
Specification and
verification of agent
interaction using SOCS-SI

Federico Chesani – Università di Bologna

Marco Gavanelli – Università di Ferrara

CLIMA VI
London, June 27-29, 2005

Social Infrastructure

Behaviour

Social Infrastructure

Fulfilment

Violation
Verify

YES

NO

Expectations

Protocols

Reason

CLIMA VI
London, June 27-29, 2005

Use of expectations

Behaviour

Social Infrastructure

Fulfilment

Violation

Reasoning
Satisfaction?

YES

NO

Expectations

(1) check of compliance to protocols(1) check of compliance to protocols

CLIMA VI
London, June 27-29, 2005

Use of expectations

Behaviour

Social Infrastructure

Reasoning

Expectations

(2) feedback loop that influences
behaviour

(2) feedback loop that influences
behaviour

Different
Behaviour

CLIMA VI
London, June 27-29, 2005

Part I: Synopsis

Types of society
The SCIFF language

syntax and semantics

Verification
Types of verification

CLIMA VI
London, June 27-29, 2005

Multi-Agent Systems (MAS)

Agent: a software system
Autonomous: the agent is able to work
autonomously
Reactive: it is able to react to external
stimuli, changes in the environment
Proactive: it can have objectives, goal-
directed behaviour
Social: can interact with other agents to
reach its goals

CLIMA VI
London, June 27-29, 2005

Design

Design a MAS means designing
Type of the society
Interaction
Roles
…

Open

CLIMA VI
London, June 27-29, 2005

Society types [Davidsson 01]
Closed: Agents cannot enter
(fixed number of agents)
Semiclosed: Agents cannot
enter, but can spawn a
representative in the society
Semiopen: agents can enter
by registering to a gatekeeper
Open: agents can enter
without restrictions

CLIMA VI
London, June 27-29, 2005

Open society

“it supports openness and flexibility very well,
but it is very difficult to make such a society
stable and trustful.” [Davidsson 01]
But, we design the MAS in order to obtain
some goals …

Give semantics to communication
Agents comply to rules
The MAS reaches its goals
The MAS has some required properties

CLIMA VI
London, June 27-29, 2005

Protocols

Definition: language
Impose that agents behave according
to protocols?

Not in an open society!
Verification / raising violations

Protocol properties

CLIMA VI
London, June 27-29, 2005

Example: Auction

We want to design a MAS for managing
auctions
We have to

Design the communication acts, and their
semantics
Design the protocol
Use the protocol for

Guiding the agents behaviour
Prove society properties

CLIMA VI
London, June 27-29, 2005

Syntax: events

happened events (ground)

Desc (term)
Time (integer)
Eg
Bob tells Alice that he bids 1$ for the pen in
the auction auc1 at time 3
Events compose a history

H(Desc, T ime)

HAP

H(tell(bob, alice, bid(pen, 1 $), auc1), 3)

CLIMA VI
London, June 27-29, 2005

Syntax: Expectations

Events that should / should not happen

Eg
Alice should answer to Bob’s bid, after time 3

Eg
No agent should place a bid to Alice for the pen in

auction 1 for less than 1$, after time 3

Expectations compose the set ∆

E(Desc, T ime) EN(Desc, T ime)

E(tell(alice, bob, answ(A, pen, 1$), auc1), TAns), TAns > 3

EN(tell(B, alice, bid(pen,P), auc1), TBid), Tbid > 3, P < 1$

CLIMA VI
London, June 27-29, 2005

Declarative semantics

SCIFF: abductive semantics

Coherence of set ∆

Compliance to protocol

KB ∪∆ |= G KB ∪∆ |= IC

∀p,E(p),EN(p) 6∈ ∆
∀p,¬E(p),E(p) 6∈ ∆ ∀p,EN(p),¬EN(p) 6∈ ∆

∀p,E(p)→H(p) ∀p,EN(p)→ notH(p)

CLIMA VI
London, June 27-29, 2005

Syntax

Social Organization Knowledge Base (SOKB)
clauses Atom Cond
Cond: conjunction of literals, constraints,
expectations

Social Integrity Constraints (ICs)
Body Head
Body: conjunction of literals defined in SOKB, H,
E, EN and CLP constraints
Head: a disjunction of conjunction of E, EN literals
and CLP constraints

CLIMA VI
London, June 27-29, 2005

Auction: communicative acts

Openauction: opens an auction for an
item
Bid: propose to buy an item for a given
price
Answer (win/lose): communicate if a
bid wins or loses
Deliver: provide the item
Pay: pay for the item

CLIMA VI
London, June 27-29, 2005

Auction: semantics of
communicative acts

If I open an auction, I am willing to give the item for
some amount of money

If I place a bid, I am willing to pay such amount of
money for the item

H(tell(B,A, bid(Item,Q),D), TBid),
H(tell(A,B, answ(win, Item,Q), D), TWin),
H(tell(A,B, deliver(Item),D), TDel)

→ E(tell(B,A, pay(Item, Q),D), TPay),
TPay < TDel + TPay Deadline

H(tell(A,Bidders, opauc(Item, τ, Tnotify, Type),D), Topen),
H(tell(B,A, bid(Item,Q),D), TBid),
H(tell(A,B, answ(win, Item,Q),D), TWin),

→ E(tell(A,B,deliver(Item),D), TDel),
TDel < TWin + TDeliver Deadline

CLIMA VI
London, June 27-29, 2005

Protocols

Protocols are often seen as finite state
automata

Define allowed moves,
the rest is forbidden
Could be a limit in open
societies
SCIFF: define explicitly
allowed/ necessary/
forbidden moves

a
b

b

c
c

c

CLIMA VI
London, June 27-29, 2005

Auctions

Before placing bids, there must have
been an openauction

The auctioneer should reply to bids

H(tell(S,R, bid(Item, P), D), T bid)
→ E(tell(R, , openauction(Item, Tend,),D), Topen)
∧Topen < Tbid ∧ Tbid ≤ Tend.

H(tell(B,A, bid(Item, P), Anumber), T bid)
∧H(tell(A, , openauction(Item, Tend, Tdeadline), D), T open)
→ E(tell(A,B, answer(Answer,B, Item), D), Tanswer)
∧Tanswer ≥ Tend ∧ Tanswer ≤ Tdeadline ∧Answer :: [win, lose].

CLIMA VI
London, June 27-29, 2005

Auctions

no contradicting answers
H(tell(A,B, answer(A1, B, Itemlist),D), T1)
→ EN(tell(A,B, answer(A2, B, Itemlist), D), T2)
A1 6= A2

CLIMA VI
London, June 27-29, 2005

Auctions

Payment
H(tell(A,Bw, answer(win,Bw, Item),D), Tw)

∧H(tell(Bw,A, bid(Item, P), D), T bid)
→ E(tell(Bw,A, pay(P), D), Tp).

CLIMA VI
London, June 27-29, 2005

English auction: protocol

You cannot place bids lower than the previous

Either one places a higher within τ units after my bid,
or I win

H(tell(Bidder1, Auc, bid(Item,Q1)), T1)
→ EN(tell(Bidder2, Auc, bid(Item,Q2)), T2), T2 > T1, Q2 ≤ Q1

H(tell(Auc,Bidders, opauc(Item, τ, Tnotify, english), D), Topen),
H(tell(Bidder1, Auc, bid(Item,Q1), D), T1)
→ E(tell(Bidder2, Auc, bid(Item,Q2), D), T2),

Q2 > Q1, T2 < T1 + τ
∨ E(tell(Auc,Bidder1, answ(win, Item,Q1),D), Twin),

Twin < T1 + Tnotify

CLIMA VI
London, June 27-29, 2005

First price sealed bid auction

Predefined deadline. Either there is a higher
bid, or I must be declared winner

H(tell(Auc,Bidders, opauc(Item,Tdead, Tnotify, fpsb),D), Topen),
H(tell(Bidder1, Auc, bid(Item,Q1),D), T1), T1 < Tdead
→ E(tell(Bidder2, Auc, bid(Item,Q2),D), T2),

Q2 > Q1, T2 < Tdead
∨ E(tell(Auc,Bidder1, answ(win, Item,Q1),D), Twin),

Twin < Tdead + Tnotify

CLIMA VI
London, June 27-29, 2005

Vickrey auction

You should pay at least the amount of
the other bidders
H(tell(A,Bw, answer(win,Bw, Item),D), Tw)

∧H(tell(A,Bl, answer(lose,Bl, Item),D), T l)
∧H(tell(Bl,A, bid(Item, P l), D), T bid)
→ E(tell(Bw,A, pay(P), D), Tp) ∧ P ≥ Pl.

CLIMA VI
London, June 27-29, 2005

Verification

Types of verification [Guerin, Pitt 02]
Type 1: An agent will always comply to
protocol (required: agent specification, not available
in open societies)

Type 2: verification through observation (on
the fly)

Type 3: verification of protocol properties (if
agents behave according to protocols, does the MAS
respect specifications?)

CLIMA VI
London, June 27-29, 2005

Type 1 Verification

Agents behaviour Semantics

Protocols Properties

Compliance

Violation

CLIMA VI
London, June 27-29, 2005

Type 2 verification

Agents behaviour Semantics

Protocols Properties

Compliance

Violation

CLIMA VI
London, June 27-29, 2005

Operational Semantics

Generation of expectations
Abduction of literals with universally quantified
variables
Dynamically happening events
CLP constraints on variables (both existentially and
universally quantified)

SCIFF: Extension of the IFF
abductive proof-procedure
[Fung-Kowalski]

CLIMA VI
London, June 27-29, 2005

Operational Semantics
Data structure

T = <R,CS,PSIC,EXP,HAP,FULF,VIOL>
Where

R: Conjunction of literals
CS: Constraint Store
PSIC: Implications
EXP: (Pending) Expectations
FULF: Fulfilled expectations
VIOL: Violated Expectations

CLIMA VI
London, June 27-29, 2005

Transitions
IFF-Like (extended)
Fulfilment, violation
Dynamically growing history
Consistency
CLP

CLIMA VI
London, June 27-29, 2005

IFF-like transitions
unfolding: p(X), A p(Y) ← B →→ X=Y, B, A
propagation:p(X), B → C p(Y) →→ X=Y, B → C
splitting: distributes conjunctions and disjunctions
case analysis: c(X,Y) → A

either c(X,Y), A
or ¬c(X,Y)

factoring tries to reuse previously made hypotheses;
rewrite rules: use the inferences in the Clark Equality Theory;
logical simplifications A,false ↔↔ false, A ← true ↔↔ A, etc.

CLIMA VI
London, June 27-29, 2005

Fulfilment / Violation

Rely on the constraint solver

EXPk = {EN(E1), …}
HAPk = {H(E2), …}

EXPk = {EN(E1), …}
HAPk = {H(E2), …}

CSk+1 = CSk ∪ {E1 = E2}
VIOLk+1 = VIOLk ∪ {EN(E1)}
EXPk+1 = {…}

CSk+1 = CSk ∪ {E1 = E2}
VIOLk+1 = VIOLk ∪ {EN(E1)}
EXPk+1 = {…}

CSk+1 = CSk ∪ {E1 ≠ E2}CSk+1 = CSk ∪ {E1 ≠ E2}

Violation EN:Violation EN:

CLIMA VI
London, June 27-29, 2005

Fulfilment / Violation

EXPk = {E(E1), …}
HAPk = {H(E2), …}

EXPk = {E(E1), …}
HAPk = {H(E2), …}

CSk+1 = CSk ∪ {E1 = E2}
FULFk+1 = FULFk ∪ {E(E1)}
EXPk+1 = {…}

CSk+1 = CSk ∪ {E1 = E2}
FULFk+1 = FULFk ∪ {E(E1)}
EXPk+1 = {…}

CSk+1 = CSk ∪ {E1 ≠ E2}CSk+1 = CSk ∪ {E1 ≠ E2}

Fulfilment E:Fulfilment E:

CLIMA VI
London, June 27-29, 2005

Dynamically Growing History
External set of incoming events
A transition Happening takes an event from the external set and
puts it into the HAP set

Tn = <Rn,CSn,PSICn,EXPn,HAPn,FULFn,VIOLn>Tn = <Rn,CSn,PSICn,EXPn,HAPn,FULFn,VIOLn>

H1
H1 H2

H2 H3
H3 ……

Tn+1 = <Rn,CSn,PSICn,EXPn, HAPn ∪ {H1}, FULFn,VIOLn>Tn+1 = <Rn,CSn,PSICn,EXPn, HAPn ∪ {H1}, FULFn,VIOLn>

HappeningHappening

Other transitions reason about non-happening, closure of the historyOther transitions reason about non-happening, closure of the history

CLIMA VI
London, June 27-29, 2005

CLP

Constraint solving
constrain
case-analysis

Equalities & disequalities are constraints
The solver also considers the
quantification of variables
∃Y ∀X > YEN(p(X))

∃ZE(p(Z))
Y

Z ≤ Y

X

Z

CLIMA VI
London, June 27-29, 2005

Type 3 verification

g-SCIFF proof-
procedure

Agents Behaviour Semantics

Protocols Properties

Compliance

Violation

CLIMA VI
London, June 27-29, 2005

SCIFF abductive framework
1 SCIFF abductive

framework:
1.a representation of

agents’ behaviour
1.b language for

defining protocols
1.c Abductive

semantics

Agents behaviour Semantics

Protocols properties

Compliance

Violation

2 Proof-procedure SCIFF
3 Properties of protocols:
3.a representation
3.b Verification: g-SCIFF proof-proc

1a

1b

1c

2

3a
3b

Specification and
verification of agent

interaction using SOCS-SI

Federico Chesani – Università di Bologna
Marco Gavanelli – Università di Ferrara

Part 2

CLIMA VI
London, June 27-29, 2005

Part 2
Outline

Overview of SOCS-SI
How to define a protocol (e.g. First-price,
Sealed-bid, private values Auctions) and the
related social knowledge base
Simulating the defined protocol
Property check of the defined protocol (work
in progress)

CLIMA VI
London, June 27-29, 2005

The software SOCS-SI
Which use?

SOCS-SI is a tool for verifying agent
interactions w.r.t. a defined protocol
It provides a way for formally specifying protocols
It shows the state of the society as events occur
(history, expectations,…)
Given a protocol definition and an agent interaction,
it verifies if the interaction “follows” the protocol
Such a verification has been called “Type 2”

CLIMA VI
London, June 27-29, 2005

The software SOCS-SI
General overview

We assume that SOCS-SI can
access all relevant messages
exchanged during an
interaction

interaction

SOCS-SI
SCIFF

CLIMA VI
London, June 27-29, 2005

The software SOCS-SI
General overview

Medium Layer File System Prompt >

User Defined
Protocols

Society Infrastructure

Society Module
Society

GUI
Module

User

CLIMA VI
London, June 27-29, 2005

The software SOCS-SI
General Overview

ICsICs

SOKBSOKB

Events

yes
fullfillment

no
violation

Protocol
Definition

Social
Knowledge

Base

Source of
Events

SOCS-SI

SCIFF

CLIMA VI
London, June 27-29, 2005

The software SOCS-SI
Inputs

Inputs:
A file containing the protocol description (ICs
formalism)
A file containing the social knowledge base
A source of events

The SOCS agent communication platform
Jade platform
TuCSoN
E-Mail system
A log file
…

CLIMA VI
London, June 27-29, 2005

The software SOCS-SI
Outputs (1)

Outputs:
An answer (yes/no) about the compliance
of the happened (or happening) events
w.r.t. the given protocol S CIFF
It is possible at any time to inspect the
state of the system in case no more events
will ever occur (“closure” of the history)

CLIMA VI
London, June 27-29, 2005

The software SOCS-SI
Outputs (2)

The tree explored by the SCIFF proof
procedure

“Browsing” of the tree:
Each node represents a quiescence state of the
proof
Each intermediate node can be accessed
In each node the state of the proof can be
inspected

CLIMA VI
London, June 27-29, 2005

The software SOCS-SI
Running SOCS-SI

In order to execute the tool, the inputs must be
provided. Several ways:
run

Loads and executes using default configuration file,
“society.config”

run --config config_file
Loads and executes using the settings stored in the file config_file

run --graphic
Open a gui for selecting by hand the inputs

run --manual …
Specifies the input parameters directly on the command line

CLIMA VI
London, June 27-29, 2005

Defining a protocol
Using ICs to define a protocol

SOCS-SI can be used as a platform to try different
methodologies for designing protocols
Ongoing work: definition of such a general
methodology

A possibility is below:

Definition of
the protocol

Tests on posi-
tive examples

Tests on nega-
tive examples

Proof of
properties

Use in real
cases

CLIMA VI
London, June 27-29, 2005

Defining a protocol
The auction example

We will consider a “first-price sealed-
bid” auction with private values
Each bidder submits one bid, without
knowing the others’ bid.
The highest bid wins the item and pays
the amount of his bid

CLIMA VI
London, June 27-29, 2005

Defining a protocol
The auction example

It is possible to identify the following
“steps” in the protocol:

1. The auctioneer opens the auction (by
sending the message “openauction” to
the invited bidders)

2. Each bidder places its bid
3. The auctioneer communicates the

closing of the auction
4. The auctioneer communicates to each

bid if it has won or it has lost.

init

send “openAuction”

receives a bid

send “closeAuction”

send answers

CLIMA VI
London, June 27-29, 2005

Defining a protocol
The auction example

Step 1:
No “preconditions” about the
opening auction step.
Only one future event required:
the auctioneer will close the
auction at a certain time.

init

send “openAuction”

receives a bid

send “closeAuction”

send answers

H(tell(A, B, openauction(Item,TEnd,TDeadline), D), TOpen)
--->
E(tell(A, B, closeauction, D), Tend)
/\ Tend > Topen.

CLIMA VI
London, June 27-29, 2005

Defining a protocol
The auction example

Step 2:
Before placing a bid, an
“openauction” message must have
been sent.
If a bidder places a bid, it must be
notified of winning or losing.

init

send “openAuction”

receive a bid

send “closeAuction”

send answers

H(tell(B, A, bid(Item,Price), D), TBid)
--->
E(tell(A, B, openauction(Item,TEnd,TDeadline), D), TOpen)
/\ TOpen < TBid
/\ TBid < TEnd
/\ TEnd < TDeadline.

H(tell(A, B, openauction(Item,TEnd,TDeadline), D), TOpen)
/\ H(tell(B, A, bid(Item,Price), D), TBid)
/\ TOpen < TBid
/\ TOpen < TEnd
/\ TEnd < TDeadline
--->

E(tell(A, B, answer(win,Item,Price), D), TWin)
/\ TWin <= TDeadline
/\ TEnd < TWin

\/
E(tell(A, B, answer(lose,Item,Price), D), TLose)
/\ TLose <= TDeadline
/\ TEnd < TLose.

CLIMA VI
London, June 27-29, 2005

Defining a protocol
The auction example

Step 3:
In order to communicate the
“closeAuction” message, the auctioneer
should have opened the auction with a
previous message

init

send “openAuction”

receives a bid

send “closeAuction”

send answers

H(tell(A, B, closeauction, D), Tend)
--->
E(tell(A, B, openauction(Item,TEnd,TDeadline), D), TOpen)
/\ Tend > Topen.

CLIMA VI
London, June 27-29, 2005

Defining a protocol
The auction example

Step 4:
The auctioneer should send answers
only to bidders that submitted a bid

No future consequence if you conclude
the protocol here…

init

send “openAuction”

receives a bid

send “closeAuction”

send answers

H(tell(A, B, answer(_,Item,Price), D), TAnswer)
--->
E(tell(B, A, bid(Item,Price), D), TBid)
/\ E(tell(A, _, openauction(Item,TEnd,TDeadline), D), TOpen)
/\ TOpen < TBid
/\ TBid < TEnd
/\ TEnd < TDeadline
/\ TAnswer <= TDeadline.

CLIMA VI
London, June 27-29, 2005

Checking the defined protocol
Checking compliant histories

Once the protocol has been defined, a first test can
be conducted by simulating correct agent interactions
and observing the answer given by SOCS-SI

SOCS-SI can read interactions saved on files (a sort
of log of the interactions)
The interactions are represented in the form of
exchanged messages

A first “feedback” on the “quality” of the protocol
defined consists in being assured that all the desired
interactions are considered compliant w.r.t. the
protocol definition

CLIMA VI
London, June 27-29, 2005

Checking the defined protocol
Checking compliant histories

tell([s0], auction1, federico, bidder1, openauction, [laptop,10,20],5).
tell([s0], auction1, federico, bidder2, openauction, [laptop,10,20],5).
tell([s0], auction1, federico, bidder3, openauction, [laptop,10,20],5).

tell([s0], auction1, bidder1, federico, bid,[laptop,100],6).
tell([s0], auction1, bidder3, federico, bid,[laptop,80],8).
tell([s0], auction1, bidder2, federico, bid,[laptop,120],9).

tell([s0], auction1, federico, bidder1, closeauction, [],10).
tell([s0], auction1, federico, bidder2, closeauction, [],10).
tell([s0], auction1, federico, bidder3, closeauction, [],10).

tell([s0], auction1, federico, bidder2, answer, [win,laptop,120], 12).
tell([s0], auction1, federico, bidder1, answer, [lose,laptop,100],13).
tell([s0], auction1, federico, bidder3, answer, [lose,laptop,80], 15).

CLIMA VI
London, June 27-29, 2005

Checking the defined protocol
Checking non-compliant histories

A second “feedback” on the “quality” of the
formalization of the protocol consists to verify
that “wrong” interactions are detected as
“violating” the protocol.
Easy to do only for naive violations
Useful anyway for verifying conjectures
about the formalization of the protocol

CLIMA VI
London, June 27-29, 2005

Checking the defined protocol
Checking non-compliant histories

tell([s0], auction1, federico, bidder1, openauction, [laptop,10,20],5).
tell([s0], auction1, federico, bidder2, openauction, [laptop,10,20],5).
tell([s0], auction1, federico, bidder3, openauction, [laptop,10,20],5).

tell([s0], auction1, bidder1, federico, bid,[laptop,100],6).
tell([s0], auction1, bidder3, federico, bid,[laptop,80],8).
tell([s0], auction1, bidder2, federico, bid,[laptop,120],9).

tell([s0], auction1, federico, bidder1, closeauction, [],10).
tell([s0], auction1, federico, bidder2, closeauction, [],10).
tell([s0], auction1, federico, bidder3, closeauction, [],10).

tell([s0], auction1, federico, bidder2, answer, [lose,laptop,120], 12).
tell([s0], auction1, federico, bidder1, answer, [lose,laptop,100],13).
tell([s0], auction1, federico, bidder3, answer, [lose,laptop,80], 15).

CLIMA VI
London, June 27-29, 2005

Checking the defined protocol
Fixing the protocol?

H(tell(A, B, openauction(Item,TEnd,TDeadline), D), TOpen)
/\ H(tell(B, A, bid(Item,Price), D), TBid)
/\ TOpen < TBid
/\ TOpen < TEnd
/\ TEnd < TDeadline
--->
E(tell(A, _, answer(win,_,_), D), TWin)
/\ TWin <= TDeadline
/\ TEnd < TWin.

If at least one bid has been placed by an allowed
bidder, then there must be at least one winning
message

CLIMA VI
London, June 27-29, 2005

Proving properties
The generative SCIFF

We are developing a version of the SCIFF
proof procedure that is able to disprove a
property w.r.t a given protocol specification.
It is still a work in progress; some results
have been presented in a previous talk
Given a property P and a protocol Q, if we
are able to generate a history that is
compliant with (Q ∪ ¬P), hence P does not
hold.

CLIMA VI
London, June 27-29, 2005

Conclusions
Abductive Framework SCIFF:

Interaction Representation
Protocol Definition Language (ICs)

SOCS-SI
Verify if an interaction is compliant with a given
protocol definition
Can be used for simulating the defined protocol

Protocol properties

CLIMA VI
London, June 27-29, 2005

Links
SOCS Project:

http://lia.deis.unibo.it/SOCS/
SCIFF proof procedure

http://lia.deis.unibo.it/Research/sciff/

Acknowledgments:
This work is partially funded by the Information
Society Technologies programme of the European
Commission under the IST-2001-32530 project in
the context of the Global Computing initiative of
the FET (Future Emerging Technology) initiative

CLIMA VI
London, June 27-29, 2005

Bibliography
General Framework

Marco Alberti, Marco Gavanelli, Evelina Lamma, Paola Mello, and Paolo Torroni. Specification and verification of agent interactions
using social integrity constraints. Electronic Notes in Theoretical Computer Science, 85(2), April 2004.
Marco Alberti, Anna Ciampolini, Marco Gavanelli, Evelina Lamma, Paola Mello, and Paolo Torroni. A social ACL semantics by deontic
constraints. In Vladimir Marik, Jorg Muller, and Michal Pechoucek, editors, Multi-Agent Systems and Applications III. 3rd International
Central and Eastern European Conference on Multi-Agent Systems CEEMAS 2003, volume 2691 of LNAI
Marco Alberti, Federico Chesani, Marco Gavanelli, Evelina Lamma, Paola Mello, and Paolo Torroni. The SOCS computational logic
approach to the specification and verification of agent societies. In Corrado Priami and Paola Quaglia, editors, Global Computing:
IST/FET International Workshop, GC 2004 Rovereto, Italy, March 9-12, 2004 Revised Selected Papers, volume 3267 of LNCS
Marco Alberti, Federico Chesani, Marco Gavanelli, Evelina Lamma, Paola Mello, and Paolo Torroni. A logic based approach to interaction
design in open multi-agent systems. In Martin Fredriksson, Rune Gustavsson, Alessandro Ricci, and Andrea Omicini, editors, 13th IEEE
International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WET ICE 2004), pages 387-392,
Washington, DC, USA, September 2004. IEEE Computer Society.

Operational Semantics
Marco Alberti, Marco Gavanelli, Evelina Lamma, Paola Mello, and Paolo Torroni. Abduction with hypotheses confirmation. In Rossi and
Panegai ed., CILC 2004
Marco Alberti, Marco Gavanelli, Evelina Lamma, Paola Mello, and Paolo Torroni. The SCIFF abductive proof-procedure. In Fabio
Zanzotto, editor, IX Congresso nazionale Associazione Italiana per l'Intelligenza Artificiale, Lecture Notes in Artificial Intelligence, Berlin,
2005. Università degli studi di Milano Bicocca, Springer Verlag. to appear.

Implementation
Marco Alberti, Federico Chesani, Marco Gavanelli, Evelina Lamma, Paola Mello, and Paolo Torroni. Compliance verification of agent
interaction: a logic-based tool. In Robert Trappl, editor, Proceedings of the 17th European Meeting on Cybernetics and Systems
Research, Vol. II, Symposium ``From Agent Theory to Agent Implementation'' (AT2AI-4), pages 570-575, Vienna, Austria, April 13-16
2004. Austrian Society for Cybernetic Studies.

Applications
Marco Alberti, Marco Gavanelli, Evelina Lamma, Paola Mello, and Paolo Torroni. Modeling interactions using social integrity constraints:
a resource sharing case study. In Joao Alexandre Leite, Andrea Omicini, Leon Sterling, and Paolo Torroni, editors, Declarative Agent
Languages and Technologies, First International Workshop, DALT 2003, Melbourne, Australia, July 15, 2003, Revised Selected and
Invited Papers, volume 2990 of Lecture Notes in Computer Science, pages 243-262, Melbourne, Australia, 2004. Springer Verlag.
Marco Alberti, Federico Chesani, Marco Gavanelli, Alessio Guerri, Evelina Lamma, Paola Mello, and Paolo Torroni. Expressing interaction
in combinatorial auction through social integrity constraints. Intelligenza Artificiale, II(1):22-29, 2005.

