
Monitoring Time-Aware Social Commitments
with Reactive Event Calculus

Federico Chesani, Paola Mello, Marco Montali, Paolo Torroni
DEIS - University of Bologna∗

V.le Risorgimento, 2
40136 Bologna - Italy

{federico.chesani, paola.mello, marco.montali, paolo.torroni}@unibo.it

Abstract

Despite their dynamic nature, social commit-
ments have been rarely used for monitoring
purposes. Few attention has been paid to the
relationship between commitments and the
temporal dimension and to the correspond-
ing run-time verification. Building on previ-
ous work, we present a declarative axioma-
tization of time-aware social commitments,
extending their basic life cycle with time-
related transitions and with compensation
mechanisms. The formalization is based on
a reactive version of the Event Calculus, able
to monitor the commitments evolution dur-
ing a system’s execution, checking if the in-
teracting agents are honoring them or not.

1 Introduction

Social commitments have been increasingly applied to
capture normative aspects and interaction protocols
in open Multiagent Systems [Yolum and Singh, 2002]
and, more recently, to provide declarative abstractions
for modeling Business Protocols and Service Oriented
Systems. The basic idea is to offer the abstraction
of commitment to model, at the social level, the mu-
tual obligations established by the interacting parties:
during the interaction, an agent becomes debtor to-
wards a creditor agent to bring about some property.
Each execution of the system under study can be char-
acterized in terms of how the involved commitments
evolve over time due to the occurrence of events. Such
events, generated by the interacting agents, implic-
itly lead to manipulate commitments, causing them
to change state. The state machine of the possible
commitment’s states and of the operations associated
to state transitions, is called commitment life cycle.

Despite their dynamic nature, social commitments
have been rarely used for run-time verification pur-
poses, i.e., for monitoring the system’s executions and
track the evolution of mutual obligations, checking if
the interacting agents are honoring them or not. We

∗This work has been partially supported by the FIRB
project TOCAI.IT (RBNE05BFRK) and by the Italian
MIUR PRIN 2007 project No. 20077WWCR8.

argue that this lack is mainly due to the absence of
monitoring frameworks able to capture the commit-
ment’s life cycle and, at the same time, to provide
formal guarantees about their operational functioning
(such as soundness, completeness and termination).

In the last few years, we have developed a compu-
tational logic-based reactive form of Event Calculus
(EC)1, called REC [Chesani et al., 2009], which sup-
ports the modeling of EC specifications and carries out
run-time, dynamic reasoning, computing and report-
ing back to the user the evolution of fluents caused
by the events occurred so far. REC is inspired by the
Cached EC [Chittaro and Montanari, 1996], for which
a theoretical investigation concerning the spatial and
temporal complexity has been carried out, attesting
that it guarantees a better performance than the clas-
sical EC when reasoning upon a growing execution
trace. A REC specification is obtained by composing
a general specification formalizing the calculus with a
user-specified knowledge base KB, made up of a set of
Horn clauses relating specific events and fluents (mod-
eling e.g. that a fluent is initiated by a certain event).

In [Chesani et al., 2009], we have discussed the for-
mal properties of REC, showing that it guarantees
soundness, completeness and termination (for the last
two properties, provided that KB is acyclic [K. R.
Apt and M. Bezem, 1990]), and that it generates ir-
revocable answers when employed for monitoring. We
have also described how REC can be exploited to per-
form run-time monitoring of commitment-based inter-
actions, relying on the EC-based formalization of the
life cycle proposed in [Yolum and Singh, 2002].

Since commitments evolve over time, the temporal
dimension plays a key role and can be further inves-
tigated to extend their expressiveness, e.g. to intro-
duce the notion of a deadline by which some com-
mitment must be satisfied. The addition of quantita-
tive temporal aspects in commitments modeling has
been first addressed in [Mallya and Huhns, 2003] and
then in [Torroni et al., 2009], where REC is applied for
tracking commitments augmented with temporal con-
straints, handling their violation and compensation.

In this work, we further develop such a line of re-
search, reconciling the treatment of the time-aware

1We assume the reader is familiar with the EC and its
ontology [Kowalski and Sergot, 1986].



base-level commitment

active

satisfied

violated

compensating 
commitment

active

discharge

cancel

cancel with
compensation

create

compensated

Figure 1: Base-level commitment life cycle extended
with compensation.

commitments proposed in [Mallya and Huhns, 2003;
Torroni et al., 2009] with the original commitment life
cycle formalized in [Yolum and Singh, 2002], suitably
extending it to handle the satisfaction and violation of
time-aware commitments and to accommodate com-
pensation mechanisms. The REC axiomatization of
the extended life cycle brings two main advantages: on
the one hand, all the formal properties proven forREC
are inherited; on the other hand, time-aware commit-
ment specifications can be directly monitored, relying
on the operational counterpart of REC.

The paper is organized as follows. In Section 2, we
introduce time-aware commitments and discuss how
their life cycle can be extended to deal with them.
In Section 3, we propose a REC-based formalization
of the extended life cycle. The potentialities and fea-
sibility of our approach are shown in Section 4, by
means of an effective example. Conclusion follows.

2 Extending the Commitment Life
Cycle

A (base-level) social commitment relates three differ-
ent entities: a debtor agent, which is committed to-
wards a creditor agent to bring about a property de-
sired by the creditor. By identifying these three enti-
ties with x, y and p respectively, this kind of commit-
ment is denoted by C(x, y, prop(p)), and will be called
basic commitment throughout the paper. During the
interaction, the events generated by the agents implic-
itly lead to execute operations on commitments, ma-
nipulating them by affecting their status. For the sake
of space, we will focus only on the three fundamental
operations of create, discharge and cancel applied to
base-level commitments. The other operations (such
as release, delegate and assign) as well as the treat-
ment of conditional commitments, can be seamlessly
introduced in our framework.

2.1 Life Cycle and Compensation
The commitment life cycle targeted in this work is
illustrated in Figure 1. At the beginning of execution,
the commitment does not exist (or, alternatively, can
be considered in a null state). The commitment starts
to exist when a create operation is executed, causing
a commitment’s transition to the active state: from
now on, the debtor agent becomes committed to bring
about the involved property. An active commitment
makes a further transition when it is manipulated by

a discharge or cancel operation. In the first case, the
commitment has been honored by the debtor, and the
new state is therefore satisfied ; in the latter case, a
problem or exception occurred, leading to a violation
of the commitment.

In addition to these “standard” transitions and
states, we also support a further situation, in which
the commitment is canceled but a new commitment
(called compensating commitment) is created to han-
dle (compensate) the violation, trying to recover it in-
side the interaction protocol. If the user defines that
commitment c2 represents a compensation for com-
mitment c1, the impact of canceling c1 is twofold: in-
stead of becoming violated, c1 makes a transition to
the compensated state while, at the same time, c2 is
created, becoming active2.

Let us now focus on the semantics of operations in
terms of events and commitments’ status. Operations
are always applied in response to the occurrence of
a corresponding event. They are partly specified at
the domain-dependent level, and partly in a domain-
independent fashion. In particular, the creation of a
compensating commitment is always defined in terms
of the cancelation of the compensated commitment,
while the creation of a “normal” commitment is user-
defined by means of a domain-specific event. A similar
dichotomy exists for the discharge and cancel opera-
tion. On the one hand, the semantics of discharge is
defined in a domain-independent manner, and states
that a commitment is discharged by an event if such
an event has the effect of bringing about the commit-
ment’s property; on the other hand, the cancelation of
a commitment is caused by the generation of a specific
domain-dependent event during the interaction.

2.2 Time-Aware Commitments
This analysis points out a limitation of the basic life
cycle: an active commitment which is not explicitly
canceled, and whose property is never made true, will
continue to persist indefinitely in the active status. It
would be then desirable to introduce temporal con-
straints regulating when the commitment’s property
must be made true. To do so, the temporal dimension
must be introduced inside the specification of commit-
ments, making them time-aware.

By relying on [Mallya and Huhns, 2003; Torroni et
al., 2009], we propose two classes of time-aware com-
mitments, respectively focused on the achievement
and maintainance of a certain property:

• C(x, y, prop(e(t1, t2), p))) represents an existen-
tial commitment, where x is committed to bring
about p inside the time interval [t1, t2]3;

• C(x, y, prop(u(t1, t2), p))) represents an universal
commitment, where x is committed to maintain

2Other choices could be taken to model the active-
compensated transition; for example, a violated commit-
ment could be considered compensated only when the com-
pensating commitment has been satisfied.

3A basic commitment can be therefore considered as
a special case of existential commitment, where t1 is the
time at which the commitment is created, and t2 =∞.



Monitoring Framework

Domain-dependent Theory

Theory of Time-aware Commitments

SCIFF Framework

REC Theory

fluents & 
commitments

initial 
state

events

Figure 2: Monitoring Framework for Time-Aware
Commitments.

p valid along the whole time interval [t1, t2].

Being the properties involved in such commitments
time-dependent, not only their discharge, but also
their cancelation, can be defined in a domain-
independent manner.

In particular, C(x, y, prop(e(t1, t2), p))) becomes
satisfied an event ev is generated at a time t ∈ [t1, t2],
such that ev makes p true. Conversely, if the exis-
tential commitment is still active after t2, then p has
not become true inside [t1, t2], and therefore the com-
mitment must be canceled due to a violation of the
temporal constraints. It is worth noting that t2 acts
as a deadline by which p must be brought about to
satisfy the commitment.

The case of an universal commitment is the oppo-
site. If C(x, y, prop(u(t1, t2), p))) is active at a time
t ∈ [t1, t2], and p is not true at time t, then the valid-
ity of p along the whole interval [t1, t2] has been “bro-
ken”, and the commitment is violated. Conversely, if
the universal commitment is still active after t2 then
the commitment has not been canceled before, i.e., the
validity of p has been maintained during [t1, t2], and
therefore the commitment is satisfied.

As we will see later, since all the commitment’s
operations are applied when a corresponding event
occurs, the actual evaluation of an existential (uni-
versal) commitment’s cancelation (discharge) is per-
formed when the first event after t2 occurs.

3 Formalizing the Life Cycle of
Time-Aware Commitments in REC

We now present how the commitment life cycle de-
scribed in Section 2 can be formalized in REC. As
pointed out in the introduction, a REC theory is a
knowledge base KB composed by a set of Horn clauses
which bind together events and fluents. It is worth
noting that such a KB relies on the “standard” EC
ontology, making other EC reasoners seamlessly ap-
plicable as well. In the case of time-aware commit-
ments, the theory itself is composed by two different
knowledge bases, as shown in Figure 2. The first is
a domain-independent theory formalizing the life cy-
cle of time-aware commitments; it relates the initia-
tion/termination of the commitments’ status with op-
erations, and defines the domain-independent seman-
tics of operations. The second is a theory representing
the specific domain under study; it includes domain-
dependent fluents and commitments as well as their

relationship with specific events. In this Section we
focus on the general formalization of time-aware com-
mitments. An example of domain-dependent theory
will be presented in Section 4.

The REC-based axiomatization of time-aware com-
mitments is inspired by [Yolum and Singh, 2002],
where EC is employed to provide a formalization of the
commitment life cycle. In the EC setting, properties
are represented by fluents, whose validity evolve over
time as event occurs. Therefore, the concept of “bring-
ing about some property p” is translated as “initiating
fluent p”, while the validity/truth of p at a given time
is expressed by stating that fluent p holds at that time.

Beside the introduction of time-aware commitments
and their compensation, there is a further difference
between the formalization proposed by Yolum and
Singh and ours. While in [Yolum and Singh, 2002]
commitments are directly mapped onto fluents (initi-
ated through the create operation and terminated by
the cancel/discharge operations), we map each com-
mitment’s status to a separate fluent status/2, where
status(c, s) expresses that commitment c is in state s.
In this way, commitment’s states are reified and can
be reported to the user by the monitoring framework,
as well as involved in the domain-dependent theory4.

Since the knowledge base expressing the extended
life cycle is a general theory, all the involved events,
agents and properties are variable: their grounding
will be defined by the domain-dependent theory, to-
gether with the concrete events characterizing the
monitored execution of the system under study. The
first five axioms characterize the commitment’s life cy-
cle transitions depicted in Figure 1 in terms of the
corresponding operations, while the remaining axioms
capture the domain-independent semantics of opera-
tions, as informally described in Section 2.2.
Axiom 1 (Status query) A commitment C is ac-
tive/satisfied/violated/compensated at time T if the
corresponding status fluent holds at time T . For ex-
ample, for the active state we have:

active(C, T )← holds at(status(C, active), T ).

Axiom 2 (Active state) A commitment becomes
active when it is created by the debtor agent through
an event occurrence E5:

initiates(E, status(C(X, Y, P ), active), T )←
create(E, X, C(X, Y, P ), T ).

The active state is left when the commitment is dis-
charged or canceled by another event occurrence:

terminates(E, status(C(X, Y, P ), active), T )←
discharge(E, X, C(X, Y, P ), T ).

terminates(E, status(C(X, Y, P ), active), T )←
cancel(E, X, C(X, Y, P ), T ).

4E.g. to state that a commitment c is created by event
ev if another commitment c2 is currently active.

5If the user wants to state that only the debtor
agent X can perform the operation, a representation for
events such as ev(Responsible, Content) is needed, bind-
ing Responsible to X. Similar considerations hold for the
other operations.



Axiom 3 (Active-discharged transition) A
commitment makes a transition from the active
status to the satisfied one when it is discharged by the
debtor agent through an event occurrence:

initiates(E, status(C(X, Y, P ), satisfied), T )←
discharge(E, X, C(X, Y, P ), T ).

Axiom 4 (Active-canceled transition)
Commitment C makes a transition from the ac-
tive status to the violated one if it is canceled by
an event occurring at time T , and no compensating
commitment has been defined for C at T :

initiates(E, status(C(X, Y, P ), violated), T )←
¬compens(C(X, Y, P ), , T ) ∧ cancel(E, X, C(X, Y, P ), T ).

It is worth noting that the definition of com-
pensating commitments is done at the domain-
dependent level through the compens/3 predicate,
where compens(C1, C2, T ) states that commitment C1

can be compensated by means of C2 at time T (i.e.,
that if a violation of C1 happens at time T , then C2

is created as a compensating commitment).
Axiom 5 (Compensation) Commitment C makes
a transition from the active status to the compensated
one if it is canceled by an event occurring at time T ,
and a compensation has been defined for C at T :

initiates(E, status(C(X, Y, P ), compensated), T )←
compens(C(X, Y, P ), , T ) ∧ cancel(E, X, C(X, Y, P ), T ).

At the same time, the compensating commitment be-
comes active:

initiates(E, status(C(W, Z, P2), active), T )←
compens(C(X, Y, P ), C(W, Z, P2), T )

∧cancel(E, X, C(X, Y, P ), T ).

Axiom 6 (Discharge) An active basic commitment
C is discharged by the occurrence of an event if the
event brings about C’s property:

discharge(E, X, C(X, Y, prop(P )), T )←
active(C(X, Y, prop(P )), T ) ∧ initiates(E, P, T ).

An active existential commitment C is discharged by
an event E if E occurs inside the time interval targeted
by C and brings about C’s property:

discharge(E, X, C(X, Y, prop(e(T1, T2), P ))), T )←
active(C(X, Y, prop(e(T1, T2), P ))), T ) ∧ T ≥ T1 ∧ T ≤ T2

∧initiates(E, P, T ).

A universal commitment is automatically discharged
after its targeted time interval if it is still active6:

discharge(E, X, C(X, Y, prop(u(T1, T2), P ))), T )←
active(C(X, Y, prop(u(T1, T2), P ))), T ) ∧ T ≥ T2.

Axiom 7 (Cancel) The cancelation of a basic com-
mitment is user-defined. An existential commitment
is automatically canceled after its targeted time inter-
val if it is still active (this means that it has not been

6This means that it has not been canceled in between,
attesting that the property has been maintained valid
throughout.

discharged before, i.e. the debtor agent has not brought
about the property when expected):

cancel(E, X, C(X, Y, prop(e(T1, T2), P ))), T )←
active(C(X, Y, prop(e(T1, T2), P ))), T ) ∧ T ≥ T2.

An active universal commitment is canceled during its
targeted time interval as soon as it is detected that the
commitment’s property is not holding:

cancel(E, X, C(X, Y, prop(u(T1, T2), P ))), T )←
active(C(X, Y, prop(u(T1, T2), P ))), T ) ∧ T ≥ T1 ∧ T ≤ T2

∧¬holds at(P, T ).

4 A Car Rental Example

We now discuss a simple but effective example, which
shows the potentialities of time-aware commitments
and of the underlying REC monitoring framework.

A contract formalizes the mutual obligations be-
tween a customer and an agency when a car is rented;
the following statements are included in the contract:

(S1) the customer is committed of taking the car
back to the car rental agency within the agreed
number of days;

(S2) the agency, in turn, guarantees that the rented
car will not break down for the first three days;

(S3) if the rented car breaks down before the third
day has elapsed, the agency promises a “1-day”
immediate replacement;

(S4) in case of a car replacement, the customer re-
ceives two more rental extra-days for free.

To formalize this contract in terms of (time-aware)
commitments and enable monitoring, the following
steps must be followed:

A. Identification of the events that can be extracted
from the car rental agency’s information system.

B. Elicitation of the fluents which characterize the
states of affairs of the running system.

C. Binding between events and fluents (i.e., defi-
nition of how the events affect fluents through
initiates and terminates predicates).

D. Elicitation of the commitments formalizing the
statements included in the contract (i) using
(some of the) fluents identified during step B
to represent the “property part”; (ii) introduc-
ing existential/universal temporal constraints if
needed; (iii) defining their operations (create,
discharge, cancel, compensation) in terms of the
events identified during step A.

A. Events Identification We suppose that the
agency information system collects and stores the
events characterizing the evolution of each rental:

• rent(C, A,Car, N) - customer C rents a car Car
at the agency A for N days;

• drive back(C, Car, A) - customer C drives Car
back to the agency A;

• break down(Car) - Car breaks down;



• replace(A, C,Carold, Carnew) - agency A takes
back Carold from customer C and substitutes it
with Carnew.

Beside these domain-dependent events, we also
suppose that three further events start, complete and
tick are delivered to the monitoring framework. The
first two events are used to respectively alert REC
that the execution has begun/finished; the tick event,
instead, is used to inform REC about the current
time: REC itself has no explicit notion of the time
flow - it reacts to each incoming event updating the
status of fluents and commitments and then waiting
until a new event occurs. The delivery of tick events
(e.g. by employing an external clock) is then useful to
enable the prompt evaluation of temporal constraints
by REC (see Axiom 7 - first rule, and Axiom 6 - third
rule), which in turn permits to determine whether
an existential (universal resp.) commitment must be
canceled (discharged resp.). If tick events are not
employed, such an evaluation is carried out as soon
as the first suitable domain-dependent event occurs.

B. Fluents Elicitation The system is characterized
by the status of the cars owned by the agency:

• in agency(A, Car) - Car is parked in agency A;
• great car(Car) - Car is working;
• hired(C, Car, D) - Car is being rented by cus-

tomer C until date D;
• car replaced(Car) - Car has been replaced.

C. Events-Fluents Binding Fluents are affected by
the events in the following way. First of all, when a
customer rents a car, the car is no more in agency and
becomes hired until the date obtained by the current
date plus the chosen number of days:

terminates(rent(C, A, Car, N), in agency(A, Car), T ).

initiates(rent(C, A, Car, N), hired(C, Car, D), T )←
D is T + N.

When the customer drives back to the agency, the car
is no more hired and starts to be in agency again:

terminates(drive back(C, Car, A), hired(C, Car, D), T ).

initiates(drive back(C, Car, A), in agency(A, C), T ).

When the car breaks down, it is no more a great car :

terminates(break down(Car), great car(Car), T ).

When the agency replaces a car, it becomes replaced :

initiates(replace(A, C, Car1, ), car replaced(Car1), T ).

Furthermore, the replaced car is brought back to the
agency, while the new one is carried out from the
agency and given to the customer:

initiates(replace(A, C, Car1, ), in agency(A, Car1), T ).

terminates(replace(A, C, , Car2), in agency(A, Car2), T ).

Car’s replacement ceases the hiring of the old car, and
causes the new car to be hired. Following the prescrip-
tion of the contract Statement S4, the new car is hired
until the date fixed for the old one plus two extra-days:

terminates(replace(A, C, Car1, ), hired(C, Car1, D), T ).

initiates(replace(A, C, Car1, Car2), hired(C, Car2, D), T )

← holds at(hired(C, Car1, Dold), T ), D is Dold + 2.

D. Commitments Elicitation We now rephrase
Statements S1, S2 and S3 in terms of time-aware com-
mitments. Statement S1 is a commitment which is
created when the customer rents a car, and is associ-
ated to a deadline. The deadline can be expressed by
means of an existential temporal constraint imposing
that the commitment’s property – “bringing the car
back” – must be initiated by the customer between
the time at which the commitment is created and the
agreed number of days. The property corresponds to
the in agency fluent, while the value of the deadline
can be obtained as done for the hired fluent:

create(rent(C, A, Car, N), C,

C(C, A, prop(e(T, Te), in agency(A, Car)))), T )←
Te is T + N, holds at(in agency(A, C), T ).

Statement S2 can be represented by an universal com-
mitment, also created when the customer rents a car.
Indeed, guaranteeing that the rented car will not break
down for three days can be formalized by stating that
the great car fluent related to the car should contin-
uously hold for such three days:

create(rent(C, A, Car, N), A,

C(A, C, prop(u(T, Te), great car(Car)))), T )←
Te is T + 3.

Finally, Statement S3 refers to a situation in which
the commitment introduced by Statement S2 has been
violated, and can be therefore formalized as a com-
pensating commitment using the compens/2 predi-
cate. The compensating commitment is existential,
and states that the agency is committed to bring
about the car replaced fluent within one day from the
cancelation of the compensated commitment:

compens(C(A, C, prop(u(Ts, Te), great car(Car)))),

C(A, C, prop(e(T, Tr), car replaced(Car)))), T )

← Tr is T + 1.

4.1 Monitoring Instance
Figure 3 depicts the result computed by REC when
reasoning upon the formalization of the presented ex-
ample in a specific case, which captures the interaction
between a car rental agency ag and customer ian. A
monitoring instance is characterized by a (growing)
execution trace collecting all the events occurred so
far, and by an initial state, describing which fluents
initially hold. In our case, ag has initially two cars in
the agency, the initial state is then described by:

initially holds(in agency(ag, bo123)).

initially holds(in agency(ag, bo124)).

As reported in the bottom part of Figure 3 (consider-
ing a day as the time unit), the execution under study
models a situation in which ian rents car bo123 from



Figure 3: Sample outcome shown by jREC when rea-
soning upon the example described in Section 4.

ag, but the car breaks down during the guarantee; a
compensation must be therefore handled by ag, which
however misses the deadline, replacing the car only af-
ter 4 days and causing a violation of the compensating
commitment. The commitments having ian as debtor
are instead both satisfied: the first due to the replace-
ment of car bo123, the second because ian drives car
bo124 back to ag one day before the expected date.
REC took a total time of 2.85 seconds to reason

upon the entire execution trace on a MacBook Pro
Intel CoreDuo 2.66 GHz machine.

5 Conclusion

We have proposed an extended commitment life cycle
accommodating time-aware social commitments and
their compensation. We have formalized such a life
cycle as an EC theory, using a reactive version of EC,
called REC, for monitoring the executions of the sys-
tem under study, tracking the commitments evolution
as events occur. Being the presented theory acyclic,
the acyclicity of the domain-dependent theory is a nec-
essary and sufficient condition for ensuring that the
monitoring framework is sound, complete and guar-
antees termination [Chesani et al., 2009].

Alternative formalizations of commitments rely on
temporal logics (CTL in particular). REC has two
main advantages if compared with such approaches:
it supports the modeling of data (and conditions) as
well as of quantitative time constraints, used to han-

dle time-aware commitments; support is provided at
the language and at the operational level. The intro-
duction of deadlines inside a logic combining CTL and
deontic aspects has been studied in [Broersen et al.,
2004], but the approach is not grounded on a reasoning
framework, and deadlines do not refer to time values,
but only to the (unknown) time at which a certain
property becomes true. To accommodate quantita-
tive time, metric temporal logics should be used, as
done in [Mallya and Huhns, 2003]. Our time-aware
commitments cover all the cases described there, and
can be effectively computed by REC. A more detailed
comparison can be found in [Torroni et al., 2009].

A Java tool called jREC is currently being imple-
mented around REC. The tool relies on a two-ways
integration between SWI Prolog as the reasoning en-
gine for REC, and a Java-based generic event acquisi-
tion module with an event queue. Java is also used to
graphically report the outcome dynamically produced
by REC, giving a constantly updated snapshot about
the status of fluents and commitments.

References
[Broersen et al., 2004] J. Broersen, F. Dignum,

V. Dignum, and J. Ch. Meyer. Designing a
deontic logic of deadlines. In 7th International
Workshop on Deontic Logic in Computer Science
(DEON 2004), volume 3065 of LNCS, pages 43–56.
Springer, 2004.

[Chesani et al., 2009] F. Chesani, P. Mello, M. Mon-
tali, and P. Torroni. Commitment tracking via the
reactive event calculus. In Proceedings of the 21st
International Joint Conference on Artificial Intelli-
gence (IJCAI 2009), pages 91–96, 2009.

[Chittaro and Montanari, 1996] Luca Chittaro and
Angelo Montanari. Efficient temporal reasoning in
the cached event calculus. Computational Intelli-
gence, 12:359–382, 1996.

[K. R. Apt and M. Bezem, 1990] K. R. Apt and M.
Bezem. Acyclic Programs. In Logic Programming,
pages 617–633. MIT Press, 1990.

[Kowalski and Sergot, 1986] R. A. Kowalski and
M. Sergot. A Logic-Based Calculus of Events. New
Generation Computing, 4(1):67–95, 1986.

[Mallya and Huhns, 2003] A. U. Mallya and M. N.
Huhns. Commitments Among Agents. IEEE In-
ternet Computing, 7(4), 2003.

[Torroni et al., 2009] P. Torroni, F. Chesani, P. Mello,
and M. Montali. Social Commitments in Time: Sat-
isfied or Compensated. In Post-proceedings of the
7th International Workshop on Declarative Agent
Languages and Technologies (DALT 2009), 2009.

[Yolum and Singh, 2002] P. Yolum and M. P. Singh.
Flexible Protocol Specification and Execution: Ap-
plying Event Calculus Planning Using Commit-
ments. In Proceedings of the First International
Joint Conference on Autonomous Agents & Multia-
gent Systems (AAMAS 2002), pages 527–534. ACM
Press, 2002.


