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1 Introduction

Error correcting code (ECC) design is a hard optimization problem arising in telecommunica-
tion applications [7, 8]. In the electronic transmission of messages it often happens—due to
noisy channels—that the arriving message is corrupted. One solution to this problem consists
in transmitting the message several times in order to increase the probability of its safe arrival.
However, this is often too costly. Instead, it is nowadays standard to use ECCs such as Reed-
Solomon codes, BCH codes, Golay codes, or others [8]. In this paper we focus on the design
of linear block codes. Let us assume that messages are expressed as strings of characters from
an alphabet Σ with |Σ| = M . Given Σ, a linear block code consists of a binary string (a code-
word) of length n for each character. When transmitting a message, instead of transmitting
the original one, the encoded message in which each character is replaced by its code-word is
transmitted. On the side of the receiver, each of the (possibly corrupted) code-words that is
received is replaced by the code-word with minimal Hamming distance. It is easy to verify,
that when all the code-words are separated by at least d bits, any “modification” (i.e., cor-
ruption) of at most (d − 1)/2 bits can be recovered. Therefore, codes with a large minimum
distance d between the code-words are sought. This shows that in the design of error correcting
linear block codes of the form (M, n) we have a conflicting goal: the bigger n, i.e, the length
of the code-words, the higher the separating distance d of an optimal code. However, with
increasing n the transmission time of messages increases, and therefore the congestion of the
networks. On the contrary, the smaller n, the faster is the transmission time and the smaller
is the separating distance d of an optimal code.
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In this work we consider to find the best possible code for a given number of code-words M
and a given length of the code-words n, i.e., a code where d is as big as possible. This problem
was tackled before in several works. Concerning metaheuristics, the problem has been tackled
so far with simulated annealing and evolutionary computation based approaches [5, 4, 2].
Recently, the following two articles appeared: In [1], a parallelized EC method using a new
local search based on particle physics was introduced, before in [3] a scatter search approach
was presented that currently is a state-of-the-art method for our problem.

Our contribution. In this paper we tackle the ECC problem with iterated local search
(ILS) [9, 6]. After the generation of an initial solution, a basic ILS method repeats the
following three steps: (1) A perturbation mechanism perturbs at each iteration the current
solution, (2) a local search method is used to improve this perturbed solution, and (3) a
criterion for the acceptance of the improved perturbed solution as new current solution is
applied. In Section 2 we first deal with local search and with the generation of initial solutions,
and the present the remaining components of our ILS algorithm. In Section 3 we present a
preliminary experimental evaluation of our algorithm. The experimental results show

that our algorithm is currently a state-of-the-art method for the ECC problem.

Finally, we conclude the paper in Section 4 with a summary and an outlook to the future.

2 The algorithm

Solution representation and fitness function. In the following we assume that a solu-
tion, i.e., a set of M binary code-words of length n, is represented as a binary matrix C with
M rows and n columns. Each row i in C corresponds to a code-word ci. The quality d(C)
of a solution C is the minimum Hamming distance between all possible pairs (ci, cj), i 6= j,
of code-words of the code. More formally, d(C) = min{dH(ci, cj) | i 6= j}, where dH(ci, cj) is
the Hamming distance between code-words ci and cj . However, this measure is too coarse for
using it as the objective function. Therefore, we use a second measure in order to separate
between solutions with the same minimum Hamming distance:

d′(C) =
1

∑M
i=1

∑M
j=1,j 6=i

1
dH(ci,cj)2

(1)

This function, which was introduced in [4], measures how well the M code-words are placed in
the corners of an n-dimensional hyper-cube by considering the minimal energy configuration
of M particles, as it is done in Physics. Given two solutions C and Ĉ the objective function
f(·) can than be indirectly stated as follows:

f(C) > f(Ĉ)⇔ d(C) > d(Ĉ) OR d(C) = d(Ĉ) and d′(C) > d′(Ĉ) (2)

Local search. In our ILS algorithm we use a local search (LS) method based on the 1-flip
neighborhood, i.e., a move consists in flipping exactly one position in a solution C. This LS is
similar to the one that is used in [3]; it differs, however, in aspects such as the set of positions
that are considered for flipping, and the stopping criterion. Our LS is shown in Algorithm 1.
Given a solution C, to check if a 1-flip should be executed does not necessarily require a full
solution evaluation. Let us assume that we consider a 1-flip that changes the code-word ci.
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Algorithm 1 Local search for the ECC problem

input: A solution C
forbidden[k]← false, k = 1, . . . , M
while there exist two codewords s.t. at least one of them is not forbidden do

Find the two closest code-words such that at least one of them is not forbidden. Let ci

be the code-word that is not forbidden (or the one with the lower index in case both are
not forbidden).
modified ← false

for j = 1, . . . , n do

Produce a solution C ′ by copying C and flipping position (i, j). {Remember that ci is
the code-word chosen above.}
if f(C ′) > f(C) then

Set C ← C ′ and modified ← true

end if

end for

if modified = true then forbidden[k]← false, k = 1, . . . , M
else forbidden[i]← true

end while

output: The (improved) solution C

Let di be the minimum distance between code-word ci and any of the other M −1 code-words.
If di > d(C), or if by applying the 1-flip this minimum distance does not change, we only have
to re-compute

∑M
j=1,j 6=i 1/dH(ci, cj)

2 after the 1-flip. Also the Hamming distances do not have
to be recomputed from scratch. They can be updated by keeping appropriate data structures.

Generating solutions to the ECC problem. A solution to the ECC problem can be
obtained by randomly initializing all the entries in C. However, such a solution is most
probably not of high quality. Instead we apply the following scheme. Let us start by considering
problem instance (M = 4, n = 2). An optimal code for this instance is the matrix

C0 =











1 1
1 0
0 1
0 0











(3)

with minimum Hamming distance 1. Given this solution, we can produce a solution C1 for
problem (M = 8, n = 4) with minimum Hamming distance 2 by setting

C1 =

(

C0 C0

C0 CI
0

)

, (4)

where CI
0 is matrix C0 in which each position is flipped. Note that CI

0 contains the same rows
as C0, just that they are permuted. Therefore, the minimum Hamming distance of any two
rows in CI

0 is also 1. Then, the minimum Hamming distance of C1 is 2, because

1. when comparing two code-words from the first half of the matrix, they have at least
Hamming distance 2, because the minimum Hamming distance in the first half of the
columns is 1, and the same holds for the second half of the columns;
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2. when comparing two code-words from the second half of the matrix, they have—with
the same argument—at least distance 2.

3. when comparing a code-word from the first half of the matrix, with a code-word from
the second half of the matrix, we have two possible cases: (1) If the first half of the
code-words is different, the second part is also different, and the Hamming distance is at
least 1 in each half. (2) If the first half is the same, the Hamming distance is maximal
(i.e., 2) in the second half.

In order to produce a solution for a problem instance (M, n), this scheme can be iterated
(starting from C0) until for a k ≥ 0 both the number of columns of Ck is greater or equal
to n, and the number of rows of Ck is greater or equal to M . This gives us a solution for
problem instance (M ′ = 2k+2, n′ = 2k+1) with d(Ck) = 2k. A solution for (M, n) is obtained
by removing the last M ′ −M rows, and the last n′ − n columns from Ck.

It is interesting to note that this constructive heuristic allows us to find the optimal solution
8 to the problem instance (32, 16) (the medium size problem instance used in [3]) without a
single solution evaluation.

ILS for the ECC problem. The framework of our ILS algorithm is shown in Algorithm 2.
The method GenerateInitialSolution() uses either a random solution construction, or the con-
structive heuristic outlined in the previous Section, while method LocalSearch(·) applies the
local search procedure introduced in Section 2. In method Perturbation(Ĉ) the current solution
Ĉ is perturbed. After tuning by hand, we decided for a mechanism that works as follows. The
application of one basic perturbation operation consists in:

1. finding the code-word ci that has the minimum average distance to all the other M − 1
code-words (in case of ties we choose the first one found);

2. choosing a second code-word cj , j 6= i, uniformly at random;
3. maximizing the Hamming distance between the two code-words by considering each of

the n positions in the two code-words: In case cik = cjk, one of the two positions is
chosen uniformly at random, and is flipped.

Our algorithm works with a counter nic that counts the number of successive iterations without
improving the current solution. If nic is smaller than a limit, the method Perturbation(Ĉ)
chooses uniformly at random if to perform one basic operation, or two basic operations as
explained above. Note that in the second basic operation the two code-words from the first
basic iterations are tabu. Otherwise, method Perturbation(Ĉ) performs three basic operations.
We have set the above mentioned limit for our preliminary experimental evaluation to 300.

The working of method ApplyAcceptanceCriterion(Ĉ ′) is quite simple. In case nic < 300,
solution Ĉ ′ is accepted if f(Ĉ ′) > f(Ĉ), and nic is set back to 0. Otherwise, solution Ĉ ′ is not
accepted, and nic is incremented. Otherwise, i.e., if nic = 300, solution Ĉ ′ is accepted, and
nic is set back to 0. This completes the description of our ILS algorithm.
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Algorithm 2 ILS for the ECC problem

input: A problem instance (M, n)
C ← GenerateInitialSolution()
Ĉ ← LocalSearch(C)
while termination conditions not met do

C ′ ← Perturbation(Ĉ)
Ĉ ′ ← LocalSearch(C ′)
Ĉ ← ApplyAcceptanceCriterion(Ĉ ′)

end while

output: The best solution found.

3 Experimental evaluation

We implemented our algorithm in C++ and run the experiments on a Linux machine with 3
GHz processor and 1 Gb of memory. For evaluating our algorithm we chose all the instances
that were used for testing the current state-of-the-art scatter search approach [3]: (M =
24, n = 12), (32, 16), and (40, 20) with known optimal solutions 6, 8, and 10, respectively1.
We tested two versions of our algorithm: ILS (heur) that uses the heuristic initial solution
construction, and ILS (rand) that uses a random initial solution construction instead. Our
results are presented in Table 1. They show that for the two smaller instances our algorithm
obtains the same (optimal) success rate, however, with less solution evaluations. For the bigger
instances, our algorithm has a significantly higher success rate, which is again obtained with
less solutions evaluations. Interestingly, when comparing the two versions of our algorithm,
for the smallest problem instance the heuristic version seems to have advantages, whereas for
the biggest problem instance, at least in success rate, the random version appears to have a
slight advantage. However, this advantage comes with the cost of a significantly higher time
(and solution evaluation) consumption. Summarizing, we can state that our algorithm obtains
promising results by outperforming the current state-of-the-art algorithm. However, the set
of tested problem instances is too small to make general claims.

4 Summary and outlook

There are several lines for possible future work. First, we plan to improve our algorithm
by considering different possibilities of algorithmic components (e.g., different perturbation
and acceptance schemes). Second, we plan to perform a proper parameter tuning in order to
further improve our algorithm. Third, we intent to apply our algorithm to problem instances
of different characteristics and difficulty.
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