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ABSTRACT
In Semantic Web technologies, searching for a service means identifying components that can potentially 
satisfy user needs in terms of inputs and outputs (discovery) and devise a fruitful interaction with the customer 
(contracting). In this paper, the authors present an application framework that encompasses both the discovery 
and the contracting steps in a unified search process. In particular, the authors accommodate service discovery 
by ontology-based reasoning and contracting by reasoning about behavioural interfaces, published in a formal 
language. To this purpose, the authors consider a formal approach grounded on Computational Logic. They 
define, illustrate, and evaluate a framework, called SCIFF Reasoning Engine (SRE), which can establish if a 
Semantic Web Service and a requester can fruitfully inter-operate, by computing a possible interaction plan 
based on the behavioural interfaces of both. The same operational machinery used for contracting can be 
used for runtime verification.
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INTRODUCTION

Service Oriented Architecture (SOA) and Web 
services are emerging as standard architectures 
for distributed application development. Even-
tually, the use of off-the-shelf solutions/services 
is becoming possible, although concerns about 
the adoption of such components have been 
raised. In particular, the search of services on 
the basis of the functionality they provide, 
rather than on some syntactical property, is 
still an open research issue. Some authors are 
seeking for a possible solution to this problem 
among the technologies for the Semantic Web 
(McIlraith et al., 2001; Kifer et al., 2004). The 
idea is to augment Web service descriptions by 
semantic information that can be used to search 
for Semantic Web Services (SWS).

WEB SERVICE DISCOVERY 
AND CONTRACTING WITH SRE

In our view, searching for a service means to 
identify components that i) can potentially sat-
isfy the user needs, and ii) can be invoked by 
the customers and interact with them. Of course, 
an interaction is successful if it satisfies user/
service goals and constraints; as an example, 
a user might not want to provide a credit card 
number to a non-certified service, or a service 
could disallow credit card payments for items 
out of stock or with more than 30% discount. 
Hence, a user request should contain not only 
a description (given in semantic terms) of the 
user desires, but also the user constraints about 
the content and the order of the exchanged 
messages, to be matched with the constraints 
that constitute a “behavioural interface” of the 
user/service. We consider the search of a SWS 
as the process of selecting, among a given set of 
services, those components that both i) satisfy 
the ontological requirements, by providing 
the requested functionality; and ii) satisfy the 
constraints on interaction, by supporting the 
requested behaviour.

In this article we present SRE (SCIFF 
Reasoning Engine), a framework for searching 

Semantic Web Services that takes into account 
requested functionalities as well as requested 
behaviours. Following Kifer et al. (2004), SRE 
adopts a two-step search process (Figure 1). 
For the first phase, called discovery, it extends 
a well-known algorithm from the literature 
(Paolucci et al., 2002). In particular, it considers 
a requester’s desires, and, using ontology-based 
reasoning on knowledge expressed in OWL 
(Bechhofer et al., 2004), produces a shortlist of 
services that can potentially satisfy a request of 
such a kind. The second step, called contracting, 
matches the requester’s behavioural interface 
with those of each shortlisted service. The 
purpose is to establish constructively whether 
an interaction can be effectively achieved, and 
if such interaction leads to achieve the user/
service goals. Our choice has been to represent 
behavioural interfaces using a declarative, rule-
based approach, and to exploit computational 
logic techniques to perform the reasoning task. 
Note that “contract” is a term also used in 
other contexts, such as in software engineering 
(Design By Contract, Brunel et al., 2004). This 
work does not focus on software engineering 
issues, and we use the terms “contract” and 
“contracting” in the sense it is used by others 
in the SWS literature.

We formalise the external behavior inter-
faces of users and web services in a declarative 
language which is a modification of the SCIFF 
abductive logic programming language (Al-
berti et al., 2008), originally developed for the 
specification of open societies. In this new 
language, behavioural interfaces are defined 
by Integrity Constraints (ICs): a sort of reactive 
rules used to generate and reason about expec-
tations on possible evolutions of a given inter-
action. The SCIFF language is equipped with 
a proof procedure, which SRE exploits to au-
tomatically reason upon the behavioural inter-
faces. Such a reasoning task aims to establish 
if an interaction can be effectively achieved 
and, in case of a positive answer, to provide 
also a sort of a (partial) plan of a possible in-
teraction.

In previous work (Alberti et al., 2007), we 
presented a prototype of the SRE framework, 
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focused on the contracting step alone. We in-
troduced the idea of representing behavioural 
constraints as rules, showing how to reason 
from them using abductive inference, and 
Abductive Logic Programming, a powerful 
formalism for hypothetical reasoning with 
rules, in particular (Kakas et al., 1992). This 
article describes in greater detail an extended 
SRE framework, which supports the discovery 
step, and features ontological reasoning in both 
the discovery and the contracting phase. The 
abductive proof procedure can be used to verify, 
at runtime, the compliance of interacting parties 
to their contract.

INNOVATIVE SRE FEATURES

SRE advances state-of-the-art solutions on 
SWS search process in several directions. The 
first one is an increased flexibility of service 
descriptions, by choosing a declarative, rather 
than procedural, approach to specification, as 
advocated in recent literature (van der Aalst et 
al., 2005; Montali et al., 2010). An SRE WS 
description contains both functional properties 
and behavioural specifications. The latter are 
given using a declarative approach based on 
rules. This choice allows a greater flexibility 
when compared to procedural ways of describ-
ing service behavioural aspects, since it only 
focuses on constraining the desired behaviour, 
and it does not require to idly specify all the 
possible behaviours. This may be less signifi-
cant in very simple behaviours, but it makes a 
difference when the behaviours to specify are 
complex and result from a set of requirements 

given in natural language. For example, a service 
might not provide enough information on how 
to interact for security reasons: in such a case, 
the plan of the possible interaction would be 
partial and/or incomplete. The ability to reason 
with partial information and still provide the 
user with an answer is a benefit mainly due 
to the declarative, as opposed to procedural, 
nature of SRE.

The underlying operational machinery, the 
SCIFF abductive proof procedure (Alberti et al., 
2008), enriched with the possibility to access 
ontological knowledge, is used for (i) automated 
contracting (i.e., computing a partial plan of 
interaction that achieves the user’s goals while 
satisfying the user’s and the service’s policies) 
and possibly (ii) runtime verification of compli-
ance of the interacting parties to their contract, 
or possibly to an external interaction protocol 
or choreography. Whereas several approaches 
and formalisms have been proposed to deal with 
one of the aforementioned tasks, SRE provides 
a uniform specification language and a reasoner 
to perform all of them. While outside the scope 
of this article, in order to further demonstrate 
the flexibility of SCIFF-based approach, we 
would like to point out that in previous work we 
applied the same reasoner to a-priori verifica-
tion of compliance of a service specification to 
a choreography (Alberti et al., 2006).

Moreover, the use of a computational logic 
language bears another important advantage, 
given by its built-in unification and constraint-
handling engine: it enables reasoning about the 
content of the messages during the contracting 
phase. In other words, in SRE one can specify 

Figure 1. Looking for the right service in SRE
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the external behaviour of a SWS also in terms 
of the content of the messages. For instance, 
an eCommerce service could specify different 
behaviours based on the fact that the invoker 
of the service is a premium customer rather 
than a newcomer, or it could support special 
behaviours for customers that acquire an amount 
of goods which exceeds a certain threshold. 
Last but not least, we extended the SCIFF 
reasoning tool, which can now accommodate 
ontological inference also while dealing with 
rules. This solves an issue with the behavioural 
interfaces that are described by rules that use 
different terms.

ROADMAP

The article is structured as follows. First we posi-
tion our technology with respect to the Semantic 
Web architecture, and we introduce a simple 
running scenario, which we will use throughout 
the paper to illustrate the framework. Then, 
we describe the discovery and the contracting 
phases. In the section “Behavioural Specifica-
tion Language and Semantics” we introduce the 
language and tools used by SRE to represent 
and reason upon the behavioural interfaces of 
the services. In the section “Implementation 
Architecture”, we describe the technical details 
about the implemented framework, followed by 
a discussion of related work and conclusions.

SRE AND THE SEMANTIC WEB

With respect to the semantic Web cake, our 
framework affects two layers: ontology and 
logical reasoning (Figure 2). They are inter-
nally represented with two different sets of 
information and stored in two different files. 
Ontological aspects are represented by means 
of an OWL-S 1.1 profile, and the reasoning 
upon such information is performed by Pellet 
(Parsia & Sirin, 2004). Behavioural proper-
ties are defined using a computational logic 
language, named SCIFF (Alberti et al., 2008). 
This allows us to keep the architecture open 
to other SWS description solutions, without 

giving up the powerful SCIFF formalism for 
representing the interaction issues.

Rule-based languages have been advo-
cated to enhance the semantic information 
associated to Web content. As claimed by Bry 
and Eckert (2006), a rule-based approach to 
reactivity on the Web provides many benefits. 
To cite some:

• Rules are easy to understand for humans. 
Requirement specifications often come in 
the form of rules expressed in a natural or 
formal language;

• Rule-based specifications are flexible and 
easy to adapt;

• Rules are well-suited to be processed and 
analysed by machines;

• Rules can be managed in a single knowl-
edge base or in several knowledge bases 
possibly distributed over the Web.

Moreover, if the rules are defined in a logic-
based formal language, computational logic 
technologies, i.e., languages, tools, and proof 
procedures, can be successfully used to perform 
reasoning tasks, such as a-priori verification 
of interoperability or runtime verification of 
compliance. For these reasons, the integration 
of ontological and rule-based knowledge in ser-
vice description is a key advantage of the SRE 
approach, as we demonstrate in the remainder 
of this paper.

ESHOP SCENARIO

Let us consider an artificial example. User alice 
forgot to buy her brother a Christmas present 
and now she is desperately searching the Inter-
net for an online shop that sells the last crime 
fiction novel featuring detective Montalbano. 
She is particularly worried because she needs 
to find a shop that can deliver the book to Italy 
within 3 days. She can pay cash or by credit 
card. She is also worried about frauds, so she 
will not provide her credit card number to any 
electronic shop, but only to those belonging to 
a Better Business Bureau (BBB).
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eShop1 is the biggest Internet book seller, 
and through its semantic Web services it pro-
vides all kinds of books. Its services are adver-
tised with the generic term “book”. Concerning 
delivery, fast delivery (one day) is allowed 
only if payment is performed by credit card; 
otherwise, standard delivery (one week) is the 
default option.

eShop2 is a small Internet seller, specialized 
in crime fiction books only. Its service adver-
tisements use again the generic term “book”, 
and it accepts “credit card” payment and “cash” 
payment. The shop delivers in two days but only 
delivers to customers in the European Union. It 
proves its membership to the BBB upon request.

eShop3 is a huge consumer electronics 
chain, which advertises its Internet service 
as “selling hardware.” It accepts all payment 
methods, supports delivery in 1 day, provides 
its membership to BBB if credit card payment 
is chosen.

In our scenario, alice queries a search 
engine, which performs a discovery step; in 
this phase eShop1 and eShop2 are shortlisted 
as possible services (eShop3 is discarded as 
it does not sell items related to the concept of 
“book”). However, this does not guarantee that 
an interaction is possible. Due to alice’s policy, 
the credit card number is provided only to 
BBB members, so only eShop2 remains viable. 
Feasibility of delivery, based on geographical 
criteria, has to be checked too.

DISCOVERY AND 
CONTRACTING

As in Kifer et al. (2004), we distinguish be-
tween a discovery and a contracting phase. 
During discovery, the user request for a service 
is compared with each SWS description, and 
possible services are selected based on ontologi-
cal matching criteria. The discovery process 
returns a shortlist of candidate services, which 
might fulfill the user requirements, because 
their descriptions match, at least partially, the 
client’s requests. Such a shortlist is given in 
input to the next phase.

The contracting phase uses the behavioural 
interfaces, i.e., the set of rules that each partner 
has declared to represent their constraints about 
how the interaction should happen. Here we see 
exactly which services fulfill the requirements. 
In particular, the problem is to decide whether, 
given a set of service/user rules, an interaction 
between client and service can effectively hap-
pen and achieve the user/service goals.

Discovery

Our framework’s discovery phase uses an ex-
tended version of a semantic matching algorithm 
defined by Paolucci et al. (2002). We are aware 
of other proposals for semantic matching (e.g., 
Oundhakar et al., 2005; Ragone et al., 2007) 
aimed at overcoming its limitations (one com-

Figure 2. Semantic Web cake and addressed levels
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mon criticism is that the algorithm considers 
only inputs and outputs of a service, whereas it 
ignores preconditions and effects, see Wang et 
al., 2006). However, our modular architecture 
supports other matching algorithms, and does 
not depend on the particular choice.

Given a client’s request, discovery is con-
ceived as the problem of selecting those services 
that might satisfy the client’s needs. The client 
publishes her needs in terms of information she 
is willing to provide as input to the service, and 
in terms of outputs she expects from the service. 
Similarly, each service advertises its own capa-
bilities as a list of pieces of information that it 
requires in input, paired with the information it 
will provide in output. Each piece of informa-
tion represents a parameter, and the discovery 
problem can be intended as looking for those 
services whose input (output) parameters match 
the input (output) parameters of the client. The 
client’s request is compared with every service 
description available, and a set of candidate 
services is returned to the client.

Paolucci et al. (2002) assume that each 
parameter is described via ontological propo-
sitions. For instance, in SRE, the parameters 
are defined in terms of OWL-S concepts. The 
parameters of each available service profile are 
checked against the parameters in the client’s 
request. Subsumption is used to decide if two 
parameters match. There are four different 
matching levels, depending on the subsumption 
relation: exact, if it is possible to establish that 
two parameters defined with different terms 
both refer to the same concept; plugin and 
subsume if a parameter is subsumed/subsumes 
the other; and fail if no subsumption relation 
can be identified.

In this phase, the main problem is that the 
terms/concepts used in the request could differ 
from those used in the service description. In 
particular, two seemingly different terms could 
actually refer to the same concept. In this work, 
we do not deal with this problem, which we 
leave to further research and extensions of SRE. 
We simply assume that there exists a common 
ontology, and we let the ontological reasoner 
match terms and concepts that may be different 

(in that they do not match exactly, according 
to the aforementioned classification), but are 
in the same ontology.

To increase flexibility, our implementation 
generalizes the original algorithm defined by 
Paolucci et al. (2002), which requires the number 
of input/output parameters to be exactly the same 
in the client request and in the service profile, 
in order for a service to be discovered. In SRE, 
if a service provides more outputs or requires 
less inputs than those stated in the client’s query, 
such a service may be selected anyway. As a 
result, the contracting phase may be provided 
with more choices, and it may indeed end up 
selecting a service which would be discarded 
according to Paolucci et al. (2002). The reason 
is that the contract could be satisfactory for both 
parties even if the client discards some of the 
outputs of the service, or if it provides an input 
disregarded by the service. Suppose, e.g., that 
eShop2 has launched a marketing campaign to 
attract new customers: together with each book 
bought on its Web site, eShop2 will provide 
also a free voucher of 10$ valid for the next 
order. The algorithm in its original form would 
disregard eShop2 since it provides both a book 
and a voucher, while alice is looking for a book 
only. We instead include eShop2 in the set of 
discovered services, following the intuition 
that alice can freely decide what to do with the 
bonus voucher.

Notable alternative approaches include 
semantic contexts and similiarity functions 
(Isaac et al., 2008). In our scenario, however, 
a client sending a request already expressed in 
term of a concept would not provide enough 
information for identifying a context, thus 
making such alternative less interesting from 
our viewpoint. Indeed, this would be a very 
interesting research direction once we extend 
and enrich the amount of information carried 
in every client’s request.

Contracting

Based on the output of the discovery phase, SRE 
moves on to the next phase to decide whether 
an interaction can be achieved. To this end, 
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SRE tries to establish if there exists a possible 
sequence of events (exchanged messages) that 
respect the constraints of both the service and 
the user. If it does, SRE produces a plan (see 
the section on Operational Semantics) whose 
(partially ordered) actions are the messages that 
should be exchanged. Note that the reasoning 
process is user goal-driven: not all the possible 
interactions are of interest; only those that satisfy 
the user’s needs are. The contracting phase, 
as well as the discovery phase, may involve 
ontological reasoning, which is delegated to 
an external ontological reasoner.

At the logical level, the SWS are repre-
sented in SRE with triplets:

s ws Pws, ,  

where s identifies a certain service, ws is the 
name of a Web service that provides s, and Pws 
is ws’s behavioural specification (see Defini-
tion 1).

A client c may submit a query to SRE by 
providing a description of a service it needs (its 
goal G), and possibly its behavioural specifica-
tion Pc. SRE answers to c’s query by providing 
a number of triplets:

ws, ,e D  

each containing the name of a Web service that 
provides a certain service s satisfying the goal G, 
plus some additional information. Intuitively, ε 
encodes a possible sequence of inter-operations 
between ws and c regarding s, while Δ contains 
a number of additional validity conditions for ε. 
For example, in the eShop scenario, if G is “get 
book”, ε may be “ws (eShop2) shows evidence 
of membership to the BBB, c pays by credit 
card”, and Δ may be “delivery in Europe”.

BEHAVIOURAL SPECIFICATION 
LANGUAGE AND SEMANTICS

In SRE, the behavioural specification describes 
a Web service’s observable behaviour in terms 
of events, representing, for instance, exchanged 

messages. SRE considers two types of events: 
those that one actor receives or can directly 
control (e.g., if we consider Web service ws’ 
behavioural interface, a message generated by 
ws itself) and those that one desires (not) to 
receive. Such information is represented in SRE 
by means of logic atoms (Lloyd, 1987) with 
functor H that denote “happened” events, and 
with functor E (resp. EN) which denote “de-
sired” (resp. “undesired”) events, also known 
as positive (resp. negative) expectations. Both 
happened events and expectations represent 
hypotheses about events that may happen in 
the future, which encode possible interactions 
between a client and a service. Arguments of 
event atoms can contain variables (convention-
ally with uppercase initial, e.g., M, T), that can 
be associated with domains and restrictions, as in 
Constraint Logic Programming. For example, a 
time variable may be associated with restrictions 
representing deadlines. Although our proof-
procedure and implementation support both 
continuous and discrete time intervals, in this 
paper we will only consider integer domains.

The syntax of event atoms is as follows:

• H(ws, ws1, M, T), for messages (with con-
tent M) that a Web service ws1 receives 
from another Web service ws, or (changing 
perspective) that ws intends to send to ws1 
at some time in the domain of T;

• E(ws1, ws, M, T) for messages (with content 
M) expected by ws to be sent to him from 
ws1 at some time inside the domain of T;

• EN(ws1, ws, M, T) for messages (with 
content M) that are expected by ws not to 
be sent to him by ws1 at any time in the 
domain of T (note that in negative expecta-
tions variables are implicitly universally 
quantified).

Message contents are logical terms. Intui-
tively, the functor represents the type of message 
(ask, send, etc.), although there is no predefined 
set of keywords.

Web service specifications in SRE are 
relations among expected events, expressed by 
an Abductive Logic Program (ALP). An ALP 
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(Kakas et al., 1993) is a triplet P A IC, , , 
where P is a logic program, A is a set of 
predicate symbols named abducibles, and IC 
is a set of logical formulas called integrity 
constraints. P defines predicates, A the contains 
the predicate symbols with no definition in P, 
and the role of IC is to control the ways predi-
cates built upon elements of A are hypothesised, 
or “abduced”. Reasoning from an ALP is usu-
ally goal-directed (being G a goal), and it 
amounts to finding a set of abduced hypotheses 
Δ built from predicates in A such that 
P G∪ =∆ |  and P IC∪ =∆ | . Kowalski and 
Sadri (1999) have shown how an abductive 
logic programming proof-procedure such as 
the IFF by Fung and Kowalski (1997) can 
reconcile backward, goal-oriented reasoning 
with forward, reactive reasoning.

Definition 1. Web Service Behavioural 
Specification. Given a Web service ws, its 
behavioural specification Pws is an ALP, 
represented by the triplet

P KB A ICws ws wsº , ,  

where:

• KBws is ws’s Knowledge Base,
• A is the set of abducible predicates, and
• ICws is ws’s set of Integrity Constraints.

KBws is a set of backward rules (clauses) 
which declaratively specifies pieces of knowl-
edge of the Web service. Note that the body of 
KBws ‘s clauses may contain E/EN expectations 
about the behaviour of the Web services. A is 
the set of abducible predicates, which includes 
E/EN expectations, H events, and predicates not 
defined in KBws. Integrity Constraints (ICs) are 
forward rules1, of the form Body→Head. The 
Body of ICws is a conjunction of events, literals 
and CLP2 constraints (over integer or real num-
bers); Head is either a disjunction of conjunc-
tions of events, literals and CLP constraints, or 

false. Operationally, whenever Body becomes 
true, the IC fires and forces Head to become 
true, possibly by assuming some abducibles 
to be true and by activating CLP propagation 
procedures. The syntax of KBws and ICws is given 
in Table 1 and Table 2, respectively.

Interactions are specified by means of 
integrity constraints, i.e., logical relations that 
link the messages (modeled by H atoms) sent 
or received by a Web service with those (mod-
eled by E/EN atoms) it expects from other Web 
services or from the remote user. Constraints 
over variables can specify relations of various 
types, including temporal relations (e.g., dead-
lines), linear constraints and inequalities. Op-
erationally, such definitions are used to make 
assumptions on the possible evolutions of the 
interaction. Sample ICs and clauses are given 
in Eq. (1) through Eq. (8).

THE ESHOP SCENARIO IN SRE

Let us now show an SRE implementation 
of the eShop scenario. The SRE language 
does not require any particular keyword in 
the argument of events/expectations. In this 
example, we will use the following symbols 
to identify different types of message content: 
ask, pay(Item,PaymentMethod), request_guar 
and give_guar respectively for requesting and 
giving a guarantee, and deliver to simulate the 
actual delivery.

User alice’s behavioural interface states 
that if a shop asks to pay cash at some time 
Ta, alice will proceed with the payment in a 
later time Tr:

 
(1)

If, instead, the payment is done by credit 
card, then alice will require evidence of the 
shop’s affiliation to the BBB (2) and only af-
terwards proceed to pay (3).



International Journal of Web Services Research, 8(3), 1-25, July-September 2011   9

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

 
(2)

H
H

( , , ( ( , )), )
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S alice ask pay Item cc T
S alice give guar bbb T

a ∧
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→
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(3)

The behavioural interface of eShop2 is also 
represented by means of integrity constraints. 
“If an acceptable customer requests an item, 
then I expect the customer to pay for the item 
with an acceptable payment methods. If the 
customer is not acceptable, I will inform him/
her of the failure (4). If an acceptable customer 

pays with an acceptable means of payment, I 
will deliver the item within two days (5). If a 
customer requests evidence of my affiliation to 
the BBB, I will provide it (6).”

H( , , ( ), )
_ ( ) _

C eShop request Item T
accepted customer C accepted

r

→ ∧ ppay How
eShop C ask pay Item How T T T
C eShop

a a r

( )
( , , ( ( , )), )
( ,

∧ ∧ >

∧

H
E ,, ( , ), )

_ ( )
( , ,

pay Item How T T T

rejected customer C
eShop C i

p p a∧ >

∨
∧H nnform fail T T Ti i r( ), ) .∧ >

 

(4)

 
(5)

Table 1. Grammar of the knowledge base (KB) 

KBws ::= [ Clause ]*

Clause ::= Atom ← Cond

Cond ::= ExtLiteral [ ∧ ExtLiteral ]*

Extliteral ::= [¬]Atom | true | Expect | Constraint

Expect ::= E(Term, Term, Term, TimeTerm) |

EN(Term, Term, Term, TimeTerm)

TimeTerm ::= Variable | Integer

Table 2. Grammar of the integrity constraints (IC) 

ICws ::= [ IC ]*

IC ::= Body → Head

Body ::= (Event | Expect) [ ∧ BodyLit ]*

BodyLit ::= Event | Expect | Atom | Constraint

Head ::= Disjunct [ ∨ Disjunct ]* | false

Disjunct ::= (Expect | Event | Constraint)

[ ∧ (Expect | Event \ Constraint)]*

Expect ::= E(Term, Term, Term, TimeTerm) |

EN(Term, Term, Term, TimeTerm)

Event ::= H(Term, Term, Term, TimeTerm)

TimeTerm ::= Variable | Integer
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(6)

The notion of acceptability for customers 
and payment methods from eShop’s viewpoint, 
given with the accepted_customer/1 and ac-
cepted_pay/1 predicates, can be defined in 
eShop’s knowledge base, as we proposed in a 
previous work (Alberti et al., 2007). The fact 
that only EU residents are accepted customers, 
is defined by the following clauses:

accepted customer Customer
resident in Customer Loca

_ ( )
_ ( ,

¬
     ttion
accepted destination Location

rejected custom

),
_ ( ).

_
     

eer Customer
resident in Customer Location
not

( )
_ ( , ),

¬
     
       accepted destination Location
accepted destination euro

_ ( ).
_ ( ppean union

accepted pay cc
accepted pay cash

_ ).
_ ( ).
_ ( ).

 

(7)

On her side, alice knows she is resident 
in the EU:

resident in alice european union_ ( , _ ).    (8)

Declarative Semantics

In SRE, a client c specifies a goal G, related to 
a requested service. G will often be an expecta-
tion, but in general it can be any goal, defined 
as a conjunction of expectations, CLP con-
straints, and any other literals. c also publishes 
a (possibly empty) knowledge base KBc, and a 
(possibly empty) set of rules ICc. The declara-
tive semantics is meant to define a set of ex-
pectations ε and validity conditions Δ about a 
possible course of events that, together with 
KBc and KBws, satisfies the conjunction of the 
integrity constraints IC ICc wsÈ  and the goal 
G. Note that we do not assume that all of ws’s 
knowledge base is available to SRE, as it need 

not be entirely a part of ws’s public specifica-
tions. KBws can even be the empty set. How-
ever, in general, ICs can involve predicates 
defined in the KB: such as “delivery in Europe”. 
If the behavioural interface provided by ws 
involves predicates that have not been made 
public through KBws, SRE makes assumptions 
about such unknown predicates, and considers 
unknowns that are neither H nor E/EN expec-
tations as literals that can be abduced. These 
are contained in the set Δ, of a returned triplet 
ws, ,e D  (see the section “Implementation 

Architecture”), and can be regarded as condi-
tions which must be met to assure the validity 
of ε as a possible set of expectations achieving 
a goal.

We define declaratively the set of abductive 
answers ws, ,e D  representing possible ways 
c and ws can interact to achieve G (we assume 
that KBc and KBws are consistent) via the two 
following equations:

KB KB Gc ws∪ ∪ ∪∆ =e |  (9)

KB KB IC ICc ws c ws∪ ∪ ∪ = ∪e ∆ |        (10)

where ε is a conjunction of H and E, EN atoms, 
Δ is a conjunction of abducible literals, and the 
notion of entailment is grounded on the possible 
models semantics defined by Sakama and Inoue 
(2000) for abductive disjunctive logic programs. 
In the possible models semantics, a disjunctive 
program generates several (non-disjunctive) 
split programs, obtained by separating the dis-
juncts in the head of rules. Given a disjunctive 
logic program P, a split program is defined as 
a (ground) logic program obtained from P by 
replacing every (ground) rule

r L Ll: 1 ∨ ∨ ←� Γ  

from P with the rules in a non-empty subset of 
Splitr , where

Split L i lr i= ← ={ }Γ | , ,1…  
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By definition, P has in general multiple split 
programs. A possible model for a disjunctive 
logic program P is then defined as an answer 
set of a split program of P.

In Sakama and Inoue (2000), the possible 
models semantics was also applied to provide 
a model theoretic semantics for Abductive 
Extended Disjunctive Logic Programs (AEDP), 
which is our case. Semantics is given to AEDP 
in terms of possible belief sets. Given an AEDP 
Π = P A, , where P is a disjunctive logic 
program and A is the set of abducible literals, 
a possible belief set S of Π is a possible model 
of the disjunctive program P EÈ , where P is 
extended with a set E of abducible literals 
(E AÍ ).

Definition 2 (Answer to a goal G). An answer E 
to a (ground) goal G is a set E of abducible 
literals constituting the abductive portion 
of a possible belief set S (i.e., E = S ∩ A) 
that entails G.

We rely upon possible belief set semantics, 
but we adopt a new notion for minimality with 
respect to abducible literals. In Sakama and 
Inoue (2000), a possible belief set S is A-
minimal if there is no possible belief set T such 
that T A S A∩ ⊂ ∩ . We restate, then, the no-
tion of A-minimality as follows:

Definition 3 (A-minimality possible belief set). 
A possible belief set S is A-minimal iff 
there is no possible belief set T for the same 
split program such that T A S A∩ ⊂ ∩ .

More intuitively, the notion of minimality 
with respect to hypotheses that we introduce is 
checked by considering the same split program, 
and by checking whether with a smaller set of 
abducible literals the same consequences can 
be made true, but in the same split program. 
Finally, we provide a model-theoretic notion 
of explanation to an observation, in terms of 
answer to a goal, as follows.

Definition 4 (A-minimal answer to a goal). 
E is an A-minimal answer to a goal G iff 
E=S∩A for some possible A-minimal belief 
set S that entails G.

Definition 5 (Possible Interaction about G). 
A possible interaction about a goal G 
between a client c and a Web service ws is 
an A-minimal set e ∪∆  such that Eq. (9) 
and (10) hold.

Among possible interactions, we identify 
those that are coherent:3

Definition 6 (Coherent Possible Interaction 
about G). A possible interaction e ∪∆  
about a goal G is coherent iff:

 (11)

Possible interactions about a goal G gen-
erally contain (minimal) sets of events and 
expectations about messages raised either by 
c and ws. Moreover, further abducible literals 
in Δ represent assumptions about unknown 
predicates (for c and ws).

Among coherent possible interactions only 
those where the course of events expected by 
c about ws’s messages is fulfilled by ws’s mes-
sages (i.e., happened events match positive and 
negative expectations), and the course of events 
expected by ws about c’s messages is fulfilled 
by c’s messages.

Definition 7 (Possible Interaction Achieving 
G). Given a client c, a Web service ws, and 
a goal G, a possible interaction achieving 
G is a coherent possible interaction e ∪∆  
satisfying the following equations:

e | ( , , , ) ( , , , )= →E HX Y Action T X Y Action T  
(12)

 (13)
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By Definition 7, every positive expectation 
raised by c or ws on the behaviour of the other 
party must be fulfilled by an event hypotheti-
cally performed by the other party (Eq. (12)), 
and every negative expectation raised by c or 
ws on the behaviour of the other party must not 
match any event hypothetically performed by 
the other party (Eq. (13)).

Operational Semantics

The operational semantics is an extension of 
the SCIFF proof-procedure (Alberti et al., 
2008). SCIFF was initially developed to specify 
and verify agent interaction protocols in open 
environments. It processes events drawing 
from a given narrative of events and abduces 
expectations, checking that each one of them 
is fulfilled by the occurring events.

SRE extends SCIFF and abduces H events 
as well as expectations. As opposed to SCIFF, 
the event narrative is not an input. It is instead 
an output, as all possible interactions are hypoth-
esized. Moreover, in SRE events not matched by 
an expectation (acceptable in an open scenario) 
cannot be part of a possible interaction achieving 
the goal. For this reason, in SRE a new transition 
labels each H event with an expected flag as 
soon as a matching expectation is abduced. At 
the end of the derivation, unflagged H will cause 
failure. The reasoning module of SRE, like the 
SCIFF proof procedure, has been implemented 
in Prolog, and can run on top of SICStus or SWI 
Prolog (Fung & Kowalski, 1997).

The soundness and completeness results, 
proven for the SCIFF proof-procedure (Alberti 
et al., 2008), also hold for SRE.

Operationally, the SCIFF reasoning engine 
(SRE) operates on the union of the user’s and 
service’s disclosed integrity constraints (
IC ICc ws, ) and knowledge bases (KB KBc ws,
) in order to find a (partial) plan e ∪∆  able to 
satisfy equations (9) and (10). An example of 
such a computation follows.

Example of SRE Computation

In the eShop scenario, it starts with alice’s 
goal, which is to obtain a book by interacting 

with a shop: alice will start an interaction by 
requesting the book, and she will expect the 
shop to deliver it:

H
E

( , , ( ), )
( , , (
alice eShop request book
eShop alice deliveralice

0 ∧
bbook T Td d), ) .∧ ≤ ≤0 3

 

SRE reasons about events and expectations, 
and tries to match them in order to find a suc-
cessful arrangement. To this end, SRE tags each 
expectation with its holder: in this example, 
alice is the entity that holds the expectation of 
eShop delivering the book.

Now, the happened request event triggers 
new integrity constraints. In particular, it acti-
vates (4), which in turn can be satisfied in two 
alternative ways: either the transaction succeeds, 
or it fails because alice is rejected as a customer. 
The SCIFF proof-procedure generates a proof 
tree, which is explored depth-first, as customary. 
In the first branch, SCIFF verifies that alice is 
an acceptable customer. This can be proven by 
reasoning from alice’s and eShop’s knowledge 
bases together. SCIFF then abduces that eShop 
will ask for payment with one of the accepted 
payments. Let us consider the case in which 
payment by cc is assumed. In that case, eShop 
will ask for the payment and will expect alice 
to be responsible for it:

H
E

( , , ( ( , )), )
( , ,

eShop alice ask pay book cc T
alice eShop pay

a

eShop

Ù

(( , ), ).book cc Tp
 

The new abduced event fires (2), because 
it verifies its body. SRE assumes that alice 
will follow her own behavioural interface, by 
requesting the guarantee and expecting a reply. 
The request event will fire (6), which forces 
eShop to provide the guarantee.

In the end, a set of events and a set of 
expectations are generated by abduction. If 
the expectations are matched by corresponding 
events, the abductive process succeeds, other-
wise the exploration of the current branch will 
fail, and an alternative branch will be selected 
(if there exists one). In this way, the SCIFF 
proof-procedure determines if there exists at 
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least a set of events that satisfies a given ALP, 
and computes both the abduced events and the 
expectations. A successful computation yields a 
sequence of actions that satisfies all the parties’ 
constraints and goals.

Note that representing the acceptability 
of costumers as a mere logic program would 
not work in case the customer declared resi-
dent_in(alice,italy), as the term italy does not 
syntactically unify with european_union. Other 
problems may occur if acceptability is defined 
by a transitive, symmetric relation. For example, 
a service could accept requests from a set of 
trusted peers, and also from customers that are 
trusted by them, in a transitive fashion. If the 
abductive proof procedure adopts a depth-first 
search, symmetric and/or transitive relations 
can lead to loops that could prevent the proof-
procedure to terminate in finite time. Our solu-
tion to this problem is described in the section 
“Ontological Reasoning in SRE”.

IMPLEMENTATION 
ARCHITECTURE

We developed a prototype implementation of 
SRE. The framework is organized as a set of 
Web services, which provides two facilities: 
registering and querying. The first one is used by 
service providers, which register by providing a 
service description in terms of the pair (OWL-S 
profile, behavioural profile). The second facil-
ity accepts requests from the users, and returns 
a list of SWS’s that fulfill the requirements.

The Web services composing the system are 
shown in Figure 3. A Web Service can register at 
our application, by providing its own specifica-
tion. After a syntactic validation performed by 
the Syntax Validation module, a service descrip-
tion is sent to the Service Register component 
which manages the storing procedures. It stores 
OWL-S profiles by means of a RDF store, while 
behavioural profiles are directly stored in the 
file system. OWL-S profiles are pre-processed, 
and a summary of the profile is extracted for 
each SWS; this simplifies the matching algo-
rithm described in the section “Discovery,” by 

identifying and handling some specific cases. 
If the storing procedure terminates successfully, 
an acknowledgement is returned to the service 
asking for registration.

A user starts the process with a request, 
composed of a description of the functionality 
she is looking for, together with her own be-
havioural interfaces. The description of the 
desired service is given in terms of inputs and 
outputs: however we assume such lists as a sort 
of “indication’” of the needs of the user, and 
some certain flexibility is adopted, as explained 
in the section “Discovery”. After an initial 
syntactic validation step, the request is passed 
to the Service Seeker component, which man-
ages and coordinates the search process orches-
trating the other components. The input/output 
list is passed to the Service Matcher component 
that selects, among the registered services, only 
those that satisfy the user request. To this end, 
the Service Matcher implements the algorithm 
explained in the section “Discovery”. The 
ontology subsumption relation is evaluated by 
a simple wrapper for the Pellet reasoner (Parsia 
& Sirin, 2004).

The list of services selected by the Service 
Matcher is returned to the Service Seeker, which 
gives it in turn to the Contracting Reasoner mod-
ule. Such a module reasons about the possibility 
and the existence of an interaction that could 
effectively satisfy the user needs, as explained in 
the section “Contracting”. Its outcomes consist 
of a shortlist of services, which for each selected 
service contains a possible interaction plan that 
justifies why that service has been selected. 
This also shows how the user can successfully 
interact with the service. Pellet is again used, 
in integration with SCIFF, to bridge rules with 
ontologically expressed knowledge that is use-
ful for contracting. Finally, the list of selected 
services is returned to the user by the Service 
Seeker module.

Ontological Reasoning in SRE

SRE represents ontologies in OWL (Web 
Ontology Language), the W3C recommenda-
tion for ontology representation on the Web 
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(Bechofer et al., 2004), based on Description 
Logics (Lutz, 2008) and on XML and RDF 
syntax. OWL guarantees expressivity (with 
such features as stating subclassing relations, 
constructing classes on property restrictions or 
by set operators, defining transitive properties 
and so on) and decidability (if using OWL Lite 
or OWL DL) in a straight-forward and domain 
modeling-oriented notation. Moreover, since 
OWL is tailored for the Web, it provides support 
for expressing knowledge in distributed contexts 
(identified by URIs) and its recognized standard 
status is a warranty on interoperability and reus-
ability issues. Community-driven development 
of Semantic Web tools already provides good 
support for OWL ontology management tasks 
such as editing (Noy et al., 2001), which has 
become a feasible task even for the non-KR-
savvy user.

Figure 4 illustrates a possible ontological 
representation of eShop’s constraints concern-
ing acceptable customers and means of pay-
ments, merged with alice’s own knowledge. 
For example, we may want to express that 
acceptedCustomer is a subclass of the potential-
Customer class, and that it is disjoint from the 
rejectedCustomer class. This would correspond 
to the following OWL fragment:

<owl:Class 

rdf:about=”#acceptedCustomer”> 

 <rdfs:subClassOf rdf:resource=”#poten

tialCustomer” /> 

 <owl:disjointWith rdf:resource=”#reje

ctedCustomer” /> 

</owl:Class> 

The following assertion states that 

cash is an instance of the accepted-

Payment class: 

<owl:Thing rdf:about=”#cash”> 

 <rdf:type 

rdf:resource=”#acceptedPayment” /> 

</owl:Thing>

The following is the declaration of the 
paysWith property:

<owl:ObjectProperty rdf:ID=”paysWith”> 

 <rdfs:domain rdf:resource=”#potential

Customer” /> 

 <rdfs:range rdf:resource=”#payment” 

/> 

</owl:ObjectProperty>

The following assertion states that alice is 
an instance of italian, with value ae1254 for the 
paysWith property:

Figure 3. The SRE architecture
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<owl:Thing rdf:about=”#alice”> 

 <rdf:type rdf:resource=”#italian” /> 

 <paysWith rdf:resource=”#ae1254” /> 

</owl:Thing>

Now alice no longer needs to explicitly 
express that she is a EU resident. If alice sim-
ply declares that she is an Italian resident, then 
ontological reasoning can infer that alice is 
indeed European by considering, e.g., some 
official ontology of the EU, enlisting all the 
member states.

Another interesting feature of Description 
Logic (and thus OWL) ontologies is the defini-
tion of classes using restrictions on properties. 
For instance we could define a class, premium-
Customer, representing the accepted customers 
who pay by credit card. This notion could then 
be used to add refinements to user constraints 
(for instance for the purpose of providing such 
customers with a faster delivery service, or with 
a lower price) and since alice is an accepted 
customer and pays with her credit card, the 
ontological reasoning would automatically 
recognize her as a premiumCustomer.

Interfacing SCIFF and 
Ontological Reasoners

During contracting, we can access and use the 
knowledge represented in OWL as illustrated 
above, thanks to an existing interface between 
SCIFF and the external ontological reasoner 
Pellet (Parsia & Sirin, 2004). This solution in-
volves a Prolog meta-predicate which invokes 
ontological reasoning on desired goals, an 
intercommunication interface from SCIFF to 
the external component (which incorporates a 
query and results translation schema) and the 
actual reasoning module. Both modules can 
access both local and networked knowledge. 
This approach has proved better, both for per-
formance and expressiveness, than encoding 
ontological knowledge as SCIFF rules (Alberti 
et al., 2009).

As suggested by Hustadt et al. (2004) and 
Vrandecić et al. (2006), goals given to the meta-
predicate are handled by considering single arity 
predicates as “belongs to class (with same name 
of predicate)” queries and double arity ones 

Figure 4. A graphical representation of the ontology
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as “are related by property (with same name 
of predicate)” queries. We also implemented a 
caching mechanism that reduces the overhead 
caused by external communication. In this 
way, the meta-predicate first checks if a similar 
query (i.e., involving the same predicate) has 
been issued before and, only if not, it invokes 
the external reasoner and stores its answers as 
Prolog facts. The OWL reasoning module uses 
the Pellet (Parsia & Sirin, 2004) API, while 
the communication interface uses the Jasper 
Prolog-Java library (SICStus). This solution 
provides full OWL(-DL) expressivity, includ-
ing features such as equivalence of classes and 
properties, transitive properties, declaration of 
classes on property restriction and property-
based individual classification.

Runtime Verification

The result of the contracting step is a (partial) 
sequence of messages that achieve the goal 
while respecting both the user’s and the service’s 
specification; therefore, if both the user and 
the service involved in the interaction stick to 
their specifications, then the interaction should 
be successful. However, the implementation 
of a Web service may not respect its own 
specifications, or network problems may arise, 
unexpected events may occur, deadlines may 
be missed because of overloaded servers or 
malicious attacks. On-the-fly verification aims 
at finding possible violations of the agreements. 
As pointed out in Maximilien and Singh (2005), 
automatic monitoring and run-time confor-
mance test can be very useful in modeling trust 
and providing rating for empirical selection of 
services. SCIFF features on-the-fly verification 
(Alberti et al., 2008), and has been applied suc-
cessfully to multi-agent interaction protocols 
and service choreographies. For example, the 
following narrative:

H
H

( , , ( ), ).
( , , ( ( )
alice eShop request book
eShop alice ask pay cash

0
)), ).

( , , ( ), ).
( , , (

1
2H

H
alice eShop pay cash
eShop alice deliver bookk), ).3

 

can be checked as events occur, to show that 
it satisfies alice’s specification and goal. The 
following:

H
H

( , , ( ), ).
( , , ( ( )
alice eShop request book
eShop alice ask pay cash

0
)), ).

( , , ( ), ).
1

2H alice eShop pay cc
 

breaks the agreement between alice and eShop, 
because alice uses a different means of payment 
from the one requested by eShop, so the latter 
does not react to the last message, and does not 
deliver the book. Using SCIFF, users can deter-
mine a broken agreement, and possibly label 
other services as unreliable. This mechanism 
would be a useful feature for service discovery 
engines as it can provide verifiable user feed-
back, which is already built inside SCIFF. Of 
course, interacting parties can be verified at 
runtime not only against their agreement, but 
also against external interaction protocols or 
choreographies, if so desired.

Preliminary Performance 
Evaluation

We tested SRE using up to 10,000-class on-
tologies and a pool of 4 simple use cases. We 
observed that SRE provides a response within 
seconds or tens of seconds, and that it spends 
most of the time in the communication between 
SCIFF and Pellet, and only a smaller fraction 
of time in the reasoning tasks.

In order to assess the scalability of such 
interface, we tested the performances of the 
Contracting Reasoner in simple contracting 
scenarios.

We experimented with randomly gener-
ated ontologies. Each ontology, composed of 
N classes, was built starting from its root node, 
and recursively trying, for each node, five at-
tempts of child generation, each with probability 
1/3. In Table 3 the we report the time spent for 
loading the ontology into the reasoner and for 
the actual query (PC with Intel Celeron 2.4 
GHz CPU, times in seconds, average over 50 
runs). The approach appears to scale reasonably.
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RELATED WORK

Authors have proposed various ways to describe 
a Semantic Web Service, and a vast literature 
is available on the topic.

The two major proposals, the Web Service 
Modeling Ontology (WSMO) (Roman et al., 
2005) and the Semantic Markup for Web Ser-
vices (OWL-S) (Martin et al., 2004) address 
both the ontological aspects and the behavioral 
issues, when describing a SWS.

WSMO offers a complete suite of tools 
for editing, developing and testing SWS de-
scriptions. However, the behavioural aspects 
are mainly defined on abstract state machines 
semantics, which make it difficult to perform the 
reasoning tasks we address in our work. Building 
on the WSMO conceptual model, Kifer et al. 
(2004) propose a comprehensive solution, for 
the discovery and contracting problem based 
on Flora-2, in which F-logic is used to express 
ontologies and achieve matching and Transac-
tion Logic is used to model declaratively how 
services behave. However, SRE provides the 
user with the peculiar ability to express not only 
her goal, but also the behaviour which constrains 
how the goal can be achieved. This also means 
that the client could also be a service itself.

OWL-S can be extended by the user: be-
havioural aspects are supported by allowing 
their definition using at least two languages, 
Knowledge Interchange Format (KIF) (Gen-
esereth & Fikes, 1992) and Semantic Web Rule 
Language (SWRL) (Horrocks et al., 2004), plus 
the possibility of adding any required language. 
OWL-S comes as a general ontology, not as-
sociated with specific dedicated tools. Our 
system supports service descriptions by means 
of OWL-S profiles.

However, let us emphasize that, in spite 
of the many proposals (another logic-based 
language for description of web services, for 
instance, is described in the Semantic Web 
Services Language (SWSL) W3C submission) 
(Battle et al., 2005), none to date has reached 
consensus, thus a proper standard for defining 
the semantics of a Web Service is still a matter 

of research. This is, in our opinion, one of the 
obstacles to the adoption of SWS standards.

SAWSDL (W3C, 2002) is a W3C recom-
mendation aimed at extending WSDL docu-
ments with semantic annotations. These anno-
tations link the different elements of a WSDL 
document with corresponding concepts in a 
semantic model (e.g., an ontology), therefore 
providing the foundation for semantic-based 
service discovery and composition. In this 
respect, it could be considered complemen-
tary to our approach: while SAWSDL is an 
ontology-agnostic way to annotate the “atomic” 
description of a service, SRE encompasses both 
a concrete language for the declarative descrip-
tion of the service behavioral interface, where 
the involved elements refer to one ontology, and 
a proof procedure to concretely carry out the 
discovery task. Therefore, SRE could rely on 
SAWSDL as a standardized mean to describe the 
messages exchanged by the services as well as 
their references to the corresponding ontology.

SRE shares motivations and approach 
with Baldoni et al. (2007). We also advocate 
the application of reasoning techniques on 
declarative service interaction specifications 
to enable flexibility. However, we believe that 
greater emphasis should be devoted to issues 
such as practical viability. In particular, our 
experimental results show that SRE and SCIFF 
are applicable to realistic scenario, and the 
implementation we discussed integrations SRE 
and SCIFF with existing Web service solutions 
and standards.

Our work is related to the automatic com-
position of web services. Given a set of services 
that are published on the web, and given a goal, 
the purpose of automated composition is to 
generate a composition of the available services 
that satisfies the goal.

There is a large amount of literature ad-
dressing the problem of automated composition 
of web services. However, most of the ap-
proaches address composition at the functional 
level, and only a few consider the composition 
at a finer degree of detail (i.e., at process-level) 
by considering web services as stateful, non-



18   International Journal of Web Services Research, 8(3), 1-25, July-September 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

deterministic processes. In this context, Pistore 
et al. (2004) propose a framework where web 
services are modeled at process level and 
planning techniques based on symbolic model 
checking are used for composing them. Due 
to the use of model checking, however, these 
techniques work under the rather unrealistic 
assumption that web services can exchange a 
very limited and statically determined number 
of data values. The authors show that reasonable 
performance can be obtained for web services 
whose variables can assume only two values. To 
solve this problem, a novel approach presented 
in Pistore et al. (2005) is an automated com-
position based on planning at the “knowledge 
level” where a solution plan encodes the desired 
composition. “Knowledge-level techniques” 
allow us not to fix finite ranges of value for 
variables and are very general.

Another related work about composition is 
Friesen and Lemcke (2007), where the authors, 
inspired by Pistore et al. (2005), describe a 
composition algorithm that generates correct 
Web services composition respecting user-
defined goals.

Our work can be compared to Pistore et al. 
(2005) and Friesen and Lemcke (2007) since it 
shares their advantages even if, at the technical 
level, our work differs from them in the kind of 
information that we represent and store in the 
knowledge level (IC logic-based constraints 
instead of transition rules or finite state machine) 
as well as in the automatic technique we use 
(SCIFF abductive proof procedure instead of 
planning or an ad hoc combination algorithm). 
Behavioural interfaces described as IC allow, in 

fact, a more detailed description of web-services 
behaviour with respect to the functional one and 
the use of them allows a very rich description 
of them without any limitation to the range of 
variables used. Moreover, differently from these 
proposals, our techniques are easily integrated 
with reasoning techniques for discovery and 
selection of web-services. However, while in 
Pistore et al. (2005) the proper knowledge-level 
model can be obtained automatically from the 
published descriptions of the web services in 
standard process modeling and execution lan-
guages like BPEL4ws, this is for us a matter of 
future work. Another future work is to compare 
our approach in terms of execution time to the 
performances of related approaches.

Ragone et al. (2007) use the idea of Concept 
Covering and Concept Abduction to overcome 
some of the limitations of previous matching 
approaches, and to address also the composition 
problem. In this work we focus on discovering 
a SWS able to satisfy the user requests, and we 
concentrate our efforts instead on reasoning 
about the interaction aspects.

Another notable work in the trust setting is 
represented by the PROTUNE (De Coi et al., 
2008) framework, a rule-based system for trust 
negotiation. Trust negotiation has been intro-
duced in the literature in order to address access 
control requirements and privacy preferences 
in open distributed environments. PROTUNE 
agents exchange rules and evidences to inter-
operate and make decisions related to security 
and privacy. The rule-based language adopted 
in PROTUNE is function-free and limited to 
stratified logic programs. This class of programs 

Table 3. Evaluating the impact of extending the SCIFF with ontological reasoning (pellet) 

Interfacing SCIFF with Pellet

N Load Query Total

100 ~ 0 ~ 0 ~ 0

500 1.0 ~ 0 1.0

1000 1.0 ~ 0 1.0

5000 2.0 1.2 3.2

10000 4.0 2.8 6.8
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ensures the existence of a single (2-valued) 
model which is an essential recommendation 
for security and trust. Declaratively, PROTUNE 
is grounded on Answer Set Semantics, and 
provided in two implementations (tuProlog and 
XSB). The SRE language is more flexible than 
the one of PROTUNE. In particular, it accom-
modates functions and domain variables, and 
for this reason it can model a large number of 
realistic scenarios more accurately.

Concerning the problem of making 
ontological knowledge available to a logic 
programming framework such as SCIFF, a 
first approach is to exploit the common root 
of logic programming and description logics 
in first order logic, by finding their intersection 
and translating ontologies to LP clauses. These 
problems have been addressed by Grosof et 
al. (2003), who named this intersection DLP 
(Description Logics Program) and by Hustadt 
et al. (2004) who proposed a method for transla-
tion. On these basis, the dlpconvert (Motik et 
al., 2005) tool was developed; it converts (the 
DLP fragment of) OWL ontologies to datalog 
clauses. We used dlpconvert to translate do-
main knowledge described in OWL to SCIFF 
clauses. Reasoning is then performed by SCIFF 
in the usual way. However, this solution limits 
ontological expressivity. First of all, since the 
DLP fragment is a proper subset of DL, some 
OWL axioms are not included. For instance, 
out of the features mentioned as available by 
Vrandečić et al. (2006). DisjointClasses and 
the important DL (and OWL) feature of class 
definition by restriction on properties are miss-
ing. Moreover, some axioms’ translation is not 
actually suitable for reasoning with goal-driven 
operational semantics, such as resolution or 
unfolding, employed in SCIFF, because it 
leads to loops. For all these reasons, we are 
investigating an alternative approach, which 
involves the interface with Pellet, instead, and 
incurs no expressivity limitations.

In Motik (2006) and Lukacsy et al. (2008) 
the authors propose techniques for reasoning 
on Description Logic (respectively SHOIN 
and SHIQ) which are not based on the usual 
tableau algorithms but are instead related to, 

respectively, bottom-up Datalog and Deduc-
tive Database inference, and top-down Prolog 
resolution. In both cases the motivation comes 
from the attempt to offer better results in ABox 
reasoning with large data sets of individuals. 
Since Deductive Database deal natively with 
rules, extending the obtained reduction of the 
DL KB with a rule level appears straightforward. 
Motik (2006) shows that it is sufficient to append 
rules to the obtained KB. Our work is focused 
on very expressive rules to describe behavioural 
interfaces, so it goes far beyond the restrictions 
(motivated by computational reasons) of Motik 
(2006) and Lukacsy et al. (2008).

An extensive study of how rules and ontolo-
gies can be integrated, with a specific focus on 
Semantic Web, can be found in de Bruijn (2008) 
where a language, WSML, is proposed to be 
used as a Web Service Modeling Language in 
the WSMO framework (while our work aims 
to retain full compatibility with OWL).

In Behrends et al. (2008), the authors intro-
duce the MARS framework, focused on the rule 
layer of the Semantic Web cake. In particular, 
MARS is equipped with a rule-based language 
which combines ECA rules with event and 
action algebras for respectively covering the 
specification of events and actions. Like SRE, 
MARS follows a declarative style of modeling; 
however, the MARS language is introduced as 
a general language aimed at specifying rules for 
the semantic web, and it is not equipped with 
specific reasoning techniques able to deal with 
the discovery and the contracting for (semantic) 
web services.

Various approaches have been proposed to 
deal with incompatibilities that may arise when 
services interact in unforeseen ways (Dumas 
et al., 2008). Typical incompatibilities can be 
classified into signature incompatibilities (when 
a service requires an operation which is not pro-
vided by the other, or when the message format is 
different) and protocol incompatibilities (when 
the two services expect different orderings of 
messages). Service adapters can be synthesized 
(automatically or manually, depending on the 
approach) to solve such incompatibilities. Cur-
rently, our approach assumes that incompatibili-
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ties regarding terminology or message format 
have already been solved. It does not attempt to 
deal automatically with operations not provided 
or protocol incompatibilities (which result in 
failure). An approach to service adaptation could 
be to synthesize not only messages, but also 
integrity constraints. This, however requires an 
extension of the underlying SCIFF framework 
and is subject of future work.

Lamparter’s Ph.D. thesis (2007) presents 
a framework for the formal expression and 
matching of Web Service behavioural interfaces 
in order to achieve improved and automatic 
interoperability with the goal of a ‘market’ of 
Web Services. The author argues that a very 
important requirement to meet for this purpose 
is that beahviours are specified using unargu-
ably shared concepts. For this reason the thesis’ 
main contribution is allegedly the proposal for 
an ontology which unambiguously defines the 
vocabulary for communication in the afore-
mentioned market. Besides the ‘Core Policy 
Ontology,’ Lamparter also provides ontologies 
for Bids and Contracts.

Such ontologies are ‘core ontologies’ in the 
sense that they occupy a middle ground between 
top (very general) ontologies and domain spe-
cific ones. In particular they are built upon the 
DOLCE framework (which encomprises the 
DOLCE vocabulary, Ontologies of Descriptions 
and Situations, of Information Objects and of 
Plans) which the author perceives as the most 
successful and sound attempt to formally model 
general concepts, in particular with respect to 
time variations.

The language chosen for the ontologies is 
the W3C standard OWL-DL for the part that 
lies within Description Logic expressivity and 
SWRL, with limitation to the ‘safe fragment’ 
(conditions restrict variables in the head to 
maintain decidability), for the ‘rule’ part. Match-
making and other queries on the ontologies are 
performed by means of SPARQL.

Our work and the author’s one differ in 
goals and approach, because we propose a 
framework to specify Web Service semantic 
information without focusing on providing 
an actual formalization for the concepts used 

for Web Service descriptions and behavioural 
interfaces.

Our work has strong links with the au-
tomatic composition of services. However, 
some important differences distinguish this 
contribution. The SRE framework, in its current 
implementation, does not address the level of 
the single operations that must be invoked to 
use a service. SRE is focused on a higher level 
of abstraction, where the functionalities offered 
by the services are the object of the reasoning. 
In this sense, SRE solutions are orthogonal with 
respect to composition issues. Moreover, SRE 
focuses on finding a match between a request 
and a service providing a solution to such a 
request. Although the algorithms adopted in 
SRE could treat also many-to-many cases, the 
current implementation permits to reason upon 
a user request and if an interaction can happen 
with a single service provider: situations like 
a user request matched against a set of many 
providers are left for future extensions. Finally, 
SRE computes a possible plan of how the user 
can interact with a service in order to satisfy 
a goal. Such plan is partial, since it primarily 
depends on how much information the user/
service is willing to disclose.

Finally, “Contract” is a term also used 
in multi-agent literature (see for instance the 
CONTRACT project Web site, http://www.
ist-contract.org/), but it has little relation with 
Web service contracting as we intend it here.

CONCLUSIONS AND 
FUTURE WORKS

We presented a framework for Web service 
discovery and contracting. The discovery phase 
has been implemented following a well known 
approach, while the contracting phase makes 
use of a powerful, yet simple, declarative and 
rule-based behavioural interfaces description 
language and an abductive logic program-
ming proof-procedure. Ontological reasoning 
is also used, both during the discovery phase, 
and during the contracting phase. SRE helps 
automate many key processes, such as dis-
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covery, contracting, runtime verification and 
user feedback provision. A SRE prototype 
has been used to conduct some experimental 
analysis, which demonstrated the viability 
of the approach. Based on the implemented 
scenarios, we conclude that the use of SRE 
provides good expressivity when defining the 
behaviours, with the typical advantages of de-
clarative approaches and of a solid underlying 
computational counterpart.

Other issues are left to future work. Let us 
briefly review them. A problem with ontologies 
is that different terms may refer to similar con-
cepts in different ontologies, and, vice-versa, 
different concepts may have similar (same) 
names in different ontologies. This opens up the 
wide research problem of ontology alignment, 
which SRE does not currently address.

Moreover, the evaluation of the SRE frame-
work and the experimental results we discuss 
here refer to a rather simple case study. Test-
ing the system on a large scale and with more 
complex scenarios is also one of our intended 
future activities.

We also plan to extend our application by 
providing support to other service description 
languages, such as WSMO, SWSL, and SAWS-
DL. We plan also to encode SRE rules using 
emerging standards such as the Rule Interchange 
Format (RIF) and its Framework for Logic 
Dialects (RIF-FLD). From the architectural 
viewpoint, SRE will be extended to consider 
also the WSDL description of the single services, 
so as to provide a more comprehensive solution 
to the discovery issue; alternative matching 
approaches (possibly letting the user choose 
among options) will be considered.
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ENDNOTES
1  With “forward rules” here we mean rules that 

are used by the SCIFF proof procedure in a 
forward reasoning style, as opposed to the 
rules in the Knowledge base, that are used as 
in Prolog in a backward manner.

2  Constraint Logic Programming (Jaffar & 
Maher, 1994).

3  This notion is introduced to encode in the 
logic of SRE the intuitively understandable 
incompatibility between E and EN (the same 
event should not be expected to and not to 
occur at the same time).
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