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Ant Colony Optimization

by Andrea Roli

Scientists have always been fascinated by the problem solving capabilities of Nature: the evolution of the species, the
nest building activity of termites, the way crystal forms out of shapeless materials are only a few of the possible
examples. For long, biologists, physicists, and chemists have studied and tried to understand these phenomena, building
explicative models. More recently, also computer scientists have become interested in these phenomena: a wide set of
nature inspired optimization algorithms have been developed: among others, we may mention genetic algorithms, neural

networks and simulated annealing.

A recent and important class of nature inspired algorithms is that of ant algorithms [1]. These are algorithms inspired
by the observation of social insect behavior, and in particular by the behavior of ant colonies. In these algorithms, the
traditional emphasis on control, preprogramming, and centralization is replaced by an emphasis on autonomy,
emergence, and distributed functioning. A particularly successful research direction in ant algorithms, known as Ant
Colony Optimization [3,5], is concerned with applications to discrete optimization problems. The aim of this short
note is to introduce and briefly describe origins and basic principles of Ant Colony optimization (ACO).

From Nature to models

ACO algorithms have been inspired
by direct observation of a colony of
real ants. In this experience, a
laboratory colony of Argentine ants is
given access to a food source in an
area linked to the colony's nest by a
bridge with two branches of different 1
length (see Figure 1).
The branches ate arranged in such a =
way that ants going in different

branch receives pheromone at a higher
rate than the longer one and,
eventually, it will be selected by almost
all ants of the colony.

An important role is played here by
positive feedback: if an ant chooses the
left branch at time t, it will increase the
amount of pheromone on that path,
therefore, for a subsequent ant
reaching the decision point at time
T>1#, the probability of choosing the

directions (from nest to food or vice e left branch is increased. This
versa) must choose one of the two / A - mechanism is not sufficient to enable
branches. The experimental the colony to select the shortest
observation is that, after a transient / - branch, though. In fact, since positive
phase that can last a few minutes, g feedback reinforces previously taken
most of the ants use the shortest decisions, it might force the selection
branch. The selection of the shortest AndrealRoll of the wrong path as a consequence of

path can be seen as an emergent
property of the system: it is the result
of a number of probabilistic decisions
made by the ants based on local information, without any
individual ant having a plan for achieving a “shortest path
behaviotr”. Indeed, individual ants are not even aware of
the fact that they are selecting the shortest path. Local
information is provided by pheromone, a chemical substance
deposited by the ants while they walk. Ants can also smell
pheromone, and their probabilistic decisions ate biased in
favor of paths marked with higher amounts of
pheromone.

The dynamics of the experiment are the following: at the
beginning, no pheromone is laid on the branches and the
ants do not have any bit of information about the
branches length. However, since one branch is shorter
than the other, while the process iterates, the shorter

initial random fluctuations.

The so-called differential path length effect

now comes into play: the longer a
branch, the higher the time required to traverse it, thus the
smaller the number of ants that will take that branch in a
time interval, hence the smaller the amount of pheromone
deposited on it. Additionally, another important element is
pheromone evaporation that enables the system to forget
possibly wrong past decisions. The effect of this
mechanism is to prune the tree of possible paths, setting
to a value greater than zero those that are more frequently
chosen. In fact, in paths that rarely receive pheromone, or
on which pheromone has been deposited just at the
beginning, phetomone evaporates until disappearing
completely. Conversely, on frequently traversed paths, the
effect of evaporation is counterbalanced by new
pheromone added by ants.
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Fig. 1. - Experimental setting: nest and food are connected by two paths of different length.

From models to algorithms

Heuristic algorithms for discrete optimization can be
designed by adapting the model of real ants' foraging
behavior. Ant System (AS) is the earliest example of this
kind of algorithms. AS was first applied to solve the
Traveling  Salesman  Problen  (ISP) and it achieved
encouraging results, yet not competitive with the state of
the art on large problem instances. AS has been further
modified and extended, and several variants have been
designed. In recent years, a general framework for ant
algorithms (and their variants) applied to combinatorial
optimization has been proposed. This is called .4nz
Colony  Optimization (ACO) metaheuristic. In the
following, we informally define the problem
representation adopted in ACO and we outline the high
level algorithm.

The main entities of ACO are artificial ants (hereafter
called simply ants) that "walk" on a connected graph,
called construction graph G=(C,L), where arcs L (connections)
fully connect nodes C (components). The combinatorial
problem at hand is mapped onto Gin such a way that
feasible solutions to the original problem correspond to
paths on G. Connections, components, or both, can
have associated a pheromone trail and a heuristic value.
Pheromone trails provide a kind of distributed long-term
memory which encodes the history of the whole ants'
search process. Heuristic values represent a priori
information on the problem or dynamic heuristic
information.

In ACO, ants are no longer reactive agents without
memory. They are essentially stochastic solution
construction procedures, equipped with memory to store
the solution built (i.e., the path described in the graph)
and heuristic information. Ants move on the basis of a
construction policy that is a function of the problem
constraints. They build paths by incrementally adding a
node, among the feasible ones, to the current path by
taking probabilistic decisions. A state transition rule returns
the probability of adding a node to the current path.
Once a solution is completed, the ant evaluates it and
retraces the same path backward depositing on nodes (ot
arcs) an amount of pheromone proportional to the
solution quality. This action is called online delayed
pheromone update. It is also possible for the ants to add or
remove pheromone during the path construction,
executing the so called stgp-by-step pheromone update. The

information provided by pheromone trails will guide the
solution construction of future ants. Pheromone
evaporation is achieved by executing a procedure called
pheromone trail evaporation, which decreases pheromone on
the whole graph (usually by decreasing each amount t of
a fraction pr, with 0<p<l). ACO includes also optional
activities called daemon actions, which are non local
procedures, such as the application of local search to
solutions, or the pheromone update on the path
corresponding to the best solution found from the
beginning of the run.

The high level scheme of ACO is the following:

procedure ACO metaheuristic
ScheduleActivities
ManageAntsActivity()
EvaporatePheromone()
DaemonActions() {optional}
end ScheduleActivities
end ACO metaheuristic

The ScheduleActivities construct does not specify how
the three inner activities are scheduled and synchronized
and the designer is free to specify how these procedures
interact.

A simple example: Ant System for the Traveling Salesman
Problem

As an example of a specific implementation of ACO, we

briefly describe Ant System applied to the TSP.

The TSP can be represented in ACO as follows:

-nodes of G (the components) are the cities to be visited;

-a solution is an Hamiltonian tour in the graph;

- constraints are used to avoid cycles (an ant cannot visit
a city more than once).

The ant colony is composed of 7 ants that iterate the
same sequence of actions until a termination condition is
verified. At the beginning of the cycle ants are randomly
put on the cities (nodes of the construction graph G).
Starting from its start city, an ant moves from city to city
to build an Hamiltonian tour. For the ant 4, the
probability of moving from city /7 to city j is given by the
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following state transition rufe:

[ri;]%[ni;]° e "
ZzeN;[Til]i[mz]ﬁ if EM

0 otherwise

k _
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where Tij is the pheromone laid on arc (i), 17;=1/
distance(s/) is the heuristic, the parameters o and [
balance the relative influence of pheromone and
heuristic, and A* is the set of cities not yet visited by
ant £.

The pheromone trail evaporation is ruled by the following
formula:

Tij < (1 —p) - 755 v(i,7)

where p (0<p<T1) is the evaporation parameter.
Finally, the delayed pheromone update rule adjusts

pheromone so as to make more preferable arcs
belonging to short tours:

m
k
Tij € Tij + Z ATU

v(i,4)
k=1
Ark = 1/L* if arc (?,j) is used by ant &
R 0 otherwise,

where LF is the length of the tour built by ant 4. In Ant
System no daemon rules are applied (e.g., every
constructed solution can be used as initial solution for
the application of local search, in a similar way to hybrid
genetic algorithms).

It is important to note that, besides the natural
metaphor, ACO can be seen from an operative
standpoint as an adaptive stochastic constructive
procedure, possibly joint with a solution improvement
phase (e.g., local search).

Applications and current research trends

ACO algorithms have been applied successfully to a
large number of NP-hard problems, including the
Quadratic  Assignment Problem, the Job-Shop
Scheduling Problem, the Vehicle Routing Problem, and
the Timetabling Problem [4]. It is important to note that
the stochastic constructive procedute alone is often not

enough to obtain good results, and in most of the cases
it is necessary to improve the solutions constructed by
the artificial ants via a local search procedure, as
mentioned in the previous section.

One of the strengths of ACO is its capacity of adapting
to changing conditions: therefore, time-varying problems
(e.g., dynamic TSP or routing in telecommunications
networks), where topology and costs may change
dynamically, represent a particularly successful setting for
ACO. For instance, AntNet [2] has been developed to
solve the network routing problem in a packet-switched
telecommunications network under stochastic and time-

varying traffic conditions.

Current research is focused on the theoretical
foundations of ACO (convergence theorems have
recently been proven [7]) and the investigation of
relations between ACO and other search methods such
as gradient descent and Monte Catlo algorithms [6]. An
additional direction concerns the design of efficient
implementations of ACO, both for sequential and
parallel systems..

Further and up-to-date information about ACO is
available at the ACO webpage:
http:/ /www.aco-metaheutistic.org
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