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Abstract. Portfolio selection is a relevant problem arising in finance
and economics. While its basic formulations can be efficiently solved
through linear or quadratic programming, its more practical and realistic
variants, which include various kinds of constraints and objectives, have
in many cases to be tackled by approximate algorithms. In this work, we
present a hybrid technique that combines a local search, as master solver,
with a quadratic programming procedure, as slave solver. Experimental
results show that the approach is very promising and achieves results
comparable with, or superior to, the state of the art solvers.

1 Introduction

The portfolio selection problem consists in selecting a portfolio of assets that
provides the investor a given expected return and minimises the risk. One of the
main contributions in this problem is the seminal work by Markowitz [25], who
introduced the so-called mean-variance model, which takes the variance of the
portfolio as the measure of investor’s risk. According to Markowitz, the portfolio
selection problem can be formulated as an optimisation problem over real-valued
variables with a quadratic objective function and linear constraints.

In this paper we consider the basic objective function introduced by Marko-
witz, and we take into account two additional constraints: the cardinality con-
straint, which limits the number of assets, and the quantity constraint, which
fixes minimal and maximal shares of each asset included in the portfolio that
force some specific assets to be included in the portfolio. For an overview of the
formulations presented in the literature we forward the interested reader to [7].

We devise a hybrid solution based on a local search metaheuristic (see, e.g.,
[13]) for selecting the assets to be included in the portfolio, which at each step
resorts to a quadratic programing (QP) solver for computing the best allocation
for the chosen assets. The QP procedure implements the Goldfarb-Idnani dual
algorithm [11] for strictly convex quadratic programs.

The use of a hybrid solver has been (independently) proposed also by Moral-
Escudero et al. [26], who make use of genetic algorithms instead of local search
for the determination of the discrete variables.



The paper is organised as follows: In Section 2 we introduce the problem for-
mulation and in the following section (3) we succinctly review the most relevant
works that describe metaheuristic techniques applied to formulations closely re-
lated to the one discussed in this paper. In Section 4 we present our hybrid solver
detailing its components and Section 5 collects the results of the experimental
analysis we performed. Finally, in Section 6, we draw some conclusions and point
out our plans for further work.

2 Problem definition

Following Markowitz [25], we are given a set of n assets, A = {a1, . . . , an}.
Each asset ai has an associated real-valued expected return (per period) ri, and
each pair of assets 〈ai, aj〉 has a real-valued covariance σij . The matrix σn×n is
symmetric and the diagonal elements σii represent the variance of assets ai. A
positive value R represents the desired expected return. The values ri and σij

are usually estimated from past data and are relative one fixed period of time.
A portfolio is a vector of real values X = {x1, . . . , xn} such that each xi

represents the fraction invested in the asset ai. The value
∑n

i=1

∑n

j=1
σijxixj

represents the variance of the portfolio, and is considered as the measure of the
risk associated with the portfolio. Whilst the initial formulation by Markowitz
[25] was a bi-objective optimisation problem, in many contexts financial op-
erators prefer to tackle a single-objective version, in which the problem is to
minimise the overall variance, ensuring the expected return R. The formulation
of the basic (unconstrained) problem is thus the following.

min f(X) =

n∑

i=1

n∑

j=1

σijxixj

s.t.
n∑

i=1

rixi ≥ R (1)

n∑

i=1

xi = 1 (2)

0 ≤ xi ≤ 1 (i = 1, . . . , n) (3)

This is a quadratic programming problem, and nowadays it can be solved
optimally using available tools despite the NP-completeness of the underlying
decision problem [20].

Since R can be considered a parameter of the problem, solvers are usually
compared over a set of instances, each with a specific value of minimum required
expected return. By solving the problem as a function of R, ranging over a finite
and discrete domain, we obtain the so-called unconstrained (Pareto) efficient
frontier (UEF), that gives for each expected return the minimum associated
risk. The UEF for one of the benchmark instances employed in this study is
provided in Figure 1 (the lowest black solid line).



Fig. 1: Unconstrained and constrained efficient frontier.

Although the classical Markowitz’s model is extremely useful from the the-
oretical point of view, dealing with real-world financial markets imposes some
additional constraints that are going to be considered in this work. In order to
model them correctly, we need to add to the formulation a vector of n binary
decision variables Z such that zi = 1 if and only if asset i is in the solution (i.e.,
xi > 0).

Cardinality constraint: The number of assets that compose the portfolio is
bounded: we give two values kmin and kmax (with 1 ≤ kmin ≤ kmax ≤ n)
such that:

kmin ≤

n∑

i=1

zi ≤ kmax (4)

Quantity constraints: The quantity of each asset i that is included in the
portfolio is limited within a given interval: we give a minimum ǫi and a
maximum δi for each asset i, such that:

xi = 0 ∨ ǫi ≤ xi ≤ δi (i = 1, . . . , n) (5)

Notice that the minimum cardinality constraints are especially meaningful in
presence of constraints on the minimum quantity, otherwise they can be satisfied
by infinitesimal quantities.

We call CEF the analogous of the UEF for the constrained problem. In
Figure 1 we plot the CEF found by our solver for the values ǫi = 0.01, δi = 1
(for i = 1, . . . , n), kmin = 1, and kmax varying from 4 to 12. For higher values
of kmax the cardinality constraint reduces its effect and the curve is almost



indistinguishable from the UEF, indeed the distance among the CEF and the
UEF4 becomes smaller than 10−3 for the instance at hand.

Constraints 4 and 5 make it intractable to solve real-world instances of the
problem with proof of optimality [14]. Therefore, either simplified models are
considered, such as formulations with linear objective function [21, 22], or ap-
proximate methods are applied.

3 Related work

Local search approaches have been widely applied to portfolio selection problems
under many different formulations. The first work on this subject appearing in
the literature is due to Rolland [30], who presents an implementation of Tabu
Search to tackle the unconstrained formulation. This formulation is considered
also in the implementation of evolutionary techniques in [2, 18, 19]. The use of
local search techniques for the constrained portfolio selection problem has been
proposed by several authors, including Chang et al. [4], Gilli and Këllezi [9] and
Schaerf [31].

The cited works however use local search as a monolithic solver, exploring
a search space composed of both continuous and discrete variables. Conversely,
our hybrid solver focuses on the discrete variables, leaving the determination
of the continuous ones to the QP solver. In addition, we consider here a more
general problem w.r.t. the cited three papers, including also the possibility to
specify a minimum number of assets (and not only the maximum).

Among the population-based methods developed for tackling the constrained
formulation, we mention Streichert et al. [33], in which the cardinality con-
strained variant is considered, and memetic algorithm approaches introduced
in [12, 15, 24]. These strategies, by being inherently effective in diversifying the
search, exhibit good performance especially in multi-objective formulations, as
shown by the family of Multi-Objective Evolutionary Algorithms [17, 8, 27, 33].
Finally, Ant Colony Optimisation has also been successfully applied to portfolio
problems modelled with the cardinality constraint in [1, 23].

For the sake of completeness, we also mention interesting hybrid heuristic
techniques based on linear programming that have been introduced in [32] and
deal with a linear objective function formulation with integer variable domains.
In this case, the value assigned to a variable represents the actual amount in-
vested in the asset. The basic idea behind these approaches is to relax the discrete
constraint on quantities, transforming the problem into a linear programming
problem and find a solution to it. Fractional asset weights are then rounded
to the closest admissible discrete quantity and a possible infeasible solution is
repaired heuristically. More robust strategies use the solution to the continuous
relaxation to feed a mixed integer-linear programming solver [16, 20].

4 Measured by what we call average percentage loss, introduced in Section 5.1.



4 A hybrid local search solver for portfolio selection

Our master solver is based on local search, which works on the space induced
by the vector Z only. For computing the actual quantities X , it invokes the QP
(slave) solver, using as the input assets only those such that zi = 1 in the current
state.

In order to apply local search techniques we need to define the search space,
the cost function, the neighbourhood structures, and the selection rule for the
initial solution.

4.1 Search space and cost function

The search space is composed of the all 2n possible configurations of Z, with the
exception of assignments that do not satisfy Constraints (4). These constraints
are therefore implicitly enforced by the local search solver by excluding them
from the search space. On the contrary, states that violate Constraints (1), (2),
(3), or (5) are included, and these constraints are passed to the QP solver that
handles them explicitly.

The QP solver receives as input only those assets included in the state under
consideration, and it produces the assignment of values to the corresponding
xi variables. For all assets ai that are not included in the state we obviously
set xi = 0. In addition, the QP solver also returns the computed risk f for the
solution produced, which represents the cost of the state.

If the QP solver is unable to produce a feasible solution it returns the special
value f = +∞ (and the values xi returned are not meaningful). In this case,
we relax Constraint (1) and we build the configuration, using only the assets
included that gives the highest return without violating the other constraints.
This construction is done by a greedy algorithm that sorts the assets by the
expected return and assigns the maximum quantity to each asset in turn, as
long as the sum is smaller than 1.

In the latter case the cost is the degree of violation of Constraint (1) mul-
tiplied by a suitably large constant (that ensures that return related costs are
always bigger than risk related ones).

4.2 Neighbourhood structure

The neighbourhood relation we propose is based on addition, deletion and re-
placement of an asset. A move m is identified by a pair 〈i, j〉, where ai is the
asset to be added and aj is the asset to be deleted (i, j ∈ {1, . . . , n}). The value
of i can also be 0, meaning that no asset is added. Analogously for j, if j = 0 it
means that no asset is deleted.

Notice that not all pairs m = 〈i, j〉, with i, j ∈ {0, 1, . . . , n}, correspond
to a feasible move, since some values are meaningless, e.g. inserting an asset
already present or setting both i and j to zero (null move). Moreover, moves
that violates Constraints (4) are also considered infeasible, e.g. a delete move
when the number of assets is equal to the minimum.



4.3 Initial solution construction

For the initial solution, we use three different strategies, that are employed at
different stages of the search (as explained in Section 4.4). For all three, we
ensure that Constraints (4) are always satisfied.

RandomCard: We draw at random a number k (between kmin and kmax), and
we insert k randomly selected assets.

MaxReturn: We build the portfolio that produces the maximum possible return
(independently of the risk)

PreviousPoint: We use the final solution of the previously computed point of
the frontier

4.4 Local search techniques

We implemented three local search techniques, namely Steepest Descent (SD),
First Descent (FD), and Tabu Search (TS).

The SD strategy relies on the exhaustive exploration of the neighbourhood
and the selection of the neighbour that has the minimal value of f (breaking ties
at random). The SD strategy stops as soon as no improving move is available, i.e.,
when a local minimum has been reached. FD behaves as SD with the difference
that, as soon as an improving move is found, it is selected and the exploration
of the current neighbourhood is interrupted.

For TS we use a dynamic-size tabu list to implement a short term prohibition
mechanism and the standard aspiration criterion [10]. Like for SD, we search for
the next state by exploring the full neighbourhood (excluding infeasible moves)
at each iteration.

In order to make the solvers more robust, for all techniques, we make two
runs for each value of R: one using the RandomCard initial solution construction,
and the other one starting from the best of the previous point (PreviousPoint

initial solution). For the very first point of the frontier (highest requested return
and no previous point available) we use instead the MaxReturn construction.

5 Experimental analysis

In this section, we first present the benchmark instances and the settings of
our solver. In the following subsections, we show the comparison with all the
previous works that use the same formulation. We conclude showing a search
space analysis that tries to explain the behaviour of our solvers on the proposed
instances.

5.1 Benchmark instances

We experimented our techniques on two groups of instances obtained from real
stock markets and used in previous works. The first is a group of five instances



Inst. Origin assets UEF

Group 1

1 Hong Kong 31 1.55936 ·10−3

2 Germany 85 0.412213 ·10−3

3 UK 89 0.454259 ·10−3

4 USA 98 0.502038 ·10−3

5 Japan 225 0.458285 ·10−3

Group 2

S1 USA (DataStream) 20 4.812528
S2 USA (DataStream) 30 8.892189
S3 USA (DataStream) 151 8.64933

Table 1: The benchmark instances.

taken from the repository ORlib available at the URL http://mscmga.ms.ai.

ac.uk/∼jeb/orlib/portfolio.html. These instances have been proposed by
Chang et al. [4] and have been studied also in [1, 26, 31]. The second group of
three instances have been provided to us by M. Schyns and are used in [5].

For the first group, a discretised UEF composed of 100 equally distributed
values for the expected return R is provided along with the data. For the second
group, we computed the discretised UEF ourselves using the QP solver with all
assets available and no additional constraints.

As in previous works, we evaluate the quality of our solutions employing
an aggregate indicator that measures the deviation of the CEF found by the
algorithms w.r.t. the UEF on the whole set of frontier points. We call this mea-
sure average percentage loss (apl) and we define it as follows: let Rl be the
expected return, V (Rl) and VU (Rl) the values of the function f returned by
the solver and the risk on the UEF, respectively, and l = 1, . . . , p where p is
the number of points of the frontier; the average percentage loss is equal to
100

p

∑p

l=1
(V (Rl)−VU (Rl))/VU (Rl). Table 1 illustrates for all instances the orig-

inal market, and the average variance of the UEF.

5.2 Experimental Setting of the Solvers

Experiments were performed on an Apple iMac computer equipped with an Intel
Core 2 Duo (2.16 GHz) processor and running Mac OS X 10.4; the SD, FD and
TS metaheuristics have been coded in C++ exploiting the framework EasyLo-

cal++ [6], the QP solver has also been coded in C++ and is made publicly
available from one of the authors’ website5. The executables were obtained using
the GNU C/C++ compiler (v. 4.0.1).

Concerning the algorithms setting, SD and FD have no parameter to be set;
for TS we tuned its parameters by means of a statistical technique called F-
race [3] and found that the algorithm is very robust with respect to parameter

5 http://www.diegm.uniud.it/digaspero/



setting. We set the tabu list size in the range [3 . . . 10] and we stop the execution
of TS when a maximum of 100 iterations without improvement was reached.

5.3 Comparison with previous results

Due to the different formulations employed by the authors, the only papers we
can compare with are those of Schaerf [31] and Moral-Escudero et al. [26], who
employ the same set of constraints on the ORlib instances, and with Crama
and Schyns [5] who deal with a slightly different setting and with a novel set
of instances. Concerning Chang et al. [4], as already pointed out in [31], even
though they work on the ORlib instances (and with the same constraints), a fair
comparison with their solutions is not possible because the problem is solved by
taking points along the frontier that are not homogeneously distributed.

Armañanzas and Lozano [1] work on a variant of the problem for which
the values kmin and kmax coincide (i.e., kmin = kmax = K) on the ORlib in-
stances. However, due to what we believe is an error in the implementation of
their solution methods 6 they obtain a set of points that are infeasible w.r.t.
Constraint (2). In details, they assign to the assets i for which zi = 1 chosen
by their ACO algorithm the quantity xi = (δi − ǫi)/K, therefore since they set
ǫi = 0.001, δi = 1 for all i = 1, . . . , n, they obtain

∑n

i=1
xi = 0.999 instead of

1. For this reason we could not compare our solvers with [1], nevertheless we
are going to present some results on the behaviour of one of our solvers on the
formulation proposed in that paper.

Comparison with Schaerf [31] and Moral-Escudero et al. [26] For this
comparison, we set the constraint values exactly as in [26, 31]: ǫi = 0.01 and
δi = 1 for i = 1, . . . , n, and kmax = 10 for all instances. The minimum cardinality
is not considered in the cited work, and therefore we set it to kmin = 1 (i.e., no
limitation).

Table 2 shows best results and running times obtained by our three solvers
in comparison with previous work. Since Moral-Escudero et al. [26] report only
the best outcomes of their solvers, in order to fairly compare with them we have
to present the results as the minimum average percentage loss w.r.t. the UEF
found by the algorithm.

The results of our solvers are the best CEFs found in 30 trials of the algorithm
on each instance and the running times reported are those of the best trial
(exactly as in [26]). Running times of [31] are obtained re-running Schaerf’s
software on our machine, those of Moral-Escudero et al. are taken from their
paper, and are obtained using a PC having about the same performances.

Table 2 shows that we obtain results superior to [31] both in terms of risk
and running times. This suggests that the hybrid solver outperforms monolithic
local search ones. Regarding [26], we obtain with SD exactly the same results of
their best solver, but in a much shorter time (on a comparable machine).

6 We found the error in our analysis of the data provided to us by J. Lozano.



FD + QP SD + QP TS + QP GA + QP [26] TS [31]
Inst. min apl time min apl time min apl time min apl time min apl time

1 0.00366 1.3s 0.00321 4.3s 0.00321 17.2s 0.00321 415.1s 0.00409 251s
2 2.66104 5.3s 2.53139 20.3s 2.53139 61.3s 2.53180 552.7s 2.53617 531s
3 2.00146 5.4s 1.92146 23.6s 1.92133 69.5s 1.92150 886.3s 1.92597 583s
4 4.77157 7.6s 4.69371 27.6s 4.69371 80.0s 4.69507 1163.7s 4.69816 713s
5 0.24176 15.7s 0.20219 69.5s 0.20210 210.7s 0.20198 1465.8s 0.20258 1603s

Table 2: Comparison of results with Schaerf [31] and Moral-Escudero et al. [26].

As already pointed out in [31], even though Chang et al. [4] solve the same
instances (and with the same constraints), a fair comparison with their solutions
is not possible. This is because they consider the CEF differently. Specifically,
they do not solve a different instance for each value of R, but (following Perold
[28]), they reformulate the problem without Constraint (1) and with the following
objective function: f(X) = λf1(X) + (1 − λ)f2(X). The problem is then solved
for different values of λ, and what they obtain is the solution for a set of values
for R which are not homogeneously distributed.

Comparison with Crama and Schyns [5] Since the results of Crama and
Schyns [5] are presented in graphical form and make use of a slightly different
cost function (i.e., they consider the standard deviation instead of the variance as
the risk measure) we re-run their solver7 on the three instances employed in their
experimentation employing the same parameter setting reported in their paper.
The constraints set in this experiment are as follows: kmin = 1, kmax = 10,
ǫi = 0, and δi = 0.25.

In Table 3 we present the outcome of this comparison. For each algorithm we
report in three columns the average and the standard deviation (in parentheses)
of the average percentage loss w.r.t. the UEF, and the average time spent by the
algorithm. The data was collected by running 30 times each algorithm on each
instance and computing the whole CEF.

From the table it is clear that, in terms of solution quality, the family of
our solvers outperforms the SA approach of Crama and Schyns. Looking at the
times, we can see that SA, in general, exhibits shorter running times than our
hybrid SD and TS approaches. This can be explained by the strategy employed
by both our algorithms that thoroughly explore the full neighbourhood of each
solution whereas the SA randomly picks out only some neighbours thus saving
time in the evaluation of the cost function. Moreover, the slave QP procedure
is more time-consuming than the solution evaluation carried out by Crama and
Schyns, however it allows us a higher accuracy on the assignment of the assets.

7 The executable was kindly provided to us by M. Schyns.



FD + QP SD + QP TS + QP SA [5]
Inst. apl time apl time apl time apl time

S1 0.72 (0.094) 0.3s 0.35 (0.0) 1.4s 0.35 (0.0) 4.6s 1.13 (0.13) 3.2s

S2 1.79 (0.22) 0.5s 1.48 (0.0) 3.1s 1.48 (0.0) 8.5s 3.46 (0.17) 5.4s

S3 10.50 (0.51) 10.2s 8.87 (0.003) 53.3s 8.87 (0.0003) 124.3s 16.12 (0.43) 30.1s

Table 3: Comparison of results with Crama and Schyns [5].
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(b) Results on instance 5.

Fig. 2: Average percentage loss found by our SD + QP solver varying K.

Results for fixed cardinality portfolios As mentioned previously, even
though we cannot compare our results with the work of Armañanzas and Lozano
[1], we decided to show some results of the SD solver on the ORlib instances by
setting the cardinality constraints so that they force the constructed portfolio
to have exactly kmin = kmax = K assets as in [1]. The quantity constraints are
set as in the first set of experiments, i.e. ǫi = 0.01, and δi = 1.

In Figure 2 we plot the behaviour of the average percentage loss found by
our SD + QP solver at different values of K on a selected pair of instances. The
curve is compared with the average percentage loss computed by the same solver
but relaxing the minimum cardinality constraint to kmin = 1 (i.e., just allowing
to include an increasing number of assets in the portfolios, but not obliging the
solver to compel to a fixed cardinality).

From the pictures we can notice an interesting phenomenon: the two curves
are almost indistinguishable up to a value of K for which the fixed cardinality
solutions tend to have an higher average percentage loss. In a sense, this sort
of minimum represent the best compromise in the cardinality, i.e., the optimal
fixed number of assets K that minimises the deviation from the best achievable
returns (i.e, the UEF values).



5.4 Search space analysis

We study the search space main characteristics of the instances composing the
benchmarks with the aim of providing an explanation for the observed algo-
rithm behaviour and elaborating some guidelines for understanding the hard-
ness of an instance when tackled with our hybrid local search. Once cardi-
nality constraints are set, in general we are interested in studying the char-
acteristics of the search space of the single instances of the problem along the
frontier, i.e., at fixed values of return R. Among the 100 points composing the
frontier, we took five samples homogeneously distributed along the frontier, in
order to estimate the characteristics of the search spaces encountered by our
solver along the whole frontier. Moreover, constrained instances with different
values of kmin and kmax have been considered. In our experiments, we chose
(kmin, kmax) ∈ {(3, 3), (6, 6), (10, 10), (1, 3), (1, 6), (1, 10)}.

One of the most relevant search space characteristics is the number of global
and local minima. The number of local minima is usually taken as an estima-
tion of the ruggedness of the search space, that, in turn, is roughly negatively
correlated with local search performance [13]. In order to estimate the number
of minima in an instance, we run a deterministic version of SD (called SDdet)

8

starting from initial states either produced by complete enumeration (for very
small size instances) or by uniformly sampling the search space.

Our analysis shows that the instances of the benchmarks have a very small
number of local minima, and only one global minimum (i.e., either a certified
global minimum, when exhaustive enumeration is performed, or the best known
solution, otherwise). Most of the analysed instances have only one minimum and
the other instances have not more than six minima. We observed that the latter
cases occur usually at low values of return R. Instance 4 is the one with the
greatest number of local minima, while the remaining instances have very few
cases with local minima.

This analysis may provide an explanation for the very similar performance
exhibited by SD and TS in terms of solution quality. To strengthen this argu-
ment, we also studied global and local minima basins of attraction, in order to
estimate the probability of reaching a global minimum [29]. Given a determin-
istic algorithm such as SDdet, the basin of attraction B(s) of a minimum s, is
defined as the set of states that, taken as initial states, give origin to trajectories
that ends at point s. The cardinality of B(s) represents its size (in this context,
we always deal with finite spaces). The quantity rBOA(s), defined as the ratio
between the size of B(s) and the search space size, is an estimation of the reach-
ability of state s. If the initial solution is chosen at random, the probability of
finding a global optimum s∗ is exactly equal to rBOA(s∗). Therefore, the higher
is this ratio, the higher is the probability of success of the algorithm. Both SD
and TS incorporate stochastic decision mechanisms and TS is also able to escape
from local minima, therefore the estimation of basins of attraction size related to
SDdet provides a lower bound on the probability of reaching the global optimum
when using SD and TS.

8 Ties are broken by enforcing a lexicographic order of states.
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(b) Instance 4: kmin = 1, kmax = 6,
R = 0.0019368822.
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(c) Instance 4: kmin = 1, kmax = 10,
R = 0.0037524115.
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(d) Instance S3: kmin = 1, kmax = 6,
R = 0.260588.

Fig. 3: Basins of attraction of minima on two benchmark instances with different car-
dinality and return constraints.

The outcome of our analysis is that global minima have usually a quite large
basin of attraction. Representative examples of these results are depicted in Fig-
ures 3a, 3b, 3c and 3d; segments represent the basins of attraction: their length
corresponds to rBOA and their y-value is the objective value of the corresponding
minimum. We can note that global minima have a quite large basin of attraction
whose rBOA ranges from 30% (in Figure 3c) to 60% (in Figure 3a).

It is worth remarking that these large basins are specific for our hybrid solver,
and this is not the case for monolithic local search ones. The presence of large
basins of attraction for the global optimum suggests that the best strategy for
tackling these instances is simply to run SD with random restarts, and that there
is no need for a more sophisticated solver such as TS.

However, since TS has better exploration capabilities than SD, it could still
show superior performances on other, possibly more constrained, instances. In-
deed, it is possible construct artificial instances with a large number of local
minima and a small basin for the global one; it is straightforward to show that
for such instances TS performs much better than SD for all values of R.



6 Conclusions and future work

Experiments show that our solver is comparable with (or superior to) the state of
the art for the less constrained problem formulation (no minimum). Comparison
for the general problem are subject of ongoing work. In the future, we plan to
adapt this approach to tackle other formulations, such as the discrete formulation
that is particularly interesting for some investors. This formulation enables us
to take into account aspects of real-world finance, such as transaction costs. To
this extent, instances including minimum lots will be investigated, since assets
generally cannot be purchased in any quantity and the amount of money to
be invested in a single asset must be a multiple of a given minimum lot [20].
Moreover, we are going to include also asset preassignments, that will be useful
for representing investor’s subjective preferences.

We also aim at identifying difficult instances and verify whether more sophis-
ticated local search metaheuristics, such as TS, could improve on the results of
the simple SD strategy.
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