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Abstract

The field of metaheuristics for the application to combinatorial optimization problems is a rapidly
growing field of research. This is due to the importance of combinatorial optimization problems for the
scientific as well as the industrial world. We give a survey of the nowadays most important metaheuristics
from a conceptual point of view. We outline the different components and concepts that are used in
the different metaheuristics in order to analyze their similarities and differences. Two very important
concepts in metaheuristics are intensification and diversification. These are the two forces that largely
determine the behaviour of a metaheuristic. They are in some way contrary but also complementary to
each other. We introduce a framework, that we call the /&D frame, in order to put different intensification
and diversification components into relation with each other. Outlining the advantages and disadvantages
of different metaheuristic approaches we conclude by pointing out the importance of hybridization of
metaheuristics as well as the integration of metaheuristics and other methods for optimization.

1 Introduction

Many optimization problems of both practical and theoretical importance concern themselves with the
choice of a “best” configuration of a set of variables to achieve some goals. They seem to divide natu-
rally into two categories: those where solutions are encoded with real-valued variables, and those where
solutions are encoded with discrete variables. Among the latter ones we find a class of problems called
Combinatorial Optimization (CO) problems. According to [126], in CO problems, we are looking for an
object from a finite — or possibly countably infinite — set. This object is typically an integer number, a
subset, a permutation, or a graph structure.

Definition 1.1. A Combinatorial Optimization problem P = (S, f) can be defined by:
e a set of variables X = {x1,...,xn};
e variable domains D1,...,Dy;
e constraints among variables;
e an objective function f to be minimized," where f : Dy X ...x D, = R*;
The set of all possible feasible assignments is
S={s={(x1,v1),---, (Xn,vn) } | vi € Dy, s satisfies all the constraints} .

S is usually called a search (or solution) space, as each element of the set can be seen as a candidate
solution. To solve a combinatorial optimization problem one has to find a solution s* € S with minimum
objective function value, that is, f(s*) < f(s) Vs € S. s* is called a globally optimal solution of (S, f) and
the set S* C S is called the set of globally optimal solutions.

! As maximizing an objective function f is the same as minimizing — f, in this work we will deal, without loss of generality, with
minimization problems.



Examples for CO problems are the Travelling Salesman problem (TSP), the Quadratic Assignment
problem (QAP), Timetabling and Scheduling problems. Due to the practical importance of CO problems,
many algorithms to tackle them have been developed. These algorithms can be classified as either complete
or approximate algorithms. Complete algorithms are guaranteed to find for every finite size instance of a
CO problem an optimal solution in bounded time (see [126, 122]). Yet, for CO problems that are A/P-
hard [63], no polynomial time algorithm exists, assuming that P # AP. Therefore, complete methods
might need exponential computation time in the worst-case. This often leads to computation times too high
for practical purposes. Thus, the use of approximate methods to solve CO problems has received more and
more attention in the last 30 years. In approximate methods we sacrifice the guarantee of finding optimal
solutions for the sake of getting good solutions in a significantly reduced amount of time.

Among the basic approximate methods we usually distinguish between constructive methods and local
search methods. Constructive algorithms generate solutions from scratch by adding — to an initially empty
partial solution — components, until a solution is complete. They are typically the fastest approximate
methods, yet they often return solutions of inferior quality when compared to local search algorithms.
Local search algorithms start from some initial solution and iteratively try to replace the current solution by
a better solution in an appropriately defined neighborhood of the current solution, where the neighborhood
is formally defined as follows:

Definition 1.2. A neighborhood structure is a function N\ : § — 25 that assigns to every s € S a set of
neighbors N (s) C S. N (s) is called the neighborhood of s.

The introduction of a neighborhood structure enables us to define the concept of locally minimal solu-
tions.

Definition 1.3. A locally minimal solution (or local minimum) with respect to a neighborhood structure
N is a solution § such that V' s € N (8) : £(8) < f(s). We call § a strict locally minimal solution if f(8) < f(s)
Vs € A(S).

In the last 20 years, a new kind of approximate algorithm has emerged which basically tries to com-
bine basic heuristic methods in higher level frameworks aimed at efficiently and effectively exploring a
search space. These methods are nowadays commonly called metaheuristics.> The term metaheuristic,
first introduced in [67], derives from the composition of two Greek words. Heuristic derives from the verb
heuriskein (€vpiokelv) which means “to find”, while the suffix mefa means “beyond, in an upper level”.
Before this term was widely adopted, metaheuristics were often called modern heuristics [137].

This class of algorithms includes® — but is not restricted to — Ant Colony Optimization (ACO), Evo-
lutionary Computation (EC) including Genetic Algorithms (GA), Iterated Local Search (ILS), Simulated
Annealing (SA), and Tabu Search (TS). Up to now there is no commonly accepted definition for the term
metaheuristic. It is just in the last few years that some researchers in the field tried to propose a definition.
In the following we quote some of them:

“A metaheuristic is formally defined as an iterative generation process which guides a subordinate
heuristic by combining intelligently different concepts for exploring and exploiting the search space, learn-
ing strategies are used to structure information in order to find efficiently near-optimal solutions.” [125].

” A metaheuristic is an iterative master process that guides and modifies the operations of subordinate
heuristics to efficiently produce high-quality solutions. It may manipulate a complete (or incomplete) sin-
gle solution or a collection of solutions at each iteration. The subordinate heuristics may be high (or low)
level procedures, or a simple local search, or just a construction method.” [164].

“Metaheuristics are typically high-level strategies which guide an underlying, more problem specific
heuristic, to increase their performance. The main goal is to avoid the disadvantages of iterative improve-
ment and, in particular, multiple descent by allowing the local search to escape from local optima. This

2The increasing importance of metaheuristics is underlined by the biannual Metaheuristics International Conference (MIC). The
Sth is being held in Kyoto in August 2003 (http://www-or.amp.i.kyoto-u.ac.jp/mic2003/).
3in alphabetical order



is achieved by either allowing worsening moves or generating new starting solutions for the local search
in a more “intelligent” way than just providing random initial solutions. Many of the methods can be in-
terpreted as introducing a bias such that high quality solutions are produced quickly. This bias can be of
various forms and can be cast as descent bias (based on the objective function), memory bias (based on
previously made decisions) or experience bias (based on prior performance). Many of the metaheuristic
approaches rely on probabilistic decisions made during the search. But, the main difference to pure ran-
dom search is that in metaheuristic algorithms randomness is not used blindly but in an intelligent, biased
form.” [153].

“A metaheuristic is a set of concepts that can be used to define heuristic methods that can be applied
to a wide set of different problems. In other words, a metaheuristic can be seen as a general algorithmic
framework which can be applied to different optimization problems with relatively few modifications to
make them adapted to a specific problem.” [110].

Summarizing, we outline fundamental properties which characterize metaheuristics:
e Metaheuristics are strategies that “guide” the search process.
e The goal is to efficiently explore the search space in order to find (near—)optimal solutions.

e Techniques which constitute metaheuristic algorithms range from simple local search procedures to
complex learning processes.

e Metaheuristic algorithms are approximate and usually non-deterministic.

e They may incorporate mechanisms to avoid getting trapped in confined areas of the search space.
e The basic concepts of metaheuristics permit an abstract level description.

e Metaheuristics are not problem-specific.

e Metaheuristics may make use of domain-specific knowledge in the form of heuristics that are con-
trolled by the upper level strategy.

e Todays more advanced metaheuristics use search experience (embodied in some form of memory)
to guide the search.

In short we could say that metaheuristics are high level strategies for exploring search spaces by using
different methods. Of great importance hereby is that a dynamic balance is given between diversification
and intensification. The term diversification generally refers to the exploration of the search space, whereas
the term intensification refers to the exploitation of the accumulated search experience. These terms stem
from the Tabu Search field [70] and it is important to clarify that the terms exploration and exploitation
are sometimes used instead, for example in the Evolutionary Computation field [48], with a more restricted
meaning. In fact, the notions of exploitation and exploration often refer to rather short term strategies tied to
randomness, whereas intensification and diversification also refer to medium and long term strategies based
on the usage of memory. The use of the terms diversification and intensification in their initial meaning
becomes more and more accepted by the whole field of metaheuristics. Therefore, we use them throughout
the paper. The balance between diversification and intensification as mentioned above is important, on one
side to quickly identify regions in the search space with high quality solutions and on the other side not
to waste too much time in regions of the search space which are either already explored or which do not
provide high quality solutions.

The search strategies of different metaheuristics are highly dependent on the philosophy of the meta-
heuristic itself. Comparing the strategies used in different metaheuristics is one of the goals of Section 5.
There are several different philosophies apparent in the existing metaheuristics. Some of them can be seen
as “intelligent” extensions of local search algorithms. The goal of this kind of metaheuristic is to escape
from local minima in order to proceed in the exploration of the search space and to move on to find other
hopefully better local minima. This is for example the case in Tabu Search, Iterated Local Search, Vari-
able Neighborhood Search, GRASP and Simulated Annealing. These metaheuristics (also called trajectory



methods) work on one or several neighborhood structure(s) imposed on the members (the solutions) of the
search space.

We can find a different philosophy in algorithms like Ant Colony Optimization and Evolutionary Com-
putation. They incorporate a learning component in the sense that they implicitly or explicitly try to learn
correlations between decision variables to identify high quality areas in the search space. This kind of
metaheuristic performs, in a sense, a biased sampling of the search space. For instance, in Evolutionary
Computation this is achieved by recombination of solutions and in Ant Colony Optimization by sampling
the search space in every iteration according to a probability distribution.

The structure of this work is as follows. There are several approaches to classify metaheuristics ac-
cording to their properties. In Section 2 we briefly list and summarize different classification approaches.
Section 3 and Section 4 are devoted to a description of the most important metaheuristics nowadays. Sec-
tion 3 describes the most relevant trajectory methods and in Section 4 we outline population-based methods.
Section 5 aims at giving a unifying view on metaheuristics with respect to the way they achieve intensifica-
tion and diversification. This is done by the introduction of a unifying framework, the /&D frame. Finally,
Section 6 offers some conclusions and an outlook to the future.

We believe that it is hardly possible to produce a completely accurate survey of metaheuristics that
is doing justice to every viewpoint. Moreover, a survey of an immense area such as metaheuristics has
to focus on certain aspects and therefore has unfortunately to neglect other aspects. Therefore, we want
to clarify at this point that this survey is done from the conceptual point of view. We want to outline
the different concepts that are used in different metaheuristics in order to analyze the similarities and the
differences between them. We do not go into the implementation of metaheuristics, which is certainly
an important aspect of metaheuristics research with respect to the increasing importance of efficiency and
software reusability. We refer the interested reader to [170, 78, 52, 145, 165].

2 Classification of metaheuristics

There are different ways to classify and describe metaheuristic algorithms. Depending on the charac-
teristics selected to differentiate among them, several classifications are possible, each of them being the
result of a specific viewpoint. We briefly summarize the most important ways of classifying metaheuristics.

Nature-inspired vs. non-nature inspired. Perhaps, the most intuitive way of classifying metaheuris-
tics is based on the origins of the algorithm. There are nature-inspired algorithms, like Genetic Algorithms
and Ant Algorithms, and non nature-inspired ones such as Tabu Search and Iterated Local Search. In our
opinion this classification is not very meaningful for the following two reasons. First, many recent hybrid
algorithms do not fit either class (or, in a sense, they fit both at the same time). Second, it is sometimes
difficult to clearly attribute an algorithm to one of the two classes. So, for example, one might ask the
question if the use of memory in Tabu Search is not nature-inspired as well.

Population-based vs. single point search. Another characteristic that can be used for the classification
of metaheuristics is the number of solutions used at the same time: Does the algorithm work on a population
or on a single solution at any time? Algorithms working on single solutions are called trajectory methods
and encompass local search-based metaheuristics, like Tabu Search, Iterated Local Search and Variable
Neighborhood Search. They all share the property of describing a trajectory in the search space during the
search process. Population-based metaheuristics, on the contrary, perform search processes which describe
the evolution of a set of points in the search space.

Dynamic vs. static objective function. Metaheuristics can also be classified according to the way they
make use of the objective function. While some algorithms keep the objective function given in the problem
representation “as it is”, some others, like Guided Local Search (GLS), modify it during the search. The
idea behind this approach is to escape from local minima by modifying the search landscape. Accordingly,
during the search the objective function is altered by trying to incorporate information collected during the
search process.

One vs. various neighborhood structures. Most metaheuristic algorithms work on one single neigh-
borhood structure. In other words, the fitness landscape topology does not change in the course of the
algorithm. Other metaheuristics, such as Variable Neighborhood Search (VNS), use a set of neighbor-



hood structures which gives the possibility to diversify the search by swapping between different fitness
landscapes.

Memory usage vs. memory-less methods. A very important feature to classify metaheuristics is the
use they make of the search history, that is, whether they use memory or not.* Memory-less algorithms
perform a Markov process, as the information they exclusively use to determine the next action is the cur-
rent state of the search process. There are several different ways of making use of memory. Usually we
differentiate between the use of short term and long term memory. The first usually keeps track of recently
performed moves, visited solutions or, in general, decisions taken. The second is usually an accumulation
of synthetic parameters about the search. The use of memory is nowadays recognized as one of the funda-
mental elements of a powerful metaheuristic.

In the following we describe the most important metaheuristics according to the single point vs. population-
based search classification, which divides metaheuristics into trajectory methods and population-based
methods. This choice is motivated by the fact that this categorization permits a clearer description of the
algorithms. Moreover, a current trend is the hybridization of methods in the direction of the integration of
single point search algorithms in population-based ones. In the following two sections we give a detailed
description of nowadays most important metaheuristics.

3 Trajectory Methods

In this section we outline metaheuristics called trajectory methods. The term trajectory methods is used
because the search process performed by these methods is characterized by a trajectory in the search space.
Hereby, a successor solution may or may not belong to the neighborhood of the current solution.

The search process of trajectory methods can be seen as the evolution in (discrete) time of a discrete
dynamical system [9, 35]. The algorithm starts from an initial state (the initial solution) and describes
a trajectory in the state space. The system dynamics depends on the strategy used; simple algorithms
generate a trajectory composed of two parts: a transient phase followed by an attractor (a fixed point,
a cycle or a complex attractor). Algorithms with advanced strategies generate more complex trajectories
which can not be subdivided in those two phases. The characteristics of the trajectory provide information
about the behavior of the algorithm and its effectiveness with respect to the instance that is tackled. It is
worth underlining that the dynamics is the result of the combination of algorithm, problem representation
and problem instance. In fact, the problem representation together with the neighborhood structures define
the search landscape; the algorithm describes the strategy used to explore the landscape and, finally, the
actual search space characteristics are defined by the problem instance to be solved.

We will first describe basic local search algorithms, before we proceed with the survey of more complex
strategies. Finally, we deal with algorithms that are general explorative strategies which may incorporate
other trajectory methods as components.

3.1 Basic Local Search: Iterative Improvement

The basic local search is usually called iterative improvement, since each move’ is only performed if

the resulting solution is better than the current solution. The algorithm stops as soon as it finds a local
minimum. The high level algorithm is sketched in Figure 1.

The function Improve(A(s)) can be in the extremes either a first improvement, or a best improvement
function, or any intermediate option. The former scans the neighborhood A/(s) and chooses the first solu-
tion that is better than s, the latter exhaustively explores the neighborhood and returns one of the solutions
with the lowest objective function value. Both methods stop at local minima. Therefore, their performance
strongly depends on the definition of S, f and A’. The performance of iterative improvement procedures on
CO problems is usually quite unsatisfactory. Therefore, several techniques have been developed to prevent
algorithms from getting trapped in local minima, which is done by adding mechanisms that allow them to
escape from local minima. This also implies that the termination conditions of metaheuristic algorithms

“4Here we refer to the use of adaptive memory, in contrast to rather rigid memory, as used for instance in Branch & Bound.
> A move is the choice of a solution s’ from the neighborhood A((s) of a solution s.



s <— GeneratelnitialSolution()
repeat

s < Improve(A(s))
until no improvement is possible

Figure 1: Algorithm: Iterative Improvement

s ¢ GeneratelnitialSolution()
T+ Ty
while termination conditions not met do
s’ < PickAtRandom(A((s))
if (f(s") < f(s)) then
s+ s % s' replaces s
else
Accept s” as new solution with probability p(T,s’, s)
endif
Update(T)
endwhile

Figure 2: Algorithm: Simulated Annealing (SA)

are more complex than simply reaching a local minimum. Indeed, possible termination conditions in-
clude: maximum CPU time, a maximum number of iterations, a solution s with f(s) less than a predefined
threshold value is found, or the maximum number of iterations without improvements is reached.

3.2 Simulated Annealing

Simulated Annealing (SA) is commonly said to be the oldest among the metaheuristics and surely one
of the first algorithms that had an explicit strategy to avoid local minima. The origins of the algorithm
are in statistical mechanics (Metropolis algorithm) and it was first presented as a search algorithm for CO
problems in [99] and [20]. The fundamental idea is to allow moves resulting in solutions of worse quality
than the current solution (uphill moves) in order to escape from local minima. The probability of doing
such a move is decreased during the search. The high level algorithm is described in Figure 2.

The algorithm starts by generating an initial solution (either randomly or heuristically constructed)
and by initializing the so-called temperature parameter 7. Then, at each iteration a solution s’ € A[(s) is
randomly sampled and it is accepted as new current solution depending on f(s), f(s’) and T. s’ replaces s
if f(s") < f(s) or, in case f(s') > f(s), with a probability which is a function of T and f(s") — f(s). The
probability is generally computed following the Boltzmann distribution exp(— M)

The temperature T is decreased® during the search process, thus at the beginning of the search the
probability of accepting uphill moves is high and it gradually decreases, converging to a simple iterative
improvement algorithm. This process is analogous to the annealing process of metals and glass, which
assume a low energy configuration when cooled with an appropriate cooling schedule. Regarding the
search process, this means that the algorithm is the result of two combined strategies: random walk and
iterative improvement. In the first phase of the search, the bias toward improvements is low and it permits
the exploration of the search space; this erratic component is slowly decreased thus leading the search to
converge to a (local) minimum. The probability of accepting uphill moves is controlled by two factors: the
difference of the objective functions and the temperature. On the one hand, at fixed temperature, the higher
the difference f(s") — f(s), the lower the probability to accept a move from s to s’. On the other hand, the
higher T, the higher the probability of uphill moves.

ST is not necessarily decreased in a monotonic fashion. Elaborate cooling schemes also incorporate an occasional increase of the
temperature.



The choice of an appropriate cooling schedule is crucial for the performance of the algorithm. The
cooling schedule defines the value of T at each iteration k, T+ = Q(Tx, k), where Q(Tx, k) is a function of
the temperature and of the iteration number. Theoretical results on non-homogeneous Markov chains [1]
state that under particular conditions on the cooling schedule, the algorithm converges in probability to a
global minimum for k — co. More precisely:

dreR st ]}im p(global minimum found after & steps) = 1
—yo0

_):oo

iff kg{ exp( T

1
A particular cooling schedule that fulfils the hypothesis for the convergence is the one that follows a log-
arithmic law: Ti4| = m (where ko is a constant). Unfortunately, cooling schedules which guarantee
the convergence to a global optimum are not feasible in applications, because they are too slow for prac-
tical purposes. Therefore, faster cooling schedules are adopted in applications. One of the most used
follows a geometric law: Tj+| = o}, where o € (0, 1), which corresponds to an exponential decay of the
temperature.

The cooling rule may vary during the search, with the aim of tuning the balance between diversification
and intensification. For example, at the beginning of the search, 7 might be constant or linearly decreasing,
in order to sample the search space; then, 7 might follow a rule such as the geometric one, to converge to
a local minimum at the end of the search. More successful variants are non-monotonic cooling schedules
(e.g., see [124, 106]). Non-monotonic cooling schedules are characterized by alternating phases of cooling
and reheating, thus providing an oscillating balance between diversification and intensification.

The cooling schedule and the initial temperature should be adapted to the particular problem instance,
since the cost of escaping from local minima depends on the structure of the search landscape. A simple
way of empirically determining the starting temperature 7Tj is to initially sample the search space with a
random walk to roughly evaluate the average and the variance of objective function values. But also more
elaborate schemes can be implemented [91].

The dynamic process described by SA is a Markov chain [49], as it follows a trajectory in the state space
in which the successor state is chosen depending only on the incumbent one. This means that basic SA is
memory-less. However, the use of memory can be beneficial for SA approaches (see for example [21]).

SA has been applied to several CO problems, such as the Quadratic Assignment Problem (QAP) [23]
and the Job Shop Scheduling (JSS) problem [162]. References to other applications can be found in [2,
91, 53]. SA is nowadays used as a component in metaheuristics, rather than applied as stand-alone search
algorithm. Variants of SA called Threshold Accepting and The Great Deluge Algorithm were presented
by [45] and [44].

3.3 Tabu Search

Tabu Search (TS) is among the most cited and used metaheuristics for CO problems. TS basic ideas
were first introduced in [67], based on earlier ideas formulated in [66].7 A description of the method and
its concepts can be found in [70]. TS explicitly uses the history of the search, both to escape from local
minima and to implement an explorative strategy. We will first describe a simple version of TS, to introduce
the basic concepts. Then, we will explain a more applicable algorithm and finally we will discuss some
improvements.

The simple TS algorithm (see Figure 3) applies a best improvement local search as basic ingredient
and uses a short term memory to escape from local minima and to avoid cycles. The short term memory is
implemented as a tabu list that keeps track of the most recently visited solutions and forbids moves toward
them. The neighborhood of the current solution is thus restricted to the solutions that do not belong to
the tabu list. In the following we will refer to this set as allowed set. At each iteration the best solution
from the allowed set is chosen as the new current solution. Additionally, this solution is added to the tabu
list and one of the solutions that were already in the tabu list is removed (usually in a FIFO order). Due
to this dynamic restriction of allowed solutions in a neighborhood, TS can be considered as a dynamic

"Related ideas were labelled steepest ascent/mildest descent method in [79].



s <— GeneratelnitialSolution()

TabulList < @

while termination conditions not met do
s + ChooseBestOf(A((s) \ TabuList)
Update(TabulList)

endwhile

Figure 3: Algorithm: Simple Tabu Search (TS)

neighborhood search technique [153]. The algorithm stops when a termination condition is met. It might
also terminate if the allowed set is empty, that is, if all the solutions in A(s) are forbidden by the tabu list.®

The use of a tabu list prevents from returning to recently visited solutions, therefore it prevents from
endless cycling® and forces the search to accept even uphill moves. The length [ of the tabu list (i.e., the
tabu tenure) controls the memory of the search process. With small tabu tenures the search will concentrate
on small areas of the search space. On the opposite, a large tabu tenure forces the search process to
explore larger regions, because it forbids revisiting a higher number of solutions. The tabu tenure can be
varied during the search, leading to more robust algorithms. An example can be found in [157], where
the tabu tenure is periodically reinitialized at random from the interval [/, lnax]. A more advanced use
of a dynamic tabu tenure is presented in [12, 11], where the tabu tenure is increased if there is evidence
for repetitions of solutions (thus a higher diversification is needed), while it is decreased if there are no
improvements (thus intensification should be boosted). More advanced ways to create dynamic tabu tenure
are described in [68].

However, the implementation of short term memory as a list that contains complete solutions is not
practical, because managing a list of solutions is highly inefficient. Therefore, instead of the solutions
themselves, solution attributes are stored.!® Attributes are usually components of solutions, moves, or
differences between two solutions. Since more than one attribute can be considered, a tabu list is introduced
for each of them. The set of attributes and the corresponding tabu lists define the tabu conditions which
are used to filter the neighborhood of a solution and generate the allowed set. Storing attributes instead
of complete solutions is much more efficient, but it introduces a loss of information, as forbidding an
attribute means assigning the tabu status to probably more than one solution. Thus, it is possible that
unvisited solutions of good quality are excluded from the allowed set. To overcome this problem, aspiration
criteria are defined which allow to include a solution in the allowed set even if it is forbidden by tabu
conditions. Aspiration criteria define the aspiration conditions that are used to construct the allowed set.
The most commonly used aspiration criterion selects solutions which are better than the current best one.
The complete algorithm, as described above, is reported in Figure 4.

Tabu lists are only one of the possible ways of taking advantage of the history of the search. They
are usually identified with the usage of short term memory. Information collected during the whole search
process can also be very useful, especially for a strategic guidance of the algorithm. This kind of long term
memory is usually added to TS by referring to four principles: recency, frequency, quality and influence.
Recency-based memory records for each solution (or attribute) the most recent iteration it was involved
in. Orthogonally, frequency-based memory keeps track of how many times each solution (attribute) has
been visited. This information identifies the regions (or the subsets) of the solution space where the search
was confined, or where it stayed for a high number of iterations. This kind of information about the past
is usually exploited to diversify the search. The third principle (i.e., quality) refers to the accumulation
and extraction of information from the search history in order to identify good solution components. This
information can be usefully integrated in the solution construction. Other metaheuristics (e.g., Ant Colony
Optimization) explicitly use this principle to learn about good combinations of solution components. Fi-
nally, influence is a property regarding choices made during the search and can be used to indicate which

8Strategies for avoiding to stop the search when the allowed set is empty include the choice of the least recently visited solution,
even if it is tabu.

9Cycles of higher period are possible, since the tabu list has a finite length [ which is smaller than the cardinality of the search
space.

101 addition to storing attributes, some longer term TS strategies also keep complete solutions (e.g., elite solutions) in the memory.



s <— GeneratelnitialSolution()
InitializeTabulLists(TLy,...,TL,)
k<0
while termination conditions not met do
AllowedSet (s,k) < {s' € N(s) | s does not violate a tabu condition,
or it satisfies at least one aspiration condition}
s < ChooseBestOf(AllowedSet (s, k))
UpdateTabulListsAndAspirationConditions()
k+k+1
endwhile

Figure 4: Algorithm: Tabu Search (TS)

while termination conditions not met do
s < ConstructGreedyRandomizedSolution() % see Figure 6
ApplyLocalSearch(s)
MemorizeBestFoundSolution()

endwhile

Figure 5: Algorithm: Greedy Randomized Adaptive Search Procedure (GRASP)

choices have shown to be the most critical. In general, the TS field is a rich source of ideas. Many of these
ideas and strategies have been and are currently adopted by other metaheuristics.

TS has been applied to most CO problems; examples for successful applications are the Robust Tabu
Search to the QAP [157], the Reactive Tabu Search to the MAXSAT problem [11], and to assignment prob-
lems [31]. TS approaches dominate the Job Shop Scheduling (JSS) problem area (see for example [123])
and the Vehicle Routing (VR) area [64]. Further current applications can be found at [156].

3.4 Explorative Local Search methods

In this section we present more recently proposed trajectory methods. These are the Greedy Randomized
Adaptive Search Procedure (GRASP), Variable Neighborhood Search (VNS), Guided Local Search (GLS)
and Iterated Local Search (ILS).

3.4.1 GRASP

The Greedy Randomized Adaptive Search Procedure (GRASP), see [50, 131], is a simple metaheuristic
that combines constructive heuristics and local search. Its structure is sketched in Figure 5. GRASP is an
iterative procedure, composed of two phases: solution construction and solution improvement. The best
found solution is returned upon termination of the search process.

The solution construction mechanism (see Figure 6) is characterized by two main ingredients: a dy-
namic constructive heuristic and randomization. Assuming that a solution s consists of a subset of a set of
elements (solution components), the solution is constructed step-by-step by adding one new element at a
time. The choice of the next element is done by picking it uniformly at random from a candidate list. The
elements are ranked by means of a heuristic criterion that gives them a score as a function of the (myopic)
benefit if inserted in the current partial solution. The candidate list, called restricted candidate list (RCL),
is composed of the best o elements. The heuristic values are updated at each step, thus the scores of ele-
ments change during the construction phase, depending on the possible choices. This constructive heuristic
is called dynamic, in contrast to the sfatic one which assigns a score to elements only before starting the
construction. For instance, one of the static heuristics for the TSP is based on arc costs: the lower the cost



s 0 % s denotes a partial solution in this case
o < DetermineCandidateListLength() % definition of the RCL length
while solution not complete do

RCLy + GenerateRestrictedCandidateList(s)

x < SelectElementAtRandom(RCL)

s sU{x}

UpdateGreedyFunction(s) % update of the heuristic values (see text)
endwhile

Figure 6: Greedy randomized solution construction

of an arc, the higher its score. An example of a dynamic heuristic is the cheapest insertion heuristic, where
the score of an element is evaluated depending on the current partial solution.

The length o of the restricted candidate list determines the strength of the heuristic bias. In the extreme
case of oo = 1 the best element would be added, thus the construction would be equivalent to a deterministic
Greedy Heuristic. On the opposite, in case o = n the construction would be completely random (indeed,
the choice of an element from the candidate list is done at random). Therefore, o is a critical parameter
which influences the sampling of the search space. In [131] the most important schemes to define o are
listed. The simplest scheme is, trivially, to keep o constant; it can also be changed at each iteration, either
randomly or by means of an adaptive scheme.

The second phase of the algorithm is a local search process, which may be a basic local search algorithm
such as iterative improvement, or a more advanced technique such as SA or TS. GRASP can be effective if
two conditions are satisfied:

e the solution construction mechanism samples the most promising regions of the search space;

e the solutions constructed by the constructive heuristic belong to basins of attraction of different
locally minimal solutions;

The first condition can be met by the choice of an effective constructive heuristic and an appropriate length
of the candidate list, whereas the second condition can be met by choosing the constructive heuristic and
the local search in a way such that they fit well.

The description of GRASP as given above indicates that a basic GRASP does not use the history of the
search process.!! The only memory requirement is for storing the problem instance and for keeping the
best so-far solution. This is one of the reasons why GRASP is often outperformed by other metaheuristics.
However, due to its simplicity, it is generally very fast and it is able to produce quite good solutions in a
very short amount of computation time. Furthermore, it can be successfully integrated into other search
techniques. Among the applications of GRASP we mention the JSS problem [13], the graph planarization
problem [142] and assignment problems [132]. A detailed and annotated bibliography references many
more applications [51].

3.4.2 Variable Neighborhood Search

Variable Neighborhood Search (VNS) is a metaheuristic proposed in [81, 82], which explicitly applies a
strategy based on dynamically changing neighborhood structures. The algorithm is very general and many
degrees of freedom exist for designing variants and particular instantiations. 2

At the initialization step, a set of neighborhood structures has to be defined. These neighborhoods can
be arbitrarily chosen, but often a sequence |A|| < |A2| < ... < |Ag,,. | of neighborhoods with increasing
cardinality is defined.'® Then an initial solution is generated, the neighborhood index is initialized and the

However, some extensions in this direction are cited in [131], and an example for a metaheuristic method using an adaptive
greedy procedure depending on search history is Squeaky Wheel Optimization (SWO) [95].

12The variants described in the following are also described in [81, 82].

31n principle they could be one included in the other, A C A5 C ... C Ak,...- Nevertheless, such a sequence might produce an
inefficient search, because a large number of solutions could be revisited.
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Select a set of neighborhood structures A, k=1, ..., kpax
s <— GeneratelnitialSolution()
while termination conditions not met do

k<1
while k < ka0, do % Inner loop
s’ + PickAtRandom (A (s)) % Shaking phase

s’ « LocalSearch(s')

if (f(s') < f(s)) then
S S”
k+1
else
k+—k+1
endif
endwhile

endwhile

Figure 7: Algorithm: Variable Neighborhood Search (VNS)

algorithm iterates until a stopping condition is met (see Figure 7). VNS’ main cycle is composed of three
phases: shaking, local search and move. In the shaking phase a solution s’ in the k-th neighborhood of
the current solution s is randomly selected. Then, s’ becomes the local search starting point. The local
search can use any neighborhood structure and is not restricted to the set of neighborhood structures A,
k=1,--- knax. At the end of the local search process (terminated as soon as a predefined termination
condition is verified) the new solution s” is compared with s and, if it is better, it replaces s and the
algorithm starts again with k = 1. Otherwise, k is incremented and a new shaking phase starts using a
different neighborhood.

The objective of the shaking phase is to perturb the solution so as to provide a good starting point for
the local search. The starting point should belong to the basin of attraction of a different local minimum
than the current one, but should not be “too far” from s, otherwise the algorithm would degenerate into a
simple random multi-start. Moreover, choosing s’ in the neighborhood of the current best solution is likely
to produce a solution that maintains some good features of the current one.

The process of changing neighborhoods in case of no improvements corresponds to a diversification
of the search. In particular the choice of neighborhoods of increasing cardinality yields a progressive
diversification. The effectiveness of this dynamic neighborhood strategy can be explained by the fact that
a “bad” place on the search landscape given by one neighborhood could be a “good” place on the search
landscape given by another neighborhood.'* Moreover, a solution that is locally optimal with respect to
a neighborhood is probably not locally optimal with respect to another neighborhood. These concepts are
known as “One Operator, One Landscape” and explained in [93, 94]. The core idea is that the neighborhood
structure determines the topological properties of the search landscape, i.e., each neighborhood defines one
landscape. The properties of a landscape are in general different from those of other landscapes, therefore
a search strategy performs differently on them (see an example in Figure 8).

This property is directly exploited by a local search called Variable Neighborhood Descent (VND).
In VND a best improvement local search (see Section 3.1) is applied, and, in case a local minimum is
found, the search proceeds with another neighborhood structure. The VND algorithm can be obtained by
substituting the inner loop of the VNS algorithm (see Figure 7) with the following pseudo-code:

s' + ChooseBestOf(N\;(s))

if (f(s') < f(s)) then % i.e., if a better solution is found in A(s)
s s
else % 1i.e., s 1s a local minimum

14 A “good” place in the search space is an area from which a good local minimum can be reached.
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Figure 8: Two search landscapes defined by two different neighborhoods. On the landscape that is shown
in the graphic on the left, the best improvement local search stops at s7, while it proceeds till a better local
minimum §, on the landscape that is shown in the graphic on the right.

k—k+1
endif

As can be observed from the description as given above, the choice of the neighborhood structures
is the critical point of VNS and VND. The neighborhoods chosen should exploit different properties and
characteristics of the search space, that is, the neighborhood structures should provide different abstractions
of the search space. A variant of VNS is obtained by selecting the neighborhoods in such a way as to
produce a problem decomposition (the algorithm is called Variable Neighborhood Decomposition Search
— VNDS). VNDS follows the usual VNS scheme, but the neighborhood structures and the local search are
defined on sub-problems. For each solution, all attributes (usually variables) are kept fixed except for k
of them. For each k a neighborhood structure A} is defined. Local search only regards changes on the
variables belonging to the sub-problem it is applied to. The inner loop of VNDS is the following:

s' + PickAtRandom(Aj(s)) % s and s’ differ in k attributes
s" + LocalSearch(s’,Attributes) % only moves involving
the k attributes are allowed

if (f(s") < f(s)) then

s« 5"

k<1
else

k< k+1
endif

The decision whether to perform a move can be varied as well. The acceptance criterion based on im-
provements is strongly steepest descent-oriented and it might not be suited to effectively explore the search
space. For example, when local minima are clustered, VNS can quickly find the best optimum in a cluster,
but it has no guidance to leave that cluster and find another one. Skewed VNS (SVNS) extends VNS by
providing a more flexible acceptance criterion that takes also into account the distance from the current
solution.!> The new acceptance criterion is the following: besides always accepting improvements, worse
solutions can be accepted if the distance from the current one is less than a value ap(s,s”). The function
p(s,s”) measures the distance between s and s” and o is a parameter that weights the importance of the
distance between the two solutions in the acceptance criterion. The inner loop of SVNS can be sketched as
follows:
if (f(s') —op(s,s ) < f(s)) then
s s
k<1
else
k< k+1
endif

I5A distance measure between solutions has thus to be formally defined.
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objective function

Solution space

Figure 9: Basic GLS idea: escaping from a valley in the landscape by increasing the objective function
value of its solutions.

VNS and its variants have been successfully applied to graph based CO problems such as the p-Median
problem [80], the degree constrained minimum spanning tree problem [143], the Steiner tree problem [168]
and the k-Cardinality Tree (KCT) problem [116]. References to more applications can be found in [82].

3.4.3 Guided Local Search

Tabu Search and Variable Neighborhood Search explicitly deal with dynamic neighborhoods with the aim
of efficiently and effectively exploring the search space. A different approach for guiding the search is
to dynamically change the objective function. Among the most general methods that use this approach is
Guided Local Search (GLS) [167, 166].

The basic GLS principle is to help the search to gradually move away from local minima by changing
the search landscape. In GLS the set of solutions and the neighborhood structure are kept fixed, while
the objective function f is dynamically changed with the aim of making the current local optimum “less
desirable”. A pictorial description of this idea is given in Figure 9.

The mechanism used by GLS is based on solution features, which may be any kind of properties or
characteristics that can be used to discriminate between solutions. For example, solution features in the
TSP could be arcs between pairs of cities, while in the MAXSAT problem they could be the number of
unsatisfied clauses. An indicator function /;(s) indicates whether the feature i is present in solution s:

Ii(s) = { 1 if featu.re i is present in solution s
! 0 : otherwise .

The objective function f is modified to yield a new objective function f ! by adding a term that depends on
the m features:

f(8) = F(8) + AL pi-Iils)

where p; are called penalty parameters and A is called the regularization parameter. The penalty
parameters weight the importance of the features: the higher p;, the higher the importance of feature i,
thus the higher the cost of having that feature in the solution. The regularization parameter balances the
relevance of features with respect to the original objective function.

The algorithm (see Figure 10) works as follows. It starts from an initial solution and applies a local
search method until a local minimum is reached. Then the array p = (p1,..., pm) of penalties is updated by
incrementing some of the penalties and the local search is started again. The penalized features are those
that have the maximum utility:
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s <— GeneratelnitialSolution()
while termination conditions not met do

s < LocalSearch(s, f’)

for all feature i with maximum utility Util(s,i) do

pi+pi+1

endfor

Update(f’,p) % p is the penalty vector
endwhile

Figure 10: Algorithm: Guided Local Search (GLS)

Util(s,i) =Ii(s) - 15

where c; are costs assigned to every feature i giving a heuristic evaluation of the relative importance of
features with respect to others. The higher the cost, the higher the utility of features. Nevertheless, the cost
is scaled by the penalty parameter to prevent the algorithm from being totally biased toward the cost and to
make it sensitive to the search history.

The penalties update procedure can be modified by adding a multiplicative rule to the simple incre-
menting rule (that is applied at each iteration). The multiplicative rule has the form: p; < p;- o, where
o € (0,1). This rule is applied with a lower frequency than the incrementing one (for example every few
hundreds of iterations) with the aim of smoothing the weights of penalized features so as to prevent the
landscape from becoming too rugged. It is important to note that the penalties update rules are often very
sensitive to the problem instance.

GLS has been successfully applied to the weighted MAXSAT [114], the VR problem [98], the TSP and
the QAP [167].

3.4.4 Iterated Local Search

We conclude this presentation of explorative strategies with Iterated Local Search (ILS), the most general
scheme among the explorative strategies. On the one hand, its generality makes it a framework for other
metaheuristics (such as VNS); on the other hand, other metaheuristics can be easily incorporated as sub-
components. ILS is a simple but powerful metaheuristic algorithm [153, 152, 105, 104, 108]. It applies
local search to an initial solution until it finds a local optimum; then it perturbs the solution and it restarts
local search. The importance of the perturbation is obvious: too small a perturbation might not enable the
system to escape from the basin of attraction of the local optimum just found. On the other side, too strong
a perturbation would make the algorithm similar to a random restart local search.

A local search is effective if it is able to find good local minima, that is, if it can find the basin of
attraction of those states. When the search space is wide and/or when the basins of attraction of good local
optima are small,'® a simple multi-start algorithm is almost useless. An effective search could be designed
as a trajectory only in the set of local optima S, instead of in the set S of all the states. Unfortunately, in
most cases there is no feasible way of introducing a neighborhood structure for S. Therefore, a trajectory
along local optima 57, $3,-..,$; is performed, without explicitly introducing a neighborhood structure, by
applying the following scheme:

1. Execute local search (LS) from an initial state s until a local minimum § is found.
2. Perturb § and obtain s'.

3. Execute LS from s’ until a local minimum s’ is reached.

4. On the basis of an acceptance criterion decide whether to set § « .

5. Goto step 2.

16The basin of attraction size of a point s (in a finite space), is defined as the fraction of initial states of trajectories which converge
to point s.
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so ¢— GeneratelnitialSolution()
§ +— LocalSearch(sp)
while termination conditions not met do
s' < Perturbation($, history)
s’ « LocalSearch(s’)
§ < ApplyAcceptanceCriterion(s, s ,history)
endwhile

Figure 11: Algorithm: Iterated Local Search (ILS)

perturbation

objective function

Solution space

Figure 12: A desirable ILS step: the local minimum § is perturbed, then LS is applied and a new local
minimum is found.

The requirement on the perturbation of § is to produce a starting point for local search such that a local
minimum different from § is reached. However, this new local minimum should be closer to § than a local
minimum produced by a random restart. The acceptance criterion acts as a counterbalance, as it filters and
gives feedback to the perturbation action, depending on the characteristics of the new local minimum. A
high level description of ILS as it is described in [105] is given in Figure 11. Figure 12 shows a possible
(lucky) ILS step.

The design of ILS algorithms has several degrees of freedom in the choice of the initial solution,
perturbation and acceptance criteria. A key role is played by the history of the search which can be exploited
both in form of short and long term memory.

The construction of initial solutions should be fast (computationally not expensive), and initial solu-
tions should be a good starting point for local search. The fastest way of producing an initial solution
is to generate it at random; however, this is the easiest way for problems that are constrained, whilst in
other cases the construction of a feasible solution requires also constraint checking. Constructive methods,
guided by heuristics, can also be adopted. It is worth underlining that an initial solution is considered a
good starting point depending on the particular LS applied and on the problem structure, thus the algorithm
designer’s goal is to find a trade-off between speed and quality of solutions.

The perturbation is usually non-deterministic in order to avoid cycling. Its most important characteristic
is the strength, roughly defined as the amount of changes made on the current solution. The strength can be
either fixed or variable. In the first case, the distance between § and s’ is kept constant, independently of the
problem size. However, a variable strength is in general more effective, since it has been experimentally
found that, in most of the problems, the bigger the problem size, the larger should be the strength. More
sophisticated schemes are possible; for example, the strength can be adaptive: it increases when more
diversification is needed and it decreases when intensification seems preferable. VNS and its variants
belong to this category. A second choice is the mechanism to perform perturbations. This may be a
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random mechanism, or the perturbation may be produced by a (semi—)deterministic method (e.g., a LS
different from the one used in the main algorithm).

The third important component is the acceptance criterion. Two extreme examples consist in (1) ac-
cepting the new local optimum only in case of improvement and (2) in always accepting the new solution.
In-between, there are several possibilities. For example, it is possible to adopt a kind of annealing schedule:
accept all the improving new local optima and accept also the non-improving ones with a probability that
is a function of the temperature 7" and the difference of objective function values. In formulae:

. 1 if £(s') < f(§
p(Accept($,s', history)) = { FE)-£6) A <16
T

exp(— otherwise

The cooling schedule can be either monotonic (non-increasing in time) or non-monotonic (adapted to
tune the balance between diversification and intensification). The non-monotonic schedule is particularly
effective if it exploits the history of the search, in a way similar to the Reactive Tabu Search [157] mentioned
at the end of the section about Tabu Search. When intensification seems no longer effective, a diversification
phase is needed and the temperature is increased.

Examples for successful applications of ILS are to the TSP [107, 92], to the QAP [105], and to the
Single Machine Total Weighted Tardiness (SMTWT) problem [32]. References to other applications can
be found in [105].

4 Population-based methods

Population-based methods deal in every iteration of the algorithm with a set (i.e. a population) of solu-
tions'” rather than with a single solution. As they deal with a population of solutions, population-based
algorithms provide a natural, intrinsic way for the exploration of the search space. Yet, the final perfor-
mance depends strongly on the way the population is manipulated. The most studied population-based
methods in combinatorial optimization are Evolutionary Computation (EC) and Ant Colony Optimization
(ACO). In EC algorithms, a population of individuals is modified by recombination and mutation operators,
and in ACO a colony of artificial ants is used to construct solutions guided by the pheromone trails and
heuristic information.

4.1 Evolutionary Computation

Evolutionary Computation (EC) algorithms are inspired by nature’s capability to evolve living beings well
adapted to their environment. EC algorithms can be succinctly characterized as computational models
of evolutionary processes. At each iteration a number of operators is applied to the individuals of the
current population to generate the individuals of the population of the next generation (iteration). Usually,
EC algorithms use operators called recombination or crossover to recombine two or more individuals to
produce new individuals. They also use mutation or modification operators which cause a self-adaptation
of individuals. The driving force in evolutionary algorithms is the selection of individuals based on their
fitness (this can be the value of an objective function or the result of a simulation experiment, or some
other kind of quality measure). Individuals with a higher fitness have a higher probability to be chosen as
members of the population of the next iteration (or as parents for the generation of new individuals). This
corresponds to the principle of survival of the fittest in natural evolution. It is the capability of nature to
adapt itself to a changing environment, which gave the inspiration for EC algorithms.

There has been a variety of slightly different EC algorithms proposed over the years. Basically they fall
into three different categories which have been developed independently from each other. These are Evo-
lutionary Programming (EP) developed by [57] and [58], Evolutionary Strategies (ES) proposed by [136]
and Genetic Algorithms initiated by [89] (see [73], [115], [139] and [163] for further references). EP arose
from the desire to generate machine intelligence. While EP originally was proposed to operate on discrete
representations of finite state machines, most of the present variants are used for continuous optimization
problems. The latter also holds for most present variants of ES, whereas GAs are mainly applied to solve

7In general, especially in EC algorithms, we talk about a population of individuals rather than solutions.
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P < GeneratelnitialPopulation()
Evaluate(P)
while termination conditions not met do
P’ + Recombine(P)
P" «+ Mutate(P')
Evaluate(P")
P + Select(P"UP)
endwhile

Figure 13: Algorithm: Evolutionary Computation (EC)

combinatorial optimization problems. Over the years there have been quite a few overviews and surveys
about EC methods. Among those are the ones by [5], by [55], by [149] and by [112]. [17] propose a
taxonomy of EC algorithms.

In the following we provide a “combinatorial optimization’-oriented introduction to EC algorithms.
For doing this, we follow an overview work by [86], which gives, in our opinion, a good overview of the
different components of EC algorithms and of the possibilities to define them.

Figure 13 shows the basic structure of every EC algorithm. In this algorithm, P denotes the population
of individuals. A population of offspring is generated by the application of recombination and mutation
operators and the individuals for the next population are selected from the union of the old population and
the offspring population. The main features of an EC algorithm are outlined in the following.

Description of the individuals: EC algorithms handle populations of individuals. These individuals
are not necessarily solutions of the considered problem. They may be partial solutions, or sets of solutions,
or any object which can be transformed into one or more solutions in a structured way. Most commonly
used in combinatorial optimization is the representation of solutions as bit-strings or as permutations of n
integer numbers. Tree-structures or other complex structures are also possible. In the context of Genetic
Algorithms, individuals are called genotypes, whereas the solutions that are encoded by individuals are
called phenotypes. This is to differentiate between the representation of solutions and solutions themselves.
The choice of an appropriate representation is crucial for the success of an EC algorithm. Holland’s schema
analysis [89] and Radcliffe’s generalization to formae [134] are examples of how theory can help to guide
representation choices.

Evolution process: In each iteration it has to be decided which individuals will enter the population of
the next iteration. This is done by a selection scheme. To choose the individuals for the next population
exclusively from the offspring is called generational replacement. If it is possible to transfer individuals
of the current population into the next population, then we deal with a so-called steady state evolution
process.

Most EC algorithms work with populations of fixed size keeping at least the best individual always in the
current population. It is also possible to have a variable population size. In case of a continuously shrinking
population size, the situation where only one individual is left in the population (or no crossover partners
can be found for any member of the population) might be one of the stopping conditions of the algorithm.

Neighborhood structure: A neighborhood function Az : I — 2 on the set of individuals I assigns to
every individual i € I a set of individuals Nz(i) C I which are permitted to act as recombination partners
for i to create offspring. If an individual can be recombined with any other individual (as for example in
the simple GA) we talk about unstructured populations, otherwise we talk about structured populations.
An example for an EC algorithm that works on structured populations is the Parallel Genetic Algorithm
proposed by [119].

Information sources: The most common form of information sources to create offspring (i.e., new
individuals) is a couple of parents (two-parent crossover). But there are also recombination operators
that operate on more than two individuals to create a new individual (multi-parent crossover), see [46].
More recent developments even use population statistics for generating the individuals of the next popula-
tion. Examples are the recombination operators called Gene Pool Recombination [121] and Bit-Simulated
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Crossover [155] which make use of a distribution over the search space given by the current population to
generate the next population.

Infeasibility: An important characteristic of an EC algorithm is the way it deals with infeasible indi-
viduals. When recombining individuals the offspring might be potentially infeasible. There are basically
three different ways to handle such a situation. The most simple action is to reject infeasible individuals.
Nevertheless, for many problems (e.g., for timetabling problems) it might be very difficult to find feasible
individuals. Therefore, the strategy of penalizing infeasible individuals in the function that measures the
quality of an individual is sometimes more appropriate (or even unavoidable). The third possibility consists
in trying to repair an infeasible solution (see [47] for an example).

Intensification strategy: In many applications it proved to be quite beneficial to use improvement

mechanisms to improve the fitness of individuals. EC algorithms that apply a local search algorithm to
every individual of a population are often called Memetic Algorithms [117, 118]. While the use of a
population ensures an exploration of the search space, the use of local search techniques helps to quickly
identify “good” areas in the search space.
Another intensification strategy is the use of recombination operators that explicitly try to combine “good”
parts of individuals (rather than, for example, a simple one-point crossover for bit-strings). This may guide
the search performed by EC algorithms to areas of individuals with certain “good” properties. Techniques
of this kind are sometimes called linkage learning or building block learning (see [74, 161, 169, 83] as
examples). Moreover, generalized recombination operators have been proposed in the literature, which
incorporate the notion of “neighborhood search” into EC. An example can be found in [135].

Diversification strategy: One of the major difficulties of EC algorithms (especially when applying
local search) is the premature convergence toward sub-optimal solutions. The most simple mechanism to
diversify the search process is the use of a mutation operator. The simple form of a mutation operator just
performs a small random perturbation of an individual, introducing a kind of noise. In order to avoid pre-
mature convergence there are ways of maintaining the population diversity. Probably the oldest strategies
are crowding [28] and its close relative, preselection. Newer strategies are fitness sharing [75], respectively
niching, whereby the reproductive fitness allocated to an individual in a population is reduced proportion-
ally to the number of other individuals that share the same region of the search space.

This concludes the list of the main features of EC algorithms. EC algorithms have been applied to
most CO problems and optimization problems in general. Recent successes were obtained in the rapidly
growing bioinformatics area (see for example [56]), but also in multi-objective optimization [22], and in
evolvable hardware [147]. For an extensive collection of references to EC applications we refer to [6]. In
the following two subsections we are going to introduce two other populations-based methods which are
sometimes also regarded as being EC algorithms.

4.1.1 Scatter Search and Path Relinking

Scatter Search and its generalized form called Path Relinking [69, 71] differ from EC algorithms mainly by
providing unifying principles for joining (or recombining) solutions based on generalized path construc-
tions in Euclidean or neighborhood spaces. They also incorporate some ideas originating from Tabu Search
methods, as, for example, the use of adaptive memory and associated memory-exploiting mechanisms. The
template for Scatter Search (respectively, Path Relinking) is shown in Figure 14.

Scatter Search (respectively, Path Relinking) is a search strategy that generates a set of solutions from
a chosen set of reference solutions corresponding to feasible solutions to the problem under consideration.
This is done by making combinations of subsets of the current set of reference solutions. The resulting so-
lutions are called trial solutions. These trial solutions may be infeasible solutions and are therefore usually
modified by means of a repair procedure that transforms them into feasible solutions. An improvement
mechanism is then applied in order to try to improve the set of trial solutions (usually this improvement
procedure is a local search). These improved solutions form the set of dispersed solutions. The new set
of reference solutions that will be used in the next iteration is selected from the current set of reference
solutions and the newly created set of dispersed solutions. The components of the pseudo-code, which is
shown in Figure 14, are explained in the following:
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Initial Phase:

SeedGeneration()

repeat
DiversificationGenerator()
Improvement()
ReferenceSetUpdate()

until the reference set is of cardinality n

Scatter Search/Path Relinking Phase:
repeat
SubsetGeneration()
SolutionCombination()
Improvement()
ReferenceSetUpdate()
until termination criteria met

Figure 14: Algorithm: Scatter Search and Path Relinking

SeedGeneration(): One or more seed solutions, which are arbitrary trial solutions, are created and used
to initiate the remainder of the method.

DiversificationGenerator(): This is a procedure to generate a collection of diverse trial solutions from an
arbitrary trial solution (or seed solution).

Improvement(): In this procedure, an improvement mechanism — usually a local search — is used to
transform a trial solution into one or more enhanced trial solutions. Neither the input nor the output
solutions are required to be feasible, though the output solutions will more usually be expected to be
so. It might be necessary to apply repair methods to infeasible solutions.

ReferenceSetUpdate(): The procedure for updating the reference set is responsible for building and
maintaining a reference set consisting of a number of “best” solutions found in the course of the algorithm.
The attribute “best” covers features such as quality of solutions and diversity of solutions (the solutions in
the reference set should be of good quality and they should be diverse).

SubsetGeneration(): This method operates on the reference set, to produce a subset of its solutions as a
basis for creating combined solutions.

SolutionCombination(): A procedure to transform a given subset of solutions produced by the subset
generation method into one or more combined solutions. In Scatter Search, which was introduced for solu-
tions encoded as points in the Euclidean space, new solutions are created by building linear combinations
of reference solutions using both positive and negative weights. This means that trial solutions can be both,
inside and outside the convex region spanned by the reference solutions. In Path Relinking the concept
of combining solutions by making linear combinations of reference points is generalized to neighborhood
spaces. Linear combinations of points in the Euclidean space can be re-interpreted as paths between and
beyond solutions in a neighborhood space. To generate the desired paths, it is only necessary to select
moves that satisfy the following condition: upon starting from an initiating solution, the moves must pro-
gressively introduce attributes contributed by a guiding solution. Multi-parent path generation possibilities
emerge in Path Relinking by considering the combined attributes provided by a set of guiding solutions,
where these attributes are weighted to determine which moves are given higher priority.

Scatter Search enjoys increasing interest in recent years. Among other problems it has been applied
to multi-objective assignment problems [100] and the Linear Ordering Problem (LOP) [18]. For further
references we refer to [72]. Path relinking is often used as a component in metaheuristics such as Tabu
Search [102] and GRASP [3, 101].
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P < InitializePopulation()

while termination criteria not met do
P;,; < Select(P) % Ps.; C P
p(x) = p(x | Py;) < EstimateProbabilityDistribution()
P < SampleProbabilityDistribution()

endwhile

Figure 15: Algorithm: Estimation of Distribution Algorithms (EDAs)

4.1.2 Estimation of Distribution Algorithms

In the last decade more and more researchers tried to overcome the drawbacks of usual recombination
operators of EC algorithms, which are likely to break good building blocks. So, a number of algorithms —
sometimes called Estimation of Distribution Algorithms (EDA) [120] — have been developed (see Figure 15
for the algorithmic framework). These algorithms, which have a theoretical foundation in probability
theory, are also based on populations that evolve as the search progresses. EDAs use probabilistic modelling
of promising solutions to estimate a distribution over the search space which is then used to produce the
next generation by sampling the search space according to the estimated distribution. After every iteration
the distribution is re-estimated. For a survey of EDAs see [128].

One of the first EDAs that was proposed for Combinatorial Optimization is called Population-based
Incremental Learning (PBIL) [7, 8]. The objective of this method is to create a real valued probability
vector (each position corresponds to a binary decision variable) which — when used to sample the search
space — generates high quality solutions with high probability. Initially, the values of the probability vector
are initialized to 0.5 (for each variable there is equal probability to be set to O or 1). The goal of shifting
the values of this probability vector in order to generate high quality solutions is accomplished as follows:
a number of solution vectors are generated according to the probability vector. Then the probability vector
is shifted toward the generated solution vector(s) with highest quality. The distance that the probability
vector is shifted depends on the learning rate parameter. Then, a mutation operator is applied to the prob-
ability vector. After that, the cycle is repeated. The probability vector can be regarded as a prototype
vector for generating high quality solution vectors with respect to the available knowledge about the search
space. The drawback of this method is the fact that it does not automatically provide a way to deal with
constrained problems. In contrast to PBIL, which estimates a distribution of promising solutions assuming
that the decision variables are independent, various other approaches try to estimate distributions taking
into account dependencies between decision variables. An example for EDAs regarding pairwise depen-
dencies between decision variables is MIMIC [27] and an example for multivariate dependencies is the
Bayesian Optimization Algorithm (BOA) [127].

The field of EDA:s is still quite young and much of the research effort is focused on methodology rather
than high-performance applications. Applications to Knapsack problems, the Job Shop Scheduling (JSS)
problem, and other CO problems can be found in [103].

4.2 Ant Colony Optimization

Ant Colony Optimization (ACO) is a metaheuristic approach proposed in [37, 41, 39]. In the course of
this section we keep close to the description of ACO as given in [38]. The inspiring source of ACO is
the foraging behavior of real ants. This behavior — as described by [33] — enables ants to find shortest
paths between food sources and their nest. While walking from food sources to the nest and vice versa,
ants deposit a substance called pheromone on the ground. When they decide about a direction to go, they
choose with higher probability paths that are marked by stronger pheromone concentrations. This basic
behavior is the basis for a cooperative interaction which leads to the emergence of shortest paths.

ACO algorithms are based on a parametrized probabilistic model — the pheromone model — that is used
to model the chemical pheromone trails. Artificial ants incrementally construct solutions by adding oppor-
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InitializePheromoneValues(7T)
while termination conditions not met do
for all ants a € 4 do
sq < ConstructSolution(7, %)
endfor
ApplyOnlineDelayedPheromoneUpdate(7,{s, | a € 4})
endwhile

Figure 16: Algorithm: Ant System (AS)

tunely defined solution components to a partial solution under consideration.'® For doing that, artificial ants
perform randomized walks on a completely connected graph G = (C, L) whose vertices are the solution
components C and the set L are the connections. This graph is commonly called construction graph. When
a constrained CO problem is considered, the problem constraints Q are built into the ants’ constructive pro-
cedure in such a way that in every step of the construction process only feasible solution components can be
added to the current partial solution. In most applications, ants are implemented to build feasible solutions,
but sometimes it is unavoidable to also let them construct infeasible solutions. Components c; € C can have
associated a pheromone trail parameter T;, and connections /;; € L can have associated a pheromone trail
parameter T;;. The set of all pheromone trail parameters is denoted by 7. The values of these parameters
— the pheromone values — are denoted by 7;, respectively T;;. Furthermore, components and connections
can have associated a heuristic value m;, respectively 1;;, representing a priori or run time heuristic infor-
mation about the problem instance. The set of all heuristic values is denoted by #. These values are used
by the ants to make probabilistic decisions on how to move on the construction graph. The probabilities
involved in moving on the construction graph are commonly called transition probabilities. The first ACO
algorithm proposed in the literature is called Ant System (AS) [41]. The pseudo-code for this algorithm is
shown in Figure 16. For the sake of simplicity we restrict the following description of AS to pheromone
trail parameters and heuristic information on solution components.

In this algorithm, A4 denotes the set of ants and s, denotes the solution constructed by ant a € 4. After
the initialization of the pheromone values, at each step of the algorithm each ant constructs a solution.
These solutions are then used to update the pheromone values. The components of this algorithm are ex-
plained in more detail in the following.

InitializePheromoneValues(7): At the beginning of the algorithm the pheromone values are initialized
to the same small value ph > 0.

ConstructSolution(‘T,#{): In the construction phase an ant incrementally builds a solution by adding
solution components to the partial solution constructed so far. The probabilistic choice of the next solution
component to be added is done by means of transition probabilities, which in AS are determined by the
following state transition rule:

o 1B
SN 1 3 TP TP )

pcrlsaler]) = Eeue(saler Ml *l2]P (1
0

otherwise
In this formula o and P are parameters to adjust the relative importance of heuristic information and phero-

mone values and J(s,[c;]) denotes the set of solution components that are allowed to be added to the partial
solution s4[c;], where ¢; is the last component that was added.

ApplyOnlineDelayedPheromoneUpdate(7,{s, | a € A4}): Once all ants have constructed a solution, the

18 Therefore, the ACO metaheuristic can be applied to any CO problem for which a constructive procedure can be defined.
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while termination conditions not met do
ScheduleActivities
AntBasedSolutionConstruction()
PheromoneUpdate()
DaemonActions() % optional
end ScheduleActivities
endwhile

Figure 17: Algorithm: Ant Colony Optimization (ACO)

online delayed pheromone update rule is applied:

T (1-p)-T;+ ) At} (2)
aeAq
where
se F(sq) if ¢; is a component of s,
At = { 0 otherwise, )

where F : § — R is a function that satisfies f(s) < f(s') = F(s) > F(s'),Vs # s’ € S. F(-) is commonly
called the quality function. Furthermore, 0 < p <1 is the pheromone evaporation rate. This pheromone
update rule aims at an increase of pheromone on solution components that have been found in high quality
solutions.

In the following we describe the more general ACO metaheuristic, which is based on the same basic
principles as AS. The ACO metaheuristic framework that is shown in Figure 17 covers all the improve-
ments and extensions of AS which have been developed over the years. It consists of three parts gathered
in the ScheduleActivities construct. The ScheduleActivities construct does not specify how these three ac-
tivities are scheduled and synchronized. This is up to the algorithm designer.

AntBasedSolutionConstruction(): An ant constructively builds a solution to the problem by moving
through nodes of the construction graph G. Ants move by applying a stochastic local decision policy that
makes use of the pheromone values and the heuristic values on components and/or connections of the con-
struction graph (e.g., see the state transition rule of AS). While moving, the ant keeps in memory the partial
solution it has built in terms of the path it was walking on the construction graph.

PheromoneUpdate(): When adding a component c¢; to the current partial solution, an ant can update the

pheromone trail(s) T; and/or 7;; (in case the ant was walking on connection /;; in order to reach component
¢;). This kind of pheromone update is called online step-by-step pheromone update. Once an ant has built
a solution, it can retrace the same path backward (by using its memory) and update the pheromone trails of
the used components and/or connections according to the quality of the solution it has built. This is called
online delayed pheromone update.
Pheromone evaporation is the process by means of which the pheromone trail intensity on the components
decreases over time. From a practical point of view, pheromone evaporation is needed to avoid a too rapid
convergence of the algorithm toward a sub-optimal region. It implements a useful form of forgetting, fa-
voring the exploration of new areas in the search space.

DaemonActions(): Daemon actions can be used to implement centralized actions which cannot be per-
formed by single ants. Examples are the use of a local search procedure applied to the solutions built by the
ants, or the collection of global information that can be used to decide whether it is useful or not to deposit
additional pheromone to bias the search process from a non-local perspective. As a practical example, the
daemon can observe the path found by each ant in the colony and choose to deposit extra pheromone on
the components used by the ant that built the best solution. Pheromone updates performed by the daemon
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are called offline pheromone updates.

Within the ACO metaheuristic framework, as shortly described above, the currently best performing
versions in practise are Ant Colony System (ACS) [40] and M AX-M IN. Ant System (M M AS) [154].
In the following we are going to briefly outline the peculiarities of these algorithms.

Ant Colony System (ACS). The ACS algorithm has been introduced to improve the performance of
AS. ACS is based on AS but presents some important differences. First, the daemon updates pheromone
trails offline: At the end of an iteration of the algorithm — once all the ants have built a solution — pheromone
is added to the arcs used by the ant that found the best solution from the start of the algorithm. Second, ants
use a different decision rule to decide to which component to move next in the construction graph. The
rule is called pseudo-random-proportional rule. With this rule, some moves are chosen deterministically
(in a greedy manner), others are chosen probabilistically with the usual decision rule. Third, in ACS, ants
perform only online step-by-step pheromone updates. These updates are performed to favor the emergence
of other solutions than the best so far.

MAX-M IN Ant System (M M AS). M M AS is also an extension of AS. First, the pheromone trails
are only updated offline by the daemon (the arcs that were used by the iteration best ant or the best ant
since the start of the algorithm receive additional pheromone). Second, the pheromone values are restricted
to an interval [Tpmin, Tmax] and the pheromone trails are initialized to their maximum value Tjq. Explicit
bounds on the pheromone trails prevent that the probability to construct a solution falls below a certain
value greater than 0. This means that the chance of finding a global optimum never vanishes during the
course of the algorithm.

Recently, researchers have been dealing with finding similarities between ACO algorithms and proba-
bilistic learning algorithms such as EDAs. An important step into this direction was the development of the
Hyper-Cube Framework for Ant Colony Optimization (HC-ACO) [16]. An extensive study on this subject
has been presented in [172], where the authors present a unifying framework for so-called Model-Based
Search (MBS) algorithms. Also, the close relation of algorithms like Population-Based Incremental Learn-
ing (PBIL) [8] and the Univariate Marginal Distribution Algorithm (UMDA) [120] to ACO algorithms in
the Hyper-Cube Framework has been shown. We refer the interested reader to [172] for more information
on this subject. Furthermore, connections of ACO algorithms to Stochastic Gradient Descent (SGD) algo-
rithms are shown in [111].

Successful applications of ACO include the application to routing in communication networks [36],
the application to the Sequential Ordering Problem (SOP) [62], and the application to Resource Constraint
Project Scheduling (RCPS) [109]. Further references to applications of ACO can be found in [42, 43].

S A unifying view on Intensification and Diversification

In this section we take a closer look at the concepts of intensification and diversification as the two pow-
erful forces driving metaheuristic applications to high performance. We give a view on metaheuristics that
is characterized by the way intensification and diversification are implemented. Although the relevance of
these two concepts is commonly agreed, so far there is no unifying description to be found in the litera-
ture. Descriptions are very generic and metaheuristic specific. Therefore most of them can be considered
incomplete and sometimes they are even opposing. Depending on the paradigm behind a particular meta-
heuristic, intensification and diversification are achieved in different ways. Even so, we propose a unifying
view on intensification and diversification. Furthermore, this discussion could lead to the goal-directed
development of hybrid algorithms combining concepts originating from different metaheuristics.

5.1 Intensification and Diversification

Every metaheuristic approach should be designed with the aim of effectively and efficiently exploring a
search space. The search performed by a metaheuristic approach should be “clever” enough to both inten-
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sively explore areas of the search space with high quality solutions, and to move to unexplored areas of the
search space when necessary. The concepts for reaching these goals are nowadays called intensification
and diversification. These terms stem from the TS field [70]. In other fields — such as the EC field — related
concepts are often denoted by exploitation (related to intensification) and exploration (related to diversi-
fication). However, the terms exploitation and exploration have a somewhat more restricted meaning. In
fact, the notions of exploitation and exploration often refer to rather short term strategies tied to random-
ness, whereas intensification and diversification refer to rather medium and long term strategies based on
the usage of memory. As the various different ways of using memory become increasingly important in the
whole field of metaheuristics, the terms intensification and diversification are more and more adopted and
understood in their original meaning.

An implicit reference to the concept of “locality” is often introduced when intensification and diversifi-
cation are involved. The notion of “area” (or “region’) of the search space and of “locality” can only be
expressed in a fuzzy way, as they always depend on the characteristics of the search space as well as on the
definition of metrics on the search space (distances between solutions).

The literature provides several high level descriptions of intensification and diversification. In the following
we cite some of them.

“Two highly important components of Tabu Search are intensification and diversification strategies. In-
tensification strategies are based on modifying choice rules to encourage move combinations and solution
features historically found good. They may also initiate a return to attractive regions to search them more
thoroughly. Since elite solutions must be recorded in order to examine their immediate neighborhoods,
explicit memory is closely related to the implementation of intensification strategies. The main difference
between intensification and diversification is that during an intensification stage the search focuses
on examining neighbors of elite solutions. [...] The diversification stage on the other hand encour-
ages the search process to examine unvisited regions and to generate solutions that differ in various
significant ways from those seen before.” [70]

Later in the same book, Glover and Laguna write: “In some instances we may conceive of intensification
as having the function of an intermediate term strategy, while diversification applies to considerations that
emerge in the longer run.”

Furthermore, they write: “Strategic oscillation is closely linked to the origins of tabu search, and provides
a means to achieve an effective interplay between intensification and diversification.”

“After a local minimizer is encountered, all points in its attraction basin lose any interest for optimiza-
tion. The search should avoid wasting excessive computing time in a single basin and diversification should
be activated. On the other hand, in the assumptions that neighbors have correlated cost function values,
some effort should be spent in searching for better points located close to the most recently found local
minimum point (intensification). The two requirements are conflicting and finding a proper balance of
diversification and intensification is a crucial issue in heuristics.” [10].

“A metaheuristic will be successful on a given optimization problem if it can provide a balance be-
tween the exploitation of the accumulated search experience and the exploration of the search space
to identify regions with high quality solutions in a problem specific, near optimal way.“ [153].

“Intensification is to search carefully and intensively around good solutions found in the past search.
Diversification, on the contrary, is to guide the search to unvisited regions. These terminologies are usually
used to explain the basic elements of Tabu Search, but these are essential to all the metaheuristic algo-
rithms. In other words, various metaheuristic ideas should be understood from the view point of these two
concepts, and metaheuristic algorithms should be designed so that intensification and diversification
play balanced roles.” [171].

“Holland frames adaption as a tension between exploration (the search for new, useful adaptations)
and exploitation (the use and propagation of these adaptations). The tension comes about since any move
toward exploration — testing previously unseen schemas or schemas whose instances seen so far have low
fitness — takes away from the exploitation of tried and true schemas. In any system (e.g., a population
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Figure 18: The I&D frame provides a unified view on intensification and diversification in metaheuristics
(OG =1&D components solely guided by the objective function, NOG = 1&D components solely guided by
one or more function other than the objective function, R = 1&D components solely guided by randomness).

of organisms) required to face environments with some degree of unpredictability, an optimal balance
between exploration and exploitation must be found. The system has to keep trying out new possibil-
ities (or else it could “over-adapt” and be inflexible in the face of novelty), but it also has to continually
incorporate and use past experience as a guide for future behavior.” M. Mitchel citing J.H. Holland in 1998.

All these descriptions share the common view that there are two forces for which an appropriate bal-
ance has to be found. Sometimes these two forces were described as opposing forces. However, lately
some researchers raised the question on how opposing intensification and diversification really are.

In 1998, [48] started a discussion about that in the field of Evolutionary Computation. They question the
common opinion about EC algorithms, that they explore the search space by the genetic operators, while
exploitation is achieved by selection. In their paper they give examples of operators that one cannot un-
ambiguously label as being either intensification or diversification. So, for example, an operator using a
local search component to improve individuals is not merely a mechanism of diversification because it also
comprises a strong element of intensification (e.g., in Memetic Algorithms). Another example is the heuris-
tically guided recombination of good quality solutions. If the use of the accumulated search experience is
identified with intensification, then a recombination operator is not merely a means of diversification, it
also — as in the example above — has a strong intensification component.

Especially the TS literature advocates the view that intensification and diversification cannot be character-
ized as opposing forces. For example, in [70], the authors write: “Similarly, as we have noted, intensifi-
cation and diversification are not opposed notions, for the best form of each contains aspects of the other,
along a spectrum of alternatives.”

Intensification and diversification can be considered as effects of algorithm components. In order to
understand similarities and differences among metaheuristics, a framework may be helpful in providing
a unified view on intensification and diversification components. We define an I&D component as any
algorithmic or functional component that has an intensification and/or a diversification effect on the search
process. Accordingly, examples of I&D components are genetic operators, perturbations of probability dis-
tributions, the use of tabu lists, or changes in the objective function. Thus, [&D components are operators,
actions, or strategies of metaheuristic algorithms.

In contrast to the still widely spread view that there are components that have either an intensifica-
tion or a diversification effect, there are many I&D components that have both. In I&D components that
are commonly labelled as intensification, the intensification component is stronger than the diversification
component, and vice versa. To clarify this, we developed a framework to put I&D components of different
metaheuristics into relation with each other. We called this framework — shown in Figure 18 — the I&D
frame.

We depict the space of all I&D components as a triangle with the three corners corresponding to three
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extreme examples of I&D components. The corner denoted by OG corresponds to I&D components solely
guided by the objective function of the problem under consideration. An example of an I&D component
which is located very close to the corner OG is the steepest descent choice rule in local search. The corner
denoted by NOG covers all I&D components guided by one or more functions other than the objective
function, again without using any random component. An example for such a component is a deterministic
restart mechanism based on global frequency counts of solution components. The third corner, which
is denoted by R, comprises all I&D components that are completely random. This means that they are
not guided by anything. For example, a restart of an EC approach with random individuals is located
in that corner. From the description of the corners it becomes clear that corner OG corresponds to 1&D
components with a maximum intensification effect and a minimum diversification effect. On the other
hand, corners NOG, R and the segment between the two corners correspond to I&D components with
a maximum diversification effect and a minimum intensification effect.!® All I&D components can be
located somewhere on or inbetween the three corners, where the intensification effect is becoming smaller
the further away a mechanism is located from OG. At the same time the diversification effect is growing.
In step with this gradient is the use I&D components make of the objective function. The less an I1&D
component is using the objective function, the further away from corner OG it has to be located. There
is also a second gradient to be found in this frame (which is shown in the second graphic of Figure 18).
Corner R stands for complete randomness. The less randomness is involved in an I&D component, the
further away from corner R it has to be located. Finally, a third gradient describes the influence of criteria
different from the objective function, which generally stem from the exploitation of the search history that
is in some form kept in the memory. In the following we analyze some basic 1&D components intrinsic to
the basic versions of the metaheuristics with respect to the I&D frame.

5.2 Basic I&D components of metaheuristics

The 1&D components occurring in metaheuristics can be divided in basic (or intrinsic) ones and strategic
ones. The basic 1&D components are the ones that are defined by the basic ideas of a metaheuristic. On
the other side, strategic I&D components are composed of techniques and strategies the algorithm designer
adds to the basic metaheuristic in order to improve the performance by incorporating medium and long term
strategies. Many of these strategies were originally developed in the context of a specific metaheuristic.
However, it becomes more and more apparent that many of these strategies can also be very useful when
applied in other metaheuristics. In the following, we exemplary choose some basic I&D components that
are inherent to a metaheuristic and explain them in the context of the I&D frame. With that we show that
most of the basic I&D components have an intensification character as well as a diversification character.

For many components and strategies of metaheuristics it is obvious that they involve an intensification
as well as a diversification component, because they make an explicit use of the objective function. For
example, the basic idea of TS is a neighbor choice rule using one or more tabu lists. This I&D component
has two effects on the search process. The restriction of the set of possible neighbors in every step has a
diversifying effect on the search, whereas the choice of the best neighbor in the restricted set of neighbors
(the best non-tabu move) has an intensifying effect on the search. The balance between these two effects
can be varied by the length of the tabu list. Shorter tabu lists result in a lower influence of the diversifying
effect, whereas longer tabu lists result in an overall higher influence of the diversifying effect. The location
of this component in Figure 18 is on the segment between corner OG and NOG. The shorter the tabu lists,
the closer is the location to corner OG, and vice versa.

Another example for such an I&D component is the probabilistic acceptance criterion in conjunction with
the cooling schedule in SA. The acceptance criterion is guided by the objective function and it also in-
volves a changing amount of randomness. The decrease of the temperature parameter drives the system
from diversification to intensification eventually leading to a convergence?’ of the system. Therefore this
1&D component is located in the interior of the I&D space between corners OG, NOG and R.

A third example is the following one. Ant Colony Optimization provides an I&D component that manages

19There is no quantitative difference between corners NOG and R. The difference is rather qualitative.
20Here we use the term convergence in the sense of getting stuck in the basin of attraction of a local minimum.
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the update of the pheromone values. This component has the effect of changing the probability distribution
that is used to sample the search space. It is guided by the objective function (solution components found
in better solutions than others are updated with a higher amount of pheromone) and it is also influenced by
a function applying the pheromone evaporation. Therefore this component is located on the line between
corners OG and NOG. The effect of this mechanism is basically the intensification of the search, but there
is also a diversifying component that depends on the greediness of the pheromone update (the less greedy
or deterministic, the higher is the diversifying effect).

For other strategies and components of metaheuristics it is not immediately obvious that they have
both, an intensification and a diversification effect. An example is the random selection of a neighbor
from the neighborhood of a current solution, as it is done for example in the kick-move mechanism of
ILS. Initially one might think that there is no intensification involved and that this mechanism has a pure
diversification effect caused by the use of randomness. However, for the following reason this is not the
case. Many strategies (such as the kick-move operator mentioned above) involve the explicit or implicit
use of a neighborhood. A neighborhood structures the search space in the sense that it defines the topol-
ogy of the so-called fitness landscape [150, 151, 93, 97], which can be visualized as a labelled graph. In
this graph, nodes are solutions (labels indicate their objective function value) and arcs represent the neigh-
borhood relation between states.”! A fitness landscape can be analyzed by means of statistical measures.
One of the common measures is the auto-correlation, that provides information about how much the fit-
ness will change when a move is made from one point to a neighboring one. Different landscapes differ
in their ruggedness. A landscape with small (average) fitness differences between neighboring points is
called smooth and it will usually have just a few local optima. In contrast, a landscape with large (average)
fitness differences is called rugged and it will be usually characterized by many local optima. Most of
the neighborhoods used in metaheuristics provide some degree of smoothness that is higher than the one
of a fitness landscape defined by a random neighborhood. This means that such a neighborhood is, in a
sense, preselecting for every solution a set of neighbors for which the average fitness is not too different.
Therefore, even when a solution is randomly selected from a set of neighbors, the objective function guid-
ance is implicitly present. The consequence is that even for a random kick-move there is some degree of
intensification involved, as far as a non-random neighborhood is considered.

For a mutation operator of an EC method that is doing a random change of a solution it is neither im-
mediately clear that it can have both, an intensification as well as a diversification effect. In the following
we assume a bit-string representation and a mutation operator that is characterized by flipping every bit of
a solution with a certain probability. The implicit neighborhood used by this operator is the completely
connected neighborhood. However, the neighbors have different probabilities to be selected. The ones that
are (with respect to the Hamming distance) closer to the solution to which the operator is applied to, have a
higher probability to be generated by the operator. With this observation we can use the same argument as
above in order to show an implicit use of objective function guidance. The balance between intensification
and diversification is determined by the probability to flip each bit. The higher this probability, the higher
the diversification effect of the operator. In contrast, the lower this probability, the higher the intensification
effect of this operator.

On the other side, there are some strategies that are often labelled as intensification supposedly without
having any diversifying effect. One example is the selection operator in EC algorithms. However, nearly all
selection operators involve some degree of randomness (e.g., proportionate selection, tournament selection)
and are therefore located somewhere between corners OG, NOG and R of the I&D frame. This means that
they also have a diversifying effect. The balance between intensification and diversification depends on
the function that assigns the selection probabilities. If the differences between the selection probabilities
are quite high, the intensification effect is higher, and similarly for the other extreme of having only small
differences between the selection probabilities.

Even an operator like the neighbor choice rule of a steepest descent local search, which might be regarded

21The discussion of definitions and analysis of fitness landscapes is beyond the scope of this paper. We forward the interested
reader to [150, 151, 93, 94, 59, 90, 97, 138].
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Metaheuristic | I&D component
SA acceptance criterion
+ cooling schedule
TS neighbor choice (tabu lists)
aspiration criterion
EC recombination
mutation
selection
ACO pheromone update
probabilistic construction
ILS black box local search
kick-move
acceptance criterion
VNS black box local search
neighborhood choice
shaking phase
acceptance criterion
GRASP black box local search
restricted candidate list
GLS penalty function

Table 1: I&D-components intrinsic to the basic metaheuristics

as pure intensification, has a diversifying component in the sense that the search is “moving” in the search
space with respect to a neighborhood. A neighborhood can be regarded as a function other than the ob-
jective function, making implicit use of the objective function. Therefore, a steepest descent local search
is located between corners OG and NOG, and has both, a strong intensification effect but also a weak
diversification character.

Based on these observations we conclude that probably most of the basic I&D components used in
metaheuristics have both, an intensification and a diversification effect. However, the balance between
intensification and diversification might be quite different for different I&D components. Table 1 attempts
to summarize the basic I&D components that are inherent to the different metaheuristics.

5.3 Strategic control of intensification and diversification

The right balance between intensification and diversification is needed to obtain an effective metaheuristic.
Moreover, this balance should not be fixed or only changing into one direction (e.g., continuously increas-
ing intensification). This balance should rather be dynamical. This issue is often treated in the literature,
both implicitly and explicitly, when strategies to guide search algorithms are discussed.

The distinction between intensification and diversification is often interpreted with respect to the tem-
poral horizon of the search. Short term search strategies can be seen as the iterative application of tactics
with a strong intensification character (for instance, the repeated application of greedy moves). When the
horizon is enlarged, usually strategies referring to some sort of diversification come into play. Indeed, a
general strategy usually proves its effectiveness especially in the long term.

The simplest strategy that coordinates the interplay of intensification and diversification and can achieve
an oscillating balance between them is the restart mechanism: under certain circumstances (e.g., local
optimum is reached, no improvements after a specific number of algorithm cycles, stagnation, no diversity)
the algorithm is restarted. The goal is to achieve a sufficient coverage of the search space in the long run,
thus the already visited regions should not be explored again. The computationally least expensive attempt
to address this issue is a random restart. Every algorithm applying this naive diversification mechanism
therefore incorporates an I&D component located in corner R of the I&D frame.

Usually, the most effective restart approaches make use of the search history. Examples for such restart
strategies are the ones based on concepts such as global frequency and global desirability. The concept
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of global frequency is well known from TS applications. In this concept, the number of occurrences of
solution components is counted during the run of the algorithm. These numbers, called the global fre-
quency numbers, are then used for changing the heuristic constructive method, for example to generate a
new population for restarting an EC method or the initial solution for restarting a trajectory method. Sim-
ilarly, the concept of global desirability (which keeps for every solution component the objective function
value of the best solution it had been a member of) can be used to restart algorithms with a bias toward
good quality solutions. 1&D components based on global frequency can be located in corner NOG, while
global desirability-based components are located along the segment NOG-OG. Examples of the use of
non-random restarts can be found also in population-based methods. In EC algorithms the new population
can be generated by applying constructive heuristics?*> (line R-OG). In ACO, this goal is addressed by
smoothing or resetting pheromone values [154]. In the latter case, if the pheromone reset is also based on
the search history, the action is located inside the 1&D frame.

There are also strategies explicitly aimed at dynamically changing the balance between intensification
and diversification during the search. A fairly simple strategy is used in SA, where an increase in di-
versification and simultaneous decrease in intensification can be achieved by “re-heating” the system and
then cooling it down again (which corresponds to increasing parameter 7 and decreasing it again accord-
ing to some scheme). Such a cooling scheme is called non-monotonic cooling scheme (e.g., see [106] or
[124]). Another example can be found in Ant Colony System (ACS). This ACO algorithm uses an addi-
tional I&D component aimed at introducing diversification during the solution construction phase. While
an ant is walking on the construction graph to construct a solution it reduces the pheromone values on
the nodes/arcs of the construction graph that it visits. This has the effect to reduce for the other ants the
probability of taking the same path. This additional pheromone update mechanism is called step-by-step
online pheromone update rule. The interplay between this component and the other pheromone update
rules (online delayed pheromone update rules and online pheromone update rule) leads to an oscillating
balance between intensification and diversification.

Some more advanced strategies can be found in the literature. Often, they are described with respect
to the particular metaheuristic in which they are applied. However, many of them are very general and
can be easily adapted and reused also in a different context. A very effective example is Strategic Os-
cillation [70].>* This strategy can be applied both to constructive methods and improvement algorithms.
Actions are invoked with respect to a critical level (oscillation boundary), which usually corresponds to
a steady state of the algorithm. Examples for steady states of an algorithm are local minima, completion
of solution constructions, or the situation were no components can be added to a partial solution such that
it can be completed to a feasible solution. The oscillation strategy is defined by a pattern indicating the
way to approach the critical level, to cross it and to cross it again from the other side. This pattern defines
the distance of moves from the boundary and the duration of phases (of intensification and diversification).
Different patterns generate different strategies; moreover, they can also be adaptive and change depending
on the current state and history of the search process. Other representative examples of general strategies
that dynamically coordinate intensification and diversification can be found in [11, 14, 15].

Furthermore, strategies are not restricted to single actions (e.g., variable assignments, moves), but may
also guide the application of coordinated sequences of moves. Examples of such a strategy are given by
so-called ejection chain procedures [70, 140, 141]. These procedures provide a mechanism to perform
compound moves, i.e., compositions of different types of moves. For instance, in a problem defined over
a graph (e.g., the VRP), it is possible to define two different moves: insertion and exchange of nodes;
a compound move can thus be defined as the combination of an insertion and an exchange move. These
procedures describe general strategies to combine the application of different neighborhood structures, thus
they provide an example of a general diversification/intensification interplay. Further examples of strategies
which can be interpreted as mechanisms to produce compositions of interlinked moves can also be found
in the literature concerning the integration of metaheuristics and complete techniques [19, 146].

22See, for example, [60, 77].
Bndeed, in [70] and in the literature related to TS, many strategies are described and discussed.
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In conclusion, we would like to stress again that most metaheuristic components have both an inten-
sification and a diversification effect. The higher the objective function bias, the higher the intensification
effect. In contrast, diversification is achieved by following guiding criteria other than the objective function
and also by the use of randomness. With the introduction of the 1&D frame, metaheuristics can be analyzed
by their signature in the I&D frame. This can be a first step toward the systematic design of metaheuristics,
combining I&D components of different origin.

5.4 Hybridization of metaheuristics

We conclude our work by discussing a very promising research issue: the hybridization of metaheuristics.
In fact, many of the successful applications that we have cited in previous sections are hybridizations. In the
following we distinguish different forms of hybridization. The first one consists of including components
from one metaheuristic into another one. The second form concerns systems that are sometimes labelled
as cooperative search. They consist of various algorithms exchanging information in some way. The third
form is the integration of approximate and systematic (or complete) methods. For a taxonomy of hybrid
metaheuristics see [158].

Component exchange among metaheuristics. One of the most popular ways of hybridization con-
cerns the use of trajectory methods in population-based methods. Most of the successful applications of
EC and ACO make use of local search procedures. The reason for that becomes apparent when analyzing
the respective strengths of trajectory methods and population-based methods.

The power of population-based methods is certainly based on the concept of recombining solutions to
obtain new ones. In EC algorithms and Scatter Search explicit recombinations are implemented by one or
more recombination operators. In ACO and EDAs recombination is implicit, because new solutions are
generated by using a distribution over the search space which is a function of earlier populations. This
allows to make guided steps in the search space which are usually “larger” than the steps done by trajectory
methods. In other words, a solution resulting from a recombination in population-based methods is usually
more “different” from the parents than, say, a predecessor solution to a successor solution (obtained by
applying a move) in TS. We also have “big” steps in trajectory methods like ILS and VNS, but in these
methods the steps are usually not guided (these steps are rather called “kick move” or “perturbation”
indicating the lack of guidance). It is interesting to note, that in all population-based methods there are
mechanisms in which good solutions found during the search influence the search process in the hope
to find better solutions in-between those solutions and current solutions. In Path Relinking this idea is
implemented in the most explicit way. The basic elements are guiding solutions (which are the good
solutions found) and initiating solutions. New solutions are produced by applying moves to decrease the
distance between the resulting solution and the guiding solution. In EC algorithms this is often obtained
by keeping the best (or a number of best) solution(s) found since the beginning of the respective run of
the algorithm in the population. This is called a steady state evolution process. Scatter Search performs a
steady state process by definition. In some ACO implementations (see for example [154, 15]) a pheromone
updating schedule is applied such that in a situation where the algorithm has nearly converged to a solution,
only the best found solution since the start of the algorithm is used for updating the pheromone trails. This
corresponds to “changing direction” and directing the search process toward a very good solution in the
hope to find better ones on the way.

The strength of trajectory methods is rather to be found in the way they explore a promising region in
the search space. As in those methods local search is the driving component, a promising area in the search
space is searched in a more structured way than in population-based methods. In this way the danger of
being close to good solutions but “missing” them is not as high as in population-based methods.

In summary, population-based methods are better in identifying promising areas in the search space,
whereas trajectory methods are better in exploring promising areas in the search space. Thus, metaheuristic
hybrids that in some way manage to combine the advantage of population-based methods with the strength
of trajectory methods are often very successful.

Cooperative search. A loose form of hybridization is provided by cooperative search (88, 87, 4, 34,
159, 148, 160], which consists of a search performed by possibly different algorithms that exchange infor-
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mation about states, models, entire sub-problems, solutions or other search space characteristics. Typically,
cooperative search algorithms consist of the parallel execution of search algorithms with a varying level of
communication. The algorithms can be different or they can be instances of the same algorithm working
on different models or running with different parameters setting. The algorithms composing a cooperative
search system can be all approximate, all complete, or a mix of approximate and complete approaches.
Cooperative search nowadays receives more attention, which is among other reasons due to the in-
creasing research on parallel implementations of metaheuristics. The aim of research on parallelization
of metaheuristics is twofold. First, metaheuristics should be redesigned to make them suitable for parallel
implementation in order to exploit intrinsic parallelism. Second, an effective combination of metaheuristics
has to be found, both to combine different characteristics and strengths and to design efficient communica-
tion mechanisms. Since the aim of this paper is to provide an overview of the core ideas and strategies of
metaheuristics, we refer to [25, 24] for a survey on the state-of-the-art in parallel metaheuristics.

Integrating metaheuristics and systematic methods. Concluding this discussion on hybrid meta-
heuristics, we briefly overview the integration of metaheuristics and systematic search techniques. This
approach has recently produced very effective algorithms especially when applied to real-world problems.
Discussions on similarities, differences and possible integration of metaheuristics and systematic search
can be found in [61, 65, 84, 70]. A very successful example of such an integration is the combination of
metaheuristics and Constraint Programming (CP) [54, 129, 130, 26]. CP enables to model a CO problem
by means of variables, domains?* and constraints, which can be mathematical or symbolic (global). The
latter ones involve a set of variables and describe subproblems, thus reducing the modelling complexity
by encapsulating well defined parts of the problem into single constraints. Every constraint is associated
to a filtering algorithm that deletes those values from a variable domain that do not contribute to feasible
solutions. A CP system can be seen as the interaction of components (constraints) which communicate
through shared variables. Constraints are activated as soon as a the domain of any variable involved has
been changed. Then, they perform a propagation phase, i.e., they apply the filtering algorithm. This behav-
ior stops as soon as there are no more values that can be removed from the domains or at least one domain
is empty (i.e., no feasible solution exists). Since the complexity of the full constraint propagation is often
exponential, the filtering is usually not complete. Therefore, at the end of the propagation phase some
domains may still contain unfeasible values. Hence, a search phase is started, such as Branch & Bound. A
survey on the integration of metaheuristics and CP is provided by [54].

There are three main approaches for the integration of metaheuristics (especially trajectory methods)
and systematic techniques (CP and tree search):

e A metaheuristic and a systematic method are sequentially applied (their execution can be also inter-
leaved). For instance, the metaheuristic algorithm is run to produce some solutions which are then
used as heuristic information by the systematic search. Vice versa, the systematic algorithm can be
run to generate a partial solution which will then be completed by the metaheuristic.

e Metaheuristics use CP and/or tree search to efficiently explore the neighborhood, instead of simply
enumerating the neighbors or randomly sampling the neighborhood.

e The third possibility consists of introducing concepts or strategies from either class of algorithms
into the other. For example, the concepts of tabu list and aspiration criteria — defined in Tabu Search
— can be used to manage the list of open nodes (i.e., the ones whose child nodes are not yet explored)
in a tree search algorithm.

The first approach can be seen as an instance of cooperative search and it represents a rather loose integra-
tion.

The second approach combines the advantages of a fast search space exploration by means of a meta-
heuristic with the efficient neighborhood exploration performed by a systematic method. A prominent
example of such a kind of integration is Large Neighborhood Search and related approaches [146, 19].
These approaches are effective mainly when the neighborhood to explore is very large. Moreover, many

24We restrict the discussion to finite domains.
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real-world problems have additional constraints (called side constraints) which might make them unsuit-
able for usual neighborhood exploration performed by metaheuristics, since they usually just sample the
neighborhood or enumerate its solutions. For instance, time window constraints often reduce the number
of feasible solutions in a neighborhood, which might make a local search inefficient. Thus, domain filtering
techniques can effectively support neighborhood exploration. In fact, for such a kind of neighborhoods,
both sampling and enumeration are usually inefficient. More examples can be found in [129, 130, 54].

The third approach preserves the search space exploration based on a systematic search (such as tree
search), but sacrifices the exhaustive nature of the search [65, 84, 85, 113]. The hybridization is usually
achieved by integrating concepts developed for metaheuristics (e.g., probabilistic choices, aspiration cri-
teria, heuristic construction) into tree search methods. A typical application of this integration is the use
of a probabilistic backtracking, instead of a — deterministic — chronological backtracking. For instance,
an extreme case is the random choice of a backtracking move. The list of possible backtracking moves
can also be sorted by means of a dynamic heuristic or a sampling of the leaves of the search tree. This
sampling can be performed by a metaheuristic: the result of each possible backtracking move is chosen
as the starting point for producing a complete solution by a metaheuristic (more than one solution can be
generated from each partial solution). Then, the quality of these complete solutions is used as a score for
— probabilistically — selecting a backtracking move. Another prominent example is the introduction of ran-
domization in systematic techniques, as described in [76]. Many examples of this approach can be found
in [54, 96, 144, 30, 133, 29].

6 Conclusions

In this work we have presented and compared nowadays most important metaheuristic methods. In Sec-
tions 3 and 4 we have outlined the basic metaheuristics as they are described in the literature. In Section
5 we then proposed a conceptual comparison of the different metaheuristics based on the way they im-
plement the two main concepts for guiding the search process: Intensification and diversification. This
comparison is founded on the I&D frame, where algorithmic components can be characterized by the cri-
teria they depend upon (objective function, guiding functions and randomization) and their effect on the
search process. Although metaheuristics are different in the sense that some of them are population-based
(EC, ACO), and others are trajectory methods (SA, TS, ILS, VNS, GRASP), and although they are based
on different philosophies, the mechanisms to efficiently explore a search space are all based on intensifi-
cation and diversification. Nevertheless, it is possible to identify “sub-tasks” in the search process where
some metaheuristics perform better than others. This has to be examined more closely in the future in order
to be able to produce hybrid metaheuristics performing considerably better than their “pure” parents. In
fact we can find this phenomenon in many facets of life, not just in the world of algorithms. Mixing and
hybridizing is often better than purity.
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