Towards a Mapping of Deontic Logic
onto an Abductive Framework

Marco Alberti', Marco Gavanelli', Evelina Lamma', Paola Mello?,
Giovanni Sartor3, and Paolo Torroni®

! Dip. di Ingegneria - Universita di Ferrara - Via Saragat, 1 - 44100 Ferrara, Italy.
{malberti|mgavanelli|elamma}@ing.unife.it
2 DEIS - Universita di Bologna - Viale Risorgimento, 2 - 40136 Bologna, Italy.
{pmello,ptorroni}@deis.unibo.it
3 CIRSFID - Universita di Bologna - Via Galliera, 2 - 40100 Bologna, Italy.
sartor@cirfid.unibo.it

Abstract. A number of approaches to agent society modeling can be
found in the Multi-Agent Systems literature which exploit (variants of)
Deontic Logic. In this paper, after briefly mentioning related approaches,
we focus on the Computational Logic (CL) approach for society mod-
eling developed within the UE IST-2001-32530 Project (named SOCS),
where obligations and prohibitions are mapped into abducible predicates
(respectively, positive and negative expectations), and norms ruling the
behavior of members are represented as abductive integrity constraints.
We discuss how this abductive framework can deal with Deontic Logic
concepts, by introducing additional integrity constraints.

1 Introduction

Several researchers have studied the concepts of norms, commitments and social
relations in the context of Multi-Agent Systems [1]. Furthermore, a lot of research
has been devoted in proposing architectures for developing agents with social
awareness (see, for instance [2]).

Several approaches to agent society modeling have been grounded on Deontic
Logic, norms and institutions (e.g., [3-7]). Deontic Logic enables to address the
issue of explicitly and formally defining norms and dealing with their possible
violations. It represents norms, obligations, prohibitions and permissions, and
enables one to deal with predicates like “p ought to be done”, “p is forbidden
to be done”, “p is permitted to be done”.

In the context of the UE IST Programme, two projects (namely ALFEBIITE
[8] and SOCS [9]) have investigated the application of logic-based approaches
for modeling open® societies of agents. In particular, the former focuses on the
formalization of a society of agents using Deontic Logic, and the latter on a
specification of an agent society which, being based on computational logic, is
also executable as a verification program.

* For a definition of openness see [10, 11].



2 Marco Alberti et al.

The ALFEBIITE approach (presented, for instance, by Artikis et al. [10])
consists of a theoretical framework for providing executable specifications of
particular kinds of multi-agent systems, called open computational societies, and
present a formal framework for specifying, animating and ultimately reasoning
about and verifying the properties of systems where the behavior of the members
and their interactions cannot be predicted in advance. Three key components of
computational systems are specified, namely the social constraints, social roles
and social states. The specification of these concepts is based on and motivated
by the formal study of legal and social systems (a goal of the ALFEBIITE
project), and therefore operators of Deontic Logic are used for expressing legal
social behavior of agents [12, 13]. The ALFEBIITE logical framework comprises
a set of building blocks (including doxastic, deontic and praxeologic notions)
as well as composite notions (including deontic right, power, trust, role and
signaling acts).

The SOCS [9] approach to society modeling can be conceived as complemen-
tary to these efforts, since it is especially oriented toward Computational Logic
aspects, and it was developed with the purpose of providing a computational
framework that can be directly used for automatic verification of properties
such as compliance to interaction protocols. The SOCS social model represents
social norms as abductive integrity constraints, where abducibles express expec-
tations (positive and negative) on the behavior of members of the society. We
map expectations into first-class abducible predicates (E for positive and EN
for negative expectations). The social framework is grounded on Computational
Logic (CL, for short), and a declarative abductive semantics has been defined
n [14]. Operationally, the application of abductive integrity constraints (named
Social Integrity Constraints) by a suitable abductive proof procedure adjusts
the set of social expectations as the society acquires new knowledge from the
environment in terms of happened social events. The idea of expected behavior
is strictly related to deontic operators, and it was inspired by Deontic Logic.
However, in SOCS we did not exploit the full power of the standard Deontic
Logic, but only abductive integrity constraints on events that are expected to
happen or not to happen, and we mapped expectations into first-class abducible
predicates (E and EN, see the next section). Grounding the social framework
on CL also smoothly provides an operational counterpart for it, in terms of an
abductive proof procedure (named SCIFF), which was obtained by extending
the IFF proof procedure, proposed by Fung and Kowalski in [15].

Nonetheless, we believe that an approach grounded on CL, and abductive
integrity constraints in particular, can be exploited in order to also deal with
(fragments of ) Deontic Logic. This paper is meant to present a first step towards
a mapping of existsing formalizations of Deontic Logic onto an abductive com-
putational framework such as SOCS’. This is achieved by means of additional
(meta) integrity constraints. One of the main purposes of such mapping is to
exploit the operational counterpart of the SOCS social framework (see, for in-
stance, [30]) and the (modular) implementation of SCIFF (suitably extended by



Towards a Mapping of Deontic Logic onto an Abductive Framework 3

the additional meta constraints) for the on-the-fly verification of conformance of
agents to norms specified in the chosen Deontic Logic.

The paper is organized as follows. In Section 2, we briefly recall the SOCS
social abductive model, and its abductive semantics. After briefly recalling De-
ontic Logic in Section 3, in Section 4 we show how two of its variants can be
mapped into the SOCS social framework, by simply varying additional (meta)
integrity constraints. Section 5 briefly discusses related work. Then we conclude,
and mention future work.

2 The SOCS social model

Although the SOCS project also provides a logic-based model for individual
agents (see, for instance, [16]), in this paper we abstract away from the inter-
nals of the individual agent and adopt an external perspective: we focus on the
observable agent behavior, regardless of its motivation from an internal perspec-
tive. In this way, the model does not constrain the number and/or the type of
agents that a society may be composed of.

The SOCS model describes the knowledge about an agent society in a declar-
ative way. Such knowledge is mainly composed of two parts: a static part, defin-
ing the society organizational and “normative” elements (encoded in what we
call Social Integrity Constraints, as we will show below), and a dynamic part,
describing the “socially relevant” events, that have so far occurred (happened
events). Depending on the context in which this model is instantiated, socially
relevant events could indeed be physical actions or transactions, such as elec-
tronic payments. In addition to these two categories of knowledge, information
about social goals is also maintained.

Based on the available history of events, on its specification of social integrity
constraints and its goals, the society can define the social events that are expected
to happen and those that are expected not to happen. We call these events social
expectations; from a normative perspective, they reflect the “ideal” behavior of
the agents.

2.1 Representation of the society knowledge
The knowledge in a society S is given by the following components:

— a (static) Social Organization Knowledge Base, denoted SOK B;
— a (static) set of Social Integrity Constraints (ICg), denoted ZCg; and
— a set of Goals of the society, denoted by G.

In the following, the terms Atom and Literal have the usual Logic Programming
meaning [17].

A society may evolve, as new events happen, giving rise to sequence of society
instances, each one characterized by the previous knowledge components and,
in addition, a (dynamic) Social Environment Knowledge Base, denoted SEK B.

In particular, SEK B is composed of:



4 Marco Alberti et al.

— Happened events: atoms indicated with functor H;

— Ezpectations: events that should (but might not) happen (atoms indicated
with functor E), and events that should not (but might indeed) happen
(atoms indicated with functor EN).

In our context, “happened” events are not all the events that have actually
happened, but only those observable from the outside of agents, and relevant
to the society. The collection of such events is the history, HAP, of a society
instance. Events are represented as ground atoms of the form

H(Event], Time]).
For instance, in an electronic commerce context, the following atom:
H(tell(al, a2, offer(scooter, 1500),d1), 0)

could stand for an event about a communicative act tell made by agent al,
addressed to an agent a2, with subject offer(scooter,1500), at a time 0. d1 is,
in this case, a dialogue identifier.

Expectations can be

E(Event[, Time]) EN(FEvent[, Time])

for, respectively, positive and negative expectations. E is a positive expectation
about an event (the society expects the event to happen) and EN is a negative
expectation, (the society expects the event not to happen®). Explicit negation
(=) can be applied to expectations.

For instance, in an electronic commerce scenario, the following atom:

E(tell(Customer, Seller, accept(Item, Price), Dialogue), T)

could stand for an expectation about a communicative act tell made by an agent
(Customer), addressed to an agent Seller, with subject accept(Item, Dialogue),
at a time T

The SOKB is a logic program, consisting of clauses, possibly having expec-
tations in their body. The full syntax of SOKB is reported in Appendix.

The arguments of expectation atoms can be non-ground terms (see [18] for
a detailed discussion on variable quantification). Intuitively, variables occurring
only in positive expectations are existentially quantified, whereas variables oc-
curring only in negative expectations only are universally quantified.

The following is a sample SOKB clause:

on_sale(Item) «— (1)
E(tell(Seller, Customer, offer(Item, Price), Dialogue), T0)

It says that one way to fulfill the goal: “to have a certain item on sale,” could
be to have some agent acting as a seller and offering the item at a certain price
to a possible buyer.

5 EN is a shorthand for E not.



Towards a Mapping of Deontic Logic onto an Abductive Framework 5

The goal G of the society has the same syntax as the Body of a clause in the
SOKB (see Appendix), and the variables are quantified accordingly.

As an example, we can consider a society with the goal of selling items. In
order to sell a scooter, the society might expect some agent to embody the role
of buyer. The goal of the society could be

— on_sale(scooter)

and the society might have, in the SOK B, a rule such as Eq. 1. Indeed, there
could be more clauses specifying other ways of achieving the same goal.

Social Integrity Constraints are in the form of implications. The character-
izing part of their syntax is reported in Appendix. For the scope rules and
quantifications, see [18]. Intuitively, ZCg is a set of forward rules, possibly hav-
ing (a conjunction of) events and expectations in their body and (disjunction of
conjunctions of) expectations in their heads. Defined predicates and CLP-like
constraints can occur in body and head, as well.

The following ics models one (simple) electronic vending rule, stating that
each time an offer event happens, the potential buyer has to answer by accepting
or refusing by a certain deadline 7.

H(tell(S, B, offer(Item, Price), D), T0) —
E(tell(B, S, accept(Item, Price), D),
E(tell(B, S, refuse(Item, Price), D),

2.2 Abductive semantics of the Society

SOCS social model has been interpreted in terms of Abductive Logic Program-
ming [19], and an abductive semantics has been proposed for it [14]. Abduction
has been widely recognized as a powerful mechanism for hypothetical reasoning
in the presence of incomplete knowledge [20-23].

In SOCS social model, the idea is to exploit abduction for defining expected
behavior of the agents inhabiting the society, and an abductive proof procedure
(named SCIFF, see [18]) to dynamically generate the expectations, and possibly
perform the compliance check. By “compliance check” we mean the procedure
of checking that the icg are not violated, together with the function of detecting
fulfillment and violation of expectations.

Throughout this section, as usual when defining declarative semantics, we
always consider the ground version of social knowledge base and integrity con-
straints, and we do not consider CLP-like constraints. Moreover, we omit the
time argument in events and expectations.

First, we formalize the notions of instance of a society as an Abductive Logic
Program (ALP, for short) [19], and closure of an instance. An ALP is a triple
(KB, A, IC) where KB is a logic program, (i.e., a set of clauses), A is a set of
predicates that are not defined in K B and that are called abducibles, IC is a set
of formulas called Integrity Constraints. An abductive explanation for a goal G
is a set A C A such that KBUA = G and KBU A = IC, for some notion of
entailment .



6 Marco Alberti et al.

Definition 1. An instance Sgap of a society S is represented as an ALP, i.e.,
a triple (P,€,ZCg) where:

— P is the SOKB of S together with the history of happened events HAP;
— & is the set of abducible predicates, namely E, EN, -E, -EN;
— ICgs are the social integrity constraints of S.

The set HAP characterizes the instance of a society, and represents the set
of observable and relevant events for the society which have already happened.
Note that we assume that such events are always ground.

A society instance is closed, when its characterizing history has been closed
under the Closed World Assumption (CWA), i.e., when it is assumed that no
further event will occur. In the following, we indicate a closed history by means
of an overline: HAP.

Semantics to a society instance is given by defining those sets of expectations
which, together with the society’s knowledge base and the happened events,
imply an instance of the goal—if any—and satisfy the integrity constraints.

In our definition of integrity constraint satisfaction we will rely upon a notion
of entailment in a three-valued logic, being it more general and capable of dealing
with both open and closed society instances. Therefore, in the following, the
symbol = has to be interpreted as a notion of entailment in a three-valued
setting [24], where the history of events is open (resp. closed) for open (resp.
closed) instances .

We first introduce the concept of ZCg-consistent set of social expectations®.
Intuitively, given a society instance, an ZC g-consistent set of social expectations
is a set of expectations about social events that are compatible with P (i.e., the
SOKB and the set HAP), and with ZCg.

Definition 2. (ZCg-consistency) Given a (closed/open) society instance Suap,
an ICg-consistent set of social expectations EXP is a set of expectations such
that:

SOKBUHAPUEXP E7ICg (2)

(Notice that for closed instances HAP has to be read HAP ).

ZICg-consistent sets of expectations can be self-contradictory (e.g., both E(p)
and —E(p) may belong to a ZCg-consistent set). To avoid self-contradiction, a
number of further meta integrity constraints have been taken into account 7.
We will show in Section 3 how these constraints, besides others, can express the
basic axiomatizations of Deontic Logic.

Definition 3. (E-consistency) A set of social expectations EXP is E-consistent
if and only if for each (ground) term p:

EXP U {E(p),EN(p) — false} ¥ false (3)

5 With abuse of terminology, we call this notion ZCs-consistency though it corresponds
to the theoremhood view rather than to the consistency view defined in [15].
" In this notion, we adopt the consistency view defined in [15].



Towards a Mapping of Deontic Logic onto an Abductive Framework 7

Definition 4. (—-consistency) A set of social expectations EXP is —-consistent
if and only if for each (ground) term p:

EXP U{E(p),~E(p) — false} i false (4)

and:
EXP U {EN(p), -EN(p) — false} ¥ false (5)

Among sets of expectations, we are interested in those satisfying Definitions 2,
3 and 4, i.e., ZCs-, E- and —-consistent (we named these sets closed, resp. open,
admissible).

Furthermore, a notion of fulfillment (similar, for positive expectations, to the
notion of regimentation in Deontic Logic) was introduced in [14], as follows.

Definition 5. (Fulfillment) Given a (closed/open) society instance Suap, @
set of social expectations EXP is fulfilled if and only if for all (ground) terms
p:

HAP UEXP U{E(p) — H(p)} U{EN(p) — —H(p)} ¥ false (6)

Symmetrically, we define violation when the condition in Definition 5 above
is not verified.

Two further notions of goal achievability and achievement were introduced
in [14] to support society goal-directed modeling. We refer to [14] for details.

3 Deontic Notions

The birth of modern Deontic Logic can be traced back to the ’50s. In the fol-
lowing, we only address the logical properties that are most useful in modeling
legal reasoning, and norms, and refrain from addressing the logical background
which provides a foundation for those properties.

Deontic Logic enables to address the issue of explicitly and formally defining
norms and dealing with their possible violations. It represents norms, obligations,
prohibitions and permissions, and enables one to deal with predicates like “p
ought to be done”, “p is forbidden to be done”, “p is permitted to be done”.

Being obligatory, being forbidden and being permitted are indeed the three
fundamental deontic statuses of an action, upon which you can build more artic-
ulate normative conceptions. For details, refer to [25], Chapter 15 in particular.

Obligations. To say that an action is obligatory is to say that the action
is due, has to be held, must be performed, is mandatory or compulsory. This
is a very basic notion, not reducible to other, simpler or more familiar, ideas.
Obligations are usually represented by formulas as:

Obl A

where A is any (positive or negative) action description, and Obl is the deontic
operator for obligation to be read as “it is obligatory that”.
Elementary obligations can be distinguished between:



8 Marco Alberti et al.

— elementary positive obligations, which concern positive elementary actions
(e.g., “It is mandatory that John answers me”);

— elementary negative obligations, which concern negative elementary actions
(e.g., “It is mandatory that John does not smoke”);

Prohibitions. The idea of obligation is paralleled with the idea of prohibi-
tion. Being forbidden or prohibited is the status of an action that should not be
performed. In common language, and legal language as well, prohibitive proposi-
tions are expressed in various ways. For example, one may express the same idea
by saying “It is forbidden that John smokes”, “John must not smoke”, “There
is a prohibition that John smokes”, and so on.

Prohibitions are usually represented by formulas as:

Forb A

where A is any (positive or negative) action description, and Forb is the deontic
operator for prohibition to be read as “it is forbidden that”.

The notions of obligation and prohibition are logically connected, as ex-
plained in the following. Most approaches to Deontic Logic agree in assuming
that, for any action A, the prohibition of A is equivalent to the obligation of
omitting A:

Forb A = Obl (NON A) (7)

Permissions. The third basic deontic status, besides obligations and prohi-
bitions, is permission. Permissive propositions are expressed in many different
ways in natural language. To express permissions in a uniform way, Deontic
Logic uses the operator Perm. Permissions are usually represented by formulas
as:

Perm A

where A is any (positive or negative) action description, and Perm is the deontic
operator for permission to be read as “it is permitted that”.

The three basic deontic notions of obligation, prohibition and permission are
logically connected. First of all, intuitively when one believes that an action is
obligatory, then one can conclude that the same action is permitted.

Obl A entails Perm A (8)

Since A’s obligatoriness entails A’s permittedness, Obl A is incompatible with
the fact that A is not permitted:

Obl A incompatible NON Perm A (9)

The connection between the obligatoriness of A and the permittedness of A is
replicated in the connection between the forbiddenness of A and the permitted-
ness on A’s omission: an action being forbidden entails permission to omit it,
ie.:

Forb A entails Perm NON A (10)



Towards a Mapping of Deontic Logic onto an Abductive Framework 9

Obl A Forb A

entails incompatible entails

| T e,

Perm A

incompatible

compatible Perm Noy A

Fig. 1. The first deontic square

A being forbidden entails that the omission of A is permitted. Thus, there is a
contradiction between an action being forbidden and the omission of that action
not being permitted.

Forb A incompatible NON Perm (NON A) (11)

All the logical relations between deontic notions we have just described are syn-
thesized in Figure 1. The schema shows that there is an opposition between being
obliged and being prohibited: If an action A is obligatory, then its performance
is permitted, which contradicts that A is forbidden.

Similarly, if an action A is forbidden, then its omission is permitted, which
contradicts that A is obligatory.

It is instead compatible that both an action A is permitted and its omission
NON A also is permitted. In such a case, A would be neither obligatory nor
permitted, but facultative (see to [25], Chapter 15).

The deontic qualifications “obligatory” and “forbidden” are complete, in the
sense that they determine the deontic status of both the action they are con-
cerned with, and the complement of that action. In fact, on the basis of the

equivalence:
Obl ¢ = Forb NON ¢

we get the following two equivalences, the first concerning the case where ¢ is a
positive action A, the second concerning the case where ¢ is the omissive action
NON A (double negations get canceled):

Obl A = Forb NON A (12)

Obl NON A = Forb A (13)

Of course, believing that an action is permitted amounts to believing that it is
not forbidden:
Perm A= NON Forb A (14)

This means that not being permitted amounts to being forbidden (just negate
both formulas, and cancel double negations):

NON Perm A = Forb A (15)



10 Marco Alberti et al.

Ol 4 ——————— incompatible ——— Forb 4
equivalent incompatible equivalent
NoN Perm Now A incompatible ———o—— now Perm A

Fig. 2. The second deontic square

From this follows that an action being permitted contradicts that action being
prohibited:
Perm A incompatible Forb A (16)

Similarly, believing that an action is obligatory amounts to excluding that its
omission is permitted:

Obl A = NON Perm NON A (17)

Correspondingly, the obligatoriness of an action (entailing the permission to
perform it) contradicts the permissiveness of its omission:

Obl A incompatible Perm NON A (18)

The formulas we have just being considering are summarized in the second square
of deontic notions, in Figure 2.

4 Mapping Deontic Notions onto the SOCS Social Model

This section shows how the Deontic Logic operators are mapped into SOCS
social abductive model. In particular, we first show how the deontic operators can
be mapped into SOCS abducible predicates standing for positive and negative
expectations about social behavior (and their explicit negation). Then, we show
how their logical relations can be mapped into the additional (meta) integrity
constraints, considered by the (semantic and) operational machinery.

4.1 Mapping deontic operators onto expectations

There is a natural correspondence between the notion of positive expectation
and obligation, and, similarly, between the notion of negative expectation and
prohibition. Consequently, since a negative expectation EN(A) has to be read as
it is expected not A (i.e., it is a shorthand for E(not A)), its (explicit) negation,
—-EN(A), corresponds to permission of A.

Therefore, the three deontic notions can be mapped into expectations as
summarized by the first three lines in Table 1.



Towards a Mapping of Deontic Logic onto an Abductive Framework 11

Operator |Abducibile
Obl A E(A)
Forb A EN(A)

Perm A -EN(A)
Perm NONA| -E(A)
Table 1. Deontic notions as expectations

Furthermore, due to the logical relations among obligation, prohibition and
permission discussed in Section 3, the fourth line of Table 1 shows how to map
permission of a negative action. Notice that, while both NON and — repre-
sent the explicit negation of their argument, we keep the different symbols for
uniformity with the original contexts.

It is worth noticing, however, that despite this natural mapping the deontic
notions and SOCS social expectations are grounded on different semantic ap-
proaches, inherited from modal logic the former, and based on abduction the
latter.

4.2 Logical relations among deontic operators as abductive integrity
constraints

Let us first consider the relations summarized in the second square of deontic
notions, in Figure 2. By adopting the mapping summarized in Table 1, the
equivalence relations straightforwardly arose from uniform treatment of symbols
NON, = and not, and from their idempotency.

Incompatibility relations summarized in Figure 2 emerge between the notion
of obligation and prohibition (horizontal arc), and, respectively, between obliga-
tion and permission of opposite, and prohibition and non permission of opposite
(diagonal arcs). By adopting the mapping summarized in Table 1, the first in-
compatibility is captured by SOCS social abductive semantics into the notion of
E-consistency (Definition 3), i.e., by requiring that, for each A, the addition to
the expectation set of the integrity constraint:

E(A),EN(A) — false

does not lead to inconsistency.
The latter two incompatibilities (corresponding to diagonal arcs in Table
1) are captured, instead, by the notion of —-consistency (Definition 4), i.e., by
requiring that, for each A, the addition to the expectation set of the integrity
constraints:
E(A),-E(A) — false

and
EN(A),-EN(A) — false

does not lead to inconsistency.



12 Marco Alberti et al.

The notions of E-consistency and —-consistency (and associated integrity
constraints) also correspond to incompatibility relations in the first square of
deontic notions, in Figure 1.

Furthermore, the two entailment relations occurring in the first square can
be captured by considering additional integrity constraints (possibly added to
the set ZCg), relating positive and negative expectations as follows:

E(A) — ~EN(A)

and
EN(A) — —-E(A)

In practice, these two constraints, when added to ZCg and therefore considered
in ZCg-consistency, enforce the set of expectations to be “completed”, i.e., for
each positive expectation E(A) the explicit negation of its negative counterpart,
—EN(A) had to be included in the expectation set (in order to get its admis-
sibility), and for each negative expectation EN(A) the explicit negation of its
positive counterpart, =E(A) had to be included as well.

Finally, a notion of regimentation can be considered too, by enforcing obliga-
tory actions to happen and prohibited actions not to happen. This can be easily
obtained by adding to the ZCg the following two integrity constraints, mapping
positive/negative expectations into positive/negative events:

E(4) — H(A)

and
EN(A) — -H(A)

Notice that these two conditions correspond to the (meta) integrity constraints
required for fulfillment of expectation sets (see Definition 5). The adopted notion
of fulfillment in the declarative semantics, however, just test that these two
constraints are not violated (by adopting the consistency view discussed in [15]),
whereas if we add them to the set ZCs the ZCgs-consistency test (by adopting
the theoremhood view, also discussed in [15]) would exploit them to also make
events happening or not in the social environment.

A notable difference, from the representation point of view, is that in SOCS
social integrity constraints can only express disjunctions of expectations, such
that E(A) V E(B) (which expresses that at least one of the two between A
and B events is expected). In Deontic Logic, instead, one usually expresses the
obligatoriness of disjunctions, i.e., Obl(AV B). In Kripke-like semantics (adopted
for Deontic Logic), however, this is not equivalent to state Obl(A) vV Obl(B) 8.

The SOCS formalism based on ZCg constraints can capture, instead, in a
computational setting, the concept of (conditional) obligation with deadline pre-
sented by Dignum et al. in [3], with an explicit mapping of time. Dignum et al.

8 The two possible worlds (AA NONB) e (NON A A B) satisfy Obl(A V B), but not
Obl(A) v Obl(B).



Towards a Mapping of Deontic Logic onto an Abductive Framework 13

write: Oa(r<d|p) to state that if the precondition p becomes valid, the obliga-
tion becomes active. The obligation expresses the fact that a is expected to bring
about the truth of r before a certain condition d holds.

For instance, if we have:

p = H(tell(S, a, request(G), D,
r = H(tell(a, S, answer(G), D
d=T'>T+2

we can map Oa(r<d|p) into a icg:

H(tell(S, a,request(G), D), T) —
E(tell(a, S,answer(G), D), T"), T > T,T7' <T + 2.

5 Related Work

There exist a number of approaches based on Deontic Logic to formally defining
norms and dealing with their possible violations.

Among the organizational models, in [3-5] the authors exploit Deontic Logic
to specify the society norms and rules. Their organizational model is based on a
framework which consists of three interrelated models: organizational, social and
interaction. The organizational model defines the coordination and normative
elements and describes the expected behavior of the society. Its components are
roles, constraints, interaction rules, and communicative and ontology framework.
The social model specifies the contracts that make explicit the commitments
regulating the enactment of roles by individual agents. Finally, the interaction
model describes the possible interactions between agents by specifying contracts
in terms of description of agreements, rules, conditions and sanctions.

SOCS society model, instead, follows an institutional approach and deals
with the definition of agent interactions. This approach supposes that the situ-
ations where agents interact may involve commitments (a kind of obligations),
delegation, repetition of interactions and risk. A suitable model to establish and
enforce conventions is that of institutions [6,7]. The basic aim of an institution
is to facilitate, oversee and enforce commitments among agents.

Deontic operators have been used not only at the social level, but also at the
agent level. Notably, in IMPACT [26, 27], agent programs may be used to specify
what an agent is obliged to do, what an agent may do, and what an agent cannot
do on the basis of deontic operators of Permission, Obligation and Prohibition
(whose semantics does not rely on a Deontic Logic semantics). In this respect,
the IMPACT and SOCS social models have similarities even if their purpose and
expressivity are different. The main difference is that the goal of agent programs
in IMPACT is to express and determine by its application the behavior of a single
agent, whereas the SOCS social model goal is to express rules of interaction and
norms, that instead cannot really determine and constrain the behavior of the
single agents participating to a society, since agents are autonomous.



14 Marco Alberti et al.

Another expressive advantage of our framework is that it can express both
protocols and social semantics of communicative acts with the same formalism,
as discussed in [28,29)].

6 Conclusion and Future Work

In this work, we have discussed how the Computational Logic-based framework
for modeling societies of agents developed within the UE IST-2001-32530 project
(named SOCS) can be exploited to express different variants of Deontic Logic.
SOCS approach for modeling open societies is based on an abductive frame-
work, where obligations and prohibitions are mapped into abducible predicates
(respectively, positive and negative expectations), and norms ruling the behavior
of members are represented as abductive integrity constraints. The SOCS social
abductive framework can easily express different Deontic Logics, by means of
additional (meta) integrity constraints.

This mapping is relevant from the representation point of view, but this is
even more interesting from the computational viewpoint. In fact, since SOCS
abductive social model is grounded on Computational Logic, it also offers an
operational counterpart as an abductive proof procedure named SCIFF which
extends the IFF proof procedure [15]. SCIFF is based on transitions able to
deal with dynamic events, propagate social integrity constraints, etc., and it was
proved sound with respect to the defined abductive declarative semantics. In
particular, SCIFF is able to verify the conformance of agent interactions with
respect to the specified norms as ZCg. Its implementation (see [30]) has been
obtained in SICStus Prolog [31], by exploiting the Constraint Handling Rules
(CHR) library [32]. Both SCIFF transitions and the meta integrity constraints
(for E- and —-consistency) have been mapped into CHR rewriting rules. This
modular implementation can be easily extended by considering the additional
integrity constraints defined in this paper, in order to deal with the different
variants of Deontic Logic discussed. This is subject for future work.

Acknowledgments

This work has been supported by the European Commission within the SOCS
project (IST-2001-32530), funded within the Global Computing Programme and
by the MIUR COFIN 2003 projects La Gestione e la negoziazione automatica
dei diritti sulle opere dell’ingegno digitali: aspetti giuridici e informatici and
Sviluppo e verifica di sistemi multiagente basati sulla logica.

References

1. Conte, R., Falcone, R., Sartor, G.: Special issue on agents and norms. Artificial
Intelligence and Law 1 (1999)



10.

11.

12.
13.

14.

Towards a Mapping of Deontic Logic onto an Abductive Framework 15

Castelfranchi, C., Dignum, F., Jonker, C., Treur, J.: Deliberative normative agents:
Principles and architecture. In Jennings, N.R., Lespérance, Y., eds.: Intelligent
Agents VI, Agent Theories, Architectures, and Languages, 6th International Work-
shop, ATAL ’99, Orlando, Florida, USA, Proceedings. Number 1757 in Lecture
Notes in Computer Science, Springer-Verlag (1999) 364-378

Dignum, V., Meyer, J.J., Dignum, F., Weigand, H.: Formal specification of inter-
action in agent societies. In: Proceedings of the Second Goddard Workshop on
Formal Approaches to Agent-Based Systems (FAABS), Maryland. (2002)
Dignum, V., Meyer, J.J., Weigand, H., Dignum, F.: An organizational-oriented
model for agent societies. In: Proceedings of International Workshop on Regulated
Agent-Based Social Systems: Theories and Applications. AAMAS’02, Bologna.

(2002)
Dignum, V., Meyer, J.J., Weigand, H.: Towards an organizational model
for agent societies using contracts. In Castelfranchi, C., Lewis Johnson,

W., eds.: Proceedings of the First International Joint Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS-2002), Part II, Bologna,
Italy, ACM Press (2002) 694-695 http://portal.acm.org/ft_gateway.cfm?id=
544909&type=pdf&d1=GUIDE&d1=ACM},&CFID=4415868&CFTOKEN=57395936.
Esteva, M., de la Cruz, D., Sierra, C.: ISLANDER: an electronic insti-
tutions editor. In Castelfranchi, C., Lewis Johnson, W., eds.: Proceed-
ings of the First International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS-2002), Part III, Bologna, Italy, ACM Press
(2002) 1045-1052 http://portal.acm.org/ft_gateway.cfm?id=545069&type=
pdf&d1=GUIDE&d1=ACM/&CFID=4415868&CFTOKEN=57395936.
Noriega, P., Sierra, C.: Institutions in perspective: An extended abstract. In: Sixth
International Workshop CIA-2002 on Cooperative Information Agents. Volume
2446 of Lecture Notes in Artificial Intelligence., Springer-Verlag (2002)
ALFEBIITE: A Logical Framework for Ethical Behaviour between Infohabi-
tants in the Information Trading Economy of the universal information ecosystem.
IST-1999-10298 (1999) Home Page: http://www.iis.ee.ic.ac.uk/"alfebiite/
ab-home.htm.
: (Societies Of ComputeeS (SOCS): a computational logic model for the descrip-
tion, analysis and verification of global and open societies of heterogeneous com-
putees) http://lia.deis.unibo.it/Research/S0CS/.
Artikis, A., Pitt, J., Sergot, M.: Animated specifications of computa-
tional societies. In Castelfranchi, C., Lewis Johnson, W., eds.: Proceed-
ings of the First International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS-2002), Part III, Bologna, Italy, ACM Press
(2002) 1053-1061 http://portal.acm.org/ft_gateway.cfm?id=545070&type=
pdf&d1=GUIDE&d1=ACM/,&CFID=44158684&CFTOKEN=57395936.
Hewitt, C.: Open information systems semantics for distributed artificial intelli-
gence. Artificial Intelligence 47 (1991) 79-106
Wright, G.: Deontic logic. Mind 60 (1951) 1-15
van der Torre, L.: Contextual deontic logic: Normative agents, violations and
independence. Annals of Mathematics and Artificial Intelligence 37 (2003) 33-63
Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: An Abductive Inter-
pretation for Open Societies. In Cappelli, A., Turini, F., eds.: AT*IA 2003: Advances
in Artificial Intelligence, Proceedings of the 8th Congress of the Italian Association
for Artificial Intelligence, Pisa. Volume 2829 of Lecture Notes in Artificial Intelli-
gence., Springer-Verlag (2003) 287-299 http://www-aiia2003.di.unipi.it.



16

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Marco Alberti et al.

Fung, T.H., Kowalski, R.A.: The IFF proof procedure for abductive logic program-
ming. Journal of Logic Programming 33 (1997) 151-165

Bracciali, A., Demetriou, N., Endriss, U., Kakas, A., Lu, W., Mancarella, P., Sadri,
F., Stathis, K., Toni, F., Terreni, G.: The KGP model of agency: Computational
model and prototype implementation. In: Global Computing Workshop, Rovereto,
Italy, March 2004. Lecture Notes in Artificial Intelligence. Springer-Verlag (2004)
to appear.

Lloyd, J.W.: Foundations of Logic Programming. 2nd extended edn. Springer-
Verlag (1987)

Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Specification
and verification of interaction protocols: a computational logic approach based
on abduction. Technical Report CS-2003-03, Dipartimento di Ingegneria di Fer-
rara, Ferrara, Italy (2003) Available at http://www.ing.unife.it/aree_ricerca/
informazione/cs/technical_reports.

Kakas, A.C., Kowalski, R.A., Toni, F.: The role of abduction in logic program-
ming. In Gabbay, D.M., Hogger, C.J., Robinson, J.A., eds.: Handbook of Logic in
Artificial Intelligence and Logic Programming. Volume 5., Oxford University Press
(1998) 235-324

Cox, P.T., Pietrzykowski, T.: Causes for events: Their computation and applica-
tions. In: Proceedings CADE-86. (1986) 608—621

Eshghi, K., Kowalski, R.A.: Abduction compared with negation by failure. In Levi,
G., Martelli, M., eds.: Proceedings of the 6th International Conference on Logic
Programming, MIT Press (1989) 234-255

Kakas, A.C., Mancarella, P.: On the relation between Truth Maintenance and
Abduction. In Fukumura, T., ed.: Proceedings of the 1st Pacific Rim International
Conference on Artificial Intelligence, PRICAI-90, Nagoya, Japan, Ohmsha Ltd.
(1990) 438-443

Poole, D.L.: A logical framework for default reasoning. Artificial Intelligence 36
(1988) 2747

Kunen, K.: Negation in logic programming. In: Journal of Logic Programming.
Volume 4. (1987) 289-308

Sartor, G.: Legal Reasoning. Volume 5 of Treatise. Kluwer, Dordrecht (2004)
Arisha, K.A., Ozcan, F., Ross, R., Subrahmanian, V.S., Eiter, T., Kraus, S.: IM-
PACT: a Platform for Collaborating Agents. IEEE Intelligent Systems 14 (1999)
64-72

Eiter, T., Subrahmanian, V., Pick, G.: Heterogeneous active agents, I: Semantics.
Artificial Intelligence 108 (1999) 179-255

Alberti, M., Ciampolini, A., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.:
Logic Based Semantics for an Agent Communication Language. In Dunin-Keplicz,
B., Verbrugge, R., eds.: Proceedings of the International Workshop on Formal
Approaches to Multi-Agent Systems (FAMAS), Warsaw, Poland (2003) 21-36
Alberti, M., Ciampolini, A., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: A
social ACL semantics by deontic constraints. In Marik, V., Miiller, J., Péchoucek,
M., eds.: Multi-Agent Systems and Applications III. Proceedings of the 3rd In-
ternational Central and Eastern European Conference on Multi-Agent Systems,
CEEMAS 2003. Volume 2691 of Lecture Notes in Artificial Intelligence., Prague,
Czech Republic, Springer-Verlag (2003) 204-213

Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Com-
pliance verification of agent interaction: a logic-based tool. In Trappl, R., ed.:
Proceedings of the 17th European Meeting on Cybernetics and Systems Research,



Towards a Mapping of Deontic Logic onto an Abductive Framework 17

Vol. II, Symposium “From Agent Theory to Agent Implementation” (AT2AI-4),
Vienna, Austria, Austrian Society for Cybernetic Studies (2004) 570-575

31. : SICStus prolog user manual, release 3.11.0 (2003) http://www.sics.se/isl/
sicstus/.

32. Frihwirth, T.: Theory and practice of constraint handling rules. Journal of Logic
Programming 37 (1998) 95-138

Appendix

The SOKB is a logic program, consisting of clauses, possibly having expectations
in their body. The full syntax of SOKB is the following;:

Clause ::= Atom «— Body
Body ::= ExtLiteral [ N\ ExtLiteral |*
ExtLiteral ::= Literal | Expectation | Constraint
Expectation ::= [-]E(Event [,T]) | [-|]EN(Event [,T])

(19)

Social Integrity Constraints are in the form of implications. The characteriz-
ing part of their syntax is the following:

icg i=x — @
X = (HEvent|Expectation) [ABodyLiteral]*
BodyLiteral ::= H Event|Expectation|Literal|Constraint
¢ == HeadDisjunct | V HeadDisjunct |*| L (20)
HeadDisjunct ::= Expectation [ A (Expectation|Constraint)]*
Ezxpectation ::= [-|E(Event [,T]) | [F]EN(Event [,T)])
HEvent ::= [-]H(Event [,T)])

Given an icg x — ¢, x is called the body (or the condition) and ¢ is called the
head (or the conclusion).
For the scope rules and quantifications, please refer to [18].



