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Abstract

The impact of problem structure on search is a relevant issue in Al research and
related areas. Among the possible approaches to analyze problem structure, the one
referring to constraint graph and similar graphs enables to relate graph parameters
and characteristics with search algorithm behavior. In this work we present and
discuss two examples of the impact of graph structure on the performance of local
search and exact algorithms applied to Satisfiability problems (SAT). After the
definition of the graph associated to SAT instances, we define its main parameters
and characteristics. Then, by means of a morphing procedure we generate set
of instances which smoothly interpolate between random and structure. In a first
experiment we show that the node degree distribution affects the behavior of parallel
local search. The second experiment evidences the impact of small-world properties
on the solution cost of a complete solver.

1 Introduction

The definition of structure emerging from the literature on Constraint Satisfaction Prob-
lems and Combinatorial Optimization Problems is usually based on the informal notion
of a property enjoyed by non-random problems. Thus, structured is used to indicate that
the instance is derived from a real-world problem or an instance generated with some
similarity with a real-world problem. Commonly, we say that a problem is structured if it
shows, under some abstraction, regularities such as well defined subproblems, patterns or
correlations among problem variables. It is interesting to note that one of the strengths
of Constraint Programming is indeed that it enables to capture this structure by means
of global constraints.

The impact of problem structure on search performance has been studied from dif-
ferent perspectives. Studies on the impact of problem structure on heuristic search can
be found, for example, in [2, 28, 25, 14]. Important results and observations on structure



and problem hardness are reported in [9, 7, 8]. The effects of problem encoding are
discussed in [10, 3]. Finally, the search algorithms behavior w.r.t. graph properties has
been discussed in [24, 23].

In this work we present and discuss empirical results on the search behavior as a
function of parameters of the constraint graph. The results concern the application of
parallel local search and an exact algorithm to Satisfiability Problems (SAT). The bench-
marks have been constructed by a morphing procedure [5] which enables us to smoothly
interpolate between randomness and structure and to control single characteristics of the
constraint graph.

The structure of the paper is as follows: in Sec. 2 we introduce the graph associated
to SAT instances and the graph parameters which will be considered in the experiments.
In Sec. 3 we present the first set of experiments concerning the behavior of parallel local
search w.r.t. the node degree distribution of the constraint graph. Then, Sec. 4 reports
experiments on the impact of small-world properties on a complete SAT solver, as well
as local search algorithms. Finally, we conclude with the discussion of open points and
future research directions.

2 Structural Properties of SAT Problems

In this work we focus on one among the possible ways of characterizing the structure of a
problem: we analyze the structure of links among its components, i.e., the network that
connects the components.

Some problems suggest a natural structural description, since they are defined in
terms of a data structure suitable for structure analysis. For instance, problems defined
on graphs (e.g.,Graph Coloring Problem). In general, for CSPs a constraint graph can
be defined, where nodes correspond to variables and edges connect two variables if there
exists a constraint involving them!.

For SAT problems a graph very similar to the CSP constraint graph can be defined.
The graph associated with a SAT instance is an undirected graph G = (V, A), where each
node v; € V corresponds to a variable and edge (v;,v;) € A (i # j) if and only if variables
v; and v; appear in a same clause. Observe that the same graph corresponds to more
than one formula, since nodes are connected by only one arc even if the corresponding
variables belong to more than one clause. Having a set of clauses associated to the same
graph, makes this representation quite rough. Nevertheless, in the following sections,
it will be shown that some properties of this SAT-associated graph strongly affect the
behavior of local and complete search.

In the following we define the properties which will be considered relevant for the
purposes of this work.

Given a non-oriented and simple graph, associated to a SAT instance, we consider
the following parameters: node degree, characteristic path length and clustering.

In an instance with n variables, each node v;, ¢ = 1,...,n, has a degree ¢; €
{0,1,...,n — 1}. For k-SAT problems, defined as conjunction of clauses with exactly k
literal each, it holds k—1 < ¢; < n—1. We define the average connectivity? of the instance
as the average node degree of the corresponding graph, i.e., ¢ = %Zle q;- Moreover,

ITn this work we do not focus on relationships between constraint graph properties and special cases
of algorithm complexity, as discussed for instance in [4, 20].
2In models for generating random CSPs, the average connectivity corresponds to the density.



to make direct comparisons among instances with different number of variables, we also
introduce the normalization of ¢: § = —Z3. In the following, we will use indifferently the
expressions connectivity and node degree of an instance Z, being the second defined on
the graph associated with Z. In order to compare the node degree distribution between
instances, we consider the frequency of node degree Freq(j) = “requency of a node con-
nected to exactly j nodes’ and the cumulative frequency CumFreq(j) = ‘frequency of a
node connected to not more than j nodes’.

The connectivity gives a rough evaluation of the speed at which a modification oc-
curring on a node affects the other nodes. The higher the connectivity, the stronger the
“information spreading”.

The characteristic path length L(G) of a graph G can be informally defined as the
average path length between any pair of nodes. We will assume that the graph is con-
nected, therefore L is always finite. Indeed, if the graph is not connected, it can be
decomposed in connected components representing independent subproblems. Formally,
the characteristic path length L of a graph G is defined as the median of the means of
the shortest paths connecting each vertex v € V(G) to all other vertices [26].

Finally, the clustering coefficient v of a graph G quantifies the probability that, given
node v; connected to vy and vz, there is an edge between v and wvs. For instance,
friendship relations are characterized by a high value of 7. Formally, the clustering
coeflicient is defined on the basis of the notion of neighborhood. The neighborhood T,
of a node v € G is the subgraph consisting of the nodes adjacent to v (not including v
itself). The clustering of a neighborhood is defined as:

where |E(T,)| is the number of edges in T', and k, is the number of neighbors of
v. Therefore, 7, is the ratio between the number of edges of the neighborhood and the
maximum number of edges it can have. The clustering coefficient v of a graph G is
defined as the average of the clustering values v, for all v € G.

Typically, random graphs are characterized by low characteristic path length and low
clustering, whilst regular graphs (such as lattice graphs) have high values for L and ~.
Conversely, small-world graphs [27, 26] are characterized by low L and high ~.

In the following section we will discuss the impact of the node degree on the behavior
of local search for SAT in connection with a phenomenon called criticality and parallelism
in combinatorial optimization. Afterwards, we briefly present preliminary results on the
effect of small-world phenomenon also in systematic (exact) search and approximate
algorithms for SAT.

3 Node degree distribution and parallel moves

As first example of the impact of graph properties on search, we discuss some results re-
lated to the phenomenon called criticality and parallelism in combinatorial optimization.

3.1 Ciriticality and Parallelism in Combinatorial Optimization

The phenomenon called criticality and parallelism has been observed in the context of
local search algorithms applied to combinatorial optimization problems [15, 13, 12], where



local search is modified by applying some local moves in parallel. It has been shown that
the effectiveness of these algorithms depends on the parallelism degree 7 (number of
simultaneous moves): if T increases, the solution quality also increases up to a maximal
point (corresponding to 7,,¢) at which it starts to decrease. It has also been shown that
Topt 18 negatively correlated with the connectivity among variables of the problem: the
higher the connectivity, the lower 7,,;. The average connectivity of a problem estimates
the direct influence among variables. In [15, 13, 12] it is also shown that the optimal
parallelism value is associated to a phase transition.

In the following we use the expression “parallel local search” with the meaning of local
search in which more than one local move is synchronously performed. These algorithms
can be both sequentially and parallel implemented. The parallelization of local search
can be achieved in different ways and the most important applied so far are:

- At each iteration, apply a local move on a set of variables (or a solution component)
with probability p. This results in an average parallelism of pn, where n is the
number of variables.

- Divide the problem in 7 subsystems (which are, in general, not independent) and
apply local search to optimize each of them independently.

An example of the first process is given in [15], where Simulated Annealing is applied
on problems defined over binary variables. Instead of performing one random flip, every
variable is flipped with probability p. The resulting average parallelism is pn, where n
is the number of variables. Examples of the second approach can be found in [13, 12],
where NK lattice models are optimized by subdividing them in 7 patches, independently
optimized.

A phenomenon with analogous characteristics has been discovered in parallel local
search for SAT [18] and MAXSAT [19], where a parallel version of GSAT [22] (called
PGSAT) has been applied to random instances. In PGSAT, variables are divided in 7
subsets and, for each subset, we flip the variable that will decrease the greatest number
of unsatisfied clauses. For random satisfiable SAT instances it has been experimentally
shown that the best global performance (time, iterations, fraction of solved instances)
is achieved with an optimal parallelism degree 7,,¢. Furthermore, 7, is monotonically
non increasing with the connectivity among variables.

3.2 Connectivity distribution

In order to compare the node degree distribution between instances, and especially non
random instances, we consider the frequency of node degree Freq(j) = ‘frequency of
a node connected to exactly j nodes’ and the cumulative frequency CumFreq(j) =
‘frequency of a node connected to not more than j nodes’. Fig.1 shows the cumulative
frequency vs. the normalized node degree for random 3-SAT instances retrieved from
SATLIB [11]. Note that the curves are quite regular and, as the number of variables
increases, they converge to a step function located at the average node degree. We can
assume that the graph corresponding to a random 3-SAT instance is a random graph
Grp [17], where n is the number of nodes and p is the probability that any pair of nodes
are connected. In fact, uniform random 3-SAT instances of SATLIB are generated by
randomly selecting, for each clause, three literals among the complete set of 2n literals.
Thus, every pair of variables has the same probability to belong to a same clause. For
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Figure 1: Cumulative frequency vs. nor- Figure 2: Frequency against normalized
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3-SAT instances in the threshold region. uf100-01. The instance has an average nor-
malized connectivity of 0.229.

random graphs like G, , the distribution probability of connectivity follows a Poisson
distribution, i.e.,

prob{a node is connected exactly to other j nodes} = e~ /j!

where the parameter ) is the expected node degree, therefore, in our case, A = (n—1)g =
q- For instance, in Fig.2 the frequency of a 3-SAT instance with 100 variables is plotted.

In SAT problems generated by an encoding procedure from other problems there
are two sources of structure: the inherent structural properties of the original problem
and the relations among variables introduced by the encoding procedure. As noted
in [3], the inherent structure of the problem might be partially lost in the encoded
formulation. However, independently of the origins of structure, the SAT instances we
consider clearly show node degree distributions very different with respect to random
instances. Fig.3 shows the curve of cumulative frequency for structured SAT instances
taken from SATLIB, produced by encoding a Blocks World Planning Problem (huge), a
Logistics Planning Problem (logistics-a) and Inductive Inference (ii16al). The plotted
curves show apparent differences with those of random SAT problems. They are not as
regular as random ones and they have gaps and plateaus, especially in the uppermost part
of the curve. Structured instances thus have a more spread and non-uniform connectivity
distribution.

The instance ii16al is the most peculiar and differs the most from random instances.
It has 1650 variables and a normalized average connectivity G,;16,1 = 0.0239. Its cu-
mulative frequency is shown in Fig.4, along with the cumulative frequency of a random
3-SAT instance of the same size and normalized connectivity (instance 3sat1650). Fig.5
and Fig.6 plot the respective frequency of node degree. We can note that the node
degree frequency of the structured instance is highly asymmetric and has a peak close
to 0.018, corresponding to the large gap in the cumulative frequency. Therefore, iil16a1
has a very large number of nodes with lower connectivity than the average. Conversely,
the node degree frequency of the random instance is regular (it approximately fits the
Poisson distribution with high mean) and the highest peak in frequency is very close to
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and connectivity (g ~ 0.0239).

the mean.

3.3 Morphing from Random to Structure

To investigate the impact of node degree distribution on parallel local search, we gen-
erated instances with a controlled amount of structure, by means of a technique called
morphing [5]. This methods enables to generate instances gradually morphing from a
source to a destination instance by varying a parameter p € [0,1]. The lower p used to
generate an instance, the more similar to the source. To be applied on SAT problems,
the method needs instances with the same number of variables (n) and clauses (m). A
new SAT instance is generated by selecting each of the m clauses either from the source
or the destination. The clause is chosen from the destination instance with probability p.
We generated a satisfiable random 3-SAT instance with 1650 variables and 19368 clauses
(3sat1650_large), the same number as #16al. With p = 1 we obtain iil6al and with
p = 0 8sat1650_large. Since p controls the number of clauses belonging to the structured
instance #116al, it also measures the amount of structure in the generated instance. Fig.7
shows the node degree cumulative frequency of source (random), destination (structure)
and instances generated by the morphing method. The node degree frequency of the
considered instances is plotted in Fig.8. The results of 500 trials of PGSAT for different
values of parallelism are shown in Fig.9. Since the instances generated by the morphing
procedure are no longer guaranteed to be satisfiable, the plots report the average solu-
tion error (number of unsatisfied clauses) returned by the algorithm. The results are still
valid, as shown in [19]. Observe that the optimal parallelism increases with p, therefore
we can conjecture that the high peak of the node frequency of the structured instance
strongly affects the optimal parallelism. In fact, the optimal parallelism for #16al is
higher than that of the related random instance, which has an average degree greater
than the one corresponding to the peak in #16al.

We can conclude by asserting two points. First, regardless of the instance type, the
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average connectivity is a rough, yet indicative, parameter for the optimal parallelism.
Second, we have found experimental evidence that in structured instances the highest
peaks in the node degree distribution have a strong impact on the optimal parallelism
value. Of course, we can not claim any statistical proof, that needs an exhaustive and
deeper experimental analysis.

In the next section, we will focus on a different feature of the graph, the small-world
property, investigating the impact of this characteristic on the search performance.
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4 Small-world

A second set of experiments concerns the investigation of the behavior of complete
and approximate search applied to SAT instances generated on the basis of small-world
graphs [27, 26]. Small-world graphs are characterized by low characteristic path length
and high clustering. Therefore, they exhibit a mixture of properties from random and
highly structured graphs.

In order to explore the behavior of search algorithms on small-world SAT instances,
we generated a benchmark by morphing between instances constructed on lattice graphs
and random instances. This procedure is indeed very similar to the one used in [27]
to generate graphs by interpolating between lattice and random graphs. Lattice 3-SAT
instances have been generated on the basis of a lattice graph (see Fig. 10). A boolean
variable is associated to each node and clauses are generated in such a way that, for every
pair of neighboring nodes, a clause exists that involves both the variables. The instances
composing the benchmark are obtained by introducing into a lattice SAT instance a
prefixed number of clauses randomly chosen from a random SAT instance with the same
number of variables and clauses. In this way it is possible to morph from lattice to
random topology with the finest tuning and observe the arising of small-world properties
in SAT instances.

In order to have a quantitative measure of the small-world characteristic we introduce
the prozimity ratio p [23], defined as the ratio between clustering and characteristic
path length, normalized with the same ratio corresponding to a random graph, i.e.,
u = (C/L)/(Crand/Lrand)- In Fig. 11 the clustering and the characteristic path length
of SAT instances gradually interpolating from lattice to random are plotted (in semi-log-
scale). We observe that L drops very rapidly with the introduction of clauses from the
random instance. Conversely, C' maintains a relatively high value for a higher amount
of perturbation. The instances with low length and high clustering are characterized by
the small-world property. This is also indicated by the maximum in the proximity ratio
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Figure 12: Search cost (number of assignments needed to solve the instance) for in-
stance gradually interpolating between lattice SAT and random SAT. The proximity
ratio (rescaled) is also plotted.

curve, which approximately assumes its maximum in correspondence of that region.

We generated four sets of instances, each obtained by morphing between a lattice
SAT and a random SAT with same number of variables and clauses. All the generated
instances are satisfiable>. The instances have been solved by BerkMin solver [6], one
of the most efficient complete SAT solvers available nowadays. The search cost has
been evaluated as the number of variable assignments performed by the algorithm before
solving the instance. In Fig. 12 the search cost for every set of instances is plotted. We
clearly observe that, after few perturbations the small-world property appears, as proved
by the proximity ratio curve. Exactly in that region, the search cost is maximal. We
can conjecture, as previously done in [23], that small-world instances are harder to solve.
This conjecture is confirmed by the correlation between search cost and proximity ratio,
shown in Fig.13: the higher the proximity ratio, the higher the search cost.

A possible explanation for this behavior can be formulated with respect to the heuris-
tic used for branching on variable values, which makes use of local information. Indeed,
since the small-world topology is characterized by highly clustered parts of the graph
connected by few links, a local decision is usually biased on the cluster property and it

3Unsatisfiable instances have been filtered by means of a complete solver. The ratio between clauses
and variables is 3, lower than the so-called critical ratio [16, 1] (which is close to 4.3 for 3-SAT instances).
This is due to the structure of lattice SAT instances which seem almost all unsatisfiable at the critical
ratio.
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Figure 13: Correlation between search cost and proximity ratio.

might be wrong for the whole collection of connected clusters.

It is interesting to note also that a behavior with similar characteristics has been
observed when local search is applied, though results are not as clear as in the previous
case. We solved the same benchmarks with two local search algorithms, namely Walk-
SAT [21] and GSAT [22]. Results are shown in Fig. 14 and Fig.15 respectively*. The
algorithms have been stopped after a maximum number of moves without improvement.
In each plot we reported the number of successes (out of 1000 runs) and the proximity
ratio. Considering the results obtained with WalkSAT, we note that in the proximity
of the small-world region are located some among the hardest instances (i.e., the suc-
cess rate is the lowest). This behavior is particularly apparent on the 200-600 instances,
where the lowest success rate instances are located approximately around the maximum
proximity. GSAT performance is not as good as the WalkSAT one and it always reach
a lower success rate. Nevertheless, we can observe that the most difficult instances are
located in the small-world region®.

We can not claim any generality from these experiments, nevertheless these results
evidence that for at least one general purpose SAT solver and two different local search
algorithms, small-world SAT instances are more difficult to solve. Moreover, these results
bring to attention that also macro-parameters of the constraint graph may affect the
search performance.

4Due to lack of space we omit the plots with correlation between proximity and search cost.
5The 800-2400 instances are indeed not solved in the range corresponding to small-world.
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Figure 15: Success rate (out of 1000 runs) of GSAT on instances gradually interpolating
between lattice SAT and random SAT. The proximity ratio (rescaled) is also plotted.



5 Discussion and open questions

This work discusses just two examples of the use of a general methodology which tries to
exploit constraint graph parameters to extract useful information on the problem struc-
ture. We have shown that two important properties, namely the node degree distribution
and the small-world property, affect the search performance of local search (with parallel
moves) and systematic search.

We believe that the study of constraint graph properties, also for CSPs which are are
not explicitly formulated on graphs, can be effectively used with two main objectives:

e q posteriori: what are the characteristics of problem benchmarks? Are they suitable
to represent real-world problems?

e g priori: how to exploit structure to guide heuristic search ?

Several open questions arise from these empirical results, concerning both systematic
and approximate algorithms and also their integration. We briefly outline some among
the most relevant:

e Which are the connections between constraint graph properties and search space
characteristics?

e Is it possible to explore the strengths and weaknesses of the heuristics w.r.t. con-
straint graph properties?

e A deep understanding of the effects of problems encoding is needed in order to
design effective hybrid solvers. To what extent the graph properties can help?

e The constraint graph might be a not suitable general abstraction, indeed various
alternative formulations to study the structure of a problem can be used (e.g.,
weighted graphs).

Some future research directions concern the experimental evaluation of the applica-
tion of parallel moves also in constructive algorithms (e.g., more than one assignment
per step). Furthermore, we would like to investigate whether phenomena analogous to
criticality and parallelism appear also in systematic search, e.g., when randomness is
introduced. Finally, we believe that a very promising issue is the introduction of learning
techniques to design effective heuristics and dynamically exploit structure properties.
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