
Alma Mater Studiorum

Università degli Studi di Bologna

DEIS

Tabu Search for the Founder
Sequence Reconstruction Problem:

A Preliminary Study

Andrea Roli and Christian Blum

January 10, 2009

DEIS Technical Report no. DEIS-LIA-004-09 LIA Series no. 94

Tabu Search for the Founder Sequence Reconstruction

Problem: A Preliminary Study

Andrea Roli 1 and Christian Blum 2

1DEIS, Campus of Cesena
University of Bologna

Cesena, Italy
andrea.roli@unibo.it

2ALBCOM Research Group
Universitat Politècnica de Catalunya

Barcelona, Spain
cblum@lsi.upc.edu

January 10, 2009

Abstract. The problem of inferring ancestral genetic information in terms of
a set of founders of a given population arises in various biological contexts. In
optimization terms, this problem can be formulated as a combinatorial string
problem. The main problem of existing techniques, both exact and heuristic, is
that their time complexity scales exponentially, which makes them impractical
for solving large-scale instances. We developed a new constructive heuristic and
a tabu search method with the explicit aim of providing solutions in a reduced
amount of computation time. Experimental results show that when the number
of founders grows, our algorithms have advantages over the ones proposed in
the literature.

Keywords: Metaheuristics, founder sequences reconstruction problem, bioin-
formatics

Contents

1 Introduction 3

2 The Founder Sequence Reconstruction Problem 4

3 Our Algorithm 5
3.1 Constructive Heuristic . 5
3.2 Tabu Search . 7

4 Experimental Evaluation 7

5 Conclusions and Outlook 9

DEIS Technical Report no. DEIS-LIA-004-09 LIA Series no. 94

1 Introduction

Technical advances in sequencing of genetic material has led to a rapid growth of
available DNA sequences and haplotyped sequences. Given a sample of sequences
from a population of individuals (for example, humans) one may try to study the
evolutionary history of the chosen individuals. This is important, for example, for
the discovery of the genetic basis of complex diseases. In case the population from
which the sample sequences are taken has evolved from a relatively small number
of founders, the evolutionary history can be studied by trying to reconstruct the
sample sequences as fragments from the set of founder sequences. This genetic
model, which is central to the problem tackled in this paper, was used, for example,
in [5, 6]. Many findings from biological studies support the validity of this model,
as, for example, [4]:

The Ferroplasma type II genome seems to be a composite from three
ancestral strains that have undergone homologous recombination to form
a large population of mosaic genomes.

The major problem is that neither the number of founder sequences, nor the founder
sequences themselves, may be known. Ukkonen [5] proposes a computational prob-
lem that, given the number k of founder sequences, consists in finding a set of
k sequences such that the set of sample sequences, also called recombinants, can
be reconstructed using as few fragments as possible. This problem is known as
the founder sequence reconstruction problem (FSRP) or the minimum mosaic prob-
lem [6] and it is NP-complete [3]. A technical description of the problem is given in
the following section.

The first algorithm that was developed for the FSRP is based on dynamic pro-
gramming [5]. However, this algorithm does not scale well when the number of
founders or the number/length of the recombinants grows. The authors of [6] pro-
posed an exact solver based on tree search, called RecBlock. This solver can
also be run as a heuristic with varying levels of sophistication. While the results of
RecBlock are very good for rather small number of founders, it still does not scale
well when, for example, the number of founders grows. This was our motivation for
the work presented in this paper. With the goal of developing an algorithm that
scales better than the existing techniques, we first developed a very fast constructive
heuristic, and then a so-called tabu search method [2]. Tabu search is an artificial
intelligence technique based on local search which belongs to the class of metaheuris-
tic algorithms [1]. In this work we present a preliminary study on the performance
of these algorithms.

The remainder of the paper is organized as follows. In Section 2 we technically
introduce the FSRP. While Section 3 is devoted to the introduction of our algorithms,
we present an experimental evaluation in Section 4. Finally, conclusions and an
outlook to future work are given in Section 5.

3

1 1 0 1 1 0 1
1 0 1 0 0 0 1
0 1 1 1 1 1 1
0 1 1 0 1 0 0
1 1 0 0 0 1 1

(a) Set of recombinants C

0 1 1 0 1 0 0
1 1 0 1 1 1 1
1 0 1 0 0 0 1

(b) Set of founders F

b b b b b|c c
c c c c c c c
a a a|b b b b
a a a a a a a
b b b|c c |b b

(c) Decomposition

Figure 1. (a) shows a set of 5 recombinants in matrix form. Assuming that the
number of founders is fixed to 3, (b) shows a valid solution as a matrix of 3 founders.
Denoting the first founder by ”a”, the second founder by ”b”, and the third one by
”c”, (c) shows a decomposition of the recombinants matrix into fragments taken from
the founders. This decomposition produces the minimum number of breakpoints
points, namely 4. Note that breakpoints are marked by vertical lines. This example
is reproduced from [6].

2 The Founder Sequence Reconstruction Problem

The founder sequence reconstruction problem (FSRP) can technically be described
as follows. Given is a set of m recombinants C = {C1, . . . , Cm}. Each recombinant
Ci is a string of length n over a given alphabet Σ: Ci = ci1ci2 . . . cin with cij ∈ Σ ∀ j.
In this work we will consider a typical biological application where the recombinants
are haplotyped sequences and Σ = {0, 1}. The symbols 0 and 1 encode the two most
common alleles of each haplotype site.

A candidate solution to the problem consists of a set of k founders F = {F1, . . . , Fk}.
Each founder Fi is a string of length n over the alphabet Σ: Fi = fi1fi2 . . . fin with
fij ∈ Σ ∀ j. A candidate solution F is a valid solution if the set of recombinants C
can be reconstructed from F . This is the case when each Ci ∈ C can be decomposed
into a sequence of pi ≤ n fragments (that is, strings) Fri1Fri2 . . . F ripi , such that
each fragment Frij appears at the same position in at least one of the founders.
Hereby, a decomposition with respect to a valid solution is called reduced if two
consecutive fragments do not appear in the same founder. Moreover, for each valid
solution F we can derive in polynomial time (see [6]) a so-called minimal decomposi-
tion. This is a decomposition where

∑n
i=1 pi−n is minimal. In the following we call

this number the objective function value of F and denote it by f(F). In biological
terms, f(F) is called the number of breakpoints of C with respect to F .

The optimization goal considered in this paper is the following one. Given a
fixed k, that is, a fixed number of founders, find a valid solution F∗ that minimizes
f(·). For an example, see Fig. 1.

4

Algorithm 1 Heuristic RecBlock

1: input: a set C of m recombinants of length n, and k, the required number of
founders

2: Let F be an empty matrix with k rows and n columns
3: The current number of breakpoints is 0, that is, nbp = 0
4: for j = 1, . . . , n do
5: Choose a binary string Col of length k for column j of F such that the number

add of additional breakpoints is minimized
6: nbp = nbp + add
7: end for
8: output: a solution F together with the total number of breakpoints nbp

3 Our Algorithm

We developed an algorithm that consists of a constructive heuristic with the subse-
quent application of tabu search. In the following we first focus on the description
of the constructive heuristic, whereas tabu search is outlined afterwards.

3.1 Constructive Heuristic

To our knowledge, existing tree search methods for the FSRP, including constructive
heuristics, all use the following way of constructing solutions. They regard a solution
F as a matrix with k rows and n columns. In such a matrix (also denoted by F for
simplicity reasons) row i represents founder i, for all i = 1, . . . , k. Starting from an
empty matrix, each construction step concerns filling the next empty column, start-
ing from the first column. For filling a column, all possible binary strings of length
k are considered and tested. For example, the RecBlock heuristic presented in [6]
and pseudo-coded in Algorithm 1 chooses at each construction step j = 1, . . . , n,
the binary string that adds the least number of breakpoints to the partial solution
under construction.1 The disadvantage of this way of filling columns is the fact that
the number of possibilities at each construction step is exponential in k. In our
experiments (see Section 4) we will show that this makes the heuristic impractical
for rather large values of k.

With this disadvantage of RecBlock in mind, we designed a new and fast way
of filling founder matrix columns in the framework of the constructive mechanism
used by RecBlock (see Algorithm 1). In the following we regard C (the set of
recombinants) to be a matrix with m rows and n columns. The solution construction

1This description concerns the lightest heuristic version of RecBlock that is run with options
-D0 and -C1.

5

process starts by filling the first column of F , which is done as follows. First, we
compute the fraction p of 0-entries in the first column of C. Then we introduce two
counters; counter n0 for the 0-entries in the first column of F , and counter n1 for the
1-entries in the first column of F . Both counters are initialized to 1 to ensure at least
one 0-entry, respectively one 1-entry. Finally, k−2 times we draw a random number
q from [0, 1], and we increase n0 in case q ≤ p, while we increase n1 otherwise. The
first column is then composed of n0 0-entries, followed by n1 1-entries.

After filling the first column, some data structures are initialized. For each row
i of C we keep a variable cpi that stores the position of the last breakpoint. These
variables are initialized to 0, because no breakpoint exists yet. More specifically,
cpi = 0, for i = 1, . . . ,m. Moreover, we keep a variable repi that stores the index of
the founder that represents row i of C after the last breakpoint cpi. For all rows of C
with a 0-entry in the first column this variable is initialized to 0, while for each row
of C with a 1-entry the respective variable is initialized to n0 + 1, that is, the first
row of F with a 1-entry in the first column. More specifically, repi = 0 if ci0 = 0,
and repi = n0 + 1 otherwise.

All remaining columns are filled as follows. Let us assume that the first j − 1
columns are already filled, which means that the column under consideration is
column j. The positions of column j are filled one after the other, that is, starting
from row 1. For filling position fij we first count the number n0 of rows of C that are
represented by founder i and that have a 0-entry in position j. More specifically, n0

is the number of rows r of C with repr = i and crj = 0. Correspondingly, n1 is the
number of rows r of C with repr = i and crj = 1. In case n0 > n1, we set fij = 0. In
case n1 > n0, we set fij = 1. Otherwise, that is, when n0 = n1, we choose a value
for fij uniformly at random. Finally, we try to change the representant of the rows
of C that, after assigning a value to fij , can not be represented anymore by their
current representant. In case fij = 0, this concerns all rows r of C with repr = i
and crj = 1; similarly in case fij = 1. For all these rows r of C we search for a
new representing founder l (where i < l ≤ k) that can equally represent r starting
from breakpoint cpr, that is, we search for a row l in F (where i < l ≤ k) such that
crs = fls, for all s = cpr, . . . , j − 1. In case such a founder l can be found, we set
repr = l, and the search for an alternative representant for row r is stopped.

As a last step, after filling all the positions of a column j of F , the variables
cpr and repr must be updated for all rows r of C for which freprj 6= crj . In such a
case, we are looking for the founder i with the minimum l such that crs = fis, for
all s = l, . . . , j. After identifying such a founder i, we set cpr = l and repr = i. This
step concludes the description of our constructive heuristic.

6

3.2 Tabu Search

The tabu search phase has the goal of further reducing the number of breakpoints
of the solution that was heuristically constructed. The search space explored by
tabu search is the whole set of valid solutions (see Section 2). Before explain-
ing the neighborhood that we chose, we remind that the transition from one frag-
ment to the next one is called a breakpoint. This means that a decomposition
Fri1, . . . , F ridi

of recombinant Ci contains di − 1 breakpoints. In the following we
will denote the index of the founder from which fragment Frij is taken by F (j).
A move in the neighborhood that we designed concerns the removal of exactly one
of these breakpoints. In particular, for removing a breakpoint from decomposition
Fri1, . . . , F ridi

we must change either founder F (j) or F (j + 1) such that fragments
Frij and Frij+1 can be both taken from only one founder. This can be tried for
j = 1, . . . , di − 1. In the first case we must change the founder with index F (j)
such that fF (j)r = cir for r =

∑j−1
s=1 |Fris| + 1, . . . ,

∑j
s=1 |Fris|, and in the second

case we must change the founder with index F (j + 1) such that fF (j+1)r = cir for
r =

∑j
s=1 |Fris| + 1, . . . ,

∑j+1
s=1 |Fris|. Note that such a move is not guaranteed to

reduce the total number of breakpoints, nor to produce a feasible solution. Neverthe-
less, in our experiments it proved to be quite effective.The neighborhood structure
induced by the type of move described above was used inside a tabu search with
dynamic tabu list length, which is varied at each iteration by randomly choosing a
value in the range [tlmin, tlmax], where tlmin and tlmax are parameters of the algo-
rithm. For efficiency reasons, the neighborhood is restricted by considering only the
breakpoints of one, randomly chosen, recombinant. The tabu list contains the most
recently selected recombinants. Move evaluations are done incrementally, so as to
make the search process faster. In the high level description of the algorithm, see
Figure 2, we denote with N (F)|Cr the set of feasible solutions in the neighborhood
of the current solution F with respect to the moves resulting from the decomposition
of recombinant Cr .

4 Experimental Evaluation

We tested a multi-start version of our constructive heuristic2 (denoted by heuristic)
and the tabu search procedure (TS) against three variants of RecBlock: (a) the
exact version (rec-exact), (b) a sophisticated heuristic variant (rec-heuristic), and
(c) the lightest heuristic version corresponding to options -D0 -C1 (rec-D0C1). We
implemented our algorithms in C++, compiled with -O3 option. All programs were
run on nodes equipped with a 2.4 GHz AMD OpteronTM Processor with 1GB of
RAM. TS was run for 400 iterations and then restarted from a new heuristically

2Due to random decisions during the solution construction, the solution provided by our con-
structive heuristic is potentially different each time.

7

Algorithm 2 Tabu search for the FSRP
1: input: a set C of m recombinants of length n, and k, the required number of

founders
2: Let F0 be the initial solution provided by our constructive heuristic
3: InitializeTabuList(TL)
4: Fbest ← F0; nbpbest ← f(Fbest)
5: while maximum number of iterations not reached do
6: r ← RandomInt(1,m)
7: Na(F)← {F ′ ∈ N (F)|Cr s.t. r 6∈ TL ∨ f(F ′) < nbpbest }
8: F ′′ ← argmin{f(F ′) s.t. F ′ ∈ Na(s)}
9: UpdateTabuList(TL)

10: F ← F ′′
11: if f(F) < nbpbest then
12: Fbest ← F ; nbpbest ← f(Fbest)
13: end if
14: end while
15: output: solution Fbest

constructed solution until the time limit was reached. The range of the tabu list
length was set to [1, 10].

We used a benchmark set composed of randomly generated instances with m
recombinants and n = 2m, n = 3m, or n = 5m sites. We generated five instances per
combination of m and n. The generated instances are valid and not reducible, i.e.,
no columns can be removed without affecting the optimal solution. Each instance
was considered for several numbers of founders, more specifically, we considered
k ∈ {3, . . . , 10}. Each algorithm was applied to each instance and each k exactly
once, with a maximum CPU time limit of one hour. Results are summarized in
Tables 1 and 2 in which the average of the best solution values and the standard
deviation are reported. Statistics are taken over the 5 instances per number of
recombinants and sites; the values that are statistically better than the others3 are
marked by an asterisk.

Results show that RecBlock has a very good performance, but when instance
size increases, in at least one dimension, also rec-heuristic can not return a solution.
In these cases, our heuristic is slightly worse than rec-D0C1 while TS is consistently
better than the competitors. It is also interesting to consider the trend of execution
time. In Figure 4 we plot the ratio of the time at which heuristic and rec-D0C1
return the first solution, as a function of the number of founders and sites. As
expected, rec-D0C1 scales exponentially and the speedup we can achieve with our
heuristic is up to 4 orders of magnitude.

3That is, for which the null hypothesis is rejected. The Mann-Whitney test was applied.

8

Table 1. Instances with 30 recombinants. Best solution values returned by algorithms
in 1 hour of CPU time, averaged over 5 random instances. The symbol ‘—’ indicates
that no solution was returned. In brackets, the standard deviation is reported.
Statistically significantly better results are marked.

30 recombinants
sites , founders rec-exact rec-heuristic rec-D0C1 heuristic TS

60 , 3 573.8 (12.38) * 579.4 (11.5) * 604 (16.11) 594.2 (13.08) 583 (11.79) *
60 , 4 445.4 (5.59) * 450.2 (6.53) * 494.2 (18.27) 479.6 (9.18) 459.6 (7.5)
60 , 5 — 385.2 (7.85) * 425.4 (10.06) 412.2 (8.87) 395.8 (9.36)
60 , 6 — 340.6 (5.18) * 383.6 (5.13) 367.6 (6.88) 352 (6.6)
60 , 7 — 303.6 (5.64) * 353.8 (10.06) 335.2 (7.22) 318.2 (6.76)
60 , 8 — 274.6 (3.71) * 331 (8.75) 311.6 (5.77) 291.2 (4.38)
60 , 9 — — 307.4 (10.29) 288.6 (6.47) 270.4 (4.51) *
60 , 10 — — 294 (9) 268.4 (4.56) 251.8 (4.32) *
90 , 3 877.2 (2.95) * 885.2 (3.96) 917.8 (12.83) 910.8 (8.01) 892 (4.58)
90 , 4 684.2 (3.27) * 689.4 (4.34) 749.4 (5.81) 741.6 (7.16) 711.8 (4.02)
90 , 5 — 596.2 (4.49) * 653 (14.23) 645.6 (3.21) 618.6 (3.78)
90 , 6 — 525 (2.45) * 584.2 (7.85) 580.2 (4.32) 552.8 (4.76)
90 , 7 — 469.4 (3.91) * 542 (22.29) 529.8 (6.76) 500.4 (4.16)
90 , 8 — 424.4 (2.7) * 498.8 (17.47) 491 (4) 461.2 (2.17)
90 , 9 — — 469.8 (6.1) 456.2 (4.92) 427.8 (3.9) *
90 , 10 — — 438.2 (7.05) 427 (4.85) 398.8 (3.35) *
150 , 3 1468.8 (21.7) * 1482.6 (17.87) * 1533.4 (16.46) 1529 (16.12) 1500.6 (18.65)
150 , 4 1140.4 (9.42) * 1154.4 (5.18) 1249 (18.72) 1253.2 (12.77) 1200.8 (10.76)
150 , 5 — 991.6 (8.2) * 1083.8 (20.68) 1090.8 (9.88) 1041.6 (10.78)
150 , 6 — 876.2 (6.26) * 971.2 (3.49) 980 (4.8) 932 (9.14)
150 , 7 — — 888.8 (12.03) 897 (4.47) 848.2 (6.42) *
150 , 8 — — 819.2 (5.36) 831.8 (4.6) 783.2 (4.71) *
150 , 9 — — 770.2 (12.64) 773 (3.39) 727.6 (3.71) *
150 , 10 — — 715.2 (9.52) 724.8 (2.68) 676.6 (3.78) *

5 Conclusions and Outlook

In this paper we have proposed a constructive heuristic and a tabu search method
for tackling large size instances of the FSRP. Results on random instances show that
our tabu search method outperforms the heuristic version of RecBlock on large
size instances. We are currently working on an enhanced version of the construc-
tive heuristic with stochastic lookahead, and the design of an iterated local search
metaheuristic is ongoing.

9

Table 2. Instances with 50 recombinants. Best solution values returned by algorithms
in 1 hour of CPU time, averaged over 5 random instances. The symbol ‘—’ indicates
that no solution was returned. In brackets, the standard deviation is reported.
Statistically significantly better results are marked.

50 recombinants
sites , founders rec-exact rec-heuristic rec-D0C1 heuristic TS

100 , 3 1765.4 (16.96) * 1784.4 (14.64) 1837.8 (31.03) 1821.2 (18.02) 1789 (15.18)
100 , 4 1377.6 (10.88) * 1392.2 (9.39) 1481.8 (24.63) 1483.8 (8.23) 1425.2 (13.95)
100 , 5 — 1225.2 (14.72) * 1305 (17.36) 1301.2 (15.06) 1260.6 (14.43)
100 , 6 — 1095.8 (13.92) * 1177.6 (12.16) 1188.4 (15.08) 1140.2 (11.21)
100 , 7 — 997.8 (10.99) * 1087.8 (15.9) 1101.4 (9.89) 1049.4 (9.13)
100 , 8 — 920.4 (9.71) * 1026.8 (6.3) 1034.8 (9.78) 976 (9.62)
100 , 9 — — 963.8 (14.82) 976.2 (13.59) 915 (11.73) *
100 , 10 — — 918.8 (6.76) 928.4 (10.64) 868 (8.34) *
150 , 3 2631.2 (22.88) * 2660.6 (22.74) * 2740.8 (29.3) 2722.6 (23.99) 2677.4 (23.56)
150 , 4 2056.8 (5.72) * 2078.8 (6.91) 2194.2 (26.48) 2240.6 (6.88) 2148.2 (8.41)
150 , 5 — 1823.2 (8.32) * 1936.8 (12.74) 1965 (9.46) 1894.8 (8.35)
150 , 6 — 1635.8 (12.85) * 1759.6 (9.66) 1794.8 (6.8) 1717.8 (7.16)
150 , 7 — 1493.2 (11.19) * 1644 (12.53) 1668 (9.22) 1578.8 (10.18)
150 , 8 — — 1528.8 (13.24) 1562.8 (10.01) 1475.2 (10.96) *
150 , 9 — — 1443.8 (6.69) 1479.2 (14.74) 1386 (8.86) *
150 , 10 — — 1376.8 (15.59) 1403.2 (11.56) 1314.8 (5.81) *
250 , 3 4421 (22.06) * 4466.2 (20.46) 4597.8 (33.69) 4601.6 (15.53) 4514.8 (11.95)
250 , 4 3448.67 (4.73) * 3490.8 (10.76) 3728.8 (8.53) 3813.6 (7.54) 3634.2 (13.88)
250 , 5 — 3071.4 (15.98) * 3258.4 (33.25) 3344 (21.12) 3218.8 (11.69)
250 , 6 — 2754.4 (14.17) * 2967.8 (24.77) 3046.8 (11.37) 2915.8 (17.31)
250 , 7 — 2510.6 (9.4) * 2735.6 (20.89) 2832 (13.82) 2686.6 (11.8)
250 , 8 — — 2570.6 (22.06) 2648.8 (17.77) 2504.8 (12.93) *
250 , 9 — — 2422 (30.24) 2505.8 (14.79) 2358 (9.67) *
250 , 10 — — 2304.4 (28.06) 2378.8 (7.22) 2237.2 (7.6) *

Acknowledgements

This work was supported by grant TIN2007-66523 (FORMALISM) of the Spanish
government. In addition, Christian Blum acknowledges support from the Ramón y
Cajal program of the Spanish Ministry of Science and Technology of which he is a
research fellow.

References

[1] C. Blum and A. Roli. Metaheuristics in combinatorial optimization: Overview
and conceptual comparison. ACM Computing Surveys, 35(3):268–308, 2003.

10

3 4 5 6 7 8 9 10

5e
+

02
2e

+
03

5e
+

03
2e

+
04

5e
+

04

Speedup for 50 recombinants

Number of founders

S
pe

ed
up

 o
f h

eu
ris

tic
 v

s.
 r

ec
−

D
0C

1

100 sites
150 sites
250 sites

Figure 2. Speedup achieved by our constructive heuristic procedure w.r.t. rec-D0C1.
Along the y-axis, the ratio of the execution time of the heuristic and rec-D0C1 is
reported.

[2] Fred W. Glover and Manuel Laguna. Tabu Search. Kluwer Academic Publishers,
Norwell, MA, USA, 1997.

[3] P. Rastas and E. Ukkonen. Haplotype inference via hierarchical genotype parsing.
In Proceedings of WABI2007 – 7th Workshop on Algorithms in Bioinformatics,
2007.

[4] G. W. Thyson, J. Chapman, P. Hugenholtz, E. Allen, R. Ram, P. Richardson,
V. Solovyev, E. Rubin, D. Rokhsar, and J. Banfield. Community structure and
metabolism through reconstruction of microbial genomes from the environment.
Nature, (428):37–43, 2004.

[5] E. Ukkonen. Finding founder sequences from a set of recombinants. In R. Guigó
and D. Gusfield, editors, Proceedings of WABI 2002 – Proceedings of the 2nd
Workshop on Algorithms in Bioinformatics, volume 2452 of Lecture Notes in
Computer Science, pages 277–286. Springer Verlag, Berlin, 2002.

[6] Y. Wu and D. Gusfield. Improved algorithms for inferring the minimum mosaic
of a set of recombinants. In Proceedings of CPM 2007 – Proceedings of the 18th
Annual Symposium on Combinatorial Pattern Matching, volume 4580 of Lecture
Notes in Computer Science, pages 150–161. Springer Verlag, Berlin, 2008.

11

