springer.

On Computational Logic-Based Agents

Fisher, M., Bordini, R.H., Hirsch, B., & Torroni, P. (2007). Computational logics and agents: A road
map of current technologies and future trends. Computational Intelligence, 23(1), 61–91.

Mascardi, V., Martelli, M., & Sterling, L. S. (2004). Logic based specification languages for

intelligent software agents. Theory and Practice of Logic Programming, 4(4), 429–494.

Torroni, P. (2004). Computational logic in multi-agent systems: Recent advances and future directions.
Annals of Mathematics and Artificial Intelligence, 42(1–3), 293–305.

On the Logics Mentioned in the Chapter

Abductive Logic Programming

Kakas, A.C., Kowalski, R.A., & Toni, F. (1998). The role of abduction in logic programming. In D.M.
Gabbay, C.J. Hogger and J.A. Robinson (Eds.): Handbook of logic in artificial intelligence and logic
programming, vol. 5 (pp. 235–324). Oxford, UK: Oxford University Press.

 283

Modelling Interactions via Commitments and Expectations

Constraint Logic Programming

Marriott, K., & Stuckey, P.J. (1998). Programming with constraints: An introduction. Cambridge, MA:
The MIT Press.

Event Calculus

Kowalski, R., & Sergot, M. J. (1986). A logic-based calculus of events. New Generation Computing,
4(1), 67–95.

Model Checking

Clarke, E.M., Grumberg, O., & Peled, D.A. (2000). Model checking. Cambridge, MA: The MIT
Press.

Temporal Logic

Emerson, E.A. (1990). Temporal and modal logic. In J. van Leeuwen (Ed.): Handbook of theoretical
computer science, Part B (pp. 995–1072). Amsterdam, The Netherlands: North-Holland.

Nonmonotonic Causal Theories

Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., & Turner, H. (2004). Nonmonotonic causal theories.
Artificial Intelligence, 153(1–2), 49–104.

On Tools and Applications

Desai, N., Chopra, A.K., Arrott, M., Specht, B., & Singh, M.P. (2007). Engineering foreign exchange
processes via commitment protocols. In L.-J. Zhang, W. van der Aalst, P. C. K. Hung (Eds.): Proceed-
ings of the Fourth IEEE International Conference on Services Computing (pp. 514–521). Washington,
DC: IEEE Computer Society.

KEY TERMS

Commitment: In simple terms, a directed obligation from one agent to another to bring about a
particular condition. A commitment is open to manipulation from its participants.

Declarative Semantics: Association of meaning that specifies what rather than how. Communica-
tion with declarative semantics specifies what actions should be brought out in an interaction, rather
than how they are brought out.

284

Modelling Interactions via Commitments and Expectations

Expectation: An abstract entity that captures the possible events that would make a multiagent
system conform to its requirements.

Execution Flexibility: Providing agents options in carrying out their interactions. Protocols that
support execution flexibility allow agents to handle exceptions and take advantage of opportunities at
run time.

Interaction Protocol: A set of rules that regulate the interactions between agents that work to-
gether.

Verification of Agent Compliance: Checking if agents that participate in a protocol follow the
protocol rules.

Verification of Protocol Rules: Checking if protocol rules enable agents to carry out the protocol
as desired. If protocol rules are specified incorrectly, possibly leading to deadlocks or livelocks, their
verification should signal this.

ENDNOTES

1 http://lia.deis.unibo.it/research/socs_si/
2 http://lia.deis.unibo.it/research/socs_si/protocols.html
3 Specification and verification of agent interaction protocols. Project Home Page: http://www.

ricercaitaliana.it/prin/dettaglio_prin_en-2005011293.htm
4 Knowledge-oriented technologies for enterprise aggregation in Internet. Project Home Page:

http://www.dis.uniroma1.it/~tocai/

