
FOCLASA 2006

Formal ReSpecT in the A&A Perspective

Andrea Omicini 1

Alma Mater Studiorum—Università di Bologna,
via Venezia 52, 47023 Cesena, Italy

Abstract

Coordination languages and models have found a new course in the context of
MAS (multiagent systems). By re-interpreting results in terms of agent-oriented
abstractions, new conceptual spaces are found, which extend the reach of coordi-
nation techniques far beyond their original scope. This is for instance the case of
coordination media, when recasted in terms of coordination artifacts in the MAS
context.

In this paper, we take the well-established ReSpecT language for programming
tuple centre behaviour, and adopt the A&A (agents and artifacts) meta-model as
a perspective to reinterpret, revise, extend and complete it. A formal model of the
so-called A&A ReSpecT language is presented, along with an example illustrating
its use for MAS coordination.

Key words: Tuple-based Coordination, Artifacts for MAS, A&A,
Tuple Centres, ReSpecT.

1 Introduction

In the last decade, the field of coordination models and languages has produced
a wide range of results on the general issue of governing interaction in complex
systems: such results are today finding their natural exploitation in hot areas
of computational system research, such Web Service Orchestration, WfMS
(workflow management systems), and MAS (multiagent systems). It is then
seemingly appropriate to take well-established results from the coordination
field, and go beyond their mere inter-disciplinary application—gearing instead
toward a full trans-disciplinary approach. This means essentially that findings
by coordination researchers should first be taken and used to address the issues
of interaction management in complex systems, as they emerge from other
research areas (inter-disciplinarity); then, they should be recast according to
the new conceptual framework, suitably revised and extended along to the

1 Email: andrea.omicini@unibo.it
This paper is electronically published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

Omicini

new lines of interpretation, and in such a new form brought back to where
they came from (trans-disciplinarity).

Coordination is today acknowledged as one of the key issues in the mod-
elling and engineering of complex systems: as such, it has been the subject
of numerous investigations in areas like Sociology, Economics and Organisa-
tional Theory [16]. There, coordination is generally conceived as a means to
integrate a multiplicity of diverse activities or processes in such a way that
the resulting ensemble exhibits some desired / required features. The design
of coordination mechanisms is particularly challenging in the field of MAS, as
they are usually embedded in highly dynamic environments, and neither the
number nor the behaviour of agents are possibly known at design time.

However, conceptual foundations of the MAS area are still under impetu-
ous development, pushed by deep and heterogeneous inputs from distributed
computing, programming languages, software engineering, simulation, artifi-
cial intelligence, and other related areas that are today converging toward
agent-orientedness [30]. Among the most promising approaches, the A&A
meta-model [19] re-interprets MAS in terms of two fundamental abstractions:
agents and artifacts. Agents are the active entities encapsulating control,
which are in charge of the goals/tasks that altogether build up the whole
MAS behaviour. Artifacts are instead the passive, reactive entities in charge
of the services and functions that make individual agents work together in a
MAS, and that shape agent environment according to the MAS needs. Alto-
gether, the A&A meta-model has a deep impact on the way in which MAS are
engineered [10], programmed [26], and simulated [11]. Along this line, coor-
dination artifacts can be conceived as a generalisation of coordination media,
as specialised artifacts encapsulating coordination services for MAS [19].

Bringing back the A&A meta-model to the coordination fields suggests
a number of interesting considerations. For instance, features of artifacts
(like inspectability, forgeability, linkability, etc.) can be used to build up
a framework for classifying coordination media, to understand and compare
them along the coordination literature [18]. More generally, coordination mod-
els and languages can be suitably reinterpreted within the A&A conceptual
framework, and revised and extended accordingly. In this paper, we follow
the latter line of thought.

In particular, we take the ReSpecT language for programming the be-
haviour of tuple centres [15] and its formal model [14], and discuss its re-
formulation in the A&A framework. Section 2 shortly discusses the A&A
meta-model, and the main features of artifacts. Section 3 briefly recalls the
essentials of the TuCSoN model and of the ReSpecT language. Section 4 in-
troduces the new, revised ReSpecT syntax, along with an example of A&A
ReSpecT coordination of agents. Section 5 presents the formal semantics of
A&A ReSpecT, obtained by largely revising and extending the original one [14]
along the A&A main lines. After Section 6 discusses relations with previous
work and related literature, Section 7 provides for final remarks and future

2

Omicini

lines of work.

2 The A&A Meta-Model for MAS

Our approach to MAS coordination is grounded on the A&A (agents and
artifacts) meta-model, which adopts artifacts—along with agents—as the basic
MAS building blocks to program and, more generally, to engineer complex
software systems [19].

In the A&A meta-model, agents are the basic abstractions to represent
active, task-/goal-oriented components, designed to pro-actively carry on one
or more activities toward the achievement of some kind of objective, requiring
different levels of skills and reasoning capabilities. On the other hand, arti-
facts are the basic abstractions to represent passive, function-oriented building
blocks, which are constructed and used by agents, either individually or co-
operatively, during their working activities.

Taking human society as a metaphor, agents play the role of humans, while
artifacts coincide with the objects and tools (called artifacts in the human
society, too) used by humans as the means to support their work and achieve
their goals, or as the target of their activities. The role of artifacts in the
context of human activities—in particular social activities—is one of the most
important and investigated points of many theories—Activity Theory (AT) [9]
and Distributed Cognition in particular—well-known and used in fields such
as CSCW and HCI [27,12].

According to AT, any activity carried on by one or more components of
a systems—individually or cooperatively—cannot be conceived or understood
without considering the tools or artifacts mediating the actions and interac-
tions of the components. Artifacts on the one side mediate the interaction
between individual components and their environment (including the other
components); on the other side they embody the portion of the environment
that can be designed and controlled to support components’ activities. More-
over, as an observable part of the environment, artifacts can be monitored
along with the development of the activities to evaluate overall system perfor-
mance and keep track of system history. In other words, mediating artifacts
become first-class entities for both the analysis and synthesis of individual as
well as cooperative working activities inside complex systems. Such a vision is
also promoted by Distributed Cognition [8], a branch of cognitive science that
proposes that human cognition and knowledge representations, rather than
being confined within the boundaries of an individual, is distributed across
individuals, tools and artifacts in the environment.

The complexity of activities of the social systems accounted for by AT and
Distributed Cognition can be found nowadays in MAS. This is why we consider
the inter-disciplinary study of such conceptual frameworks as fundamental for
the analysis and synthesis of social activities inside MAS, and in particular of
the artifacts mediating such activities [24]. Examples range from coordination

3

Omicini

abstractions such as tuple centres [15], to pheromone infrastructure [22] in the
context of stigmergy coordination, to the Institution abstraction in electronic-
institution approaches [5], to cite some.

Unlike agents, artifacts are not meant to be autonomous or exhibit a pro-
active behaviour, neither to have social capabilities. Among the main prop-
erties that are useful according to artifact purpose and nature [18], one could
list: (i) inspectability and controllability, i.e. the capability of observing and
controlling artifact structure, state and behaviour at runtime, and of support-
ing their on-line management, in terms of diagnosing, debugging, testing; (ii)
malleability, i.e. the capability of artifact function to be changed / adapted at
runtime (on-the-fly) according to new requirements or unpredictable events
occurring in the open environment, (iii) linkability, i.e. the capability of link-
ing together at runtime distinct artifacts as a form of composition, as a means
to scale up with complexity of the function to provide, and also to support
dynamic reuse, (iv) situation, i.e. the property of being immersed in the MAS
environment, and to be reactive to environment events and changes. It is worth
to be remarked that most of these artifact features are not agent features: typ-
ically, agents are not inspectable, do not provide means for malleability, do
not provide operations for their change, and do not compose with each other
through operational links. On the other hand, agents are typically told to be
situated: however, how this is realised, in particularly how pro-activity and
re-activity features could be reconciled, is not an easy matter. Instead, once
artifacts are situated, agent situatedness could be recasted in terms of their
interaction with artifacts.

Coordination artifacts [19] are a primary example of artifacts for MAS, as
artifacts designed to provide agents and MAS with specific coordination func-
tionalities and services [29]. In human societies, coordination artifacts are as
common as traffic lights, street signs, post-its on whiteboards; in computa-
tional systems, things like blackboards, event-services, shared message boxes,
could be easily be seen as coordination artifacts. In the context of MAS,
coordination artifacts are used to both enable and govern forms of mediated
interaction—i.e., where agents do not communicate directly but through a
medium—, which is essential to support forms of communication that are
uncoupled along both the time and space dimensions.

So, the overall view of MAS adopting the A&A perspective is given by
agents distributed across the networks that inter-operate and coordinate both
by communicating via some kind of ACL (agent communication language)—
such as FIPA ACL [6]—and by sharing and (co-)using different kind of arti-
facts. Generally speaking, the A&A meta-model recasts the space of inter-
action within MAS. So, the components of a MAS interact in three different
ways: agents speak with agents; agents use artifacts; artifacts link with arti-
facts.

Dealing with the government of interaction, coordination models and in-
frastructures like TuCSoN [21] represent the most natural technologies upon

4

Omicini

which the A&A approach can be put to test. Therefore, revising TuCSoN
models and languages under the A&A viewpoint is seemingly appropriate. In
particular, in this paper we recast the ReSpecT language for programming
TuCSoN tuple centres: we reintepret, revise, extend and complete it so as to
make it fit the A&A meta-model for MAS.

3 TuCSoN & ReSpecT

TuCSoN (Tuple Centres Spread over the Network 2) is a general-purpose agent-
oriented model and infrastructure for MAS coordination [21]. TuCSoN is based
on a coordination model providing tuple centres as first-class abstractions
to design and develop general-purpose coordination artifacts [15]. TuCSoN
tuple centres are programmed through the ReSpecT logic-based specification
language. In the remainder of this section, we first recall the essentials of tuple
centre coordination in TuCSoN (Subsection 3.1); then, we resume the main
features of the original ReSpecT language for programming the behaviour of
TuCSoN tuple centres (Subsection 3.2).

3.1 The TuCSoN Tuple Centre Coordination Model

A tuple centre is a tuple space enhanced with the possibility to program its
behaviour in response to interactions.

So, first of all, agents can operate on a TuCSoN tuple centre in the same
way as on a Linda tuple space [7]: by exchanging tuples (which are ordered
collection of knowledge chunks) through a simple set of coordination primitive.
An agent can write a tuple in a tuple centre with an out operation; or read a
tuple from a tuple centre with operations such as in, rd, inp, rdp specifying a
tuple template—that is, an identifier for a set of tuples, according to some tuple
matching mechanism. Reading tuples can be destructive (in, inp remove the
matching tuple) or non-destructive (rd, rdp simply read the matching tuple),
suspensive (in, rd wait until a matching tuple is found) or non-suspensive
(inp, rdp immediately return either the matching tuple or a failure result)—
but is anyway non-deterministic: when more than one tuple in a tuple centre
are found that match a tuple template, one is non-deterministically chosen
among them.

Accordingly, a tuple centre enjoys all the many features of a tuple space,
which can be classified along three different dimensions: generative commu-
nication, associative access, and suspensive semantics. The main features of
generative communication (where information generated has an independent
life with respect to the generator) are the forms of uncoupling (space, time,
name) based on mediated interaction: sender and receiver do not need to
know each other, to coexist in the same space or at the same time in order to

2 The TuCSoN technology is available as an open source project at the TuCSoN web site
[28]

5

Omicini

communicate (to exchange a tuple, in particular). Associative access (access
based on structure and content of information exchanged, rather than on lo-
cation or name) based on tuple matching promotes synchronisation based on
tuple structure and content: thus, coordination is information-driven, and al-
lows for knowledge-based coordination patterns. Finally, suspensive semantics
promotes coordination patterns based on knowledge availability, and couples
well with incomplete or partial knowledge.

Even more, while the basic tuple centre model is independent of the
type of tuple [15], TuCSoN tuple centres adopt logic tuples—both tuples
and tuple templates are essentially Prolog facts—and unification is used
as the tuple-matching mechanism. So, for instance, an agent ag1 per-
forming operation we?in(activity(ag1,CaseID)) on tuple centre we contain-
ing tuples activity(ag1,c16) and activity(ag2,c22) will be returned tuple
activity(ag1,c16) (the one unifying with the template) removed from we.
Since the overall content of a tuple centre is a multiset of logic facts, it has a
twofold interpretation as either a collection of messages, or a (logic) theory of
communication among agents—thus promoting in principle forms of reasoning
about communication.

The TuCSoN infrastructure makes it possible to exploit tuple centres as
coordination services distributed over the network [21]. In particular, TuCSoN
overall coordination space is constituted by an open set of TuCSoN nodes,
which correspond to Internet hosts or servers connected by the network. Each
node can contain any number of tuple centres, each identified by a unique
(inside the node) logic name (e.g. message board). An agent can refer tuple
centres either specifying their full name, that is, their logic name plus the
address of the node hosting the tuple centre (e.g. message board@acme.org),
or their local name, for tuple centres located on the same host where the
agent is situated. As a result, agents can exploit either the local or the global
coordination space by adopting either the local or the full name.

Finally, a tuple centre is a programmable tuple space—thus adding pro-
grammability of the coordination medium as a new dimension of coordination.
While the behaviour of a tuple space in response to communication events is
fixed (so, the effects of coordination primitives is fixed), the behaviour of a
tuple centre can be tailored to the application needs by defining a set of spec-
ification tuples, or reactions, which determine how a tuple centre should react
to incoming / outgoing events.

While the basic tuple centre model is not bound to any specific language
to define reactions [15], TuCSoN adopts the logic-based language ReSpecT
(Reaction Specification Tuples) to program tuple centres.

3.2 ReSpecT as a Core Coordination Language

The original ReSpecT [14] is a logic-based language for the specification of the
behaviour of tuple centre adopted by TuCSoN. As a behaviour specification

6

Omicini

language, ReSpecT:

• enables the definition of computations within a tuple centre, called reactions,
and

• makes it possible to associate reactions to events occurring in a tuple centre.

So, ReSpecT has both a declarative and a procedural part. As a spec-
ification language, it allows events to be declaratively associated to reac-
tions by means of specific logic tuples, called specification tuples, whose
form is reaction(E,R). In short, given a event Ev, a specification tuple
reaction(E,R) associates a reaction Rθ to Ev if θ = mgu(E,Ev). 3 As a reac-
tion language, ReSpecT enables reactions to be procedurally defined in terms
of sequences of logic reaction goals, each one either succeeding or failing. A
reaction as a whole succeeds if all its reaction goals succeed, and fails other-
wise. Each reaction is executed sequentially with a transactional semantics:
so, a failed reaction has no effect on the state of a logic tuple centre.

All the reactions triggered by a communication event are executed before
serving any other event: so, agents perceive the result of serving the commu-
nication event and executing all the associated reactions altogether as a single
transition of the tuple centre state. As a result, the effect of a communica-
tion primitive on a logic tuple centre can be made as complex as needed by
the coordination requirements of a MAS. Generally speaking, since ReSpecT
has been shown to be Turing-equivalent [3], any computable coordination law
can be in principle encapsulated into a ReSpecT tuple centre. This is why
ReSpecT can be assumed as a general-purpose core language for coordination:
a language that can then be used to represent and enact policies and rules of
any sort for collaboration support systems.

Adopting the declarative interpretation of ReSpecT tuples, a TuCSoN tuple
centre has then a twofold nature [14]: a theory of communication (the set of
the ordinary tuples) and a theory of coordination (the set of the specification
tuples)—which allows in principle intelligent agents to reason about the state
of collaboration activities, and possibly affect their dynamics. Furthermore,
the twofold interpretation of ReSpecT specification tuples (either declarative
or procedural) allows knowledge and control to be represented uniformly (as
Prolog-like facts) and encapsulated in a unique coordination artifact.

3.3 TuCSoN & ReSpecT in the A&A Perspective

In the A&A perspective, TuCSoN provides agents with a multiplicity of dis-
tributed artifacts (the tuple centres) containing both shared knowledge and
the logic of coordination expressed in terms of logic tuples. ReSpecT tuple
centres are inspectable artifacts (not controllable), and are malleable, since
their behaviour can be affected at run-time by changing their behaviour spec-
ification. While the original ReSpecT specification did not encompass neither

3 mgu is the most general unifier, as defined in logic programming.

7

Omicini

linkability nor situatedness [15], two extensions were already introduced that
moved along such directions. First, a first extension was proposed in [25],
which introduced the first linkability primitive for tuple centre composition,
that is, out tc. Then, Timed ReSpecT was defined in [17], which first pro-
posed the notions of timed artifact and timed tuple centre, and allowed for
the specification of time-dependent coordination policies, encapsulated within
Timed ReSpecT tuple centres.

4 Introducing A&A ReSpecT

4.1 Adopting the A&A Perspective

Adopting the A&A perspective promotes a more articulated view over the
space of MAS interaction. First of all, a more general notion of event is
required. Since artifacts are passive entities, the only real sources of events in
a MAS are agents and the environment. So, whatever happens in a MAS has
its “prime cause” either in an agent action, or in an environment phenomenon.
However, artifacts are reactive, and link with each other—so, they can operate
one each other. As a first consequence, the direct cause of any artifact event
may also be some link operation from another artifact—not the prime cause,
anyway. So, a general event descriptor should include both the original cause
of an event, and the most direct one—thus allowing the event chain to be fully
observed, and artifact coordinative behaviours to be properly defined.

As a further consequence, artifact operations should be available for ex-
ploitation to other artifacts, too: so, usage of artifacts by agents, and linking
between artifacts should be as uniform as possible. So, primitives for artifact
operations should be available for exploitation to both agents and artifacts—
with no assumptions on the nature and behaviour of the invoker of a primitive.

As a meta-model for distributed computing, A&A also promote uncou-
pling of control: so, (i) linked artifacts should be fully uncoupled, (ii) agents
should be left free to autonomously choose either synchronous or asynchronous
primitives, while the behaviour of target artifacts remains unchanged and un-
affected. As a result, every operation on an artifact should have a request
/ response structure: any invocation (request), once served, always implies a
message of operation completed (response)—along with the result if needed—
to be handled by the “operator” according to its nature: in case of an oper-
ation invoked by another artifact, in a completely asynchronous fashion—to
ensure full uncoupling of artifact control; in case of an operation invoked by
an agent, in either a synchronous or an asynchronous way according to the
agent autonomous choice.

4.2 A&A ReSpecT: The News

Along the lines above, the original ReSpecT language has been revised and
extended to follow the A&A perspective. The resulting core syntax of the

8

Omicini

Table 1
Core syntax of A&A ReSpecT

〈TCSpecification〉 ::= {〈SpecificationTuple〉 .}
〈SpecificationTuple〉 ::= reaction(〈SimpleTCEvent〉 , 〈Guard〉 , 〈Reaction〉)

〈SimpleTCEvent〉 ::= 〈SimpleTCOperation〉 (〈Tuple〉) | time(〈Time〉)
〈Guard〉 ::= 〈GuardPredicate〉 | (〈GuardPredicate〉 {, 〈GuardPredicate〉})

〈Reaction〉 ::= 〈ReactionGoal〉 | (〈ReactionGoal〉 {, 〈ReactionGoal〉})
〈ReactionGoal〉 ::= 〈TCOperation〉 (〈Tuple〉) | 〈EventObservation〉 (〈Tuple〉) |

〈Computation〉 | (〈ReactionGoal〉 ; 〈ReactionGoal〉)
〈TCOperation〉 ::= 〈SimpleTCOperation〉 | 〈TCLinkOperation〉

〈TCLinkOperation〉 ::= 〈TCIdentifier〉 ? 〈SimpleTCOperation〉
〈SimpleTCOperation〉 ::= 〈TCStateOperation〉 | 〈TCForgeOperation〉
〈TCStateOperation〉 ::= in | inp | rd | rdp | out | no | get | set

〈TCForgeOperation〉 ::= 〈TCStateOperation〉_s
〈EventObservation〉 ::= 〈EventView〉_〈EventInformation〉

〈EventView〉 ::= current | event | start

〈EventInformation〉 ::= operation | tuple | source | target | time

〈GuardPredicate〉 ::= request | response | success | failure | endo | exo | intra | inter |

from_agent | to_agent | from_tc | to_tc | before(〈Time〉) | after(〈Time〉)
〈Time〉 is a non-negative integer

〈Tuple〉 is Prolog term

〈Computation〉 is a Prolog-like goal performing arithmetic / logic computations

〈TCIdentifier〉 ::= 〈TCName〉 @ 〈NetworkLocation〉
〈TCName〉 is a Prolog ground term

〈NetworkLocation〉 is a Prolog string representing either an IP name or a DNS entry

newly-defined A&A ReSpecT is reported in Table 1.

The first apparent extension concerns the specification part of A&A
ReSpecT: the reaction specification tuple has been extended to include a
guard specification. Then, the behaviour of an A&A ReSpecT tuple centre is
defined in terms of specification tuples of the form reaction(E,G,R): such a
tuple associates a reaction Rθ to Ev if θ = mgu(E,Ev) and guard G is true.
A guard is a sequence of guard predicates as defined by 〈GuardPredicate〉 in
Table 1, whose semantics is defined in Table 5. A wide number of conditions
over an event can now be checked before a reaction is triggered in a tuple
centre: the event status, its source, its target, its time.

Along the same line, observation predicates have been generalised accord-
ing to the new event model. Since an A&A ReSpecT event is defined according
to the structure in Table 4, 〈EventObservation〉 predicates have now the form
defined in Table 1: in particular, event and start predicates refer to the
direct and “prime” cause of an event, respectively.

Another fundamental extension concerns uniformity of the operations
upon tuple centres. Admissible primitives on a A&A ReSpecT tuple cen-
tres (〈TCStateOperation〉 in Table 1) can be invoked by an agent, but can
also be used within reactions for a tuple centre to act on its state, or to act

9

Omicini

on another tuple centre state through a link operation. Also the semantics
is essentially the same—with the only exception of the in and rd primitives,
whose suspensive semantics is not preserved inside a reaction out of a link
operation. Even more, the same class of predicates used for ordinary tuples
can be used for specification tuples as well (〈TCForgeOperation〉 in Table 1),
by simply adding the s postfix—adding another dimension to uniformity.

Finally, A&A ReSpecT includes the first extension toward situatedness
of coordination artifacts. In fact, following Timed ReSpecT [17], it includes
time events (Table 4), timed reactions, as well as predicates to handle time
(Table 1). More generally, further “situation” events could be envisioned,
handling topology, or other environment issues: however, as shown in [17],
handling time is one of the first, essential features for any real-world coordi-
nation model.

4.3 Distributed Dining Philosophers in A&A ReSpecT

In the classical Dining Philosopher problem, N philosopher agents share N
chopsticks and a spaghetti bowl [4]. Each philosopher needs two chopsticks
to eat, but each chopstick is shared by two adjacent philosophers: so, the
two chopsticks have to be acquired atomically to avoid deadlock, and released
atomically to ensure fairness.

In [14], we presented a ReSpecT-based implementation of the Dining
Philosophers problem, where

• each philosopher agent acquires / releases his chopstick pairs as a tuple
chops(i,j): a philosopher willing to eat acquires the pair he needs by
means of a single in(chops(i,j)) operation from the table tuple centre,
and releases it by means of a single out(chops(i,j)) operation.

• individual chopsticks are represented as tuples of the kind chop/1: the
result of philosopher’s operations is the atomic removal / insertion of both
chop(i) and chop(j) tuples from / in the table tuple centre.

• the table tuple centre works both as the knowledge repository for the
table state—as a logic tuple space—and as the mediator between the
two discrepant representations—as a programmable coordination artifact—
through a suitable ReSpecT behaviour specification.

Here, we exploit some of the new features of A&A ReSpecT in order to imple-
ment a distributed version of the problem. The basic idea is to move the clas-
sical problem, which models multiple concurrent accesses to shared resources,
to the distributed context, exploiting the intrinsic distribution promoted by
the A&A meta-model in terms of agents and artifacts.

In the Distributed Dining Philosophers problem, N philosopher agents
are supposed to be distributed around the network: each philosopher is as-
signed a seat, which is represented by a coordination artifact (a seat(i,j)

tuple centre—meaning that chops(i,j) is the chopstick pair assigned to the

10

Omicini

Table 2
Distributed Dining Philosophers: A&A ReSpecT code for seat(i,j) tuple centres.

reaction(out(wanna_eat), (request, from_agent), (% (1)
in(philosopher(thinking)), out(philosopher(waiting_to_eat)),
current_target(seat(C1,C2)),
table@node ? in(chops(C1,C2)))

).
reaction(in(chops(C1,C2)), (response, inter, endo), (% (2)

in(philosopher(waiting_to_eat)), out(philosopher(eating)),
out(chops(C1,C2)))

).
reaction(out(wanna_think), (request, from_agent), (% (3)

in(philosopher(eating)), out(philosopher(waiting_to_think)),
current_target(seat(C1,C2)), in(chops(C1,C2)),
table@node ? out(chops(C1,C2)))

).
reaction(out(chops(C1,C2)), (response, inter, endo), (% (4)

in(philosopher(waiting_to_think)), out(philosopher(thinking)))
).
reaction(out(wanna_eat), (response, from_agent), in(wanna_eat)).
reaction(out(wanna_think), (response, from_agent), in(wanna_think)).

philosopher) located in the same TuCSoN node where the agent is. When a
philosopher intends to eat / think, he just expresses his intention by emitting a
tuple wanna eat / wanna think in his seat(i,j) tuple centre. In turn, each
seat(i,j) tuple centre is in charge to handle its own agent intentions (to
eat and to think), recording both the philosopher state (thinking, waiting to
eat, eating, waiting to think) and the availability of chopsticks (chops(i,j)
tuple), and interacting with the single table tuple centre (located in the node
node), which holds and manages the chop/1 tuples representing individual
chopsticks on the table.

In all, the Distributed Dining Philosophers problem requires N +1 coordi-
nation artifacts, connected in a star network with the table tuple centre in the
middle, and the N seat(i,j) tuple centres around, mediating between the
philosophers and the table. Connections between distributed tuple centres—
required to maintain consistency of the global system behaviour—are based
on linkability predicates introduced in A&A ReSpecT (〈TCLinkOperation〉 in
Table 1).

In particular, the A&A ReSpecT code in Table 2 is the same for all the
seat(i,j) tuple centres—the specific chopstick pair is recorded in the tuple
centre name, and retrieved (reaction 1 in Table 2) via one of the predicates
for event observation extended in A&A ReSpecT (〈EventObservation〉 in Ta-
ble 1). Reactions 1 and 2 in Table 2 deal with philosopher’s intentions, either

11

Omicini

Table 3
Distributed Dining Philosophers: A&A ReSpecT code for the table tuple centre.

reaction(out(chops(C1,C2)), (response, from_tc), (% (1)
in(chops(C1,C2)), out(chop(C1)), out(chop(C2)))

).
reaction(in(chops(C1,C2)), (request, from_tc), (% (2)

out(required(C1,C2)))
).
reaction(in(chops(C1,C2)), (response, from_tc), (% (3)

in(required(C1,C2)))
).
reaction(out(required(C1,C2)), (response, intra, endo), (% (4)

in(chop(C1)), in(chop(C2)), out(chops(C1,C2)))
).
reaction(out(chop(C)), (response, intra, endo), (% (5)

rd(required(C,C2))
in(chop(C)), in(chop(C2)), out(chops(C,C2)))

).
reaction(out(chop(C)), (response, intra, endo), (% (6)

rd(required(C1,C))
in(chop(C1)), in(chop(C)), out(chops(C1,C)))

).

retrieving or restoring the proper chops(i,j) tuple from / to the table

tuple centre at node node. The semantics of linkability predicates (all op-
erations have their completion, but are asynchronous) allows for a 4-state
representation of philosopher agents: thinking, waiting to eat, eating, waiting
to think—where the transition states (waiting to eat / think) can be easily
handled by reacting to the completion of in(chops(i,j))?table@node and
out(chops(i,j))?table@node operations (reactions 2 and 4 in Table 2).

Even though not discussed here, the availability of situation predicates like
the time predicates in A&A ReSpecT would allow for more complex coordi-
nation patterns including fault tolerance schemes. For instance, it would be
easy to associate timeouts to the different states of agent philosophers—which
is of paramount importance in a distributed, non-reliable environment, where
even a simple out operation could easily fail, making chopsticks disappear in
the vacuum. The association of timed reactions to the philosopher’s transition
states could then permit the recovery from faulty situations, and also to allow
the introduction of timed coordination policies—as the ones discussed in [17].

The code in Table 3 is the behaviour specification for the table tuple cen-
tre, and is more or less the translation in A&A ReSpecT of the code discussed
in [14]. Worth to note, then, just the uniform syntax for all the tuple centre
operations, as well as the introduction of the notion of guard (along with guard

12

Omicini

Table 4
Events in A&A ReSpecT

〈GeneralTCEvent〉 ::= 〈StartCause〉 , 〈Cause〉 , 〈TCCycleResult〉
〈StartCause〉 , 〈Cause〉 ::= 〈SimpleTCEvent〉 , 〈Source〉 , 〈Target〉 , 〈Time〉

〈Source〉 , 〈Target〉 ::= 〈AgentIdentifier〉 | 〈TCIdentifier〉
〈AgentIdentifier〉 ::= 〈AgentName〉 @ 〈NetworkLocation〉

〈AgentName〉 is a Prolog ground term

〈TCCycleResult〉 ::= 〈Tuple〉

predicates) that makes A&A ReSpecT reactions more general and expressive.

5 A&A ReSpecT: The Semantics

According to the framework defined in [13], a coordination medium is suitable
for an operational characterisation in terms of an interactive transition system,
where the state of communication is the system state, some transitions are
triggered by interaction events, and some transitions generate output events.
So, in order to formally denote the behaviour of a coordination artifact like
a A&A ReSpecT tuple centre, we should first define its notion of admissible
tuple centre event, then define its behaviour in terms of a transition system.

Definition 5.1 [A&A ReSpecT Event] An admissible tuple centre event for
A&A ReSpecT (A&A ReSpecT event in short) is defined according to the
structure in Table 4. Such a structure also defines implicitly the way in which
an A&A ReSpecT event is denoted: if ε is an A&A ReSpecT event, then
ε.Cause.Source denotes the entity whose activity directly caused the event,
ε.TCCycleResult denotes the result of the operation, and so on.

5.1 Semantics of A&A ReSpecT Reactions

An A&A ReSpecT tuple centre is basically a logic tuple space enhanced with
a behaviour specification that defines how the tuple centre reacts to events.
Then, once A&A ReSpecT events have been defined, the reaction model can
be given, in terms of the reactions triggered by an A&A ReSpecT event ε.

Definition 5.2 [A&A ReSpecT Triggered Reaction Multiset] Given a tuple
centre c and its behaviour specification Σ, if ε is an A&A ReSpecT event, then
the multiset of the ε triggered reactions is defined as

ZΣ(ε) ::=
⊎

reaction(e,G,R)∈Σ

(ε, Rθ) | θ = Unify(ε, e) 6= ⊥,Guard(ε, G)

There,

Unify(ε, e) ::= mgu(e, ε.Event .SimpleTCEvent)

while Guard(ε, G) is defined according to Table 5.

13

Omicini

Table 5
Guard Predicates in A&A ReSpecT

Guard atom True if
Guard(ε, (g,G)) Guard(ε, g) ∧Guard(ε, G)
Guard(ε, endo) ε.Cause.Source = c
Guard(ε, exo) ε.Cause.Source 6= c

Guard(ε, intra) ε.Cause.Target = c
Guard(ε, inter) ε.Cause.Target 6= c

Guard(ε, from agent) ε.Cause.Source is an agent
Guard(ε, to agent) ε.Cause.Target is an agent
Guard(ε, from tc) ε.Cause.Source is a tuple centre

Guard(ε, to tc) ε.Cause.Target is a tuple centre
Guard(ε, before(t)) ε.Cause.Time < t
Guard(ε, after(t)) ε.Cause.Time > t
Guard(ε, request) ε.TCCycleResult is undefined

Guard(ε, response) ε.TCCycleResult is defined
Guard(ε, success) ε.TCCycleResult 6= ⊥
Guard(ε, failure) ε.TCCycleResult = ⊥

Hypotheses: c is the reacting tuple centre; ε is an admissible A&A ReSpecT event;
g is an atomic guard predicate; G is a sequence of atomic guard predicates; t is a
non-negative integer.

Definition 5.3 [A&A ReSpecT Time-Triggered Reaction Multiset] Given a
tuple centre c and its behaviour specification Σ, if nc is the local tuple centre
time, then the multiset of the nc time-triggered reactions is defined as

ZΣ(nc) ::=
⊎

reaction(time(t),G,R)∈timed(nc,Σ)

(εt, R) | Guard(εt, G)

There,

timed(nc, Σ) ::= {reaction(time(t), G, R) ∈ Σ | t ≤ nc}

while εt ::= 〈time(t), c, c, t, time(t), c, c, t, t〉, according to the event structure
defined in Table 4.

So, given a tuple centre c at time nc with behaviour specification Σ, and
an event ε, ZΣ(ε) denotes the multiset of triggered reactions caused by ε, while
ZΣ(nc) denotes the multiset of time-triggered reactions at time nc.

Once defined which reactions are triggered and when, the effects of reac-
tion execution should be accounted for. This is encapsulated in the reaction
execution function.

Definition 5.4 [Reaction Execution Function] Let R,R′ be sequences of re-
action goals, Tu, Tu′ multi-sets of (ordinary) logic tuples, Σ, Σ′ multi-sets of
specification tuples, Re, Re′ multi-sets of triggered reactions, and ε an A&A
ReSpecT event, Out, Out′ sequences of A&A ReSpecT events. A reaction ex-
ecution state is then defined as a (labelled) quintuple 〈R, Tu, Σ, Re, Out〉ε,

14

Omicini

Table 6
Operation predicate execution in A&A ReSpecT

Execution transition
〈(r, R),Tu,Σ, Re, Out〉ε −→e 〈R′,Tu ′,Σ′, Re ∪ ZΣ(ε′), Out′〉ε

r Tu ′ Σ′ R′ ε′.Cause Out′ where
op(T)?c′ Tu Σ R 〈op(T), c, c′, nc〉 Out ∪ ε′

out(T) Tu ∪ T Σ R 〈out(T), c, c, nc〉 Out
in(T) Tu/tu Σ Rθ 〈in(T), c, c, nc〉 Out θ = mgu(tu, T)
inp(T) Tu/tu Σ Rθ 〈inp(T), c, c, nc〉 Out θ = mgu(tu, T)
rd(T) Tu Σ Rθ 〈rd(T), c, c, nc〉 Out θ = mgu(tu, T)
rdp(T) Tu Σ Rθ 〈rdp(T), c, c, nc〉 Out θ = mgu(tu, T)
no(T) Tu Σ R 〈no(T), c, c, nc〉 Out ⊥ = mgu(tu, T)

set(TT) TT Σ R 〈set(TT), c, c, nc〉 Out
get(TT) Tu Σ Rθ 〈get(TT), c, c, nc〉 Out θ = mgu(Tu, TT)
out s(S) Tu Σ ∪ S R 〈out s(S), c, c, nc〉 Out
in s(S) Tu Σ/σ Rθ 〈in s(S), c, c, nc〉 Out θ = mgu(σ, S)
inp s(S) Tu Σ/σ Rθ 〈inp s(S), c, c, nc〉 Out θ = mgu(σ, S)
rd s(S) Tu Σ Rθ 〈rd s(S), c, c, nc〉 Out θ = mgu(σ, S)
rdp s(S) Tu Σ Rθ 〈rdp s(S), c, c, nc〉 Out θ = mgu(σ, S)
no s(S) Tu Σ R 〈no s(S), c, c, nc〉 Out ⊥ = mgu(σ, S)

set s(SS) Tu SS R 〈set s(SS), c, c, nc〉 Out
get s(SS) Tu Σ Rθ 〈get s(SS), c, c, nc〉 Out θ = mgu(Σ, SS)
Hypotheses: ε, ε′ are A&A ReSpecT events, such that ε′.StartCause = ε.StartCause and
ε′.TCCycleResult = ε.TCCycleResult ; tu ∈ Tu is a tuple; σ ∈ Σ is a specification tuple;
r is a reaction goal, R is a sequence of reaction goals; c, c′ are tuple centres (c denotes
the tuple centre currently in charge of the computation); nc is the time local to c when
the execution takes place.

whereas a reaction execution step is a transition

〈R, Tu, Σ, Re, Out〉ε −→e 〈R′, Tu′, Σ′, Re′, Out′〉ε

following the rules of Table 6 and Table 7. If a reaction execution sequence is
a sequence of reaction execution steps, then

〈R, Tu, Σ, Re, Out〉∗ε

denotes the final state of the reaction execution sequence whose initial state
is 〈R, Tu, Σ, Re, Out〉ε, that is, the first state of the sequence for which no
applicable rule exists in Table 6 and Table 7. Finally, if 〈R, Tu, Σ, Re, Out〉∗ε =
〈R′, Tu′, Σ′, Re′, Out′〉ε, then the reaction execution function E is defined as
follows:

E((ε, R), Tu, Σ) ::=

 (Tu′, Σ′, Re′, Out′) if R′ = ∅

(Tu, Σ, ∅, ∅) if R′ 6= ∅

To help intuition, at any step of a reaction execution sequence, R represents
the reaction goals yet to be executed, Tu the current state of the space of
ordinary tuples, Σ the current state of the space of specification tuples, Re
the set of the reactions triggered by reaction goals already executed, Out the

15

Omicini

Table 7
Observation predicate execution in A&A ReSpecT

Execution transition
〈(r, R),Tu,Σ, Re, Out〉ε −→e 〈Rθ,Tu,Σ, Re, Out〉ε

r where
event operation(Obs) θ = mgu(ε.Cause.SimpleTCEvent .SimpleTCOperation, Obs)

event tuple(Obs) θ = mgu(ε.Cause.SimpleTCEvent .Tuple, Obs)
event source(Obs) θ = mgu(ε.Cause.Source, Obs)
event target(Obs) θ = mgu(ε.Cause.Target , Obs)
event time(Obs) θ = mgu(ε.Cause.Time, Obs)

start operation(Obs) θ = mgu(ε.StartCause.SimpleTCEvent .SimpleTCOperation, Obs)
start tuple(Obs) θ = mgu(ε.StartCause.SimpleTCEvent .Tuple, Obs)

start source(Obs) θ = mgu(ε.StartCause.Source, Obs)
start target(Obs) θ = mgu(ε.StartCause.Target , Obs)
start time(Obs) θ = mgu(ε.StartCause.Time, Obs)

current operation(Obs) θ = mgu(current operation, Obs)
current tuple(Obs) θ = mgu(Obs, Obs) = {}
current source(Obs) θ = mgu(c, Obs)
current target(Obs) θ = mgu(c, Obs)
current time(Obs) θ = mgu(nc, Obs)

Hypotheses: ε is an A&A ReSpecT event; r is a reaction goal, R is a sequence of reaction
goals; c denotes the tuple centre currently in charge of the computation; nc is the time
local to c when the execution takes place.

sequence of events to be emitted at the end of the execution, whereas ε is the
event initially triggering reaction execution. Correspondingly, the execution of
a triggered reaction (ε, R) in an A&A ReSpecT tuple centre whose tuple space
is Tu and whose behaviour specification is Σ is represented by a sequence
whose initial state is 〈R,Tu, Σ, ∅, ∅〉ε. The above definition of E also accounts
for the success/failure transactional semantics of A&A ReSpecT reactions:
if the sequence of the operations to be executed is empty, then reaction R
triggered by event ε has been executed successfully, and a new ordinary-tuple
multiset Tu ′, a new specification-tuple multiset Σ′, along with the newly-
triggered reaction set Re′ and the sequence of events to be emitted Out′ are
provided for updating the tuple centre state. Otherwise, the old multisets
Tu and Σ are returned, no new reactions are triggered, and no events to be
emitted are added—so that no changes occur in the tuple centre state.

Transitions occur according to the rules of Table 6 and Table 7, where
all the symbols retain their usual meanings. The final state of a sequence is
reached whenever either no reaction goals are still to be executed, or there is
no applicable rule available. Since each step actually deletes one goal from
a reaction, and the number of reaction goals is finite for any reaction, each
reaction is guaranteed to be executed in a finite number of steps.

5.2 Behaviour of A&A ReSpecT Tuple Centres

The state of a A&A ReSpecT tuple centre is expressed as a labelled quadruple
InQ〈Tu, Σ, Re,Op〉OutQ

n . There, Tu and Σ are the multisets of the ordinary and

16

Omicini

Table 8
Service transition in A&A ReSpecT

Service transition
InQ〈Tu,Σ, ∅,Op ∪ ε〉OutQ

n −→s
InQ〈Tu ′,Σ′,ZΣ(ε′) ∪ ZΣ(n),Op〉OutQ,ε′

n′

ε.Cause.SimpleTCEvent Tu ′ Σ′ res where
out(T) Tu ∪ T Σ T

in(T), inp(T) Tu/tu Σ Tθ θ = mgu(tu, T)
rd(T), rdp(T) Tu Σ Tθ θ = mgu(tu, T)
inp(T), rdp(T) Tu Σ ⊥ ⊥ = mgu(tu, T)

no(T) Tu Σ T ⊥ = mgu(tu, T)
no(T) Tu Σ ⊥ θ = mgu(tu, T)

set(TT) TT Σ TT
get(TT) Tu Σ TTθ θ = mgu(Tu, TT)
get(TT) Tu Σ ⊥ ⊥ = mgu(Tu, TT)
out s(S) Tu Σ ∪ S S

in s(S), inp s(S) Tu Σ/σ Sθ θ = mgu(σ, S)
rd s(S), rdp s(S) Tu Σ Sθ θ = mgu(σ, S)

inp s(S), rdp s(S) Tu Σ ⊥ ⊥ = mgu(σ, S)
no s(S) Tu Σ S ⊥ = mgu(σ, S)
no s(S) Tu Σ ⊥ θ = mgu(σ, S)

set s(SS) Tu SS SS
get s(SS) Tu Σ SSθ θ = mgu(Σ, SS)
get s(SS) Tu Σ ⊥ ⊥ = mgu(Σ, SS)

Hypotheses: ε, ε′ are A&A ReSpecT events: ε ∈ sat(Op,Tu,Σ), ε′ is such that
ε′.StartCause = ε.StartCause, ε′.Cause = ε.Cause and ε′.TCCycleResult = res; tu ∈ Tu
is a tuple; σ ∈ Σ is a specification tuple.

specification tuples in the tuple centre, respectively; Op is the multiset of the
operations served waiting for a response; InQ and OutQ are the incoming and
outgoing event queues, respectively; finally, n is the local tuple centre time. 4

InQ is a queue that is automatically extended whenever incoming events affect
a tuple centre—so no special transitions are required for incoming events.
Dually, OutQ is automatically emptied by emitting the outgoing events, with
no need again of special transitions.

The operational behaviour of an A&A ReSpecT tuple centre whose state is
InQ〈Tu, Σ, Re,Op〉OutQ

n can now be modelled in terms of a transition system
with four kind of different transitions—below, in order of decreasing priority:

reaction When Re 6= ∅, triggered reactions in Re are executed through a
reaction transition (−→r).

time When Re = ∅ and timed(n, Σ) 6= ∅, timed reactions can trigger new
reactions through a time transition (−→t).

service When Re = timed(n, Σ) = ∅, and sat(Op,Tu, Σ) 6= ∅, operations
waiting for a response can be served through a service transition (−→s).

5

4 Whenever not needed by the context, InQ , OutQ and n could be dropped from the
representation of a tuple centre state.
5 sat(Op,Tu,Σ) ⊆ Op is the subset of the Op operations waiting for a response that can
be actually served given the current state of the tuple centre.

17

Omicini

Table 9
Log transition in A&A ReSpecT

Log transition
ε,InQ〈Tu,Σ, ∅,Op〉OutQ

n −→l
InQ〈Tu,Σ,ZΣ(ε) ∪ ZΣ(n),Op′〉OutQ

n′

ε.Cause.SimpleTCEvent ε.TCCycleResult Op′

op() undefined Op ∪ ε
op() defined Op

Hypotheses: ε is an A&A ReSpecT event.

log When Re = timed(n, Σ) = sat(Op,Tu, Σ) = ∅, and InQ 6= ∅, operations
queued in InQ can be “logged” by a tuple centre through a log transition
(−→l)

Reaction transition works as follows:

InQ〈Tu, Σ, Re ∪ re,Op〉OutQ
n −→r

InQ〈Tu ′, Σ′, Re ∪Re′,Op〉OutQ,Out′

n′

where E(re, Tu, Σ) = (Tu ′, Σ′, Re′, Out′)—thus computing according to the
semantics of reaction predicates presented in the previous subsection.

Time transition takes instead the following form:

InQ〈Tu, Σ, ∅,Op〉OutQ
n −→t

InQ〈Tu, Σ/timed(n, Σ), ZΣ(n),Op〉OutQ
n′

where past timed reactions (timed(n, Σ)) are evaluated and then discarded
(Σ/timed(n, Σ)), and possibly generate some time-triggered reactions (ZΣ(n)).

The more articulated service and log transitions are regulated according
to Table 8 and Table 9, respectively.

6 Related Works

With respect to the original formulation [15], A&A ReSpecT, as presented
in this paper, is largely changed and extended. First, the main things left
unchanged are (i) the basic reaction model, with the two-level atomicity of
reaction execution (system level and agent level), and (i) the logic-based syn-
tax, with event descriptions unifying with reaction heads and the reaction
bodies built as sequences of Prolog-like atoms.

Some syntax modifications have addressed known limitations in the origi-
nal ReSpecT. The introduction of guards, for instance, has improved on the
expressiveness of reactions, allowing programmers to minimise the number of
unnecessarily-triggered reactions; a number of expressive guard predicates are
introduced in A&A ReSpecT for this purpose. Also, the syntax of primitives is
now uniform: the same primitive invocations can be used by agents on a tuple
centre, and by a programmer within a reaction, either to access and change
the internal tuple centre state, or to operate on other tuple centres; even the
primivites for accessing and changing a tuple centre behaviour specification
have essentially the same form. Even more, semantics of any agent invocation

18

Omicini

is now in a sense uniform: all the coordination primitives that an agent can
invoke on a tuple centre have the same request / response behaviour (not only
ins and rds, but also outs), and reactions can then be designed having in
mind the same conceptual structure for any primitive involved.

More generally, the adoption of A&A as the underlying meta-model has
led to a number of new features in the novel A&A ReSpecT. First of all, an
extended event model is defined for A&A ReSpecT, which encompasses the
A&A meta-model and its general event model. Then, linkability of artifacts
is developed and extended up to its maximum reach: any tuple centre opera-
tion in a reaction can now be invoked to be executed either within the tuple
centre itself, or on any other tuple centre. 6 Finally, situatedness of artifacts
is recognised here as a general issue, which encompasses timed artifacts and
their computational model. With respect to the original formulation of Timed
ReSpecT [17], the model is then made more general, and also fully formalised
within the overall A&A ReSpecT framework.

Linkability in its most general acceptation is not strictly a new idea in the
field of coordination models and languages. The most prominent example is
Reo [1], where channel composition is one of the most important and relevant
features. Also, Reo has been recently experimented explicitly in the MAS field
[2]. However, Linda-based approaches better cope with agent autonomy, since
coordination is not forced upon the agents participating to the workflow, but
is instead provided them as a service [29].

In the context of Linda-based models, to the best of our knowledge, only
Lime [23] could exhibit some sort of mechanism for tuple space composition.
However, such a mechanism is essentially implicit, and does not allow for the
explicit control allowed instead by A&A ReSpecT linkability primitives.

7 Conclusions & Future Work

In this paper, we adopt the A&A (agents & artifacts) meta-model for MAS,
and recast the ReSpecT language for programming the behaviour of tuple
centres, and its formal model as well, according to the A&A perspective.
The resulting model and language, called A&A ReSpecT, is introduced: the
new syntax is defined, an example (the Distributed Dining Philosophers) is
discussed, and the formal semantics of A&A ReSpecT is provided.

While implementation of the new A&A ReSpecT is underway, along with
the new version of the TuCSoN infrastructure for MAS coordination, in the
future we plan to experiment with A&A ReSpecT in the many domains where
the original ReSpecT is already used—from e-learning to workflow manage-
ment systems and case-handling, from simulation to self-organising systems.
Meanwhile, we mean to further explore the issue of situatedness of coordina-

6 The first element of linkability in ReSpecT was introduced in [25], in the limited form of
an out tc predicate, and used in [20] for distributed workflow.

19

Omicini

tion artifacts, by extending the ability of tuple centres to react to environ-
ment events. In the version of A&A ReSpecT presented here, in fact, only
time events are accounted for and treated: more general forms of environment
events (like topological ones, for instance) should be instead made available
and properly manageable.

References

[1] Farhad Arbab. Reo: A channel-based coordination model for component
composition. Mathematical Structures in Computer Science, 14:329–366, 2004.

[2] Mehdi Dastani and OSGi – Open Services Gateway Initiatives Consortium.
Coordination and Composition of Multi-Agent Systems. Invited talk, 1st
International Workshop on Coordination and Organisation (CoOrg 2005),
COORDINATION 2005, Namur, Belgium, 23 April 2005.

[3] Enrico Denti, Antonio Natali, and Andrea Omicini. On the expressive power of
a language for programming coordination media. In 1998 ACM Symposium on
Applied Computing (SAC’98), pages 169–177, Atlanta, GA, USA, 27 February–
1 March 1998. ACM. Special Track on Coordination Models, Languages and
Applications.

[4] Edsger W. Dijkstra. Co-operating sequential processes. Academic Press,
London, 1965.

[5] Marc Esteva, Bruno Rosell, Juan Antonio Rodŕıguez-Aguilar, and Josep Llúıs
Arcos. Ameli: An agent-based middleware for electronic institutions. In
Nicholas R. Jennings, Carles Sierra, Liz Sonenberg, and Milind Tambe, editors,
3rd international Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2004), volume 1, pages 236–243, New York, USA, 19–23July
2004. ACM.

[6] Foundation for Intelligent Physical Agents. FIPA home page.
http://www.fipa.org.

[7] David Gelernter. Generative communication in Linda. ACM Transactions on
Programming Languages and Systems, 7(1):80–112, 1985.

[8] David Kirsh. Distributed cognition, coordination and environment design. In
European Conference on Cognitive Science, pages 1–11, 1999.

[9] Aleksie Nikolaevich Leontjev. Activity, Consciousness, and Personality.
Prentice Hall, 1978.

[10] Ambra Molesini, Andrea Omicini, Enrico Denti, and Alessandro Ricci. SODA: A
roadmap to artefacts. In Oğuz Dikenelli, Marie-Pierre Gleizes, and Alessandro
Ricci, editors, Engineering Societies in the Agents World VI, volume 3963 of
LNAI, pages 49–62. Springer, June 2006. 6th International Workshop (ESAW
2005), Kuşadası, Aydın, Turkey, 26–28 October 2005. Revised, Selected &
Invited Papers.

20

Omicini

[11] Sara Montagna, Alessandro Ricci, and Andrea Omicini. Agents & Artifacts for
Systems Biology: Toward a framework based on TuCSoN. In Alessandro Genco,
Antonio Gentile, and Salvatore Sorce, editors, Industrial Simulation Conference
2006 (ISC 2006), pages 25–32, Palermo, Italy, 5–7 June 2006. EUROSIS (The
European Simulation Society) & ETI (The European Technology Institute).

[12] Bonnie Nardi, editor. Context and Consciousness: Activity Theory and Human-
Computer Interaction. MIT Press, 1996.

[13] Andrea Omicini. On the semantics of tuple-based coordination models. In
1999 ACM Symposium on Applied Computing (SAC’99), pages 175–182, San
Antonio, TX, USA, 28 February– 2March 1999. ACM. Special Track on
Coordination Models, Languages and Applications.

[14] Andrea Omicini and Enrico Denti. Formal ReSpecT. Electronic Notes
in Theoretical Computer Science, 48:179–196, June 2001. Declarative
Programming – Selected Papers from AGP 2000, La Habana, Cuba, 4–
6 December2000.

[15] Andrea Omicini and Enrico Denti. From tuple spaces to tuple centres. Science
of Computer Programming, 41(3):277–294, November 2001.

[16] Andrea Omicini, Sascha Ossowski, and Alessandro Ricci. Coordination
infrastructures in the engineering of multiagent systems. In Federico
Bergenti, Marie-Pierre Gleizes, and Franco Zambonelli, editors, Methodologies
and Software Engineering for Agent Systems: The Agent-Oriented Software
Engineering Handbook, volume 11 of Multiagent Systems, Artificial Societies,
and Simulated Organizations, chapter 14, pages 273–296. Kluwer Academic
Publishers, June 2004.

[17] Andrea Omicini, Alessandro Ricci, and Mirko Viroli. Time-aware coordination
in ReSpecT. In Jean-Marie Jacquet and Gian Pietro Picco, editors,
Coordination Models and Languages, volume 3454 of LNCS, pages 268–282.
Springer-Verlag, April 2005. 7th International Conference (COORDINATION
2005), Namur, Belgium, 20–23 April 2005. Proceedings.

[18] Andrea Omicini, Alessandro Ricci, and Mirko Viroli. Agens Faber: Toward a
theory of artefacts for MAS. Electronic Notes in Theoretical Computer Sciences,
150(3):21–36, 29 May 2006. 1st International Workshop “Coordination
and Organization” (CoOrg 2005), COORDINATION 2005, Namur, Belgium,
22 April 2005. Proceedings.

[19] Andrea Omicini, Alessandro Ricci, and Mirko Viroli. Coordination artifacts
as first-class abstractions for MAS engineering: State of the research. In
Alessandro F. Garcia, Ricardo Choren, Carlos Lucena, Paolo Giorgini, Tom
Holvoet, and Alexander Romanovsky, editors, Software Engineering for Multi-
Agent Systems IV: Research Issues and Practical Applications, volume 3914 of
LNAI, pages 71–90. Springer, April 2006. Invited Paper.

[20] Andrea Omicini, Alessandro Ricci, and Nicola Zaghini. Distributed workflow
upon linkable coordination artifacts. In Paolo Ciancarini and Herbert Wiklicky,

21

Omicini

editors, Coordination Models and Languages, volume 4038 of LNCS, pages 228–
246. Springer, June 2006. 8th International Conference (COORDINATION
2006), Bologna, Italy, 14–16 June 2006. Proceedings.

[21] Andrea Omicini and Franco Zambonelli. Coordination for Internet application
development. Autonomous Agents and Multi-Agent Systems, 2(3):251–269,
September 1999. Special Issue: Coordination Mechanisms for Web Agents.

[22] H. Van Dyke Parunak, Sven Brueckner, and John Sauter. Digital pheromone
mechanisms for coordination of unmanned vehicles. In 1st International Joint
Conference on Autonomous Agents and Multiagent Systems AAMAS’02, pages
449–450. ACM Press, 2002.

[23] Gian Pietro Picco, Amy L. Murphy, and Gruia-Catalin Roman. Lime: Linda
Meets Mobility. In David Garlan, editor, 21st International Conference on
Software Engineering (ICSE’99), pages 368–377, Los Angeles, CA, USA, May
1999. ACM Press.

[24] Alessandro Ricci, Andrea Omicini, Enrico Denti, and Marco Cadoli. Activity
Theory as a framework for MAS coordination. In Paolo Petta, Robert
Tolksdorf, and Franco Zambonelli, editors, Engineering Societies in the
Agents World III, volume 2577 of LNCS, pages 96–110. Springer-Verlag,
April 2003. 3rd International Workshop (ESAW 2002), Madrid, Spain, 16–
17 September 2002. Revised Papers.

[25] Alessandro Ricci, Andrea Omicini, and Mirko Viroli. Extending ReSpecT
for multiple coordination flows. In Hamid R. Arabnia, editor, International
Conference on Parallel and Distributed Processing Techniques and Applications
(PDPTA’02), volume III, pages 1407–1413, Las Vegas, NV, USA, 24–27 July
2002. CSREA Press.

[26] Alessandro Ricci, Mirko Viroli, and Andrea Omicini. Programming MAS
with artifacts. In Rafael P. Bordini, Mehdi Dastani, Jürgen Dix, and Amal
El Fallah Seghrouchni, editors, Programming Multi-Agent Systems, volume 3862
of LNAI, pages 206–221. Springer, March 2006. 3rd International Workshop
(PROMAS 2005), AAMAS 2005, Utrecht, The Netherlands, 26 July 2005.
Revised and Invited Papers.

[27] Tarja Susi and Tom Ziemke. Social cognition, artefacts, and stigmergy:
A comparative analysis of theoretical frameworks for the understanding of
artefact-mediated collaborative activity. Cognitive Systems Research, 2(4):273–
290, December 2001.

[28] TuCSoN home page. http://tucson.alice.unibo.it.

[29] Mirko Viroli and Andrea Omicini. Coordination as a service. Fundamenta
Informaticae, 73(4):507–534, 2006. Special Issue: Best papers of FOCLASA
2002.

[30] Franco Zambonelli and Andrea Omicini. Challenges and research directions
in agent-oriented software engineering. Autonomous Agents and Multi-Agent

22

Omicini

Systems, 9(3):253–283, November 2004. Special Issue: Challenges for Agent-
Based Computing.

23

	Introduction
	The A&A Meta-Model for MAS
	TuCSoN & ReSpecT
	The TuCSoN Tuple Centre Coordination Model
	ReSpecT as a Core Coordination Language
	TuCSoN & ReSpecT in the A&A Perspective

	Introducing A&A ReSpecT
	Adopting the A&A Perspective
	A&A ReSpecT: The News
	Distributed Dining Philosophers in A&A ReSpecT

	A&A ReSpecT: The Semantics
	Semantics of A&A ReSpecT Reactions
	Behaviour of A&A ReSpecT Tuple Centres

	Related Works
	Conclusions & Future Work
	References

