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In this work we simulate gene knock-out experiments in networks in which

variable domains are continuous and variables can vary continuously in time.
This model is more realistic than other well-known switching networks such

as Boolean Networks. We show that continuous networks can reproduce the

results obtained by Random Boolean Networks (RBN). Nevertheless, they do
not reproduce the whole range of activation values of actual experimental data.

The reasons for this behavior very close to that of RBN could be found in

the specific parameter setting chosen and lines for further investigation are
discussed.

Keywords: Genetic networks, gene expression, knock-out gene, random boolean

networks, Glass networks

1. Introduction

In previous studies,1 it is shown that single gene knock-out experiments can
be simulated in Random Boolean Networks (RBN), which are well-known
simplified models of genetic networks.2,3 The results of the simulations are
compared with those of actual experiments in S. cerevisiae. The actual
data are taken from the experiments described in a work by Hughes et al,4

in which a genetic network of over 6000 genes is considered and a series of
227 experiments in which one gene is silenced are run on DNA microarrays.
Genes are knocked-out (i.e. silenced) one at a time, and the variations in the
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expression levels of the other genes, with respect to the unperturbed case
(the wild type), are considered as the ratio of the activation in knock-out
state (KO) and wild type (WT). Besides the ratios of KO/WT activation,
avalanches can be defined that measure the size of the perturbation gener-
ated by knocking out a single gene.

In previous work on RBN,1,5 it has been found that the distributions
of avalanches are very robust, i.e. they are very similar in different random
networks and the distribution of avalanches of the RBN models are close to
those observed in actual experiments performed with S. cerevisiae. These
results suggest that these distributions might be properties common to a
wide range of genetic models and real genetic networks.

RBN are a very simplified model of genetic networks as they assume that
a gene is either active or inactive, whilst in nature gene activation can range
in a continuous domain. In this work we undertake an analogous study as
in the case of RBN using a continuous network model, first proposed and
discussed by Glass.6,7 We show that Glass networks can reproduce the
same results as RBN. Moreover, also the results of experiments with DNA
microarrays are reproduced with a high level of accuracy. Nevertheless, with
the parameter setting we used, this model is still not capable of capturing
the whole range of KO/WT activation ratios.

Glass networks are described in Section 2 and their differences with
Boolean Networks are outlined. Section 3 provides an overview of the main
experimental settings and results are reported and discussed in Sections 4
and 5 in which we compare the results of Glass networks simulations with
RBN and actual experiments, respectively. We conclude by discussing fu-
ture work in Section 6.

2. Continuous networks

Glass networks6,7 are continuous time networks in which node activation
rate is regulated by a differential equation that includes a non-linear com-
ponent that depends on a Boolean function of the node inputs. In these net-
works, time and gene activation are continuous, while the influence among
genes is represented by switching functions. The activation of gene i is in-
dicated with variable xi ranging in a continuous domain. We associate to
xi a Boolean variable Xi defined as follows:

Xi(t) =
{

0 , if xi(t) < θi
1 , otherwise
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In a network with N nodes, each with K inputs we define the activation
rate of node i as:

dxi
dt

= −τixi + fi(Xi1(t), Xi2(t), . . . , XiK (t)), i = 1, 2, . . . , N

where fi is a Boolean function of the inputs of node i.
Since the functions fi change only when at least one variable crosses

the threshold, the equations can be solved analytically in the intervals in
which the Boolean functions are constant. Thus, if we denote with Ts =
{t1, t2, . . . , ts} the set of switching times, for each xi, i = 1, 2, . . . , N , and
tj < t < tj+1, tj ∈ Ts, we have:

xi(t) = xi(tj)e−(t−tj)τi +
1
τi
fi(Xi1(t∗j ), Xi2(t∗j ), . . . , XiK (t∗j ))(1− e−(t−tj)τi)

where t∗j ∈ (tj , tj+1).

This model still introduces strong simplifications, but it explicitly takes
into account the continuous time dynamics and continuous values of actual
genetic networks. A more simplified model, though able to capture relevant
properties of genetic networks, is that of (Random) Boolean Networks.2

Variables associated to nodes in RBN assume values in the binary domain
{0, 1} and the transition functions are Boolean functions of the inputs. Usu-
ally, a synchronous dynamics is imposed to RBN. RBN have been studied as
a model of genetic networks in which a gene is either active or inactive and
it has been shown that they can simulate important properties of genetic
networks.2,5

In this work, we present a preliminary study in which Glass networks
are used to simulate gene knock-out experiments, as previously done with
RBN. Our goal is to check if these networks can reproduce the results of
simulations by RBN and to what extent and under which hypotheses they
can capture more realistic features of the actual genetic networks.

3. Experimental setting

We performed a series of experiments to study the influence of single knock-
out genes in continuous networks. Node activation ranging in a continuous
domain makes it possible to compare results both with RBN, by converting
values xi into Boolean ones, and directly with DNA microarray results.

We designed and implemented a software system to simulate Glass net-
works and alike. The software has been designed trying to find a trade-off
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between performance, in terms of execution time, and extensibility. The
tool can be configured so as to simulate models with different parameter
settings and network characteristics, such as the topology. The simulator
has has been implemented in C++.

The networks we generated have a unitary decay parameter, τi = τ = 1,
for every node and threshold value θi = θ = 0.5 (i = 1, 2, . . . , N), so as to
have node values in the range [0, 1]. The other network parameters have
been chosen according to previous work in which the results of simulations of
RBN are compared with results in DNA microarrays. Thus, every node has
two inputs, i.e., K = 2, randomly chosen among the other nodes. Boolean
functions are assigned randomly to nodes, by picking them among the set
of canalizing functions, i.e., functions in which at least one value of one
of its inputs uniquely determines the output. For the case with K = 2,
all the possible 16 functions except for coimplication and exclusive or are
canalizing.

We generated 30 networks with 6000 nodes; each network is initialized
with random values in the range [0, 1] and its evolution in time is simulated
until an attractor is reached.a The activation of a node is computed as the
average value it assumes along the attractor. Then, 227 genes randomly
chosen among the active ones, i.e., the ones with average activation greater
than zero, were silenced in turn. The activation of the genes in the knock-out
experiment were then evaluated in the new attractor and the ratio between
the activation in the knock-out and wild type has been computed. Hence
we obtain a 6000 × 227 matrix of real values that can be compared both
with the corresponding matrix of experiments with RBN and real data. For
each network we produce a matrix Eij , i = 1, . . . , 6000 , j = 1, . . . , 227, in
which Eij is the ratio of the activations of gene i in experiment j.

4. Comparison with Random Boolean Networks

The first analysis we make is a comparison of the results of simulations of
gene knock-out in Glass networks with those of RBN. The values of the
matrix built from real data and from simulation of the continuous model
have been processed as in previous work1 by introducing a threshold θE to
define the level of meaningful difference between the knock-out and wild
type: the difference between KO and WT activations is considered signif-
icant if the ratio is greater than θE or less than 1/θE . Hence we obtain a
Boolean matrix E′ij defined as follows: E′ij = 1 if Eij > θE ∨ Eij < 1/θE ,

aIn the experiments we made we always found a cyclic attractor.
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Fig. 1. Avalanche size frequency in simulations with continuous and Boolean network

models and experiments in DNA microarray (linear binning)

E′ij = 0, otherwise. As for results by RBN, any ratio not equal to 1 is con-
sidered as meaningful. The threshold θE has been set to 7, as from original
work on RBN.1

Figures 1 and 2 plot the frequency of avalanche size of the two models
and actual experimental data, in linear and logarithmic binning, respec-
tively. This comparison shows that the results of the continuous model,
when processed as the experimental ones, exhibit an avalanche frequency
that closely approximates both the actual one and that of RBN.
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Fig. 2. Avalanche size frequency in simulations with continuous and Boolean network

models and experiments in DNA microarray (logarithmic binning)

5. Comparison with microarrays experiments

Activation values of the continuous model can be directly compared against
the experimental data from DNA microarrays. In a first analysis, we sim-
ply ordered the ratios and compared the curves plotted from actual exper-
imental data and simulations. In Figure 3 we plot the data of knock-out
experiments.

As for the continuous model, a typical case is plotted in Figure 4. The
ratios produced by simulation of Glass networks approximately range in
the same interval as the experimental data, nevertheless they have not the
same distribution. Indeed, one can note that the values of the simulations
by Glass networks are clustered around the extremes, while the values from
experiments in DNA microarrays are more sparse.

We also considered a measure of the avalanche produced by a gene
knock-out that does not depend upon a threshold. For each experiment we
summed up the deviation from 1 of each gene, obtaining an array A defined
as follows:

Aj =
6000∑
i=1

|1− Eij | , j = 1, . . . , 227

The array A obtained from simulations by continuous networks is the
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Fig. 3. KO/WT activation ratio in real data. In the x-axis, genes are ordered in non

decreasing values of KO/WT activation ratio.

average over the 30 experiments.
In Figures 5 and 6 the cumulative distribution of the deviations is plot-

ted in the case of experiments and simulations via continuous networks,
respectively. The difference between the two distributions is apparent, as
in the previous analysis. The discrepancy we observe could be ascribed to
the network parameters chosen, that might keep the network in a ‘quasi-
Boolean’ regime, thus preventing the nodes from assuming the whole range
of values in the attractors.
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Fig. 4. KO/WT activation ratio in Glass networks. In the x-axis, genes are ordered in

non decreasing values of KO/WT activation ratio.

6. Discussion and future work

In this work we have presented a preliminary investigation of the simulation
of gene knock-out experiments via continuous networks. We have studied
the frequency of avalanches, defined as the number of genes significantly
affected by a single gene knock-out, and we have shown that this model
can not only reproduce with accuracy the results of simulations by RBN,
but also the results of experiments in DNA microarrays.

We have also observed that the distribution of continuous KO/WT ac-
tivation values produced in our simulations via Glass networks seems still
not very close to that of actual experiments. However, this is a preliminary
study and further analyses are planned in which crucial parameters of Glass
networks will be varied in order to try a more accurate tuning of the model.
First of all, delays τi and thresholds θi can be varied and be different across
the nodes. In addition, different equations regulating the expression rate
can be studied. Finally, the topology of the network can be changed and
networks with more realistic topologies can be studied.
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Fig. 5. Cumulative distribution of the deviations Aj in data from experiments.
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Fig. 6. Cumulative distribution of the deviations Aj in data from simulations by con-

tinuous networks.



July 24, 2008 16:55 WSPC - Proceedings Trim Size: 9in x 6in gnpaper-final

10

References

1. R. Serra, M. Villani and A. Semeria, Journal of Theoretical Biology , 149
(2004).

2. S. A. Kauffman, The Origins of Order: Self-Organization and Selection in
Evolution (Oxford University Press, 1993).

3. S. Kauffman, Current topics in dev. biol. 6 (1971).
4. T. R. Hughes et al, Cell 102, 109 (2000).
5. R. Serra, M. Villani, A. Graudenzi and S. A. Kauffman, Journal of Theoretical

Biology , 449 (2007).
6. K. Kappler, R. Edwards and L. Glass, Signal Processing (2003).
7. R. Edwards, Physica D , 165 (2000).


