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ABSTRACT 
This paper describes the peculiar behavior observed in a class of 
cellular automata that we have defined as “dissipative”, i.e., 
cellular automata that are “open” and makes it possible for the 
environment to influence the evolution of the automata. Peculiar in 
the dynamic evolution of this class of cellular automata is that 
stable macro-level spatial structures emerge from local interactions 
among cells, a behavior that does not emerge when the cellular 
automaton is “closed”, i.e., when the state of a cell is not 
influenced by the external world. On this basis, the paper discusses 
the relations of the performed experiments with the area of open 
distributed computing, and in particular of agent-based distributed 
computing. The basic intuition is that dissipative cellular automata 
express characteristics that strongly resembles those of wide-area 
open distributed systems based on autonomous and situated active 
components – as agents are. Accordingly, similar sorts of macro-
level behaviors are likely to emerge and need to be studied, 
controlled, and possibly fruitfully exploited. 
Keywords: Cellular Automata, Self-organizing Systems, Open 
Agent Systems, Agent-oriented Software Engineering 
 

1 INTRODUCTION 
Autonomy and situatedness are intrinsic characteristics of agents 
that are more and more pervading modern software systems [Jen00, 
Zam01]. On the one hand, several software systems already include 
proactive components capable of autonomous behavior, such as 
mobile and embedded computer-based devices, that can be 
assimilated – from a software engineering perspective – to 
autonomous and proactive agents, and that can be modeled as that. 
On the other hand, several components of these systems are 
intrinsically situated in an environment, whether a computational 
one, e.g. a Web site, or a physical one, e.g., a manufacturing 
system, and their execution is intrinsically associated with local 
interactions in this environment.  

Agent researchers, as well as some researchers in the “mainstream” 
software engineering community, recognize that both autonomy 
and situatedness are effective abstractions for the design and 
development of complex software systems: (i) designing 
applications around autonomous application components, e.g., 
agents, rather than increasing complexity, can even simplify 
application design and development over traditional, component-
based and object-based, approaches [Par97]; (ii) enforcing locality 
in interactions and explicitly introducing an environmental 
abstraction naturally matches the characteristics of open multiagent 
systems, of Web-based systems, and of embedded systems 

[Zam01]. However, autonomy and situatedness can also become 
sources of complexity and of engineering problems. In fact, as the 
experiments focus of this paper shows, in the presence of 
autonomous and situated software components, the dynamics of the 
environment can dramatically affect the global behavior of a 
software system. 

In this paper, we present and discuss a set of experiments that we 
have performed on a new class of cellular automata that we have 
defined as Dissipative Cellular Automata (DCA). DCA differ from 
"traditional" cellular automata [Wol94] in two characteristics: 
while "traditional" cellular automata are composed of cells that 
interact with each other in a synchronous way and that are 
influenced in their evolution only by the internal state of the 
automata themselves, dissipative ones are asynchronous and open. 
On the one hand, cells update their status independently of each 
other, in an "autonomous" way. On the other hand, the automata 
live dipped in an environment that can directly influence the 
internal behavior of the automata, as in open systems. In other 
words, DCA can be considered as a minimalist open agent system 
and, as that, their dynamic behavior is likely to provide useful 
insight into the behavior of real-world open agent systems and, 
more generally, of open distributed software systems.   

The reported experiments show that DCA exhibit peculiar 
interesting behavior. In particular, during the evolution of the 
DCA, and despite the out-of-equilibrium situation induced by the 
external environment, stable macro-level spatial structures emerge 
from local interactions among cells, a behavior that does not 
emerge when the cellular automaton is synchronous and closed 
(i.e., when the state of a cell is not influenced by the environment). 
On this basis, the paper argues that similar sort of macro-level 
behaviors are likely to emerge as soon as multiagent systems (or 
likes) will start populating the Internet and our physical spaces, 
both characterized by their own processes and by intrinsic and 
unpredictable dynamics. Such behaviors are likely to dramatically 
influence the overall behavior of our networks at a very large scale. 
This may require new models, methodologies, and tools, explicitly 
taking into account the environmental dynamics, and exploiting it 
during software design and development either defensively, to 
control its effects on the system, or constructively, as an additional 
design dimension. 

This paper is organized as follows. Section 2 sketches the main 
characteristics of “traditional” cellular automata. Section 3 
introduces the class of dissipative cellular automata, presents some 
macro-level spatial structures emerged from experiments, and 
attempts at explaining this behavior. Section 4 discusses the 
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relations between dissipative cellular automata and distributed 
agent-systems, and analyzes the possible impact on the latter of the 
performed experiments. Section 5 discusses related works. Section 
6 concludes and discusses work in progress. 

2 CELLULAR AUTOMATA 
Generally speaking, Cellular Automata (CA) are regular lattices of 
cells, each one being a finite-state automaton. At each iteration, 
cells update their state depending on a (typically simple) state 
transition function of their state and of the state of neighboring 
cells. The scientific interest on CA comes primarily from the fact 
that, despite the simplicity of local rules, they can show complex 
global behaviors. In fact, the evolution in time of the system 
exhibits a variety of dynamic patterns related to the state of the 
cells in the lattice: fixed configurations of cells always in the same 
state, periodic configurations, complex structures evolving in time. 
The global behavior of the CA is determined by the local function 
and the neighborhood structure chosen. 

More formally, a CA is statically defined by a quadruple 

A = ( S , d , V , f ), 

where S is the finite set of possible states a cell can assume, d is the 
dimension of the automaton, V is the neighborhood structure, and f 
is the local transition rule. The automaton structure is a d-
dimensional discrete grid L=Ζd, where Ζ is the set of integers. 
Each cell is identified with an array of d components i=(i1,...,id)∈ L 
which represent the coordinates of the cell in the grid. It is 
generally assumed that the grid is infinite, either not limited or 
closed to a d-dimensional torus. The state of a cell is expressed as a 
variable x whose domain is defined by S; and the ordered list of 
cell states defines the CA global state X. The neighborhood 
structure V defines which cells "influence" any cell. V  is defined as 
a function V:L→℘ (L) which maps a cell to a set of cells. The 
neighborhood structure is regular and isotropic, i.e., V has the same 
definition for every cell. Usually, V is a subset of the group of 
translations in L. Finally, the local transition rule is a function 
f:SV→S which maps a configuration of states in a neighborhood to 
a state. The transition rule defines the future state of a cell 
depending on the state of its neighboring cells (and, possibly, the 
state of the cell itself). f is typically the same for each cell (uniform 
CA). 

The quadruple A specifies the "static" characteristics of an 
automaton. However, the complete description of a CA requires the 
definition of its dynamics, i.e., of the dynamics ruling the update of 
the state of the CA cells. In general, the dynamics of a CA assumes 
a discrete time: cells update their state in discrete time steps 
t∈Ν according to the equation 

x(i;t+1) = f[x(i;t), Y(t)], 

where Y(t)={x(j;t) | j∈ V(i)}, i.e., Y(t) is the set of states of 
neighboring cells of cell i at time t.  

The usual definition of CA is with synchronous dynamics: cells 
update their state in parallel at each time step. If we assume a finite 
number of cells n (which is always the case in practice) and we 
identify cells with n variables xi, i=1,2,…,n, the global state 
evolves according to the following equation: 

X(t+1) = F[X(t)] = F[{x1(t), x2(t)…, xn(t)}] = 

= {f[x1(t),Y1(t)], f[x2(t), Y2(t)],…, f[xn (t), Yn(t)]} = 

= {x1(t+1), x2(t+1)…, xn(t+1)}. 

The whole system evolution is thus described by the evolution of 
X(t). Since the transition rule is deterministic and both states and 
cells are finite, the system will eventually reach a stable state, 
having reached a fixed point attractor, or will periodically pass 
through a sequences of state, having reached a cyclic attractor. 

In this paper, we consider 2-dimensional CA (NxN square grids 
with wraparound borders) with two states. These kinds of CA have 
been deeply studied and have also a biologic interpretation: cells 
can be interpreted as alive/dead, depending on their state. 

As an example, Figure 1 shows an initial random situation in a 2D 
CA whose cells can be dead (yellow cells) or alive (red cells). Let 
us consider the Moore neighborhood structure (the neighbors of a 
cell are the 8 one defining a 3x3 square around the cell itself) and 
the following transition rule: 

f =  {a died cell gets alive iff it has 2 neighbors alive; a 
living cells lives iff it has 1 or 2 neighbors alive}  

Once the CA starts to evolve from the initial random situation, the 
states of all cells synchronously change accordingly to the above 
rule, and after a transient eventually reaches the final cyclic 
attractor of which one of the composing global states is shown in 
Figure 2.  Of course, assuming other transition rules, the CA can 
show different behaviors and reach different basins of attraction. 
We forward the interested reader to [Wol94] for a systematic 
analysis and classification of synchronous CA.  

3 DISSIPATIVE CELLULAR AUTOMATA 
In this section, we introduce a new class of CA that we have 
defined as "dissipative cellular automata", being characterized by 
asynchrony and openness, and discuss the peculiar behavior that 
we have observed. 

3.1 Asynchronous Dynamics 
Section 2 has concentrated on CA with synchronous dynamics, and 
a large part of literature is dedicated to the analysis of behavior of 
synchronous CA [Wol94]. However, synchronous dynamics is 
hardly representative of real-world phenomena, making it not 
suited for the modeling and the simulation of those phenomena 
involving a population of interacting elements, for which 
asynchronous dynamics have to be introduced.  

Accordingly to the most accepted terminology, a CA is 
asynchronous if cells can update their state independently from 
each other, rather than all together in parallel, according to a 
dynamics that can be either a step-driven or a time-driven. 

In step-driven dynamics, a kind of global daemon is introduced, 
whose job is to choose at each time step one (and only one) cell to 
update. There are several ways to determine the "sequence" for 
cells update. For instance, cells can be ordered in a fixed or 
random sequence, or a cell can be randomly selected at each time 
steps. Thus, step-driven asynchronous dynamics is characterized by 
a global transition like the following: 

X(t+1) = F[X(t)] = F[{x1(t), x2(t)…, xn(t)}] = 

= {x1(t),x2(t),… f[xk(t), Yk(t)],..., xn (t)} = 

= {x1(t), x2(t),…, xk(t+1),... xn(t)} 

where the cell k that is selected for the transition is determined by 
the specific kind of selection policy.  



 3 

 

 
Figure 1: An initial random situation in a 2-D CA 

 
Figure 2: A synchronous CA having reached a global state of a 

cyclic attractor. 

 
Figure 3: A fixed point reached by an asynchronous CA 

In time-driven dynamics, each cell is assumed to have an "internal 
clock" which wakes up the cell and makes it update. This is also 
the case of more interest to us, in that in open distributed 
computing agents and processes execute and interact 
asynchronously accordingly to a local internal clock. Also, time-
driven dynamics provides for a more continuous notion of time. 
The updating signal for a cell can be either deterministic (e.g., 
every τ time steps) or probabilistic (e.g., the probability that the 
cell update its state is uniform with a given rate), and the next state 
of a cell is selected on the basis of the current state of neighboring 
cells.  

In the experiments presented in this paper, CA have an 
asynchronous time-driven dynamics: at each time, one cell has a 
uniform probability of rate λa to wake up and update its state. The 
update of a cell has been implemented as atomic and mutually 
exclusive among neighbors, without preventing non-neighbor cells 
to update their state concurrently.  

In general, it has been observed that the asynchronous CA exhibits 
behaviors that are very different from the ones of their synchronous 
counterparts, both in terms of the transient and of the final 
attractor. Although both the dynamics have the same fixed points 
[SchR99], i.e., attractors that are fixed points under synchronous 
dynamics are fixed points also under asynchronous dynamics and 
vice versa, the basins of attraction can be very different: some of 
the final attractors reached under asynchronous dynamics are 
hardly reached under synchronous one.  

As an example, Figure 3 shows the fixed point reached by the 
asynchronous counterpart of the example CA described in Section 
2. Under asynchronous regime, this CA usually reaches a fixed-
point attractor that its synchronous counterpart has never been 
observed to be able to reach.   

3.2 Openness 
CA studied so far are closed systems, as they do not take into 
account the interaction between the CA and an environment. 
Instead, the new class of CA that we have studied is, in addition to 
asynchronous, "open", in the sense that the dynamic behavior of 
the CA can be influenced by the external environment.  

From an operative point of view, the openness of the CA implies 
that some cell can be forced from the external to change its state, 
independently of the cell having evaluated its state and 
independently of the transition function (See Figure 4).  

By considering a thermodynamic perspective, one can consider this 
manifestation of the external environment in terms of energy flows: 
forcing a cell to change its state can be considered as a 
manifestation of energy flowing into the system and influencing it 
[NicP89]. This similarity, together with the facts that the activities 
of the cells are intrinsically asynchronous and that the externally 
forced changes in the state of cells perturb the CA in an irreversible 
way, made us call this kind of CA as dissipative cellular automata 
(DCA).  

From a more formal point of view, a DCA can be considered as: 
- A = ( S , d , V , f ); 

- asynchronous step-driven dynamics (with uniform distribution 
of rate λa); 

- a perturbation action  ϕ(α,D). 
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where A is the quadruple defining a CA, the dynamics is the one 
already discussed in Subsection 3.1, and the perturbation action ϕ 
is a transition function which acts concurrently with f and can 
change the state of any of the CA cells to a given state α with some 
probabilistic distribution D, independently of the current state of 
the cells and of their neighbors.  Specifically, in our experiments 
with V={0,1}, α=1 and D is a uniform distribution of rate λe. 

CA Grid

External forces
infuencing the state of
the cells

 
Figure 4: The basic structure of a dissipative cellular 

automaton 

3.3 Emergent Behaviors 
The behavior exhibited by DCA is dramatically different from both 
their synchronous and closed asynchronous counterparts.  

In general, when the degree of perturbation (determined by λe) is 
high enough to effectively perturb the internal dynamic of the DCA 
(determined by the rate of cell updates λa) but it is still not 
prevailing over it so as to make the behavior of the DCA almost 
random (which happens when λe is comparable λa), peculiar 
patterns emerge. The interested reader can refer to the page 
http://polaris.ing.unimo.it/DCA/ to repeat the experiments on-line. 

We have observed that the perturbation on the cells induced by the 
external – while keeping the system out of equilibrium and making 
impossible for it to reach any equilibrium situation – makes the 
DCA develop large scale regular spatial structures. Such structures 
exhibit long-range correlation between the state of the cells, 
emerged despite the strictly local and asynchronous transition 
rules, and breaks the spatial symmetry of the final state. In 
addition, such structures are stable, despite the continuous 
perturbing effects of the external environment.  

As an example, Figure 5 shows two different patterns emerged 
from a DCA, both exhibiting stable macro-level spatial structures. 
For this DCA, the transition rules and the neighborhood structure 
are the same of the synchronous CA described in Section 2 and f 
the asynchronous CA described in Subsection 3.1. In both cases, 
the presence of global-scale patterns – breaking the rotational 
symmetry of the automata – is evident. By comparing these 
patterns with the ones observed in the same CA under 
asynchronous but close dynamics, one can see that openness has 
provided for making small-scale patterns, emerged from local 
transition rules, enlarge to the whole CA size. Once this global 
states has emerged, they are able to re-stabilize autonomously, 
despite the fact that the perturbing effects tends to modify them.   

As another example, Figure 6 shows two typical patterns emerged 
for a DCA with a neighborhood structure made up of 12 neighbors 
(the neighbors of a cell are all cells having a maximum distance of 
2 from the cell itself) and with the following transition rule: 

f =  {a died cell gets alive iff it has 6 neighbors alive; a 
living cells lives iff it has 3,4,5, or 6 neighbors alive}  

Again it is possible to see large-symmetry breaking patterns 
emerge, extending to a global scale the local patterns that tends to 
emerge under asynchronous but closed regime (Figure 7). The 
patterns are stable despite the continuous perturbing effect of the 
environment. Moreover, these patterns are stable and robust but 
they are dynamic. First, the long diagonal stripes in Figure 6 
change continuously in their micro-level shape, while maintaining 
the same global structure. Second, all this stripes translate 
horizontally at a constant speed in the DCA lattice. This makes the 
pattern not a fixed point or a simple cyclic attractor, but rather a 
quasi-periodic one.  

3.4 Explaining DCA Dynamics 
The phenomenon underlying the behavior of DCA are very similar 
– if not the same – of the ones determining the emergence of large-
scale structures in dissipative systems [NicP89], e.g., in Bénard’s 
cells. (See Figure 8).  
 

 

 
Figure 5: Two Behaviors Evolved in a DCA. Despite the out-of-
equilibrium situation forced by the external environment, 
stable large-scale and symmetry-breaking patterns emerge.  

http://polaris.ing.unimo.it/CA/
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Figure 6: Two different behaviors evolved in a DCA. Large-

scale dynamic patterns emerge. 

 

 
Figure 7: A stabilized situation in an asynchronous closed CA 
following the same rules of the DCA in Figure .6:  no large-
scale patterns emerge.  

A fluid between two plates is in thermodynamic equilibrium if no 
thermal energy flows from the external to perturb the equilibrium. 
In the presence of small differences between the temperatures of 
the two plates, the thermal energy is still not enough to perturb the 
fluid, and energy flows between the two plates in the form of 
thermal diffusion. However, as soon as the temperature gradient 
reaches a critical point, thermal flow in the fluid starts occurring 
via convection. This motion does not occur in a disordered way: 
regular spatial patterns of movement emerge, with wide-range and 
symmetry breaking correlation among cell movements. This 
behavior is maintained until the temperature gradient between the 
two plates become too high, in which case the regular patterns 
disappear and the fluid motion becomes turbulent. 

The behavior of DCA is actually subject to the same phenomenon, 
where, the temperature gradient between the two plates is 
substituted by the ratio λe/λa. When this ratio is 0, the system is in 
equilibrium, and no perturbation from the external occurs. For very 
small perturbation, the dynamic behavior of the DCA does not 
substantially change. As soon as the ratio becomes high enough, 
the DCA dynamics change and regular spatial patterns appears. For 
very high ratio, spatial patterns disappear and the DCA dynamics 
becomes highly disordered. A detailed measurement and a 
complete quantitative analysis of DCA dynamics are work in 
progress.  
The above similarity suggests that the same causes that determine 
the behavior of Bénard cells also determine the behavior of DCA.   

Without any perturbation, or in the presence of small ones, each 
autonomous component (a molecule or a DCA cell), acting 
asynchronously accordingly to strictly local rules, tend to reach a 
local equilibrium (or a strictly local dynamics), which reflects in a 
global uniform equilibrium of the whole system.  

When the system is kept in a substantial out-of-equilibrium 
situation, the locally reached equilibrium situations are 
continuously perturbed, resulting in continuous attempt to locally 
re-establish equilibrium. This typically ends up with cell groups 
having found new equilibrium states more robust with regard to the 
perturbation (or compatible with it). Such stable local patterns start 
soon dominating and influencing the surrounding, in a sort of 
enforcing feedback, until a globally coordinated (i.e., with large 
scale spatial patterns) and stable situation emerges.  

When the degree of perturbation is high enough to avoid local 
stable situations to persist for enough time, they can no longer 
influence the whole systems, and the situation becomes turbulent. 

 

Fluid
Material

Injection of
Energy (T1)

Temp = T1

Temp = T2 < T1

Rotating
Cells

 
Figure 8: Large-scale patterns in Bénard cells.  
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4 IMPLICATIONS FOR AGENT-BASED 
DISTRIBUTED COMPUTING 

4.1 Multiagent Systems vs. DCA 
There are three characteristics which are typical of distributed 
multi-agent systems (and that are more and more characterizing all 
types of software systems) that are reflected in DCA: autonomy of 
agents, locality in interactions, situatedness in an open and 
dynamic environment. 

Agents are autonomous entities [Jen00], in that their execution is 
not subject to a global flow of control. Instead, the execution of an 
agent in a multiagent system may proceed asynchronously, and the 
agent’s state transition occur accordingly to local internal timings. 
This is actually what happens, because of the adopted time-driven 
dynamics, in DCA: each state transition in a DCA cell is driven by 
an internal clock, which is independent from the clock – and the 
state transitions – of the other DCA cells. 

Agents typically execute in the context of a multi-agent 
organization, and most of the interactions of an agent (causing 
internal state transitions) occur in the context of that organization 
[Zam01]. Such abstract concept of locality often reflects also in an 
actual – physical – locality. In fact, for the sake of scalability and 
efficiency, multi-agent organizations typically execute in a spatially 
bounded distributed domain, and wide-area – inter-organizations – 
interactions are limited as much as possible, and sometimes 
enabled by making agents move from site to site [CabLZ01]. In 
DCA, a cell interacts with (that is, can check the state of) only a 
limited number of other cells in its neighborhood.  

Agents are situated entities that live dipped in an environment, 
whether a computational one, e.g., a Web site, or a physical one, 
e.g., a room or a manufacturing unit to be controlled. The agent is 
typically influenced in its execution (i.e., in its state transitions) by 
what it senses in the environment. In this sense, agents and multi-
agent systems are “open systems”: the global evolution of a multi-
agent system may be influenced by the environment in which it 
lives. And, in most of the cases, the environment possesses a 
dynamics that is not controllable or foreseeable. For instance, the 
computational resources, the data, the services, as well as the other 
agents to be found on a given Web site cannot be predicted and 
they are likely to change in time. Analogously, the temperature and 
lightening condition in a room that an agent is devoted to control 
may vary dynamically for a number of reasons that cannot be 
predicted. This sort of openness is the same that we can find in 
DCA, where the perturbation of the environment, changing the 
internal state of a cell, can make us consider the cell as situated in 
an environment whose characteristics dynamically change in an 
unpredictable way. 

Given the above similarities, and given that the characteristics 
leading to the observed behaviors in DCA are present in most of 
today’s multi-agent systems (and more generally, in modern 
distributed software systems), there are very good reason to 
presume that similar strange behavior will be observed as soon a 
agents will start populating the Internet and our physical 
environments.  

Of course, we are not the first discussing on the possibility of 
emergence of complex self-organizing behaviors in multi-agent 
systems. However, most of the studies (apart from a few exceptions 
[Par01]) have focused on “closed” agent systems, in which the 
internal dynamics of the systems totally drive its behavior. Instead, 

we have shown, via a very simple and “minimal” multi-agent 
system, as a DCA can be considered, that complex non-local 
behaviors can emerge due to the influence of the environmental 
dynamics. The impact of this observation in the modeling, 
engineering, and maintaining of distributed agent systems may be 
dramatic, delineating a revolutionary change of paradigm in 
computer science and software engineering [Khu96]. 

4.2 Defending from Environmental 
Dynamics 

The reported experiments open up the possibility that a software 
system immersed in a dynamic environment may exhibit behaviors 
very different from the ones it was programmed for. Of course, this 
is not desirable and may cause highly damaging effects [ParBS01]. 
For instance, in the case of a computational Internet pricing 
system, the emergence of macro-level spatial patterns may produce 
great price differences in different sites of the planet. In the case of 
information retrieval applications, this may cause a large amount of 
available information to be left out from the search, while making 
the remaining part over-accessed.  

A deep re-thinking of the methodologies currently adopted for 
software design, development, and maintenance is required to 
avoid such situations to occur, or at least to be able to predict and 
control them. We do not have solutions at hand, although we can 
envision some promising directions. 
By now, software systems are designed in a mechanical way, 
component by component, so as to exhibit a specific, deterministic 
behavior. Such approach immediately fails when the non-
determinism intrinsic in environmental dynamics is introduced, and 
exception handling can only avoid damages to occur, without 
making the system work effectively. The next challenge is 
approaching their design in macro-level terms: one should design a 
system so as to make it exhibit, under a wide range of 
environmental conditions, the desired global behavior, 
disregarding if necessary the full understanding of the behavior of 
its components, and rather trying to understand the behavior of the 
system as a whole. Moreover, one should precisely characterize the 
behavior of a system not only in terms of its functionalities, but 
also in terms of its global behavior depending on the 
environmental conditions. Possibly, a software system should be 
designed so as to be able to re-adapt itself dynamically so as to 
make its internal dynamics contrast the environmental one.  

As a consequence of the above approach, software systems will be 
no longer tested with the goal of finding errors in them, but they 
will be rather tested with regard to their capability of behaving as 
needed as a whole, independently of the exact behavior of its 
component [Huh01], and under the environmental conditions in 
which the system is expected to operate when released.  

It is also important to note that, in most of the cases, a newly 
deployed software system will execute in an environment where 
other systems already executes. Thus, the new software system will 
impact on the environmental condition of the pre-existing systems 
and, by executing, on their environmental dynamics. Thus, 
designing and testing a system will not only be devoted to make a 
software system useful, but also to guarantee that it will not be 
dangerous to other systems. 

We expect theories and models from complex dynamical systems, 
from modern thermodynamics, as well as from biology, social 
science, and organizational science, to play a major role in this 
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revolutionary change of paradigm in software engineering, and to 
become the sine-qua-non cultural background for computer 
scientist and software designers. This cultural background, 
however, could also help in finding ways to exploit in a 
constructive the influence of the environmental dynamics. 

4.3 Exploiting Environmental Dynamics 
Researchers will soon clarifies the mutual dynamic influences 
between software systems and their environments, and suitable 
theories, models, methodologies and tools will be developed and 
mad available to help software engineering and developers. Then, 
it is very likely that the environmental dynamics will become a 
useful additional design dimension, other that an enemy to fight. 

As a very trivial application example, directly inspired from the 
visual appearance of the DCA patterns, one could think at 
“intelligent paintings”. Paintings can be made up of active, radio-
enabled, micro-components, able change their colors according to 
local transition rules, and making it possible to change the color 
patterns via simple radio-commands perturbing the transition rules 
and causing a global change in the pattern of a wall. As another 
example, the possibility of making global patterns emerge from a 
system relying on local interactions could be exploited so as to 
enforce global coordination and synchronization in a wide-area 
system (whether computational or computer-supported) with very 
low efforts.  

More generally, one could think at exploiting the environmental 
dynamics to control and influence a multi-agent system from 
“outside the loop” [Ten00], that is, without intervening on the 
system itself. In a world of continuous computations, where 
decentralized software systems are always running and cannot be 
stopped (this is already the case for Internet services and for 
embedded sensors) changing, maintaining and updating systems by 
stopping and re-installing them is not the best solution, and it could 
not be always feasible. For instance, stopping an Internet 
marketplace for agent-mediated auctions would require stopping 
accepting new negotiation, making all in-progress negotiation 
complete, and then updating and testing the new software. The loss 
in terms of revenues and image would be tremendous. Instead, 
given the availability of proper models and tools, one could 
envision the possibility of influence the system without stopping it, 
simply forcing specific environmental dynamics changing the 
global behavior of the system so as to make it exhibit the required 
behavior. 

5 RELATED WORKS 
5.1 Cellular Automata 
Unidimensional and bidimensional CA have been extensively 
studied [Wol94]. Nowadays, the research area of CA encompasses 
theoretical studies, as well as applications in the so called hard and 
soft sciences.  

The hard CA science includes formal studies on computational 
properties of CA [Sip96, Sip99, ST99], extensions of the simple 
CA model [Sip96, LumN94, SchR99] and studies on the behavior 
of CA as complex dynamical systems [Wol94, Bar97].  However, 
in most of these studies, CA were considered as synchronous and 
closed systems, for the sake of achieving determinism and 
predictability in CA’s behavior. Although some work recognize the 
peculiar and interesting behavior exhibited by asynchronous model 
[IngB84, LumN94, SchR99], they still missed in identifying the 
strong influences that the “openness” of the system and the 

perturbation of the environment can have on the behavior of the 
CA and on its dynamics.  

The soft CA science is splitted in two main branches: applications 
[Ban98, BanW01] and simulations [Bar97]. 

In engineering applications, CA are shown to be useful as 
alternative computing systems for edge detection in digital images, 
image compression, random number generation [Ban98]. The so 
called cellular programming approach [Sip96, Sip99], where each 
cell can have its own local transition function (non-uniform CA) 
and transition functions are assigned and changed by means of an 
evolutionary algorithm, promises to have useful applications in 
image recognition, combinatorial optimization problems and 
evolvable hardware [Sip99]. It is our hope that investigations on 
DCA may lead to further useful application of cellular-based 
approach. 

In the area of simulation [Bar97], CA are powerful simulation 
system for biophysical processes and socio-economical 
phenomena. However, simulation of biophysical processes with 
classical CA is typically made by considering, in most of the cases, 
closed systems. The DCA model we have introduced can put these 
researches forward by providing a suitable framework for the 
simulation of open biophysical and social systems, other than of 
computational systems. For instance, on the side of socio-
economical processes, simulations with classical CA are viable 
only under the assumption of that the actor of the simulation, i.e., 
the CA cells, have perfect knowledge of their own and of their 
neighbors’ states, and have full control over their own state. 
Unfortunately, these hypotheses are rarely fulfilled in real-world 
society and markets. Our DCA approach can be effectively used to 
model the influence of a dynamic environment and the presence of 
noise in the process (i.e., limiting both knowledge and control over 
local states). 

Strictly related to the works on CA are those researches on boolean 
networks [Kau93] and, more recently, on small-world networks 
[Wat99]. Form a broad perspective, both boolean and small-world 
networks can be considered as sorts of non-uniform CA with a 
topology of interconnection that can be described as an undirected 
graph, typically not regular. These types of networks have found 
several interesting applications in modeling biological (e.g., 
genetic) and social (e.g., acquaintance) networks and their 
dynamics. Still, as in the case of CA, researches related to the 
influence of a perturbing environment on network dynamics is 
missing.  

5.2 Multi-agent systems 
Despite the fact that an agent, accordingly to all established 
definitions, is an entity situated in an environment, a few 
researches explicitly focus on the influence of the environment 
on the behavior of agents and multiagent systems. 

Since the origins of distributed artificial intelligence and of 
multiagent systems researches, a large amount of studies have 
shown that system in which autonomous components interact 
with each other in a network, and change their status 
accordingly to the outcomes of these interactions, can make 
peculiar global behaviors – whether useful or damaging – 
emerge [GasB92, HubH93]. Recent examples of these studies 
may be found in the area of computational markets [KepHG00, 
GolKS01] and of computational ecosystems [GusF01, Huh01]. 
However, as anticipated in Section 4, most of these studies 
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focused on the internal dynamics of the system, without taking 
into account the perturbation of the environment. 

Studies in the area of artificial social laws [MosT95] show that 
global rules constraining the behavior of all the agents in a 
group can notably influence the dynamic behavior of the 
group. Analogously, studies adopting an organizational 
metaphor for the design of multiagent systems [Jen00, 
CabLZ01, ZamJW01], shows that the definition of global 
environmental rules to which all agents must obey is very 
useful toward the effective control of the global multiagent 
system behavior. For all the above approaches, the basic 
intuition is that agents, for the very fact of living in an 
environment (i.e., a society or an organization) are not fully 
autonomous but, instead, their actions can be constrained by 
the environment, the same as the state of the cells in DCA can 
be changed by the perturbation function. However, the above 
studies exploit such kind of environmental abstractions 
constructively during the design process, and assume having 
full control over the environment behavior. Still, these 
researches typically misses in identifying that agents may live 
in dynamic environment, where the rules governing their 
execution and their interactions can change during the 
evolution of the multiagent systems and can influence their 
behavior in unpredictable (or simply uncontrollable way).  

The importance of the environmental abstraction and of its 
dynamic in the global behavior of the system is properly 
attributed in the study and implementation of ant-based 
multiagent systems [Par97, BonDT99, Par01]. In these 
systems, very simple agents can indirectly interact with each 
other in a local way, by putting synthetic pheromones in the 
environment and by sensing pheromones concentration in a 
spatially bounded portion of the environment. The 
environment, by its side, affects interactions with its own 
dynamics, causing pheromones evaporation or diffusion. Such 
very simple models may be characterized by self-organization 
and emergent phenomena that can be useful to achieve difficult 
goals (swarm intelligence): finding shortest paths, clustering 
data, etc. The similarities between ant-based multiagent 
systems and DCA are strong: they both exploit asynchronous 
components affected in their execution by the environmental 
dynamics, and both evolve to low-entropy global states [Par01] 
where long-range correlations are established, generally by 
means of positive feedback. However, till now, ant-based 
systems researches have focused on the possibility of 
“designing” the environment and its dynamics to 
constructively exploit it, and few researchers focused on the 
perturbing effects that uncontrollable environmental dynamic 
can have on the global behavior of a system [ParBS01]. 

6 CONCLUSIONS AND FUTURE WORKS 
This paper has reported the outcomes of a set of experiments 
performed on a new class of cellular automata, DCA, which are 
open to the environment and can be perturbed by its dynamics. 
This experiments have shown that the perturbation makes large-
scale symmetry-breaking spatial structures, not observed under 
closed regime, emerge. Starting from that, the paper has discussed 
the strong relations between DCA and distributed agent-systems. In 
particular, the paper has argued that, since distributed agent 
systems exhibits all of the characteristics of DCA, and in particular 
openness to the environment, similar sort of spatial structures are 
likely to make their appearance as soon as agents will start 

populating the Internet, and are likely to dramatically influence the 
overall behavior of the network. This requires models, 
methodologies, and tools, explicitly taking into account the 
environment and exploiting the environmental dynamics either 
constructively, as an additional design dimension, or defensively, 
to prevent and or control the behavior of the system. 

The experiments reported in this paper are indeed preliminary, and 
further work is in progress: 

!   we are trying to better formalize the concepts of “openness” 
and of “perturbation”, and to better characterize and measure 
both the degree of perturbation and the degree of order 
(possibly in thermodynamic terms) of the emergent patterns; 

!   we are extending our DCA simulation framework so as to 
study the behavior of networks structures other than the 
regular ones of DCA, such as small-world and boolean 
networks, as well as networks with mobile nodes; 

!  we intend to perform further experiments to evaluate the 
behavior of DCA under different perturbation regimes and to 
evaluate the behavior of more complex DCA, i.e., DCA with 
large set of states, with more complex transition function.  

The main objective driving our current research is to make our 
experiments more and more approximate the characteristics of 
agent-based distributed scenarios and, eventually, to end up with a 
powerful simulation environment. 
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