
 1

On the Emergence of Macro Spatial Structures in
Dissipative Cellular Automata, and its Implications for

Agent-based Distributed Computing

Franco Zambonelli
Dipartimento di Scienze e Metodi dell’Ingegneria Università di

Modena e Reggio Emilia
Via Allegri 13 – Reggio Emilia– ITALY

franco.zambonelli@unimo.it

Andrea Roli
Dipartimento di Elettronica Informatica e Sistemistica

Università di Bologna
Viale Risorgimento 2 – 40136 Bologna – ITALY

aroli@deis.unibo.it

ABSTRACT
This paper describes the peculiar behavior observed in a class of
cellular automata that we have defined as “dissipative”, i.e.,
cellular automata that are “open” and makes it possible for the
environment to influence the evolution of the automata. Peculiar in
the dynamic evolution of this class of cellular automata is that
stable macro-level spatial structures emerge from local interactions
among cells, a behavior that does not emerge when the cellular
automaton is “closed”, i.e., when the state of a cell is not
influenced by the external world. On this basis, the paper discusses
the relations of the performed experiments with the area of open
distributed computing, and in particular of agent-based distributed
computing. The basic intuition is that dissipative cellular automata
express characteristics that strongly resembles those of wide-area
open distributed systems based on autonomous and situated active
components – as agents are. Accordingly, similar sorts of macro-
level behaviors are likely to emerge and need to be studied,
controlled, and possibly fruitfully exploited.
Keywords: Cellular Automata, Self-organizing Systems, Open
Agent Systems, Agent-oriented Software Engineering

1 INTRODUCTION
Autonomy and situatedness are intrinsic characteristics of agents
that are more and more pervading modern software systems [Jen00,
Zam01]. On the one hand, several software systems already include
proactive components capable of autonomous behavior, such as
mobile and embedded computer-based devices, that can be
assimilated – from a software engineering perspective – to
autonomous and proactive agents, and that can be modeled as that.
On the other hand, several components of these systems are
intrinsically situated in an environment, whether a computational
one, e.g. a Web site, or a physical one, e.g., a manufacturing
system, and their execution is intrinsically associated with local
interactions in this environment.

Agent researchers, as well as some researchers in the “mainstream”
software engineering community, recognize that both autonomy
and situatedness are effective abstractions for the design and
development of complex software systems: (i) designing
applications around autonomous application components, e.g.,
agents, rather than increasing complexity, can even simplify
application design and development over traditional, component-
based and object-based, approaches [Par97]; (ii) enforcing locality
in interactions and explicitly introducing an environmental
abstraction naturally matches the characteristics of open multiagent
systems, of Web-based systems, and of embedded systems

[Zam01]. However, autonomy and situatedness can also become
sources of complexity and of engineering problems. In fact, as the
experiments focus of this paper shows, in the presence of
autonomous and situated software components, the dynamics of the
environment can dramatically affect the global behavior of a
software system.

In this paper, we present and discuss a set of experiments that we
have performed on a new class of cellular automata that we have
defined as Dissipative Cellular Automata (DCA). DCA differ from
"traditional" cellular automata [Wol94] in two characteristics:
while "traditional" cellular automata are composed of cells that
interact with each other in a synchronous way and that are
influenced in their evolution only by the internal state of the
automata themselves, dissipative ones are asynchronous and open.
On the one hand, cells update their status independently of each
other, in an "autonomous" way. On the other hand, the automata
live dipped in an environment that can directly influence the
internal behavior of the automata, as in open systems. In other
words, DCA can be considered as a minimalist open agent system
and, as that, their dynamic behavior is likely to provide useful
insight into the behavior of real-world open agent systems and,
more generally, of open distributed software systems.

The reported experiments show that DCA exhibit peculiar
interesting behavior. In particular, during the evolution of the
DCA, and despite the out-of-equilibrium situation induced by the
external environment, stable macro-level spatial structures emerge
from local interactions among cells, a behavior that does not
emerge when the cellular automaton is synchronous and closed
(i.e., when the state of a cell is not influenced by the environment).
On this basis, the paper argues that similar sort of macro-level
behaviors are likely to emerge as soon as multiagent systems (or
likes) will start populating the Internet and our physical spaces,
both characterized by their own processes and by intrinsic and
unpredictable dynamics. Such behaviors are likely to dramatically
influence the overall behavior of our networks at a very large scale.
This may require new models, methodologies, and tools, explicitly
taking into account the environmental dynamics, and exploiting it
during software design and development either defensively, to
control its effects on the system, or constructively, as an additional
design dimension.

This paper is organized as follows. Section 2 sketches the main
characteristics of “traditional” cellular automata. Section 3
introduces the class of dissipative cellular automata, presents some
macro-level spatial structures emerged from experiments, and
attempts at explaining this behavior. Section 4 discusses the

mailto:franco.zambonelli@unimo.it
mailto:aroli@deis.unibo.it

 2

relations between dissipative cellular automata and distributed
agent-systems, and analyzes the possible impact on the latter of the
performed experiments. Section 5 discusses related works. Section
6 concludes and discusses work in progress.

2 CELLULAR AUTOMATA
Generally speaking, Cellular Automata (CA) are regular lattices of
cells, each one being a finite-state automaton. At each iteration,
cells update their state depending on a (typically simple) state
transition function of their state and of the state of neighboring
cells. The scientific interest on CA comes primarily from the fact
that, despite the simplicity of local rules, they can show complex
global behaviors. In fact, the evolution in time of the system
exhibits a variety of dynamic patterns related to the state of the
cells in the lattice: fixed configurations of cells always in the same
state, periodic configurations, complex structures evolving in time.
The global behavior of the CA is determined by the local function
and the neighborhood structure chosen.

More formally, a CA is statically defined by a quadruple

A = (S , d , V , f),

where S is the finite set of possible states a cell can assume, d is the
dimension of the automaton, V is the neighborhood structure, and f
is the local transition rule. The automaton structure is a d-
dimensional discrete grid L=Ζd, where Ζ is the set of integers.
Each cell is identified with an array of d components i=(i1,...,id)∈ L
which represent the coordinates of the cell in the grid. It is
generally assumed that the grid is infinite, either not limited or
closed to a d-dimensional torus. The state of a cell is expressed as a
variable x whose domain is defined by S; and the ordered list of
cell states defines the CA global state X. The neighborhood
structure V defines which cells "influence" any cell. V is defined as
a function V:L→℘ (L) which maps a cell to a set of cells. The
neighborhood structure is regular and isotropic, i.e., V has the same
definition for every cell. Usually, V is a subset of the group of
translations in L. Finally, the local transition rule is a function
f:SV→S which maps a configuration of states in a neighborhood to
a state. The transition rule defines the future state of a cell
depending on the state of its neighboring cells (and, possibly, the
state of the cell itself). f is typically the same for each cell (uniform
CA).

The quadruple A specifies the "static" characteristics of an
automaton. However, the complete description of a CA requires the
definition of its dynamics, i.e., of the dynamics ruling the update of
the state of the CA cells. In general, the dynamics of a CA assumes
a discrete time: cells update their state in discrete time steps
t∈Ν according to the equation

x(i;t+1) = f[x(i;t), Y(t)],

where Y(t)={x(j;t) | j∈ V(i)}, i.e., Y(t) is the set of states of
neighboring cells of cell i at time t.

The usual definition of CA is with synchronous dynamics: cells
update their state in parallel at each time step. If we assume a finite
number of cells n (which is always the case in practice) and we
identify cells with n variables xi, i=1,2,…,n, the global state
evolves according to the following equation:

X(t+1) = F[X(t)] = F[{x1(t), x2(t)…, xn(t)}] =

= {f[x1(t),Y1(t)], f[x2(t), Y2(t)],…, f[xn (t), Yn(t)]} =

= {x1(t+1), x2(t+1)…, xn(t+1)}.

The whole system evolution is thus described by the evolution of
X(t). Since the transition rule is deterministic and both states and
cells are finite, the system will eventually reach a stable state,
having reached a fixed point attractor, or will periodically pass
through a sequences of state, having reached a cyclic attractor.

In this paper, we consider 2-dimensional CA (NxN square grids
with wraparound borders) with two states. These kinds of CA have
been deeply studied and have also a biologic interpretation: cells
can be interpreted as alive/dead, depending on their state.

As an example, Figure 1 shows an initial random situation in a 2D
CA whose cells can be dead (yellow cells) or alive (red cells). Let
us consider the Moore neighborhood structure (the neighbors of a
cell are the 8 one defining a 3x3 square around the cell itself) and
the following transition rule:

f = {a died cell gets alive iff it has 2 neighbors alive; a
living cells lives iff it has 1 or 2 neighbors alive}

Once the CA starts to evolve from the initial random situation, the
states of all cells synchronously change accordingly to the above
rule, and after a transient eventually reaches the final cyclic
attractor of which one of the composing global states is shown in
Figure 2. Of course, assuming other transition rules, the CA can
show different behaviors and reach different basins of attraction.
We forward the interested reader to [Wol94] for a systematic
analysis and classification of synchronous CA.

3 DISSIPATIVE CELLULAR AUTOMATA
In this section, we introduce a new class of CA that we have
defined as "dissipative cellular automata", being characterized by
asynchrony and openness, and discuss the peculiar behavior that
we have observed.

3.1 Asynchronous Dynamics
Section 2 has concentrated on CA with synchronous dynamics, and
a large part of literature is dedicated to the analysis of behavior of
synchronous CA [Wol94]. However, synchronous dynamics is
hardly representative of real-world phenomena, making it not
suited for the modeling and the simulation of those phenomena
involving a population of interacting elements, for which
asynchronous dynamics have to be introduced.

Accordingly to the most accepted terminology, a CA is
asynchronous if cells can update their state independently from
each other, rather than all together in parallel, according to a
dynamics that can be either a step-driven or a time-driven.

In step-driven dynamics, a kind of global daemon is introduced,
whose job is to choose at each time step one (and only one) cell to
update. There are several ways to determine the "sequence" for
cells update. For instance, cells can be ordered in a fixed or
random sequence, or a cell can be randomly selected at each time
steps. Thus, step-driven asynchronous dynamics is characterized by
a global transition like the following:

X(t+1) = F[X(t)] = F[{x1(t), x2(t)…, xn(t)}] =

= {x1(t),x2(t),… f[xk(t), Yk(t)],..., xn (t)} =

= {x1(t), x2(t),…, xk(t+1),... xn(t)}

where the cell k that is selected for the transition is determined by
the specific kind of selection policy.

 3

Figure 1: An initial random situation in a 2-D CA

Figure 2: A synchronous CA having reached a global state of a

cyclic attractor.

Figure 3: A fixed point reached by an asynchronous CA

In time-driven dynamics, each cell is assumed to have an "internal
clock" which wakes up the cell and makes it update. This is also
the case of more interest to us, in that in open distributed
computing agents and processes execute and interact
asynchronously accordingly to a local internal clock. Also, time-
driven dynamics provides for a more continuous notion of time.
The updating signal for a cell can be either deterministic (e.g.,
every τ time steps) or probabilistic (e.g., the probability that the
cell update its state is uniform with a given rate), and the next state
of a cell is selected on the basis of the current state of neighboring
cells.

In the experiments presented in this paper, CA have an
asynchronous time-driven dynamics: at each time, one cell has a
uniform probability of rate λa to wake up and update its state. The
update of a cell has been implemented as atomic and mutually
exclusive among neighbors, without preventing non-neighbor cells
to update their state concurrently.

In general, it has been observed that the asynchronous CA exhibits
behaviors that are very different from the ones of their synchronous
counterparts, both in terms of the transient and of the final
attractor. Although both the dynamics have the same fixed points
[SchR99], i.e., attractors that are fixed points under synchronous
dynamics are fixed points also under asynchronous dynamics and
vice versa, the basins of attraction can be very different: some of
the final attractors reached under asynchronous dynamics are
hardly reached under synchronous one.

As an example, Figure 3 shows the fixed point reached by the
asynchronous counterpart of the example CA described in Section
2. Under asynchronous regime, this CA usually reaches a fixed-
point attractor that its synchronous counterpart has never been
observed to be able to reach.

3.2 Openness
CA studied so far are closed systems, as they do not take into
account the interaction between the CA and an environment.
Instead, the new class of CA that we have studied is, in addition to
asynchronous, "open", in the sense that the dynamic behavior of
the CA can be influenced by the external environment.

From an operative point of view, the openness of the CA implies
that some cell can be forced from the external to change its state,
independently of the cell having evaluated its state and
independently of the transition function (See Figure 4).

By considering a thermodynamic perspective, one can consider this
manifestation of the external environment in terms of energy flows:
forcing a cell to change its state can be considered as a
manifestation of energy flowing into the system and influencing it
[NicP89]. This similarity, together with the facts that the activities
of the cells are intrinsically asynchronous and that the externally
forced changes in the state of cells perturb the CA in an irreversible
way, made us call this kind of CA as dissipative cellular automata
(DCA).

From a more formal point of view, a DCA can be considered as:
- A = (S , d , V , f);

- asynchronous step-driven dynamics (with uniform distribution
of rate λa);

- a perturbation action ϕ(α,D).

 4

where A is the quadruple defining a CA, the dynamics is the one
already discussed in Subsection 3.1, and the perturbation action ϕ
is a transition function which acts concurrently with f and can
change the state of any of the CA cells to a given state α with some
probabilistic distribution D, independently of the current state of
the cells and of their neighbors. Specifically, in our experiments
with V={0,1}, α=1 and D is a uniform distribution of rate λe.

CA Grid

External forces
infuencing the state of
the cells

Figure 4: The basic structure of a dissipative cellular

automaton

3.3 Emergent Behaviors
The behavior exhibited by DCA is dramatically different from both
their synchronous and closed asynchronous counterparts.

In general, when the degree of perturbation (determined by λe) is
high enough to effectively perturb the internal dynamic of the DCA
(determined by the rate of cell updates λa) but it is still not
prevailing over it so as to make the behavior of the DCA almost
random (which happens when λe is comparable λa), peculiar
patterns emerge. The interested reader can refer to the page
http://polaris.ing.unimo.it/DCA/ to repeat the experiments on-line.

We have observed that the perturbation on the cells induced by the
external – while keeping the system out of equilibrium and making
impossible for it to reach any equilibrium situation – makes the
DCA develop large scale regular spatial structures. Such structures
exhibit long-range correlation between the state of the cells,
emerged despite the strictly local and asynchronous transition
rules, and breaks the spatial symmetry of the final state. In
addition, such structures are stable, despite the continuous
perturbing effects of the external environment.

As an example, Figure 5 shows two different patterns emerged
from a DCA, both exhibiting stable macro-level spatial structures.
For this DCA, the transition rules and the neighborhood structure
are the same of the synchronous CA described in Section 2 and f
the asynchronous CA described in Subsection 3.1. In both cases,
the presence of global-scale patterns – breaking the rotational
symmetry of the automata – is evident. By comparing these
patterns with the ones observed in the same CA under
asynchronous but close dynamics, one can see that openness has
provided for making small-scale patterns, emerged from local
transition rules, enlarge to the whole CA size. Once this global
states has emerged, they are able to re-stabilize autonomously,
despite the fact that the perturbing effects tends to modify them.

As another example, Figure 6 shows two typical patterns emerged
for a DCA with a neighborhood structure made up of 12 neighbors
(the neighbors of a cell are all cells having a maximum distance of
2 from the cell itself) and with the following transition rule:

f = {a died cell gets alive iff it has 6 neighbors alive; a
living cells lives iff it has 3,4,5, or 6 neighbors alive}

Again it is possible to see large-symmetry breaking patterns
emerge, extending to a global scale the local patterns that tends to
emerge under asynchronous but closed regime (Figure 7). The
patterns are stable despite the continuous perturbing effect of the
environment. Moreover, these patterns are stable and robust but
they are dynamic. First, the long diagonal stripes in Figure 6
change continuously in their micro-level shape, while maintaining
the same global structure. Second, all this stripes translate
horizontally at a constant speed in the DCA lattice. This makes the
pattern not a fixed point or a simple cyclic attractor, but rather a
quasi-periodic one.

3.4 Explaining DCA Dynamics
The phenomenon underlying the behavior of DCA are very similar
– if not the same – of the ones determining the emergence of large-
scale structures in dissipative systems [NicP89], e.g., in Bénard’s
cells. (See Figure 8).

Figure 5: Two Behaviors Evolved in a DCA. Despite the out-of-
equilibrium situation forced by the external environment,
stable large-scale and symmetry-breaking patterns emerge.

http://polaris.ing.unimo.it/CA/

 5

Figure 6: Two different behaviors evolved in a DCA. Large-

scale dynamic patterns emerge.

Figure 7: A stabilized situation in an asynchronous closed CA
following the same rules of the DCA in Figure .6: no large-
scale patterns emerge.

A fluid between two plates is in thermodynamic equilibrium if no
thermal energy flows from the external to perturb the equilibrium.
In the presence of small differences between the temperatures of
the two plates, the thermal energy is still not enough to perturb the
fluid, and energy flows between the two plates in the form of
thermal diffusion. However, as soon as the temperature gradient
reaches a critical point, thermal flow in the fluid starts occurring
via convection. This motion does not occur in a disordered way:
regular spatial patterns of movement emerge, with wide-range and
symmetry breaking correlation among cell movements. This
behavior is maintained until the temperature gradient between the
two plates become too high, in which case the regular patterns
disappear and the fluid motion becomes turbulent.

The behavior of DCA is actually subject to the same phenomenon,
where, the temperature gradient between the two plates is
substituted by the ratio λe/λa. When this ratio is 0, the system is in
equilibrium, and no perturbation from the external occurs. For very
small perturbation, the dynamic behavior of the DCA does not
substantially change. As soon as the ratio becomes high enough,
the DCA dynamics change and regular spatial patterns appears. For
very high ratio, spatial patterns disappear and the DCA dynamics
becomes highly disordered. A detailed measurement and a
complete quantitative analysis of DCA dynamics are work in
progress.
The above similarity suggests that the same causes that determine
the behavior of Bénard cells also determine the behavior of DCA.

Without any perturbation, or in the presence of small ones, each
autonomous component (a molecule or a DCA cell), acting
asynchronously accordingly to strictly local rules, tend to reach a
local equilibrium (or a strictly local dynamics), which reflects in a
global uniform equilibrium of the whole system.

When the system is kept in a substantial out-of-equilibrium
situation, the locally reached equilibrium situations are
continuously perturbed, resulting in continuous attempt to locally
re-establish equilibrium. This typically ends up with cell groups
having found new equilibrium states more robust with regard to the
perturbation (or compatible with it). Such stable local patterns start
soon dominating and influencing the surrounding, in a sort of
enforcing feedback, until a globally coordinated (i.e., with large
scale spatial patterns) and stable situation emerges.

When the degree of perturbation is high enough to avoid local
stable situations to persist for enough time, they can no longer
influence the whole systems, and the situation becomes turbulent.

Fluid
Material

Injection of
Energy (T1)

Temp = T1

Temp = T2 < T1

Rotating
Cells

Figure 8: Large-scale patterns in Bénard cells.

 6

4 IMPLICATIONS FOR AGENT-BASED
DISTRIBUTED COMPUTING

4.1 Multiagent Systems vs. DCA
There are three characteristics which are typical of distributed
multi-agent systems (and that are more and more characterizing all
types of software systems) that are reflected in DCA: autonomy of
agents, locality in interactions, situatedness in an open and
dynamic environment.

Agents are autonomous entities [Jen00], in that their execution is
not subject to a global flow of control. Instead, the execution of an
agent in a multiagent system may proceed asynchronously, and the
agent’s state transition occur accordingly to local internal timings.
This is actually what happens, because of the adopted time-driven
dynamics, in DCA: each state transition in a DCA cell is driven by
an internal clock, which is independent from the clock – and the
state transitions – of the other DCA cells.

Agents typically execute in the context of a multi-agent
organization, and most of the interactions of an agent (causing
internal state transitions) occur in the context of that organization
[Zam01]. Such abstract concept of locality often reflects also in an
actual – physical – locality. In fact, for the sake of scalability and
efficiency, multi-agent organizations typically execute in a spatially
bounded distributed domain, and wide-area – inter-organizations –
interactions are limited as much as possible, and sometimes
enabled by making agents move from site to site [CabLZ01]. In
DCA, a cell interacts with (that is, can check the state of) only a
limited number of other cells in its neighborhood.

Agents are situated entities that live dipped in an environment,
whether a computational one, e.g., a Web site, or a physical one,
e.g., a room or a manufacturing unit to be controlled. The agent is
typically influenced in its execution (i.e., in its state transitions) by
what it senses in the environment. In this sense, agents and multi-
agent systems are “open systems”: the global evolution of a multi-
agent system may be influenced by the environment in which it
lives. And, in most of the cases, the environment possesses a
dynamics that is not controllable or foreseeable. For instance, the
computational resources, the data, the services, as well as the other
agents to be found on a given Web site cannot be predicted and
they are likely to change in time. Analogously, the temperature and
lightening condition in a room that an agent is devoted to control
may vary dynamically for a number of reasons that cannot be
predicted. This sort of openness is the same that we can find in
DCA, where the perturbation of the environment, changing the
internal state of a cell, can make us consider the cell as situated in
an environment whose characteristics dynamically change in an
unpredictable way.

Given the above similarities, and given that the characteristics
leading to the observed behaviors in DCA are present in most of
today’s multi-agent systems (and more generally, in modern
distributed software systems), there are very good reason to
presume that similar strange behavior will be observed as soon a
agents will start populating the Internet and our physical
environments.

Of course, we are not the first discussing on the possibility of
emergence of complex self-organizing behaviors in multi-agent
systems. However, most of the studies (apart from a few exceptions
[Par01]) have focused on “closed” agent systems, in which the
internal dynamics of the systems totally drive its behavior. Instead,

we have shown, via a very simple and “minimal” multi-agent
system, as a DCA can be considered, that complex non-local
behaviors can emerge due to the influence of the environmental
dynamics. The impact of this observation in the modeling,
engineering, and maintaining of distributed agent systems may be
dramatic, delineating a revolutionary change of paradigm in
computer science and software engineering [Khu96].

4.2 Defending from Environmental
Dynamics

The reported experiments open up the possibility that a software
system immersed in a dynamic environment may exhibit behaviors
very different from the ones it was programmed for. Of course, this
is not desirable and may cause highly damaging effects [ParBS01].
For instance, in the case of a computational Internet pricing
system, the emergence of macro-level spatial patterns may produce
great price differences in different sites of the planet. In the case of
information retrieval applications, this may cause a large amount of
available information to be left out from the search, while making
the remaining part over-accessed.

A deep re-thinking of the methodologies currently adopted for
software design, development, and maintenance is required to
avoid such situations to occur, or at least to be able to predict and
control them. We do not have solutions at hand, although we can
envision some promising directions.
By now, software systems are designed in a mechanical way,
component by component, so as to exhibit a specific, deterministic
behavior. Such approach immediately fails when the non-
determinism intrinsic in environmental dynamics is introduced, and
exception handling can only avoid damages to occur, without
making the system work effectively. The next challenge is
approaching their design in macro-level terms: one should design a
system so as to make it exhibit, under a wide range of
environmental conditions, the desired global behavior,
disregarding if necessary the full understanding of the behavior of
its components, and rather trying to understand the behavior of the
system as a whole. Moreover, one should precisely characterize the
behavior of a system not only in terms of its functionalities, but
also in terms of its global behavior depending on the
environmental conditions. Possibly, a software system should be
designed so as to be able to re-adapt itself dynamically so as to
make its internal dynamics contrast the environmental one.

As a consequence of the above approach, software systems will be
no longer tested with the goal of finding errors in them, but they
will be rather tested with regard to their capability of behaving as
needed as a whole, independently of the exact behavior of its
component [Huh01], and under the environmental conditions in
which the system is expected to operate when released.

It is also important to note that, in most of the cases, a newly
deployed software system will execute in an environment where
other systems already executes. Thus, the new software system will
impact on the environmental condition of the pre-existing systems
and, by executing, on their environmental dynamics. Thus,
designing and testing a system will not only be devoted to make a
software system useful, but also to guarantee that it will not be
dangerous to other systems.

We expect theories and models from complex dynamical systems,
from modern thermodynamics, as well as from biology, social
science, and organizational science, to play a major role in this

 7

revolutionary change of paradigm in software engineering, and to
become the sine-qua-non cultural background for computer
scientist and software designers. This cultural background,
however, could also help in finding ways to exploit in a
constructive the influence of the environmental dynamics.

4.3 Exploiting Environmental Dynamics
Researchers will soon clarifies the mutual dynamic influences
between software systems and their environments, and suitable
theories, models, methodologies and tools will be developed and
mad available to help software engineering and developers. Then,
it is very likely that the environmental dynamics will become a
useful additional design dimension, other that an enemy to fight.

As a very trivial application example, directly inspired from the
visual appearance of the DCA patterns, one could think at
“intelligent paintings”. Paintings can be made up of active, radio-
enabled, micro-components, able change their colors according to
local transition rules, and making it possible to change the color
patterns via simple radio-commands perturbing the transition rules
and causing a global change in the pattern of a wall. As another
example, the possibility of making global patterns emerge from a
system relying on local interactions could be exploited so as to
enforce global coordination and synchronization in a wide-area
system (whether computational or computer-supported) with very
low efforts.

More generally, one could think at exploiting the environmental
dynamics to control and influence a multi-agent system from
“outside the loop” [Ten00], that is, without intervening on the
system itself. In a world of continuous computations, where
decentralized software systems are always running and cannot be
stopped (this is already the case for Internet services and for
embedded sensors) changing, maintaining and updating systems by
stopping and re-installing them is not the best solution, and it could
not be always feasible. For instance, stopping an Internet
marketplace for agent-mediated auctions would require stopping
accepting new negotiation, making all in-progress negotiation
complete, and then updating and testing the new software. The loss
in terms of revenues and image would be tremendous. Instead,
given the availability of proper models and tools, one could
envision the possibility of influence the system without stopping it,
simply forcing specific environmental dynamics changing the
global behavior of the system so as to make it exhibit the required
behavior.

5 RELATED WORKS
5.1 Cellular Automata
Unidimensional and bidimensional CA have been extensively
studied [Wol94]. Nowadays, the research area of CA encompasses
theoretical studies, as well as applications in the so called hard and
soft sciences.

The hard CA science includes formal studies on computational
properties of CA [Sip96, Sip99, ST99], extensions of the simple
CA model [Sip96, LumN94, SchR99] and studies on the behavior
of CA as complex dynamical systems [Wol94, Bar97]. However,
in most of these studies, CA were considered as synchronous and
closed systems, for the sake of achieving determinism and
predictability in CA’s behavior. Although some work recognize the
peculiar and interesting behavior exhibited by asynchronous model
[IngB84, LumN94, SchR99], they still missed in identifying the
strong influences that the “openness” of the system and the

perturbation of the environment can have on the behavior of the
CA and on its dynamics.

The soft CA science is splitted in two main branches: applications
[Ban98, BanW01] and simulations [Bar97].

In engineering applications, CA are shown to be useful as
alternative computing systems for edge detection in digital images,
image compression, random number generation [Ban98]. The so
called cellular programming approach [Sip96, Sip99], where each
cell can have its own local transition function (non-uniform CA)
and transition functions are assigned and changed by means of an
evolutionary algorithm, promises to have useful applications in
image recognition, combinatorial optimization problems and
evolvable hardware [Sip99]. It is our hope that investigations on
DCA may lead to further useful application of cellular-based
approach.

In the area of simulation [Bar97], CA are powerful simulation
system for biophysical processes and socio-economical
phenomena. However, simulation of biophysical processes with
classical CA is typically made by considering, in most of the cases,
closed systems. The DCA model we have introduced can put these
researches forward by providing a suitable framework for the
simulation of open biophysical and social systems, other than of
computational systems. For instance, on the side of socio-
economical processes, simulations with classical CA are viable
only under the assumption of that the actor of the simulation, i.e.,
the CA cells, have perfect knowledge of their own and of their
neighbors’ states, and have full control over their own state.
Unfortunately, these hypotheses are rarely fulfilled in real-world
society and markets. Our DCA approach can be effectively used to
model the influence of a dynamic environment and the presence of
noise in the process (i.e., limiting both knowledge and control over
local states).

Strictly related to the works on CA are those researches on boolean
networks [Kau93] and, more recently, on small-world networks
[Wat99]. Form a broad perspective, both boolean and small-world
networks can be considered as sorts of non-uniform CA with a
topology of interconnection that can be described as an undirected
graph, typically not regular. These types of networks have found
several interesting applications in modeling biological (e.g.,
genetic) and social (e.g., acquaintance) networks and their
dynamics. Still, as in the case of CA, researches related to the
influence of a perturbing environment on network dynamics is
missing.

5.2 Multi-agent systems
Despite the fact that an agent, accordingly to all established
definitions, is an entity situated in an environment, a few
researches explicitly focus on the influence of the environment
on the behavior of agents and multiagent systems.

Since the origins of distributed artificial intelligence and of
multiagent systems researches, a large amount of studies have
shown that system in which autonomous components interact
with each other in a network, and change their status
accordingly to the outcomes of these interactions, can make
peculiar global behaviors – whether useful or damaging –
emerge [GasB92, HubH93]. Recent examples of these studies
may be found in the area of computational markets [KepHG00,
GolKS01] and of computational ecosystems [GusF01, Huh01].
However, as anticipated in Section 4, most of these studies

 8

focused on the internal dynamics of the system, without taking
into account the perturbation of the environment.

Studies in the area of artificial social laws [MosT95] show that
global rules constraining the behavior of all the agents in a
group can notably influence the dynamic behavior of the
group. Analogously, studies adopting an organizational
metaphor for the design of multiagent systems [Jen00,
CabLZ01, ZamJW01], shows that the definition of global
environmental rules to which all agents must obey is very
useful toward the effective control of the global multiagent
system behavior. For all the above approaches, the basic
intuition is that agents, for the very fact of living in an
environment (i.e., a society or an organization) are not fully
autonomous but, instead, their actions can be constrained by
the environment, the same as the state of the cells in DCA can
be changed by the perturbation function. However, the above
studies exploit such kind of environmental abstractions
constructively during the design process, and assume having
full control over the environment behavior. Still, these
researches typically misses in identifying that agents may live
in dynamic environment, where the rules governing their
execution and their interactions can change during the
evolution of the multiagent systems and can influence their
behavior in unpredictable (or simply uncontrollable way).

The importance of the environmental abstraction and of its
dynamic in the global behavior of the system is properly
attributed in the study and implementation of ant-based
multiagent systems [Par97, BonDT99, Par01]. In these
systems, very simple agents can indirectly interact with each
other in a local way, by putting synthetic pheromones in the
environment and by sensing pheromones concentration in a
spatially bounded portion of the environment. The
environment, by its side, affects interactions with its own
dynamics, causing pheromones evaporation or diffusion. Such
very simple models may be characterized by self-organization
and emergent phenomena that can be useful to achieve difficult
goals (swarm intelligence): finding shortest paths, clustering
data, etc. The similarities between ant-based multiagent
systems and DCA are strong: they both exploit asynchronous
components affected in their execution by the environmental
dynamics, and both evolve to low-entropy global states [Par01]
where long-range correlations are established, generally by
means of positive feedback. However, till now, ant-based
systems researches have focused on the possibility of
“designing” the environment and its dynamics to
constructively exploit it, and few researchers focused on the
perturbing effects that uncontrollable environmental dynamic
can have on the global behavior of a system [ParBS01].

6 CONCLUSIONS AND FUTURE WORKS
This paper has reported the outcomes of a set of experiments
performed on a new class of cellular automata, DCA, which are
open to the environment and can be perturbed by its dynamics.
This experiments have shown that the perturbation makes large-
scale symmetry-breaking spatial structures, not observed under
closed regime, emerge. Starting from that, the paper has discussed
the strong relations between DCA and distributed agent-systems. In
particular, the paper has argued that, since distributed agent
systems exhibits all of the characteristics of DCA, and in particular
openness to the environment, similar sort of spatial structures are
likely to make their appearance as soon as agents will start

populating the Internet, and are likely to dramatically influence the
overall behavior of the network. This requires models,
methodologies, and tools, explicitly taking into account the
environment and exploiting the environmental dynamics either
constructively, as an additional design dimension, or defensively,
to prevent and or control the behavior of the system.

The experiments reported in this paper are indeed preliminary, and
further work is in progress:

! we are trying to better formalize the concepts of “openness”
and of “perturbation”, and to better characterize and measure
both the degree of perturbation and the degree of order
(possibly in thermodynamic terms) of the emergent patterns;

! we are extending our DCA simulation framework so as to
study the behavior of networks structures other than the
regular ones of DCA, such as small-world and boolean
networks, as well as networks with mobile nodes;

! we intend to perform further experiments to evaluate the
behavior of DCA under different perturbation regimes and to
evaluate the behavior of more complex DCA, i.e., DCA with
large set of states, with more complex transition function.

The main objective driving our current research is to make our
experiments more and more approximate the characteristics of
agent-based distributed scenarios and, eventually, to end up with a
powerful simulation environment.

REFERENCES
[Ban98] S. Bandini, R. Serra, F. Suggi Liverani (Eds.).

Proceedings of the 3rd Conference on Cellular Automata
for Research and Iindustry. Springer, 1998.

[BanW01] S. Bandini, T. Worsch, (Eds.). Proceedings of the 4th
Conference on Cellular Automata for Research and
Industry. Springer, 2001.

[Bar97] Y. Bar-Yam. Dynamics of Complex systems. Addison-
Wesley, 1997.

[BonDT99]E. Bonabeau, M. Dorigo, G. Theraulaz. Swarm
Intelligence. From Natural to Artificial Systems. Santa Fe
Institute - Studies in the Science of Complexity. Oxford
University Press, 1999.

[CabLZ01]G. Cabri, L. Leonardi, F. Zambonelli, “Engineering
Mobile Agent Applications via Context-Dependent
Coordination”, 23rd International Conference on
Software Engineering, Toronto (CA), May 2001.

[GasB92] L. Gasser, J. P. Briot, “Object-based Concurent
Programming and Distributed Artificial Intelligence”, in
Distributed Artificial Intelligence: Theory and Practice,
Kluwer Academic, pp. 81-107, 1992.

[GolKS01]C. V. Goldman, S. Kraus, O. Shehory, “Equilibria
Strategies for Selecting Sellers and Satisfying Buyers”,
Proc. of the 5th International Workshop on Cooperative
Information Agents, LNAI, No. 2182, pp. 166-177, Sept.
2001.

[GusF01] R. Gustavsson, M. Fredriksson, “Coordination and
Control in Computational Ecosystems: A Vision of the
Future, in Coordination of Internet Agents, A. Omicini et.
al (Eds.), Springer Verlag, pp. 443-469, 2001.

[HubH93]B. A. Hubermann, T. Hogg, “The Emergence of
Computational Ecosystems”, in SFI Studies in the
Science of Complexity, Vol. V, Addison-Wesley, 1993.

[Huh01] M. Huhns, "Interaction-Oriented Programming", 1st
International Workshop on Agent-Oriented Software

 9

Engineering, LNCS No. 1957, Jan. 2001.
[IngB84] T. E. Ingerson, R. L. Buvel, “Structure in Asynchronous

Cellular Automata”, Physica D, 10:59-68, 1984.
[Jen00] N. R. Jennings, "On Agent-Based Software Engineering",

Artificial Intelligence, 117(2), 2000.
[Kau93] S. A. Kauffman. The origins of order. Oxford University

Press, New York, 1993.
[KepHG00] J. O. Kephart, J. E. Hanson, A. R. Greewald,

“Dynamic Pricing by Software Agents”, Computer
Networks, 32(6): 731-752, May 2000.

[Kuh96] T. Kuhn, The Structure of Scientific Revolutions,
University of Chicago Press, 3rd Edition, Nov. 1996.

[LumN94] E. D. Lumer, G. Nicolis, “Synchronous Versus
7Asynchronous Dynamics in Spatially Distributed
Systems”, Physica D, 71:440-452, 1994.

[MosT95] Y. Moses, M. Tenneholtz, “Artificial Social Systems”,
Computers and Artificial Intelligence, 14(3):533-562,
1995.

[NicP89] G. Nicolis, I. Prigogine, Exploring Complexity: an
Introduction, W. H. Freeman (NY), 1989.

[ParB01] V. Parunak, S. Brueckner, "Entropy and Self-
Organization in Agent Systems", 5th International
Conference on Autonomous Agents, Montreal (CA), May
2001.

[ParBS01]V. Parunak, S. Bruekner, J. Sauter, "ERIM’s Approach
to Fine-Grained Agents", NASA/JPL Workshop on
Radical Agent Concepts, Greenbelt (MD), Sept. 2001.

[Par97] V. Parunak, “Go to the Ant: Engineering Principles from
Natural Agent Systems”, Annals of Operations Research,
75:69-101, 1997.

[SchR99] B. Schönfisch, A. De Roos, “Synchronous and
Asynchronous Updating in Cellular Automata”,
BioSystems, 51(3):123-143, 1999.

[Sip96] M. Sipper, “Co-evolving Non-Uniform Cellular
Automata to Perform Computations”, Physica D, 92:193-
208, 1996.

[Sip99] M. Sipper. “The Emergence of Cellular Computing”.
IEEE Computer, 37(7):18-26, July 1999.

[SipT99] M. Sipper, M. Tomassini, “Computation in Artificially
Evolved, Non-Uniform Cellular Automata”, Theoretical
Computer Science, 217(1):81-98, March 1999.

[Ten00] D. Tennenhouse, "Proactive Computing",
Communications of the ACM, May 2000.

[Weg97] P. Wegner. "Why Interaction is More Powerful than
Algorithms", Communications of the ACM, 1997.

[Whi97] J. White, “Mobile Agents”, in Software Agents, AAAI
Press, Menlo Park (CA), pp. 437-472, 1997.

[Wat99] D. Watts, Small-Worlds, Princeton University Press,
1999.

[Wol94] S. Wolfram. Cellular Automata and Complexity.
Addison-Wesley, 1994.

[ZamJW01] F. Zambonelli, N. R. Jennings, M. J. Wooldridge,
“Organizational Abstractions for the Analysis and Design
of Multi-agent Systems, 1st International Workshop on
Agent-Oriented Software Engineering, LNCS No. 1957,
Jan. 2001.

[Zam01] F. Zambonelli, "From Design to Intention: Signs of a
Revolution", 2nd Italian Workshop on Objects and
Agents, Modena (I), Sept. 2001.

