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Abstract. We present and discuss the results of an experimental anal-
ysis in the design of Boolean networks by means of genetic algorithms.
A population of networks is evolved with the aim of finding a network
such that the attractor it reaches is of required length l. In general, any
target can be defined, provided that it is possible to model the task as an
optimisation problem over the space of networks. We experiment with
different initial conditions for the networks, namely in ordered, chaotic
and critical regions, and also with different target length values. Results
show that all kinds of initial networks can attain the desired goal, but
with different success ratios: initial populations composed of critical or
chaotic networks are more likely to reach the target. Moreover, the evolu-
tion starting from critical networks achieves the best overall performance.
This study is the first step toward the use of search algorithms as tools
for automatically design Boolean networks with required properties.

1 Introduction

The design of complex systems is one of the main challenges in scientific and
engineering disciplines. Model synthesis, identification and tuning, reverse en-
gineering of biological and social networks, design of self-organising artificial
systems are just some of the areas in which scientists are asked to face this issue.
Such systems and models are mostly designed and tuned by means of auto-
matic procedures, some of which can be ascribed to the class of search methods.
A prominent example of these approaches are evolutionary computation tech-
niques, for instance for designing robotic systems [1].

In this paper we present and discuss results of a preliminary study in the con-
text of automatic design of Boolean networks via Genetic algorithms. Boolean
networks (BNs) have been introduced by Kauffman as a model for genetic reg-
ulatory networks [2] and have been also studied as computational learning sys-
tems [3,4]. The first study on the evolution of BNs can be found in [5], in which
the authors apply a simple evolutionary algorithm to evolve BNs with an at-
tractor containing a target state. A follow-up of that seminal work is that of
Lemke at al. [6], in which the fitness function accounts also for a desired attrac-
tor length. These studies are mainly an investigation of how evolution performs
over BNs and raise interesting and fundamental questions on the search land-
scape structure and the evolutionary dynamics depending on network structural
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characteristics. More recently, works addressing the evolvability of robustness in
BNs have been presented [7,8,9]. In the same direction is a recent paper, [10], in
which the global fitness function is defined as the sum of single functions, each
related to a network parameter somehow linked to network robustness (e.g.,
number and length of attractors).

Despite the amount of analytical studies on the properties of BNs and their
effectiveness in capturing fundamental genetic phenomena, little effort has been
received so far concerning their synthesis. The availability of tools for automatic
design of BNs would make it possible to design and tune BNs for applications
in genetics, as genetic regulatory network models [11], and robotics, as multi-
functional controllers.

This contribution is a first step toward the development of a family of tools
for automatic design of BNs and discrete dynamical systems in general. We first
introduce preliminary definitions and concepts in Sections 2 and 3; experimental
settings and results are described in Section 4. We then conclude with an outline
of the agenda for future research in Section 5.

2 Boolean networks

BNs have been firstly introduced by Kauffman [2] and subsequently received
considerable attention in the composite community of complex systems. Re-
cent advances in this research field can be mainly found in works addressing
themes in genetic regulatory networks or investigating properties of BNs them-
selves [7,12,13,14].

A BN is a discrete-state and discrete-time dynamical system defined by a
directed graph of N nodes, each associated to a Boolean variable xi, i = 1, . . . , N ,
and a Boolean function fi(xi1 , . . . , xiKi

), where Ki is the number of inputs of
node i. Often, Ki is chosen to be equal to a constant value K for every i. The
arguments of the Boolean function fi are the nodes whose outgoing arcs are
connected to node i. The state of the system at time t, t ∈ N, is defined by
the array of the N Boolean variable values at time t: s(t) = (x1(t), . . . , xN (t)).
The most studied dynamics for BNs is synchronous, i.e., nodes update their
states in parallel, and deterministic. However, many variants exists, including
asynchronous and probabilistic update rules [15].

In this work, we consider networks ruled by synchronous and deterministic
dynamics. Given this setting, the network trajectory in the N -dimensional state
space is a sequence of states composing a transient, possibly empty, followed
by an attractor, that is a cycle of length l ∈ [1, . . . , 2N ]. States that belong to a
trajectory ending at attractor Ai are said to be members of the basin of attraction
of Ai. When BNs are employed as genetic regulatory network models, attractors
assume a notable relevance as they can be interpreted as cellular types [16].

A special category of BNs that has received particular attention is that of
Random BNs, which can capture relevant phenomena in genetic and cellular
mechanisms and complex systems in general. Random BNs (RBNs) are usu-
ally generated by choosing at random K inputs per node and by defining the



Boolean functions by assigning to each entry of the truth tables a 1 with prob-
ability p and a 0 with probability 1 − p. Parameter p is called homogeneity or
bias. Depending on the values of K and p the dynamics of RBNs is ordered or
chaotic. In the first case, the majority of nodes in the attractor is frozen and
any moderate-size perturbation is rapidly dampened and the network returns
to its original attractor. Conversely, in chaotic dynamics, attractor cycles are
very long and the system is extremely sensitive to small perturbations: slightly
different initial states lead to divergent trajectories in the state space. RBNs
temporal evolution undergo a second order phase transition between order and
chaos, governed by the following relation between K and p: Kc = [2pc(1−pc)]−1,
where the subscript c denotes the critical values [17]. Networks along the critical
line have important properties, such as the capability of achieving the best bal-
ance between evolvability and robustness [7] and maximising the average mutual
information among nodes [13]. Hence the conjecture that living cells, and living
systems in general, are critical [18].

In this work we are interested in designing BNs such that the attractor they
reach from a given initial state has a target length: this represents just one of
numerous examples of requirements we may want a BN to satisfy. Nevertheless,
since attractor length depends on the main properties of BNs, this goal enables
us to address some of the most relevant issues in BN design.

3 Genetic algorithms

Genetic algorithms (GAs) belongs to the family of evolutionary computation
methods and have been successfully applied as search techniques since several
decades [19,20,21]. Inspired by Darwin’s theory of selection and natural evolu-
tion, a GA evolves a population of candidate solutions to a problem by iteratively
selecting, recombining and modifying them. The driving force of the algorithm
is selection, that biases search toward the fittest solutions, i.e., those with the
highest objective function value. Algorithm 1 shows the basic structure of a GA.

Algorithm 1 Genetic Algorithm
P ← GenerateInitialPopulation()
Evaluate(P )
while termination conditions not met do

P ′ ← Recombine(P )
P ′′ ← Mutate(P ′)
Evaluate(P ′′)
P ← Select(P ′′ ∪ P )

end while

The function Evaluate(P ) computes the fitness of each individual of popula-
tion P . The fitness function is positively correlated with the objective function,
that quantifies the quality of a candidate solution and it is usually normalised



in the range [0,1]. In the next section, we detail the specific genetic algorithm
used in our experiments.

4 Experimental analysis

The long term aim of this study is the definition and implementation of au-
tomatic procedures and methodologies for designing BNs and similar systems.
The availability of such procedures would make it possible to perform inference
of real genetic networks and to study the effects of evolution on simple genetic
models [11]. Furthermore, a promising yet uninvestigated research area consists
of using BNs to control autonomous systems: the same BN-controller can pro-
duce different behaviours, depending on the attractor it is traversing. The actual
behaviours have to be encoded into a proper sequence of states, hence the need
for a procedure for defining the network according to the requirements.

In this work, our goal is to investigate the possibility of evolving BNs by GAs
so as to obtain a network able to reach an attractor of a desired period with a
trajectory starting from a given initial state s0. The questions that we want to
address are the following:

(a) Is it possible to guide evolution in such a way to succeed in the goal? What
is the probability of reaching the target? (i.e., how robust is the automatic
design procedure?)

(b) Are there differences across network parameters? Are there networks that
are easier to evolve?

(c) Which are the most difficult or the easiest targets to be reached?
(d) What is the influence of GA parameters?
(e) What are the effect of the evolution on networks structure?

In the remainder of this section we detail the experimental settings and report
and discuss the experimental results.

4.1 Experimental settings

Experiments are run with networks of 100 nodes and K = 3. The initial state is
chosen at random and the target attractor lengths are 1, 10, 50, 100, 500, 800.
Networks composing the initial population are constructed by randomly assign-
ing inputs, without self-inputs; Boolean functions are defined by assigning truth
values biased by homogeneity values equal to 0.85 (ordered), 0.788675 (critical)
and 0.5 (chaotic), in three different experiment series, respectively. However,
Boolean functions homogeneity of single individuals can change during evolu-
tion because the initial distribution of 1s and 0s can be changed by the genetic
operators. For efficiency reasons, the temporal evolution of each network is sim-
ulated for at most 1000 steps: if an attractor is not reached in this limit, a
fitness value of 0 is returned. The individuals of the GA are encoded as a tuple
of N binary vectors of size 2K , each defining the Boolean function of a node.



Table 1. Summary of experimental parameter values. All the possible combinations
of the values reported have been tested.

N K p attractor population number of mutation / crossover number of
length size generations rate runs

1
10

0.5 50 0.5 / 0.9
100 3 0.788675 100 80 200 0.5 / 0.0 100

0.85 500 0.1 / 0.9
800

Thus, only Boolean functions of a network are evolved and the connections are
kept constant. The recombination operator is a one-point crossover and muta-
tion is a single-variable flip. Both operators are applied chromosome-wise. The
fitness function is defined as F (net) = (1 + |l − lt|)−1, where l is the length of
the attractor the individual network reached and lt is the target length. The
remaining parameters of the GA have been chosen as reported in Table 1, in
which a summary of experimental parameter values is provided. All the possible
combinations of the values reported have been tested.

BNs have been simulated with a BN simulator developed by the group of
Artificial Intelligence and Complex Systems of DEIS-Cesena, further extended
into the BN Simulation Toolkit [22] and the GA has been implemented with
GAUL [23]. All experiments have been performed on a 2.4 GHz Intel Core 2
Quad with 4MB of cache and 2GB of RAM, running with Linux Ubuntu 8.10.

4.2 Performance comparison

We first discuss the results concerning the performance of each class of networks,
addressing questions (a), (b) and (c). The first notable observation is that for all
target attractor lengths and for all initial network classes the GA could find at
least one network with maximal fitness in the 100 independent runs. This result
means that all three classes of networks can be evolved to successfully reach
the target. To assess the robustness of the process, we compare the fraction
of successful runs at each generation of the algorithm, i.e., we estimate the
success probability at generation t, defined as the probability that a network
with maximal fitness is found at generation t′ ≤ t. The corresponding plots are
depicted in Figures 1, 2. Results for attractor lengths of 1 and 10 are omitted,
because the fraction of runs achieving maximal fitness reaches the 100% right in
the initial population or after few generations.

We first note that the performance achieved with initially ordered networks
is considerably lower than that of critical and chaotic ones. This can be ascribed
to the fact that ordered networks are not very likely to have long attractors.
Anyway, the search process performed by the GA is still able to find a network
with the desired attractor length. The case of critical and chaotic networks has
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Fig. 1. Success ratio vs. generations. The comparison is made among the three initial
network classes. Target attractor lengths equal to 50 and 100.
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Fig. 2. Success ratio vs. generations. The comparison is made among the three initial
network classes. Target attractor lengths equal to 500 and 800.



some subtleties which deserve to be outlined. First of all, we observe that the
success ratio decreases as the attractor length increases. Moreover, in most cases
critical networks dominate or are almost equivalent to chaotic ones, while for
target attractor length equal to 100, initial chaotic networks seems to provide
a better start to the GA. Both the phenomena can be explained by the combi-
nation of two factors. First: the cutoff imposed on simulation steps limits from
above the networks attractor length, hence making it difficult to evolve networks
with an attractor of length comparable with the maximal number of simulation
steps because, if an attractor is not found, the corresponding fitness value is
zero. Second: critical networks have usually many attractors, but of small length
compared to attractor periods of chaotic networks, that can be exponential in
the number of nodes. In a survey experimental analysis, we observed that for
networks with 100 nodes and a maximal number of simulation steps of 1000,
the median attractor length for critical networks is 6, while for chaotic ones is
130. Therefore, for a target length of 100, the fitness of individuals composing
the initial population is likely to be higher in the case of chaotic networks than
in critical ones. However, it is worth to be noted that critical networks can be
anyway evolved to reach long attractors, despite their handicap in the initial
population’s fitness. This could be a further evidence of their tendency of max-
imising adaptiveness. The study of the search space, that would provide insight
into problem hardness, is subject of ongoing work.

4.3 Influence of GA parameters

The influence of mutation and crossover on search performance can shed light
on the evolution characteristics of the different initial population classes and can
answer question (d). Figures 3, 4 show a typical case1 of algorithm performance
in the three examined cases of mutation and crossover rates. From the plots
we observe that the synergy of both mutation and crossover are crucial for
the evolution of initially ordered and critical networks. Conversely, for chaotic
networks, mutation is much more important than crossover.

4.4 Effect of evolution on Boolean function homogeneity

We conclude this analysis by comparing homogeneity distribution at the begin-
ning and at the end of the search. These results should be taken cum grano
salis, as evolved networks might not have the very same properties as the ran-
dom initial ones and a complete answer to question (e) requires also to study the
properties of Boolean functions as well as network dynamics. Nevertheless, since
only Boolean functions are evolved and topology is kept constant, the evolution
of homogeneity can still provide some insights into the effects of evolution on
the initial BNs. The average homogeneity of the best individual in the initial
and final populations are compared in Table 2, where statistically significantly

1 Target attractor length equal to 100.
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Fig. 3. Comparison of the impact of mutation and crossover on search performance.
The case of ordered and critical initial network classes are reported.
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Fig. 4. Comparison of the impact of mutation and crossover on search performance.
The case of initial chaotic network class is reported.



Table 2. Comparison of the average homogeneity of the best individual in the ini-
tial and final population. Significantly differing averages, i.e., those which passed the
Wilcoxon test with confidence level 95%, are denoted by a star.

Target Ordered networks Critical networks Chaotic networks
attr. Best indiv. average homogeneity Best indiv. average homogeneity Best indiv. average homogeneity
length initial/final initial/final initial/final

Successful runs Unsuccessful runs Successful runs Unsuccessful runs Successful runs Unsuccessful runs

50 0.8474/0.8369* 0.8447/0.8458 0.7807/0.7790 0.7895/0.7884 0.5023/0.4986 0.4943/0.5016
100 0.8456/0.8345* 0.8459/0.8380* 0.7844/0.7752* 0.7818/0.7822 0.5032/0.5034 0.4964/0.4996
500 0.8434/0.8285 0.8465/0.8365* 0.7860/0.7688* 0.7824/0.7735* 0.5019/0.5046 0.5010/0.5018
800 0.8325/0.7962 0.8463/0.8346* 0.7854/0.7770 0.7834/0.7700* 0.4951/0.5034 0.4997/0.5039

differing averages are denoted by a star.2 We can observe a mild tendency of
homogeneity decrease for ordered and critical networks, while the GA does not
affect homogeneity in chaotic networks. The conclusion we can draw is that, in
our experimental setting, the GA does not dramatically change the distribution
of 0s and 1s, even if there are some clues suggesting that ordered and critical
networks are more affected than chaotic ones and they are somehow pushed to-
wards the chaotic region. However, a more detailed analysis is required before
drawing strong conclusions on the effect of GA on network structure.

5 Conclusion and outlook to future work

In this work, we have presented and discussed results of the evolutionary design
of BNs with a desired attractor length. We have shown that it is possible to find
networks with such a property for every kind of initial class: ordered, chaotic
and critical. Search performance starting from critical and chaotic networks is
considerably higher that in the case of ordered networks. Another important
outcome of the experiments is that, critical networks are a good start for GA for
all the target attractor lengths tested, despite the low probability of finding long
attractors in those networks. This work is just a first step in this research area.
A future research agenda include: (i) relaxing the constraint of keeping constant
the initial state, thus moving to stochastic search problems (as the enumeration
of all possible initial states is impractical), (ii) evolving also network topology
and exploring the use of different search algorithms, mainly metaheuristics and
their hybrids. Finally, we are also planning to experiment with other targets,
such as specific patterns in the attractors and combinations thereof, aiming at
the design of networks with a desired landscape of attractors, each with a specific
characteristic.
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