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Abstract. One of the aspects of applying software engineering to Sto-
chastic Local Search (SLS) is the principled analysis of the features of the
problem instances and the behavior of SLS algorithms, which —because
of their stochastic nature— might need sophisticated statistical tools.

In this paper we describe EasyAnalyzer, an object-oriented frame-
work for the experimental analysis of SLS algorithms, developed in the
C++ language. EasyAnalyzer integrates withEasyLocal++, a frame-
work for the development of SLS algorithms, in order to provide a unified
development and analysis environment. Moreover, the tool has been de-
signed so that it can be easily interfaced also with SLS solvers developed
using other languages/tools and/or with command-line executables.

We show an example of the use of EasyAnalyzer applied to the
analysis of SLS algorithms for the k-GraphColoring problem.

1 Introduction

In recent years, much research effort has focused on the proposals of envi-
ronments specifically designed to help the formulation and implementation of
Stochastic Local Search (SLS) algorithms by means of specification languages
and/or software tools, such as Localizer and its evolutions [3,1,2], HotFrame

[4], ParadisEO [5], iOpt [6], EasyLocal++ [7,8], and others.
Unfortunately, as pointed out by Hoos and Stützle [9] in [9, Epilogue, pp.

533–534], the same amount of effort has not been oriented in the development
of software tools for the experimental analyses of the algorithms.

To this regard, [10] proposes a suite of tools for visualizing the behavior of SLS
algorithms, which is particularly tailored for MDF (Metaheuristics Development
Framework) [11]. However, to the best of our knowledge, we can claim that at
present there is no widely-accepted comprehensive environment.

In this paper we try to overcome this lack by proposing an object-oriented
framework, called EasyAnalyzer, for the analysis of SLS algorithms. EasyAn-

alyzer is a software tool that belongs to the family of Object-Oriented (O-O)
frameworks. A framework is a special kind of software library, which consists
of a hierarchy of abstract classes and is characterized by the inverse control
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mechanism for the communication with the user code (also known as the Hol-
lywood Principle: “Don’t call us, we’ll call you”). That is, the functions of the
framework call the user-defined ones and not the other way round as it usually
happens with software libraries. The framework thus provides the full control
logic and, in order to use it, the user is required to supply the problem specific
details by means of some standardized interfaces.

Our work is founded on Design Patterns [12], which are abstract structures of
classes, commonly present in O-O applications and frameworks, that have been
precisely identified and classified. The use of patterns allows us to address many
design and implementation issues in a more principled way.

EasyAnalyzer provides a family of off-the-shelf analysis methods to be cou-
pled to local search solvers developed using one of the tools mentioned above
or written from scratch. For example, it performs various kinds of search space
analysis in order to understand, study, and tune the behavior of SLS algorithms.
The properties of the search space are a crucial factor of SLS algorithm perfor-
mance [13,9]. Such characteristics are usually studied by implementing ad hoc
programs, tailored both to the specific algorithm and to the problem at hand.
EasyAnalyzer makes it possible to abstract from algorithm implementation
and problem details and to design general search space analyzers.

EasyAnalyzer is specifically designed to blend in a natural way with Easy-

Local++, the local search framework developed by two of these authors [8,7],
which has recently been entirely redesigned to allow for more complex search
strategies. Nevertheless, it is capable of interacting with other software environ-
ments and with stand-alone applications.

This is an ongoing work, and some modules still have to be implemented.
However, the general architecture, the core modules, and the interface with Ea-

syLocal++ and with command-line executables are completed and stable.
The paper is organized as follows. In Section 2 we show the architecture of

EasyAnalyzer and its main modules. In Section 3 we go in details in the
implementation of the core modules. In Section 4 we show some examples of use
based on the classic k-GraphColoring problem. In Section 5 we draw some
conclusions and discuss future work.

2 The Architecture of EasyAnalyzer

The conceptual architecture of EasyAnalyzer is presented in Figure 1 and it
is split in three main abstraction layers. Each layer of the hierarchy relies on the
services supplied by lower levels and provides a set of more abstract operations.

Analysis system: it comprises the core classes of EasyAnalyzer. It is the
most abstract level and contains the control logic of the different types of
analysis provided in the system. The code for the analyses is completely
abstract from the problem at hand and also from the actual implementa-
tion of the solver. The classes of this layer delegate implementation- and/or
problem-related tasks to the set of lower level classes, which comply with a
predefined service interface (described in the following).
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Fig. 1. EasyAnalyzer layered architecture

Solver interfaces: this layer can be split into two components: the top one
is the interface that represents an abstract solver subsystem, which simply
prescribes the set of services that should be provided by a concrete solver in
order to be used in the analyses. The coupling of the analysis system with
the implementation is dealt with by this component.

The lower component is the concrete implementation of the interface for
a set of SLS software development environments. Notice that in the case
of EasyLocal++, this component is not present since EasyAnalyzer

directly integrates within the development framework classes. The reason is
that in the design of the solver interface we reuse many choices already made
for EasyLocal++ thus allowing immediate integration.

For other software environments, instead, the solver subsystem com-
ponent must be explicitly provided. Depending on the capabilities of the
software environment, these interfaces can be implemented in a problem-
independent manner (so that they can be directly reused across all applica-
tions) or it might require to be customized for the specific problem. Although
in the second case the user could be required to write some additional code,
our design limits this effort since our interfaces requires just a minimal set
of functionalities.

Solver environment: it consists of the (possibly generic) SLS software de-
velopment environment plus the problem-specific implementation. In some
cases these two components coincide, as for solvers that do not make use of
any software environment. In this case the interaction with the solver can
make use of a simple command-line interface.

At present, we have implemented the direct integration with EasyLocal++

and to the command-line interface1 by means of a set of generic classes (i.e., C++
classes that make use of templates that should be instantiated with the concrete
command-line options). We plan to implement also the interfaces to other freely
available software environments like, e.g., ParadisEO [5] and Comet [2].

1 In Figure 1 the implemented components are denoted by solid lines while dotted
lines denote components only designed.
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Fig. 2. UML class diagram of the analysis system

In the following subsections we present more in detail the problem-independent
layers of the EasyAnalyzer architecture and we give some example of code.

2.1 The Analysis System

The main classes of the analysis system are shown in Figure 2 using the UML
2.0 notation [14]. As in Figure 1 we report in solid lines the fully implemented
components (dotted lines for the forthcoming ones).

Let us start our presentation with the EasyAnalyzer class. This class relies
on the Factory method pattern to set up the analysis system on the basis of a
given solver interface. Notice that the interface is specified as a template para-
meter, so that we are able to write the generic code for instantiating the analysis
system regardless which of the concrete implementations is provided. Further-
more, the EasyAnalyzer class provides a standardized command-line interface for
the interaction with the analysis system. This task is accomplished by manag-
ing a command-line interpreter object that is directly configured by the analysis
techniques. That is, each analysis technique “posts” the syntax of the command-
line arguments needed by the interpreter object that is in charge of parsing the
command line and dispatching the actual parameters to the right component.

The main component of the analysis system is the Analyzer class, which relies
on the Strategy pattern. This component represents the interface of an analy-
sis technique, whose actual “strategy” will be implemented in the analyze()

method defined in the concrete subclasses. The report(ostream) method is used
to provide on an output stream a human- and/or machine-readable report of the
analysis, depending on the parameters issued on the command line.
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The Analyzer class is then specialized on the basis of the SLS features that
are subject of the analysis into the following three families:

SearchSpaceAnalyzer: these analyzers deal with features that are related to the
search space. Several crucial properties of the search space can be analyzed
with these modules, such as landscape characteristics and states reachability.

RunTimeBehaviorAnalyzer: their aim is to analyze the run-time behavior of
the solvers. Analyses belonging to this family are, e.g., run-time distribution
(RTD), run-length distribution (RLD) and solution quality distribution (SQD).

MultiSolverAnalyzer: they handle and evaluate groups of solvers. For exam-
ple the Race analyzer tries to find-out the statistically best configuration
of a solver among a set of candidate configurations by applying a racing
procedure [15].

The interface with the services provided by the analysis system is established
with the AbstractSolverInterface abstract class, which relies on the Façade
pattern whose aim is to provides a simple interface to a complex subsystem.
This class and the underlying classes and objects responsibilities are going to be
detailed in the following subsection.

2.2 The Solver Interface

The architecture of the solver interface is shown in the top part of Figure 3. The
derived classes on the bottom are the implementation of this interface in the
EasyLocal++ framework.

The SolverInterface class acts as a unified entry point (the Façade) and as
the coordinator of a set of underlying classes (Abstract Factory and Factory
method patterns). Indeed, according to the EasyLocal++ design, we identify
a set of software components that take care of different responsibilities in a
SLS algorithm and we define a set of adapter classes for them. These adapters
have a straight implementation in EasyLocal++ (Figure 3, bottom part), and
are those components that instead must be implemented for interfacing with
different software environments. The components we consider are the following:

StateManagerAdapter: it is responsible for all operations on the states of the
search space that are independent of the definition of the neighborhood. In
particular, it provides methods to enumerate and to sample the search space,
and it allows us to evaluate the cost function value on a given state. The
component relies on StateDescriptors for the exchange of information with
the analysis system (in order to avoid the overhead of sending a complex
space representation).

NeighborhoodExplorerAdapter: it handles all the features concerning the ex-
ploration of the neighborhood. It allows to enumerate and to sample the
neighbors of a given state, and to evaluate the cost function.

SolverAdapter: it encapsulates a single SLS algorithm or a complex solution
strategy that involves more than one single SLS technique. Its methods allow
us to perform a full solution run (either starting from a random initial state
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Fig. 3. UML class diagram of the solver interface

or from a state given as input), possibly storing all the trajectory from the
initial state to the final one. This component returns also information on the
running time and on the state costs.

2.3 How to Use EasyAnalyzer

In order to use EasyAnalyzer it is only needed to instantiate the Solver tem-
plate of the EasyAnalyzer class with the proper implementation of the Abstract

SolverInterface. As for the EasyLocal++ solver, this interface is already
provided with the framework, whilst for the command-line interaction the func-
tionalities must be implemented by the user in the stand-alone executable.

The various analyses can be executed by issuing command line options to
the EasyAnalyzer executable. For example, -ptenum requires a position type
analysis to be performed (with a complete enumeration of the search space).
Additional parameters, depending on the analysis at hand, can be required and
they have to be specified on the command line as well. The different types of
analysis and an explanation of the options available can be obtained by issuing
a -help command.

3 Implementation of EasyAnalyzer

In this section we describe two representative examples of the analyzers currently
implemented, with emphasis on the design process that relies on the abstractions
provided by the Solver interfaces.
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3.1 SearchSpaceAnalyzer

In this section we illustrate the design and implementation of an analyzer for
Basins of attraction (BOA), useful for studying the reachability of solutions.
Given a deterministic algorithm, the basin of attraction B(s) of a search space
state s (usually a minimum), is defined as the set of states that, taken as initial
states, give origin to trajectories that end at point s. The quantity rBOA(s),
defined as the ratio between the cardinality of B(s) and the search space size
(assumed finite), is an estimation of the reachability of state s. If the initial
solution is chosen at random, the probability of finding a global optimum s∗ is
exactly equal to rBOA(s∗). Therefore, the higher is this ratio, the higher is the
probability of success of the algorithm. The estimation of basins of attraction
characteristics can help in the a posteriori analysis of local search performance,
to provide explanations for the observed behavior. Moreover, it can also be useful
for the a priori study of the most suitable models of a problem, for instance for
comparing advantages and disadvantages of models that incorporate symmetry-
breaking or implied constraints [16]. In section 4.2, we will discuss an example
of a typical application of this kind of a posteriori analysis.

The development of a specific analyzer starts from the implementation of
the interface SearchSpaceAnalyzer that declares the basic methods analyze(),
for the actual analysis to be performed, and report(), defining the output of
the analysis. The main goal of a BOA analyzer is to find the size of all, or
a sample of, the local and global minima basins of attraction, corresponding to
the execution of a given (deterministic) algorithm A. Therefore, a BOA analyzer
must be fed with problem instance and search algorithm and its task is to scan
the search space for finding attractors and their basins. The procedure of search
space scanning can be implemented in several ways, and it could primarily be
either an exhaustive enumeration or a sampling. Attractors and their basins can
be then computed by running algorithm A from every possible initial state s,
returned by the scan method, till the corresponding attractor.2 The main parts
of the analyze() method for the BOA class are as detailed in Listing 1.1.

Listing 1.1. The analyze() method for the BOA class

void BOA::analyze()
{ BOAData data;
initializeAnalysis(); // loads instance and solver
StateDescriptor state = scanSpace();
while (state.isValid()) // while there are feasible states
{ const Result& result = solver.run(state);
updateBOAInfo(result.getStateDescriptor());
state = scanSpace();

}
}

2 There are also other ways for performing this task; for instance, the Reverse hill-
climbing technique [17]. Moreover, in this discussion, we only consider the case of
deterministic algorithms.
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The BOA analyzer is designed through the Template Method pattern, that
enables the designer to define a class that delegates the implementation of some
methods to the subclasses. In this case, the implementation of the method
scanSpace() is left to the subclasses, so as to make it possible to implement a vari-
ety of different search space scanning procedures, such as enumeration (BOAEnum,
Listing 1.2) and uniform sampling (BOASample, Listing 1.3). These methods rely
on StateManagerAdapter for enumeration and random sampling of the search
space, respectively.

Listing 1.2. BOAEnum::scanSpace()

StateDescriptor
BOAEnum::scanSpace()

{
if(!stateManager.finished())
return

stateManager.nextState();
else return NON_VALID_STATE;
}

Listing 1.3. BOASample::scanSpace()

StateDescriptor
BOASample::scanSpace()

{ if (numberOfSamples <
maxNumberOfSamples)

return
stateManager.randomState();

else return NON_VALID_STATE;
}

We remark that the implementation of these BOA analyzers is very simple
and compact, as it is totally independent from the problem specific part of the
software, thanks to the intermediate software level of Solver interfaces. With
few lines of code it is possible to implement other BOA analyzers, for instance
by using samplings based on non-uniform distributions, in order to bias the
sampling in areas containing global minima.

In an analogous way, it is possible to implement analyzers which can scan
the search space and classify each state as (strict) local minimum/maximum,
plateau, slope or ledge as a function of the cost of its neighbors. According to [9],
we call this kind of classification position type analysis. The class PositionType

delegates the subclasses PTEnum and PTSample for the implementation of the
method scanSpace(), that relies on the class NeighborhoodExploreAdapter for enu-
merating the neighborhoods. The method scanSpace() can enumerate or sample
the search space. The current implementation includes enumeration and uniform
sampling, while the sampling through different distributions or along trajectories
is part of ongoing work.

3.2 MultiSolverAnalyzer

In many cases, the people working on SLS algorithms face the problem of eval-
uating the behavior of a family of solvers (usually on a set of a benchmark
instances) rather than analyzing a single SLS algorithm. For example one could
be interested in comparing a set of SLS solvers to determine whether one or
more of them perform better than the others. Another common case is to con-
sider different settings for the same solver as a mean for tuning the parameters
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of the solver. In both cases statistical procedures are needed to assess the choice
of the “winning” solver in a sound way.

To deal with this situation, we decided to design also a set of analyzers that
manage a set of SLS solver and whose aim is to perform comparative analysis.
As in the previous example, we rely on the abstraction levels of EasyAnalyzer

to design general multi-solver analyzers.
We have developed the set of classes that implement the Race approach by

Birattari et al. [15]. This procedure aims at selecting the parameters of a SLS
algorithm by testing each candidate configuration on a set of trials. The config-
urations that perform poorly are discarded and not tested anymore as soon as
sufficient statistical evidence against them is collected.

This way, only the statistically proven good configurations continue the race,
and the overall number of tests needed to find the best configuration (or the
equally good configurations) is limited. Each trial is performed on the same
randomly chosen problem instance for all the remaining configurations and a
statistical test is used to assess which of them are discarded.

In order to perform the analysis, the user must specify a set of solvers that
are going to be compared in the Race and a set of instances on which the solvers
will be run.

We present here the method analyze() of the class Race (Listing 1.4). The
method works in a loop that evaluates the behavior of the configurations on an
instance and collects statistical evidence about them. We would like to remark
that our implementation follows the lines of the R package [18].

Listing 1.4. The analyze() method for the class Race

void Race::analyze()
{ initializeAnalysis(); // loads instances, solvers and sets up the set

of aliveSolvers
replicate = 0;
do
{ performReplicate (instances[replicate % instances.size()], replicate);
if (replicate >= min_replicates) // the test is performed only after

a minimum number of replicates
{ TestResult res = statisticalTest (seq(0, replicate), aliveSolvers,

conf_level);
updateAliveSolvers(res.survived);
statistics[replicate] = res.statistic;
p_values[replicate] = res.p_value;

}
replicate++;

}
while (aliveSolvers.size() > 1 && replicate < max_replicates);

}

The evaluation of the candidate configurations is performed by calling the
method performReplicate (whose code is reported in Listing 1.5). This method
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relies on the solver interfaces to load the current input instance and to invoke the
different solvers configurations (only for the solvers that still survive the race).

Listing 1.5. The performReplicate() method of the class Race

void Race::performReplicate(const std::string& instance, unsigned int i)
{ sub.loadInput(instance);
for (unsigned int j = 0; j < solvers.size(); j++)
if (aliveSolvers.find(j) != aliveSolvers.end())
{ Result r = solvers[j]->run();
outcomes[i][j] = r.getCostValue();

}
}

The class Race makes use of the Template Method pattern: the selection algo-
rithm relies on the implementation of the abstract statisticalTest() method,
which is implemented in two different sub-classes for the Student’s t-test (TRace)
and the Friedman’s test (FRace).

Notice that the presented method makes use of the solvers just as black-boxes
that from an initial state lead to a final solution. Indeed, the only information
exploited in the analysis is the final solution cost and the running time. More
sophisticated analyses can also exploit the trajectory from the initial state to
the solution. For example this information can be used to compare the quality
of SLS solvers throughout the evolution of the search (as suggested by Taillard
[19]). This will be subject of future work.

4 A Case Study: The k-GraphColoring Problem

We show an example of the use of EasyAnalyzer by providing some analyses
on a family of solvers for the k-GraphColoring problem. Our aim is not to
say the ultimate word on the problem, but rather to exemplify the use of the
analyzers presented so far.

4.1 k-GraphColoring Problem Statement and Local Search
Encoding

Here we briefly recall the statement of the k-GraphColoring problem, which
is the decision variant of the well-known min-GraphColoring problem [20,
Prob. GT4, page 191].

Given an undirected graph G = (V, E) and a set of k integer colors, the
problem is to assign to each node v ∈ V a color value c(v) such that adjacent
nodes are assigned different colors.

As the search space of our SLS algorithms we consider the set of all possible
colorings of the graph, including the infeasible ones; the number of conflicting
nodes is the cost function value in a given state. The neighborhood relation
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Table 1. Position types in 3-colorable graphs

Position type Edge Density
0.010 0.016 0.020 0.026 0.030 0.036 0.040

Strict local min < 10−4 0% 0% 0% 0% 0% 0%
Local min 0% 0% 0% 0% 0% 0% 0.46%
Interior plateau 0% 0% 0% 0% 0% 0% 92.74%
Ledge 84.42% 99.42% 99.80% 100% 100% 100% 0.10%
Slope 0.77% 0.02% < 10−4 0% 0% 0% 0%
Local max 14.77% 0.56% 0.20% < 10−4 < 10−4 0% 6.70%
Strict local max 0.04% 0% 0% 0% 0% 0% 0%

is defined by the color change of one conflicting node (as in [21]) and for the
tabu search prohibition mechanism, we consider a move inverse of another one if
both moves insist on the same node and the first move tries to restore the color
changed by the second one.

4.2 Search Space Analysis

To illustrate the use of EasyAnalyzer for studying properties of the search
space, we consider a simple analysis on 3-colorable graphs. Instances were gen-
erated with Culberson’s graph generator [22] with equi-partition and indepen-
dent random edge assignment options and with varying edge density, so as to
span the spectrum from lowly to highly constrained instances. All instances are
guaranteed to be 3-colorable and have 100 nodes.

One of the main search space features of interest is the number of local min-
ima and, more generally, the type of search space positions. Table 1 reports a
summary of the position type analysis out of 106 random samples.

As discussed in [9], for random landscapes we would expect a position type
distribution characterized by a majority of least constrained positions, such as
ledges, which are states with neighbors with higher, lower and equal cost. From
the results in Table 1, we observe that ledge is the predominant type. The most
constrained instance (density = 0.04) shows instead a very different landscape
structure, as it is dominated by plateaus. This difference with respect to the
other instances is particularly apparent also when local search is used to solve
these instances. Figure 4 shows the box-plots corresponding to the execution
of 100 independent short runs of a simple hill-climbing (draw a random move,
accept it if improving or sideways). The algorithm stops after 10 iterations with-
out improvements. The performance of local search on the most constrained
instance is significantly worse than that on the other instances. This result can
be explained by the presence of many plateaus that strongly impede local search.

The performance on instances with edge density equal to 0.036 is also statis-
tically different than that on lower densities and this cannot be explained by the
results of position types analysis. The analysis of basins of attraction of local and
global minima can shed some light on this point, as it enables us to estimate the
probability of reaching a solution to the problem. Basins have been estimated
by uniformly sampling the search space with 106 samples and by applying a
deterministic steepest descent local search. The first outcome of this analysis
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Fig. 4. Box-plots of the performance of randomized non-ascent local search

Table 2. Summary of statistics of relevant characteristics of attractors and their basins

Edge Density
0.010 0.016 0.020 0.026 0.030 0.036 0.040

rGBOA 1.0 0.9561 0.9084 0.5782 0.4831 0.2529 < 10−5

Number of cost levels 1 3 4 7 11 14 41
Cost with highest frequency 0 0 0 0 0 2 100
Max cost 0 4 6 12 12 14 100
Median cost 0 0 0 0 2 2 100

is that almost every initial state leads to a different attractor, i.e., almost all
basins have size 1.3 This result can be explained by observing that the problem
model induces a search space with many symmetric states, as colors can be per-
muted [16]. The most relevant statistical characteristics of those attractors are
summarized in Table 2. The table reports the fraction of states from which a
solution can be reached (rGBOA), the number of different levels of cost of the
attractors, the most frequent, max and median cost. We can observe that the
fraction of attractors corresponding to a solution decreases while edge density
increases. The rGBOA for instance at density = 0.030 is about 50% of the search
space and it halves at density 0.036, till vanishing for the most constrained in-
stance. This difference provides an explanation for the degrading performance
of the local search used, that heavily relies on cost decreasing moves. Further-
more, this analysis brings also evidence for the positive correlation between edge
density and search space ruggedness.

4.3 Multi-solver Analysis: Tabu Search Configuration Through
F -Race

As an example of using the multi-solver analysis classes we provide a description
of the tuning of tabu search parameters by means of the F -Race analysis class.

3 In this analysis the states belonging to the trajectory from the initial state to the
attractor are not counted.
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Table 3. F -Race results for the configuration of the tabu-list length. Solver values are
running-times to a feasible coloring.

Rep- Solvers Statistic p
licate TS5−10 TS10−15 TS15−20 TS20−25 TS25−30 TS30−35 value value

01 2.21 21.04 7.62 4.9 4.7 9.68 — —
02 5.52 3.49 4.3 3.3 8.55 4.64 — —
03 41.47 12.34 2.9 6.97 12.09 4.43 — —
04 6.94 2.48 2.29 1.72 4.59 9.74 — —
05 3.04 2.44 6.13 3.45 7.02 8.71 — —
06 3.89 7.09 3.02 3.41 2.56 3.29 3.80952 0.577153
07 3.95 4.09 3.1 3.01 2.59 8.99 5.28571 0.382015

. . .
27 28.65 6.73 26.77 7.01 5.9 31.40 11.381 0.044328∗

28 7.12 4.3 4.71 3.77 3.5 — 5 0.287297
. . .

37 15.32 25.88 2.99 6.62 8.48 — 9.70811 0.045642∗

. . .
40 — 8.35 3.2 15.16 5.3 — 3.99 0.262546

Solvers survived after 40 replicates: TS10−15 , TS15−20, TS20−25, TS25−30

Our tabu search implementation employs a dynamic short-term tabu list
(called Robust Tabu Search in [9]), so that a move is kept in the tabu list for a
random number of iterations in the range [kmin..kmax]. In this example we want
to find out the best values of these two parameters among the following set of
options: (kmin, kmax) ∈ {(5, 10), (10, 15), (15, 20), (20, 25), (25, 30), (30, 35)}.

As a set of benchmark instances we generate a set of 40 3-colorable equi-
partitioned graphs with independent random edge assignment; the graphs have
200 nodes and edge density 0.04. The performance measure employed in this
study is the running time needed to reach a feasible coloring.

The results of the F -Race are reported in Table 3 and are those obtained as
the output of the report() method of the class Race. We limit the maximum
number of replicates to 40 and the confidence level for the Friedman test is
0.95; the first test is performed after 5 replicates. The table summarizes the
whole Race procedure, by providing the raw running time values, the value of
the statistic employed in the test (the F statistic in the present case) and the
p value of the hypothesis testing. For the replicates that lead to discarding one
of the candidates, the p value is marked with an asterisk, indicating that the
test was significant at the confidence level 0.95. The last line reports the final
outcome of the Race and shows the number of replicates performed and the list
of solvers that survived the Race.

The results confirm the robustness of employing a dynamic tabu-list. Indeed,
only the two most extreme configurations were discarded by the analysis, namely
TS5−10 and TS30−35.

Of course, these results prompted for additional analysis (for example on
different graph sizes), but as in the previous case, this is out of the scope of this
presentation since our aim was just to exemplify how to perform an analysis and
report its results with a limited effort (see, e.g., [23]).
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5 Conclusions

We have presented EasyAnalyzer, a software tool for the principled exper-
imental analysis of SLS algorithms. The tool is very general and can be used
across a variety of problems with a very limited human effort. In its final version,
it will be able to interface natively with a number of development environment,
whereas in its current form it is interfaced with EasyLocal++, but also with
any solver at the price of configuring a command-line interface.

The design of EasyAnalyzer deliberately separates the problem-/implemen-
tation-specific aspects from the analysis procedures. This allows, for example, to
(re)use directly new analyses classes —developed at the framework level— by
applying them to all the solvers for which a Solver interface already exists.

We believe that our attempt to define such an environment can be regarded as
an initial step toward engineering the experimental analysis of SLS algorithms.

For the future, we will implement the interface modules for the most common
environment. We also plan to test EasyAnalyzer on more complex problems,
with the aim of obtaining also significant results for the research on SLS-based
solvers. Finally, we plan to implement other analyses, such as those proposed in
[24,19].
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