
SOCS
a computational logic model for the description, analysis and verification

of global and open societies of heterogeneous computees

IST-2001-32530

Deliverable D4:
A logic-based approach to model computees

Project number: IST-2001-32530
Project acronym: SOCS
Document type: D (deliverable)
Document distribution: I (internal to SOCS and PO)
CEC Document number: IST32530/UCY/006/D/I/b2
File name: 4006-b2[D4].pdf
Editor: Antonis Kakas, Paolo Mancarella, Francesca Toni
Contributing partners: ALL
Contributing workpackages: WP1
Estimated person months: 55
Date of completion: 27 June 2003
Date of delivery to the EC: 30 June 2003
Number of pages: 119

ABSTRACT
A computee is an autonomous computational entity that operates in an open and dynamic en-
vironment. This report proposes a formal framework for computees, called KGP (Knowledge,
Goals, Plan), that synthesises their reasoning and sensing capabilities into a model for their
operation. Within this model the computee is able to reason about goals and plans and to
execute its plans depending on the state of its (perception of) the external environment. The
computee is also able to reason about its own behaviour and make intelligent choices about
it. The model is based upon computational logic, both to model the reasoning capabilities
and the reasoning about behaviour. The report also addresses the links of this model with the
society model proposed in the companion deliverable D5.

Copyright c© 2003 by the SOCS Consortium.

The SOCS Consortium consists of the following partners: Imperial College of Science, Technology and Medicine,

University of Pisa, City University, University of Cyprus, University of Bologna, University of Ferrara.

Deliverable D4:
A logic-based approach to model computees

Antonis Kakas∗,
Paolo Mancarella+,

Fariba Sadri•,
Kostas Stathis!,
Francesca Toni•

Departments of Computer Science,
∗ University of Cyprus, Cyprus

+ University of Pisa, Italy
• Imperial College London, UK
! City University, London, UK

ABSTRACT
A computee is an autonomous computational entity that operates in an open and dynamic en-
vironment. This report proposes a formal framework for computees, called KGP (Knowledge,
Goals, Plan), that synthesises their reasoning and sensing capabilities into a model for their
operation. Within this model the computee is able to reason about goals and plans and to
execute its plans depending on the state of its (perception of) the external environment. The
computee is also able to reason about its own behaviour and make intelligent choices about
it. The model is based upon computational logic, both to model the reasoning capabilities
and the reasoning about behaviour. The report also addresses the links of this model with the
society model proposed in the companion deliverable D5.

2

Contents

1 Introduction 6

2 General approach 10

3 Background 15
3.1 Logic programming . 15
3.2 Abductive logic programming . 16
3.3 Logic programming with priorities . 18
3.4 Constraint predicates in computational logic . 20
3.5 ALP and LPwNF with Constraints . 21

4 Preliminaries of the KGP model 22

5 State of a computee 25

6 Capabilities 28
6.1 Planning . 28

6.1.1 KBplan: Abductive Event Calculus . 28
6.1.2 Specification of |=plan . 31
6.1.3 Example of |=plan . 32
6.1.4 Possible variants of KBplan and |=plan . 32

6.2 Identification of preconditions . 33
6.2.1 Specification of |=pre . 33
6.2.2 Example of |=pre . 33

6.3 Temporal reasoning . 33
6.3.1 KBTR: Extended abductive event calculus 34
6.3.2 Specification of |=TR . 35
6.3.3 Example of |=TR . 36
6.3.4 Extension of KBTR for failing actions . 36

6.4 Reactivity . 38
6.4.1 KBreact: reactive constraints . 38
6.4.2 Specification of |=react . 39
6.4.3 Example of |=react . 40

6.5 Goal decision . 40
6.5.1 The knowledge base KBGD . 40
6.5.2 Specification of |=GD . 42
6.5.3 Examples of |=GD . 42
6.5.4 Goal decision and personality . 45
6.5.5 Goal Decision and Reactivity . 46

6.6 Sensing . 46

7 Transitions 46
7.1 Goal Introduction (GI) . 47
7.2 Plan Introduction (PI) . 48
7.3 Reactivity (RE) . 49
7.4 Sensing Introduction (SI) . 49

3

7.5 Passive Observation Introduction - (POI) . 50
7.6 Active Observation Introduction - (AOI) . 50
7.7 Action Execution (AE) . 51
7.8 Goal Revision (GR) . 52
7.9 Plan Revision (PR) . 52

8 Selection functions 53
8.1 Core selection functions . 54

8.1.1 Action selection . 54
8.1.2 Goal selection . 55
8.1.3 Fluent selection . 56
8.1.4 Precondition selection . 57

8.2 Heuristic selection functions . 57
8.2.1 Heuristic action selection . 57
8.2.2 Heuristic goal selection . 58
8.2.3 Heuristic fluent selection . 58
8.2.4 Heuristic precondition selection . 59

8.3 Selection functions and revision transitions . 59
8.4 Resource-boundness . 59

9 Cycles of behaviour of computees 60
9.1 Fixed cycles . 61
9.2 Cycle theories . 63

9.2.1 Operational Trace . 64
9.2.2 The basic component: Tbasic . 65
9.2.3 The interrupt component: Tinterrupt . 67
9.2.4 The initial component: Tinitial . 67
9.2.5 The behaviour component: Tbehaviour . 67
9.2.6 Properties of Tcycle . 68

9.3 Cycle Patterns and Profiles of Behaviour . 69
9.3.1 Fixed cycles via cycle theories . 69
9.3.2 Patterns and Profiles of Behaviour . 69

9.4 Hierarchies and multi behaviour criteria . 72

10 Computees in Societies 74
10.1 Communication . 75

10.1.1 Language for communication . 75
10.1.2 Communication actions . 76
10.1.3 Generating communication actions as part of a plan 76
10.1.4 Policies for communication . 76
10.1.5 Deciding who best to communicate with in order to achieve objectives . . 77

10.2 Conforming to society’s protocols . 78
10.3 Computees entering and leaving societies . 79
10.4 Responding to the society’s expectations . 80

4

11 Possible extensions 81
11.1 Plan introduction transition with intelligent selection of plans 81
11.2 Knowledge base revision transition . 81
11.3 Conditional Goals . 82
11.4 Concurrent execution and interruption of transitions 82
11.5 Utilities and Costs . 83

12 Related work 83
12.1 The BDI model . 84

12.1.1 Classical BDI: Architectures, Logics, and Implementations 84
12.1.2 Classical BDI and KGP : A comparison 86

12.2 AGENT0 . 88
12.3 AgentSpeak . 89

12.3.1 (Concurrent, Object-Oriented) AgentSpeak 89
12.3.2 AgentSpeak(L) . 89
12.3.3 AgentSpeak(XL) . 91

12.4 3APL . 91
12.4.1 Agent Programs . 91
12.4.2 Operational Semantics and Control . 93
12.4.3 Agent Communication . 94

12.5 DESIRE . 95
12.6 Computational logic-based approaches . 98

12.6.1 IMPACT . 98
12.6.2 MINERVA . 100
12.6.3 GOLOG . 102
12.6.4 Vivid Agents . 103

13 Evaluation 104

14 Conclusion 109

5

1 Introduction

The SOCS project aims at developing a model for distributed systems consisting of intelligent
autonomous entities interacting with each other within the Global Computing (GC) environ-
ment. The systems are distributed and the entities are autonomous as activity, as envisaged by
the GC vision, is not centrally controlled. The GC environment has the characteristic that it is
open and thus can vary over time. Our model therefore needs to allow the dynamic evolution
of its distributed systems (societies), with the entities composing them varying over time, both
in number and nature, so that

• the interaction amongst entities cannot be hardwired in a fixed topology within these
systems;

• the entities composing these systems cannot be guaranteed to be homogeneous, and might
be highly heterogeneous instead.

Here, our interpretation of openness borrows from work by [Dav01] and by [AKGP01] (de-
rived from [Hew91]). Indeed, [Dav01] proposes that in an open system (or artificial society) it
is possible for any entity to enter the system simpy by starting an interaction with a member
of it. This definition of openness is focused on membership, and therefore it necessarily needs
to take into account how an entity can enter/leave the system. If entering/exiting a system
can be done without any restriction, we can classify the system as open. On the other side,
[AKGP01] gives a definition of open system (or artificial society) based on externally observable
features of entities within the system. This openness definition implies that members could be
heterogeneous, and possibly non-cooperative. Heterogeneity of entities might affect their inter-
nal architectures, the platforms on which they are realised as well as their behaviours (under
the same circumstances).

Again as a consequence of the openess of GC systems, entities composing these systems
need to

• adapt to changes, whilst making decisions;

• operate (e.g. reason and make decisions) despite having only partial information about
the environment and the other entities in it.

The need to adapt arises both for entities joining systems and for entities remaining in
systems when other entities join/leave them. The partiality of information might arise from the
entities having newly joined one such system and having only a partial view over the system.
This partiality might also arise from the autonomy of the entities, and their unwillingness to
disclose information about themselves and the system itself.

Within SOCS we interpret the GC vision as follows.
Entities in these systems need to be “intelligent”, by employing advanced forms of reasoning,

in order to cope with the challenges posed by the GC vision. Autonomy required from these
systems is addressed via intelligent decision making. Furthermore, in order to adapt, they need
to operate and reason with changes taking place over time, having incomplete information. They
also need to dynamically maintain a consistent view of their external world as this changes. In
order to interact freely, they can use high-level communication, as understood in multi-agent
systems.

We assume that entities are heterogeneous as far as behaviour, but aim at using Compu-
tational Logic (CL), as understood in [Kow79, Llo87, Kow90, KS02], as an abstraction for the

6

internal configuration of the entities, for their internal reasoning and for interactions with each
other. We call the entities computees, standing for agents in CL. In particular, computees
base their functional capabilities on CL reasoning techniques. Their internal operation is also
specified and controlled using CL. We call the systems of such entities societies, as they are
characterised by “social rules” for computees to interact and operate in the presence of each
other.

In this context of societies of computees, adaptability amounts to adapting the “goals”,
“knowledge” and “plan” of the computees (namely their internal state), as the societies in
which they are located evolve and as computees move from one society to another.

A number of techniques have been developed within CL for addressing tasks such as temporal
reasoning in a changing environment, hypothetical reasoning for dealing with incomplete knowl-
edge, hypothetical reasoning for planning, hypothetical reasoning to achieve communication,
argumentation for decision-making and inductive logic programming for learning. However, in
order to cope with the GC challenges, CL techniques in isolation are inadequate, as none serves
all dimensions in the operation of computees.

In this deliverable, we present a model for individual computees integrating a number of
existing CL techniques, in order to achieve the enhanced performance which is required by the
GC vision. The model we propose has the following characteristics. The state of a computee
consists of its goals, its plan, and its knowledge base. The terms “goals” and “knowledge base”
are drawn from conventional CL literature, where they are used to refer, respectively, to the
query to prove (or objective to achieve) and to the set of beliefs or data from which to prove
(achieve) the goal. The term “plan” is drawn from conventional Artificial Intelligence literature
on planning. We call the model KGP (Knowledge, Goals, Plan), based on the definition of
such internal state. However, the characteristics of the model go beyond these choices for
the representation of the internal state, as outlined below and explained in detail within this
document.

All of the components of the state of a computee change over time, as a consequence of
the evolution of the computee, its interaction with its environment and the other computees
in it. A computee is equipped with reasoning capabilities, including planning and reactivity,
which have a high-level semantic description within CL. Each of the capabilities is defined with
respect to a specific knowledge base, which is part of the overall knowledge base of the state of
the computee. Together with the reasoning capabilities, the computee has sensing capabilities
that allow it to obtain (current) information from its environment.

A computee then synthesises these capabilities to produce a versatile behaviour that com-
bines the achievement of its own individual goals and cooperation in the society (or societies)
that it belongs to. The synthesis is obtained by employing the capabilities within transitions,
which specify how the state of the computee changes as a result of the application of various
capabilities. The transitions are then integrated together under cycle theories, that specify
declaratively combinations of transitions depending on a desired profile of behaviour for the
computee and the particular circumstances under which the computee is operating. The cycle
theory of a computee therefore replaces more conventional one-size-fits-all theory of control as
provided by conventional agent cycles in the multi-agent literature. The use of cycle theory
as a form of declarative control is to the best of our knowledge novel in the agent literature.
We share the same aims as those of [DdBD+02], which however provides only a limited form
of declarative control with a lower degree of flexibility than that we provide via cycle theories.
This will be discussed further in the document.

7

More specifically the KGP model supports a general mode of operation of the computee
where it:

• maintains a view of its environment,

• decides what its goals should be,

• decides which goals to address next,

• decides and plans how to achieve these goals,

• executes incrementally its plans,

• reacts to information received from the environment or communication received from
other computees by modifying its goals,

• re-evaluates its previous decisions and knowledge based on new information that it receives
from the environment and

• enriches its knowledge, by accommodating newly observed information,

all controlled by a cycle theory, expressing the desired profile of overall behaviour for the
computee equipped with it. The notion of cycle theory and its use to determine the behaviour
of computees could in principle be imported into any agent system, to replace conventional
fixed cycles.

The main focus of this report is on setting up the formal model of a computee and identifying
all its main components. The emphasis is on the development of such a model that would be
able to support the functionalities required and that would be computationally realisable within
current and/or extensions of computational logic frameworks (see WP3, WP4). The model of
computees should be amenable to an abstract design and a well defined abstract architecture.
This model also aims at paving the way to a formal analysis of the properties of the computee
in particular with respect to its evolution (see WP5).

In summary, the main innovative features of our KGP model are the following:

• the KGP model allows for a very versatile knowledge base for a computee: within the
same formalism of CL, the KGP knowledge base allows for multiple modules to deal with
planning, reactivity, recording information, representing individual and social policies and
decision making under these, representing and reasoning with communication protocols
and policies, representing and reasoning with reactive, condition-action rules, temporal
reasoning and temporal projection and prediction;

• the KGP model deals with different kinds of actions by the computee uniformly, including
communicative actions, sensing actions, physical actions;

• the KGP model relies upon state transitions which are independent of any cycle of oper-
ation, and can be described, understood, verified, and have properties proven in a formal
way;

• the KGP model has no fixed cycle, but rather relies upon a representation and reasoning
framework to describe many different profiles of behaviour by means of cycle theories.
Within any given cycle theory, the operation of a computee is dynamically sensitive to
the particular circumstances at the time of operation;

8

• as well as the rest of the model, the cycle theory is also CL-based, and therefore verifiable
with respect to formally specified properties. In particular, it allows to link features of
the environment and behaviour of the computees, and thus prove properties conditionally
on different types of environments;

• the KGP model readily facilitates dynamic interleaving of goal decision, (partial) plan-
ning, reacting, communicating and acting, together with plan and goal revision;

• the KGP model supports heterogeneity in many different respects due to its highly modu-
lar description of the components of the knowledge base of a computee, of the capabilities,
of the transitions and of the cycle theory;

• all components, including the cycle theories, have declarative definitions independent of
any operational concerns, but each come equipped with concrete computational counter-
parts and well–defined proof procedures.

With these features the KGP model is able to define computees as autonomous entities
with diverse and versatile functionalities and operational behaviour meeting fully the following
high-level GC objectives, as interpreted by our project:

• computees exhibit autonomous and adaptable behaviour in the open and changing GC
environment;

• the KGP model supports different behaviours of computees, and allows the presence of
behaviourally heterogeneous computees within societies;

• the KGP model allows for the interaction and operation of computees within societies.

The rest of this report is organised as follows.
In section 2 we describe at a high, abstract and intuitive level the technical aspects of the

approach we take with the KGP model, and how different components within the model glue
together.

In section 3 we give the necessary background for the various components of the framework.
This includes background on CL, abductive logic programming, constraint logic programming
and preference reasoning within logic programming with rule priorities.

In section 4 we give some preliminary definitions, useful for defining the state of a computee,
which is given in section 5.

In section 6 we define the various reasoning and sensing capabilities of a computee within
the KGP model.

In section 7 we define the possible state transitions of a computee within the KGP model.
In section 8 we define selection functions, which are used to select inputs to be given to

transitions when applied within cycle theories.
In section 9 we define the concept of cycle theory and provide examples of a number of such

theories corresponding to desired profiles of operation.
In section 10 we describe the features of the KGP model facilitating the functioning of a

computee in a society.
In section 11 we describe some possible, useful extensions of the core KGP model.
In section 12 we compare our model with models proposed in the agent literature.
In section 13, we evaluate the progress of our work with respect to the objectives of WP1,

according to the criteria set in deliverable D3. In this section, we also describe how other

9

criteria set in D3 were achieved by other work done by the Consortium, which is not part of
D4. We also identify criteria for WP1 that have not been fulfilled by the Consortium so far.

Section 14 concludes.

2 General approach

The formal model of a computee described in this report is based on:

• an internal (or mental) state of the computee,

• a set of reasoning capabilities of the computee, for performing planning, temporal reason-
ing, identification of preconditions of actions, reactivity and goal decision,

• a sensing capability of the computee,

• a set of formal transition rules for the state of the computee defined in terms of the above
capabilities,

• a set of selection functions, to provide appropriate inputs to the transitions,

• a set of execution cycles for the combination of the transitions and the selection functions,
as provided by the cycle theory of the computee.

A snapshot of the model is given in figure 1. In this section, we overview all the components
of the model and their integration within the model, as well as their role with respect to the
general GC objectives as interpreted by SOCS. The overview in this section is non-technical.
The technical details will be given in the remainder of this document.

We represent the internal (or mental) state of a computee as a triple 〈KB,Goals, P lan〉,
whose components are as follows.

• KB is the knowledge base of the computee, and describes what the computee knows (or
believes) of itself and the environment. KB consists of separate modules, supporting
different reasoning capabilities. These modules are KBplan, for Planning and for the
Identification of Preconditions of actions, KBTR, for Temporal Reasoning, KBGD, for
Goal Decision, KBreact, for Reactivity, and KB0, holding the (dynamic) knowledge of
the computee about the external world. By means of KB0 the computee is able to record
and reason about the current state of the external environment in which it is situated
and also about the past and future states of this environment. We will assume that
this environment includes communication messages received from other computees. KB0

changes via changes in the environment and is typically updated by the computee when
it observes the environment through its sensing capability. In the sequel, for convenience
we will often assume that KB0 is contained in all other modules in KB.

Syntactically, KBplan and KBTR are abductive logic programs with constraint predicates
(and KBplan ⊂ KBTR), KBGD is a logic program with priorities over rules, KBreact is a
set of integrity constraints in abductive logic programming, KB0 is a set of facts (definite
clauses) in logic programming.

10

Figure 1: The Computee Reference Model

• Goals is a set of properties that the computee has decided that it wants to achieve
(desires). The computee intends to achieve all such properties. Each such property is
equipped with a time parameter, at which it is expected to hold, possibly constrained via
temporal constraints. Goals are split into two types:

mental goals, that can be observed (not) to hold via the Sensing capability as well as
reduced to subgoals and actions by using KB via the Planning reasoning capability.

sensing goals, that can only be dealt with by setting up sensing actions to find out from
the environment whether they hold or not, via the Sensing capability.

Goals are implicitly kept in a hierarchical structure, following a goal-subgoal relation.
This structure is in the form of a tree. This structure is given simply by specifying, for
each goal, its parent in the structure. The root of the tree is represented by ⊥. All children
of the root, referred to as the top-level goals, are either assigned to the computee by its
designer at “birth”, or they are determined by the Goal Decision reasoning capability.

11

The tree structure is generated via the Planning reasoning capability and augmented via
the Reactivity reasoning capability.

• Plan is a set of “concrete” actions of the computee by means of which it plans (intends)
to satisfy its goals, and that the computee can execute in the right circumstances.

Each action is equipped with a time parameter, at which it is expected to be executed,
possibly constrained via temporal constraints. The temporal constraints on actions give
a partial order on the actions in Plan. Thus, Plan is at all effects a (partially ordered)
sequence of actions.

Each action in Plan is also equipped with the preconditions for its successful execution.
These preconditions might be checked before the actions are executed. Preconditions are
associated to actions via the reasoning capability for the Identification of Preconditions.

Actions in Plan are split into the following types:

physical actions, that the computee can execute to effect a change in the world,

communicative actions , e.g. used by the computee to attempt to change the knowl-
edge of other computees or to gain information from them, and

sensing actions, with which the computee is able to get information from its external
environment.

Plan can contain any combination of types of actions.

Actions in Plan are implicitly kept in the tree structure for Goals, again by specifying,
for each action, its parent goal in the structure. However, note that actions are necessarily
leaves of this tree, as they cannot have children. Actions are added to the tree structure
via the Planning reasoning capability and via the Reactivity reasoning capability.

Overall, the reasoning capabilities employed within the KGP model are the following.

• Planning, to generate partial plans for sets of goals; each such plan consists of a set of
sub-goals and a set of actions for each given input goal. The sub-goals and the actions in
a partial plan for a goal are equipped with (possibly empty) temporal constraints on the
times of actions and goals. A partial plan will only be generated by this capability if it is
“globally consistent” with KB and the existing Goals and Plan.

This capability contributes to rendering computees autonomous (capable to decide au-
tonomously how to achieve their goals). The generation of partial (rather than total)
plans paves the way to the computee being adaptable to changes in the environment
without being wasteful of earlier planning efforts.

• Reactivity, to appropriately react to perceived changes in the environment, by adding
goals to Goals and actions to Plan, e.g. as required to fulfil given “condition-action”
rules in KB. The new goals and actions are equipped with (possibly empty) temporal
constraints on the times of actions and goals, and with their parent in the new Goals.
A set of goals and actions will only be generated by this capability if it is “globally
consistent” with KB and the existing Goals and Plan.

This capability contributes to render computees adaptable to changes in the environment.

12

• Goal decision, to continuolsy revise the top-most level goals of the computee, taking into
account possible changes in the circumstances of the computee and its environment that
affect the computee’s preferences as to what it should aim at achieving. This capability
differs form the earlier Reactivity in that it only modifies the top-level goals of a computee
and it does not add actions to Plan. Moreover, differently from Reactivity, goal decision
does not depend upon the Goals and Plan of the computee.

This capability contributes to render computees autonomous (by deciding to modify its
set of goals, and even dropping goals assigned to it by its designer, if any) as well as
adaptable to changes in the environment.

• Identification of Preconditions, to identify the preconditions for the successful execu-
tion of given actions. The preconditions are properties that “cautious” computees might
want to sense within the environment to establish whether the actions can be executed
successfully. Thus, the presence of preconditions in actions, as identified by this capability,
paves the way to modelling heterogeneous computees.

The preconditions can also be reasoned upon to establish that some actions will never be
successfully executable, as their preconditions will never be satisfied, and can be dropped
from Plan. Thus, the presence of preconditions identified by this capability paves the
way to the adaptability of computees.

• Temporal Reasoning, to reason about and from observations sensed within the envi-
ronment and make predictions about properties holding in the world on the basis of these
observations. This capability is used to define most of the other capabilities, and thus
has a special role within the model; overall, it plays a fundamental role in rendering the
computee adaptable to changes in its environment by dealing appropriately with partial
information which evolves over time.

In this document we give concrete specifications of these reasoning capabilities, that we
want to use for the development of the computational counterpart of the model as well as for
its prototype implementation. However, note that the KGP model is in principle independent
of such concrete choices and different such choices could have been made.

Note that other reasoning capabilities might be useful, for example to reason about preferred
plans. Some of these additional capabilities are discussed as possible extensions of the KGP
model later on in this document. Finally, note that computees do not necessarily need to have
all capabilities listed here, and instead they could have any subset of these.

In addition to the reasoning capabilities above, the computee is equipped with a sensing
capability which links the computee to its environment, by allowing it to observe properties
holding in the environment and actions being executed by other computees. The KGP model
assume the existence of such capability but does not model it. The concrete realisation of such
a capability will be important for the implementation prototype to be delivered by WP4.

The state of a computee evolves by applying transition rules, which employ capabilities,
as follows.

• Goal Introduction, which changes the top-level Goals of a state, and uses the Goal
Decision capability.

• Plan Introduction, which changes Goals and Plan of a state, and uses the Planning
and Introduction of Preconditions capabilities.

13

• Reactivity, which changes Goals and Plan of a state, and uses the Reactivity and In-
troduction of Preconditions capabilities.

• Sensing Introduction, which changes the Plan of a state by introducing new sensing
actions for sensing the preconditions of actions already in Plan, and uses the Sensing
capability.

• Passive Observation Introduction, which changes KB0 of KB by introducing unso-
licited information coming from the environment (a bit like an interrupt), and uses the
Sensing capability.

• Active Observation Introduction, which also changes KB0 of KB, but by introducing
the outcome of sensing actions for properties of interest to the computee, and thus actively
seeked, and uses the Sensing capability.

• Action Execution, for executing all types of actions, thus changing KB0 of KB.

• Goal Revision, which revises Goals, e.g. by dropping goals that have already been
achieved, by using the Temporal Reasoning capability.

• Plan Revision, for revising Plan, e.g. by dropping actions that have already been
executed successfully.

We believe that this set of transitions is a suitable set of state transitions to accommodate
the features required from computees to face the challenges of the GC vision. In order to be
autonomous, computees need to be able to plan for ways to achieve their goals (Plan Introduc-
tion) and for introducing new goals (and possibly dropping existing goals) as they evolve (Goal
Introduction). In order to be aware of changes in the environment, and thus being adaptable,
computees need to be able to observe the environment, both proactively (Active Observation
Introduction), after having decided what to observe (Sensing Introduction), and because of the
environment (and computees in it) demanding attention (Passive Observation Introduction).
In order to be adaptable, they need to be able to react to observed changes in the environment
(Reactivity) and they need to be able to revise their goals and plans as their situation changes
(Goal and Plan Revision). Communicative behaviour is accommodated within the framework
by means of several of its features, in particular by means of Action Execution, as some of
the actions in Plan are communicative, and Reactivity, to respond appropriately to incoming
communication.

We also envisage, but do not concentrate upon, a Knowledge Revision transition to be
developed as a possible extension of the model, to modify the knowledge of the computee,
besides KB0. This transition could make use of learning techniques as well in order to enlarge
the knowledge base of the computee.

Finally, note that computees might be equipped with just a subset of the set of transitions
above.

We adopt the distinction amongst capabilities and transitions for the following (software
engineering-oriented) reasons. We encapsulate within a reasoning capability any reasoning
process for which we could consider different specifications than the ones we provide within
this document. We encapsulate within the sensing capability the physical environment of a
computee, as this is not under the computee control and cannot be defined within the model.
We encapsulate within transitions any process that affects the state of a computee. Moreover,
the use of capabilities aims at increasing readability of the transitions.

14

The behaviour of a computee is then given by the application of transitions in sequences,
thus producing progressive changes over the state of the computee. In the KGP model, these
sequences are not determined by fixed cycles of behaviour, as in conventional agent architec-
tures, but rather by reasoning with cycle theories. These are logic programs with priorities
over rules, defining preference policies over the order of application of transitions. These poli-
cies are sensitive to changes in the environment and in the internal state of a computee, and
provide a mean of declarative and intelligent control for computees. By adopting different cycle
theories we aim at obtaining (behaviourally) heterogeneous computees.

The provision of declarative control for computees in the form of cycle theories is a highly
novel feature of computees with respect to intelligent agents systems presented in the literature,
as discussed later on in the paper when providing a comparison with related work. Note that
the notion of cycle theory and its use to determine the behaviour of computees could in principle
be imported into any agent system, to replace conventional fixed cycles.

Computees are agents whose diverse components are all expressed uniformly within compu-
tational logic: both the state of computees, their reasoning capabilities and their control (cycle)
theories are formulated and realised within computational logic. We envisage that this will ease
the task of formulating and verifying properties of computees in later stages of the project.

3 Background

In this section we give essential background on the techniques we rely upon in the remainder of
the document to define the data structures underlying the model of computees, the capabilities
which form the building blocks of the model, and behaviour cycle of computees. In particular,
we give background on logic programming (section 3.1) (which is the form of computational
logic we adopt for developing the model of individual computees) and some of its extensions,
namely abductive logic programming (section 3.2), a logic programming framework extended
to perform hypothetical reasoning (also called abduction), and logic programming extended to
deal with preferences over rules (section 3.3), with particular emphasis on LPwNF , a concrete
form of such extended logic programming. In section 3.4, we overview how to handle constraint
predicates (such as ≤,=, etc) within logic programming. Finally, in section 3.5, we indicate
how to incorporate constraint predicates within abductive logic programming and LPwNF .

The reader familiar with these notions can skip this section, except for the conventions here
introduced, as they will play an important role in the remainder of the document.

3.1 Logic programming

A logic program [Kow79, Llo87, Apt90] is a set of rules of the form

A← L1, . . . , Ln

with A atom, L1, . . . , Ln (positive or negative) literals, and n ≥ 0. Each negative literal Li is
of the form notBi, where Bi is an atom. The negation symbol not indicates negation as failure
[Cla78, Llo87, Apt90]. All variables in A, Li are implicitly universally quantified, with scope
the entire rule. A is called the head and L1∧. . .∧Ln is called the body or the conditions of a
rule of the form above. If A = p(t), for some vector of terms t, the rule is said to define p.

A definite logic program is a set of definite clauses, namely rules without any occurrence of
negation as failure, of the form

15

A← A1, . . . , An

with A, A1, . . . , An atoms, and n ≥ 0.
A fact is a definite clause of the form above but with n = 0.
Given a definite logic program, the meaning of the program is given by its least Herbrand

model. This is unique, for any given definite logic program, and thus can be chosen as the
undisputed semantics of the program. Given an ordinary logic program, with negation as failure
occurring in the body of rules in the program, in general there are many different semantics
that can be adopted for that program. These include the completion semantics [Cla78] and
its three-valued variant [K.87] stable models [GL88], partial stable models [SZ90] and preferred
extensions [Dun91], stationary expansions [Prz91] and complete scenaria [Dun91], well-founded
model [GRS88], stable theories [KM91] and acceptability semantics [KMD94b] (and semantics
equivalent to these). Most of these semantics coincide for special classes of logic programs, e.g.
stratified logic programs [ABW78]. Most of these semantics can be expressed uniformly within
an argumentation framework [Dun95, BDKT97, KT99].

In the sequel, unless otherwise specified, we will not commit to any specific semantics for
the logic programs we will encounter. The definitions we present in this report are parametric
with respect to the adopted semantics, and, unless otherwise specified, any of the semantics
above will be suitable for our framework. We foresee that, in the second phase of the project,
when specifying the computational counterpart for the model presented in this document, we
will have to adopt some concrete semantics for the logic programs in the model, and possibly
use different semantics for different components of the framework.

In the sequel we will adopt the following conventions:

Convention 3.1 Given a logic program P , P |=LP C stands for (the implicitly existentially
quantified conjunction of literals) C is true in the (chosen) semantics of P .

Convention 3.2 Given a definite logic program P , P |=H C stands for (the implicitly exis-
tentially quantified conjunction of atoms) C is true in the least Herbrand model of P .

Many of the reformulations of semantics of logic programs in argumentation terms, e.g.
[BDKT97, KT99], rely upon |=H , in that every logic program with negation can be understood
as a definite logic program by interpreting the negative literals in it as new atoms, as first
presented in [EK89]. The negative literals can be seen as hypotheses (or abducibles) that can
be added to the logic program reinterpreted as definite, if some argumentation-based criteria are
satisfied. Additional material about argumentation for logic programming, and its extensions,
will be discussed in section 3.3 below.

Some of these semantics mentioned above are sceptical (e.g. the well-founded model seman-
tics) whereas others may be used in a sceptical or in a credulous manner (e.g. the stable model
semantics). Credulous versions of semantics allow to represent non-determinism.

3.2 Abductive logic programming

Abductive logic programming [KKT93, KKT98, KD02] is a powerful knowledge representation
framework, that can be used to realize many diverse applications such as diagnosis, planning,
natural language understanding, default reasoning and image processing as well as, more re-
cently, active databases and intelligent agents [KS96b, KST98, KS99, ST99, ST00, STT02a,
KM02].

16

An abductive logic program 〈P,A, I〉 consists of

• a logic program, P , seen as an “incomplete” theory,

• a set, A, of abducible predicates, whose (variable-free) abducible atoms are used to expand
the theory,

• a set, I, of first-order sentences, referred to as the integrity constraints, that must be
“satisfied” by any sets of abducibles expanding the theory.

The concept of integrity constraint first arose in the field of databases and to a lesser extent
in the field of AI knowledge representation. The basic idea is that only certain knowledge base
states are considered acceptable, and an integrity constraint is meant to enforce these legal
states.

Given a goal (conjunction of literals) G, a set of abducible atoms D, and a variable substi-
tution θ for the variables in G, a pair (D, θ) is an abductive answer for G, with respect to an
abductive logic program 〈P,A, I〉, iff

1. P ∪ D “entails” Gθ, and

2. P ∪ D “satisfies” I.

Fulfilment of other properties is sometimes required, e.g. minimality, with respect to set inclu-
sion, of the set of abducibles in the answer [KKT98].

Various notions of entailment and satisfaction can be adopted. As far as entailment is
concerned, every semantics for the logic program P can provide one such entailment. Namely,
part 1 of the definition of abductive answer above can be replaced by

1. P ∪ D |=LP Gθ.

As far as satisfaction is concerned, there are several ways to define what it means for a knowledge
base KB (P ∪ D in our case) to satisfy an integrity constraint φ (in our framework φ ∈ I).
The consistency view requires that:

KB satisfies φ iff KB ∪ φ is consistent.

Alternatively the theoremhood view requires that:

KB satisfies φ iff KB |= φ.

Another view regards the integrity constraints as epistemic or meta-level statements about the
content of the knowledge base. They specify what must be true about the knowledge base
rather than what is true about the world modelled by the knowledge base. In conventional
work on abductive logic programming, starting from the work of [EK89, KM90a, KM90b], the
view adopted is stronger than consistency, weaker than theoremhood, and arguably similar to
the epistemic or meta-level view. The view can be expressed by the following reformulation of
part 2 of the definition of abductive answer above:

2. P ∪ D |=LP I.

17

In this document we will consider integrity constraints of the following forms (Li positive or
negative literal, A atom, false a special atom in the language of the abductive logic program):

L1, . . . , Ln ⇒ false (n > 0)

conventionally called denials,

L1 ∨ . . . ∨ Ln (n > 0)

conventionally called disjunctive integrity constraints, and

L1, . . . , Ln ⇒ A (n > 0)

that we call implicative integrity constraints. In such integrity constraints, L1, . . . , Ln is re-
ferred to as the body and A is referred to as the head of the constraint. All variables in the
integrity constraints are implicitly universally quantified from the outside (as for rules), except
for variables occurring only in the head which are implicitly existentially quantified with scope
the head.

Often, in this document, we will allow for implicative integrity constraints to be expressed
in “looser” forms. Notably, we will allow integrity constraints of the form

L1, . . . , Ln ⇒ K1 ∧ . . . ∧Km (n > 0,m > 0)

with Kj atoms. Note that any abductive logic program 〈P,A, I〉 with an implicative integrity
constraint

L1, . . . , Ln ⇒ K1 ∧ . . . ∧Km

of the looser form is equivalent to an abductive logic program 〈P ′, A, I ′〉 with implicative
integrity constraints of the stricter form, where P ′ = P ∪ {p(X) ← K1 ∧ . . . ∧ Km} and
I ′ = I \ {L1, . . . , Ln ⇒ K1 ∧ . . .∧Km} ∪ {L1, . . . , Ln ⇒ p(X)}, where p is a new predicate, not
already occurring in 〈P,A, I〉, and X is the vector of all variables occurring in L1, . . . , Ln.

The notion of abductive answer given earlier relies upon “grounding” all variables in the
goal G and extending the theory P by means of ground abducible atoms. In this document,
we will instead rely upon non-ground abductive answers, whose variables may be constrained
by means of conjunctions of literals in an underlying language of (arithmetical) constraints
as in constraint logic programming, in the spirit of [KM95, KTW98, AKM00, KvD01] (see
section 3.4).

3.3 Logic programming with priorities

LPwNF [KMD94a, DK95, KM03b] is a logic programming framework for preference reasoning
with an argumentation-based semantics. Within this framework we have a powerful form of
decision making under a given preference policy. This policy can be sensitive to different
information in a dynamic environment allowing the decision making to adapt to the particular
circumstances at the time of the decision.

The preference reasoning within LPwNF is based on a model of argumentation where local
priority information, given at the level of the rules of a theory (or policy), is lifted to give a
global preference over sets of rules that compose arguments and counter arguments for a certain
decision. A theory or policy within LPwNF is viewed as a pool of sentences or rules from which
we need to select a suitable subset, i.e. an argument, in order to support a conclusion.

18

In LPwNF knowledge is represented in a classical background logic (L, |=H) by means of
rules of the form

L← L1, . . . , Ln, (n ≥ 0)

where L,L1, . . . , Ln are positive or negative (classical) literals. A negative literal is a literal
of the form ¬A, where A is an atom. Note that the symbol ¬ stands for classical negation,
and is therefore distinguished from the symbol not used to represent negation as failure above.
Indeed, no negation as failure occurs in an LPwNF theory 1. Note also that, differently from
rules in conventional logic programs as given above, here the head L of rules may be negative
as in the framework of Extended Logic Programming.

The background derivability |=H relation of the framework is the monotonic Horn logic given
by the single inference rule of modus ponens, treating negative literals as ordinary atoms. In
general, we can separate out an auxiliary part of a given theory from which the other rules can
draw background information in order to satisfy some of its conditions. The reasoning of the
auxiliary part of a theory is independent of the main argumentation-based preference reasoning
of the framework and hence any appropriate logic can be used.

Some of the sentences in a LPwNF theory express priorities over the rules of the theory.
These have the same form as the rules above except that their head, L, refers to a higher-priority
relation, h p, and so such a rule has the general form

L = h p(rule1, rule2)← L1, . . . , Ln, (n ≥ 0)

where rule1 and rule2 are the names of two rules in theory.
A rule of this form then means that under the conditions L1, . . . , Ln, rule1 has priority over

rule2. The role of this priority relation is therefore to encode locally the relative strength of
(argument) rules in the theory. The priority relation given by h p is required to be irreflexive.
The rules rule1 and rule2 can in fact be themselves rules expressing priority between other
rules and hence the framework allows higher-order priorities. For simplicity of presentation we
will assume that the conditions of any rule in the theory do not refer to the predicate h p thus
avoiding self-reference problems.

The preference reasoning of LPwNF uses the priority relation between rules to find out
conclusions that are preferred over their conflicting conclusions. Indeed, an LPwNF theory
might give rise, under its background derivability |=H , to conflicts, namely between a literal L
and its negation ¬L. More generally, we can define other forms of conflict within a given theory
through an auxiliary predicate and rules of the form

incompatible(L1, L2)← B,

stating that literals L1 and L2 are conflicting under some (auxiliary) conditions B (see sec-
tions 6.5 and 9.2 for examples of this). Also for any ground atom h p(rule1, rule2), its conflict-
ing literal is defined to be h p(rule2, rule1) and vice-versa.

Conflicts together with the priority relation of the theory give rise to a notion of attack
between sets of sentences in the theory T . ∆ attacks ∆′, where ∆,∆′ are sets of sentences in
the T , means that these two sets have conflicting conclusions (under |=H) and that the rules
of ∆ that derive this are rendered by ∆ to have at least the same priority as that rendered

1This is where the framework gets its name: Logic Programming without Negation as Failure but the historical
reasons for this name are not important in this document.

19

by ∆′ for its own rules that derive the conflicting conclusion. For the case where the priority
relation is static, i.e the rules for h p have no conditions and so express globally that one rule
is always stronger than another, this definition is given as follows (see [KM03b] for the formal
details when h p is not static).

Let T be an LPwNF theory and ∆,∆′ ⊆ T . Then ∆′ attacks ∆ (or ∆′ is a counter
argument of ∆) iff there exists L, ∆1 ⊆ ∆′ and ∆2 ⊆ ∆ such that:

(i) ∆1 `min L and ∆2 `min L

(ii) (∃r′ ∈ ∆1, r ∈ ∆2 s.t. h p(r, r′)) ⇒ (∃r′ ∈ ∆1, r ∈ ∆2 s.t. h p(r′, r)),

where L is any literal that conflicts L (e.g. L = ¬L or incompatible(L,L) holds).
Here ∆ `min L means that ∆ |=H L and that L cannot be derived from any proper subset

of ∆. The second condition in this definition states that an argument ∆′ for L attacks an
argument ∆ for the contrary conclusion only if the set of rules that it uses to prove L are at
least of the same strength (under the priority relation h p) as the set of rules in ∆ used to prove
the contrary. Note that the attacking relation is not symmetric.

Given this notion of attack that lifts the priority relation from individual rules to sets of
rules, we define the admissible subsets or arguments of a given theory as follows.

Let T be a theory and ∆ ⊆ T . Then ∆ is an admissible argument iff ∆ is consistent (i.e.
conflict free) and for any ∆′ ⊆ T if ∆′ attacks ∆ then ∆ attacks ∆′.

Then, preference reasoning is based on the maximal admissible arguments of a given theory.
Usually, two entailment relations are defined:

Convention 3.3 Given an LPwNF theory T ,

• T |=cred
pr G means that there is at least one maximal admissible subset of T where G

holds;

• T |=scep
pr G means T |=cred

pr G and, for any G such that incompatible(G,G) holds,
T 6|=cred

pr ¬G.

In the sequel, |=pr will indicate |=scep
pr .

Additional details on |=pr can be found in [KMD94a, DK95, KM03b].

3.4 Constraint predicates in computational logic

Constraint Logic Programming (CLP) [JM94] extends logic programming with constraints pred-
icates which are not processed as ordinary logic programming predicates, defined by rules, but
are checked for satisfiability and simplified by means of a built-in, “black-box” constraint solver.
These are typically used to constrain, together with unification which is also treated via an
equality constraint predicate, the values that a conclusion of a rule can take. For example,
constraints can be used to compute the value of time variables, in the rules of a program, under
a suitable temporal constraint theory.

In CLP, constraints are build as first-order formulae in the usual way from primitive con-
straints of the form c(t1, . . . , tn) where c is a constraint predicate symbol and t1, . . . , tn are
terms constructed over a give domain, D(<), of values. Then the rules of a constraint logic
program P take the same form as rules in conventional logic programming given by

A← L1, . . . , Ln, C

20

where C is a set of constraints.
A valuation θ of a set of variables is a mapping from these variables to the domain D(<)

and the natural extension which maps terms to D(<). A valuation θ, on the set of all variables
appearing in a set of constraints C, is called an <-solution of C iff Cθ, obtained by applying
θ to C, is satisfied i.e. Cθ evaluates to true under the given interpretation of the constraint
predicates and terms. The set C is called <-solvable or simply satisfiable iff it has at least one
<-solution.

One way to given the meaning of a constraint logic program P is to consider the grounding
of the program over its Herbrand base and all possible valuations, over D(<), of its constraint
variables. In each such rule if the ground constraints C are evaluated to true then the rule is
kept with the condition of C dropped otherwise the whole rule is dropped. The meaning of P
is then given by the meaning of the resulting logic program as described in section 3.1.

3.5 ALP and LPwNF with Constraints

The frameworks of abductive logic programming (ALP) and logic programming with priorities
(as in LPwNF) described above can be usefully extended with constraints in the same way
that LP extends logic programming. In LPwNF the extension is exactly analogous to that of
CLP simply allowing constraints in the body of the rules and hence constraining the conclusions
that these rules can have.

In ALP together with this extension of constraining the conclusions of the rules we can
use constraints to constrain abducible assumptions. In fact the link with constraints allows us
to extend an ALP framework to include non-ground abducible hypotheses, an extension that
increases significantly the versatility of applying abductive reasoning to various problems and
that plays an important role within the model we propose in this document.

One such framework of integration of ALP and CLP is that of ACLP [AKM00, KMM00]
and the A-system [KvD01] that has followed it. In this framework abductive theories are defined
as usual but now over the combined language of a given underlying framework of D(<) and a
user given language for the problem domain that is represented by the abductive logic program.
The essential extension is that now the set of abducible atoms in the predicates of A is extended
to consist of the following formulae:

1. a(d), where a is an abducible predicate and d is a vector of constants in D< (such ab-
ducibles are called ground abducibles)

2. ∃X(a1(X), .., an(X), C(X)), where n ≥ 1, ai is an abducible predicate ∀i.1 ≤ i ≤ n and
C(X) is a (possibly empty) set of constraints.

The subset D of abducibles of an abductive answer can now include also non-ground abducibles,
e.g. D = ∃X(a(X), C(X)). The notion of an abductive answer is build on the previous definition
for (ground) abduction generalising this by considering the different possible groundings of non-
ground elements of D allowed by the constraints C that they involve. Given a theory and a
goal G then a set D of abducibles is an abductive answer for G iff:

1. there exists a valuation (or grounding) g such that, for each abducible formula φ in D,
the constraints in φ are satisfied, and

2. for any grounding Dg of D, Dg is a ground abductive explanation of G.

21

Hence D is an abductive solution for a goal G iff there exists (in <) at least one consistent
grounding of D and for any such grounding, Dg, this constitutes a ground abductive solution
of G. Note that essentially this grounding θ gives also the associated variable substitution θ
for the variables in the goals G, since in CLP the implicit unification of logic programming is
replaced by an explicit equality theory that is always part of the constraint theory of the CLP
framework.

Operationally, an abductive answer can be computed, in CLP fashion, by interleaving the
generation (and consistency checking with respect to the integrity constraints) of abducible
hypotheses together with the generation of an associated constraint store C of constraints on
these hypotheses and its own check for satisfiability. This constraint store can grow during
the computation provided that it remains satisfiable. A “black box” constraint solver, that is
transparent to the abductive reasoning itself, is used to decide on the satisfiability of this store
when necessary and to reduce the constraints accordingly. The satisfiability or not of C in turn
affects back the computation of abductive hypotheses and their check of satisfying the integrity
constraints.

An alternative approach to incorporating constraint predicates into ALP and (potentially)
LPwNF is that of [KTW98]. Here, constraint predicates are dealt with (semantically as well
as procedurally) just like any abducible predicate, possibly constrained by integrity constraints
that serve as a glass-box for their transparent treatment. This is achieved by ordinary abductive
reasoning. In this framework, abductive answers do not rely upon grounding, and are instead
of the form 2. above for ACLP.

Finally, we note that in both ALP and LPwNF it is useful to extend the form of rules
and integrity constraints to allow the heads of certain (top-level) rules or of certain implicative
integrity constraints to contain constraints that limit the values of existentially quantified vari-
ables over the head. This extension will be described below in the document in the sections
where it will be used.

4 Preliminaries of the KGP model

In the sequel we assume (possibly infinite) vocabularies of time constants (e.g., the set of all
natural numbers), time variables (that we will indicate with t, t′, s, . . .), fluents (that we will
indicate with g, g′, . . .), action operators (that we will indicate with a, a′, . . .), and names of
computees that we will indicate with c, c′, Given a fluent g, g and ¬g are referred to as
fluent literals. 2

We assume that the set of fluents is partitioned in two disjoint sets: mental fluents and
sensing fluents. Intuitively, mental fluents represents properties such that the computee it-
self is able to plan so that they can be satisfied, but can also be observed. On the other
hand, sensing fluents represent properties which are not under the control of the computee
and can only be observed by sensing the external environment. For example, problem fixed
and get resource may represent mental fluents, namely the properties that (given) problems
be fixed and (given) resources be obtained, whereas request accepted and connection on may
represent sensing fluents, namely the properties that (given) resources are accepted and that
some (given) connection is active.

2Note that ¬ represents classical negation. Negation as failure occurs in the model only within (some parts
of) KB. All negations in Goals and Plan are classical negations.

22

We also assume that the set of action operators is partitioned in three disjoint sets: sensing
action operators, physical action operators and communication action operators. In the sequel,
we will refer to physical and communication action operators jointly as non-sensing action
operators. Intuitively, sensing actions represent actions that the computee performs in order to
establish whether some fluents hold in the environment. These fluents may be sensing fluents,
but they can also represent effects of actions that the computee may need to check in the
environment. On the other hand, physical actions are actions that the computee performs in
order to achieve some specific effect, which typically causes some changes in the environment.
Finally, communication actions are actions which involve communications with other computees.
For example, sense(connection on, t) is a sensing action, aiming at checking whether or not
the sensing fluent connection on holds; do(clear table, t) may be a physical action operator,
and tell(c1, c2, request(r1), d, t) may be a communication action expressing that computee c1
is requesting computee c2 the resource r1 within a dialogue d, at time t (see Section 10.1.1).

Temporal constraints

In the sequel we will use temporal constraints associated with goals and actions of a computee.
Temporal constraints are formulae defined by the following syntax:

TC ::= AtomicTC | TC ∧ TC | TC ∨ TC | ¬ TC
AtomicTC ::= Variable Relop Term
Relop ::= = | 6= | < | > | ≤ | ≥
Term ::= Time Constant | Time Variable | Term Op Term
Op ::= + | − | ∗ | ÷

As mentioned above, time constants are simply natural numbers. Time variables are distin-
guished variables which can be instantiated to time points. Notice that no explicit quantification
is introduced in temporal constraints: indeed, in a temporal constraint occurring in goals and
actions (see below) all variables are implicitly existentially quantified.

We use the following terminology and notations.

Goals

A goal G is a triple of the form 〈l[t], G′, T c〉 where

• l[t] is the fluent literal of the goal possibly referring to the time t; we will refer to l[t] as
a timed fluent literal;

• G′ is the parent of G;

• Tc is a (possibly empty) temporal constraint which typically refers to the time t.

Top-level goals are goals which have no parent. We will denote them by triples of the
form G = 〈l[t],⊥, T c〉.

As an example, we may have a top-level goal G of the form

〈problem fixed(p2, t),⊥, 5 ≤ t ≤ 10〉

and a subgoal G′ of G of the form

〈get resource(r1, t′), G, 5 ≤ t′ ≤ t〉

23

meaning that to fix problem p2 within a certain time interval, the computee needs to have
(or acquire) a resource r1.

Given a set of goals Goals and G ∈ Goals we write

• parent(G) = G′ if G = 〈 , G′, 〉 (G′ can be ⊥ if G is a top-level goal) 3

• children(G,Goals) = {G′ ∈ Goals | G′ = 〈 , G, 〉}

• descendants(G,Goals) = children(G,Goals)∪
{G′ ∈ Goals|∃G′′ ∈ descendants(G,Goals).G′ ∈ descendants(G′′, Goals)}

• ancestor(G,Goals) = {G′ ∈ Goals|G ∈ descendants(G′, Goals)}.

We will also refer to two goals with the same parent as siblings.
In the sequel mental goals are goals whose fluent is mental, and sensing goals are goals whose

fluent is sensing.

Actions

An action A is a 4-tuple of the form 〈a[t], G,C, Tc〉 where

• a[t] is the operator of the action, referring to the execution time t; we will refer to a[t] as
a timed (action) operator;

• G is the goal towards which the action contributes (i.e., the action belongs to a plan for
the goal G); G is a post-condition for A (but there may be others such post-conditions,
as given within the knowledge base of the computee);

• C are the preconditions which should hold in order for the action to take place successfully;
syntactically, C is a conjunction of timed fluent literals;

• Tc is a (possibly empty) temporal constraints which typically refers to the time t of the
action.

Note that we are assuming that actions are atomic and do not have a duration. The temporal
constraints specify a time window over which the time of the action can be instantiated, at
execution time. If the temporal constraints are empty then the action can be executed at any
time.

As an example, we may have an action

〈tell(c1, c2, request(r1), d, , t′′), G′, {}, 5 ≤ t′′ ≤ t′〉

where G′ is given as above.
Given and action A, we write

• parent(A) = G if A = 〈 , G, , 〉 (G can be ⊥).

3We use “ ” to denote a component which is not relevant in the context, inheriting the Prolog tradition of
denoting by “ ” an anonymous variable.

24

We will also refer to two actions with the same parent and to an action and a goal with the
same parent as siblings. Note that, in practice, actions can be seen as special kinds of goals
which are directly executable.

In the sequel sensing actions are actions whose action operator is a sensing action operator,
non-sensing actions are actions whose action operator is a non-sensing action operator. We
distinguish two types of sensing operators, denoted by sense(l[t]) and sense precondition(l[t]).
The latter is a sensing action which a computee may explicitly introduce in its plan in order to
check whether or not a precondition of a certain action holds at the current time.

In both a timed fluent literal l[t] and a timed operator a[t], the time t may be a time
constant (in which case the associated temporal constraint will be empty) or a time variable.
This variable is treated as an existentially quantified variable, the scope of which is the whole
state of the computee (see Section 5). Whenever a goal (resp. action) is introduced within a
state, the time variable associated with the goal (resp. action), is a distinguished, fresh variable.
When a time variable is instantiated (e.g., at action execution time) the actual instantiation is
recorded in the state of the computee. This allows us to keep different instances of the same
action (resp. goal) distinguished.

Finally, note that the temporal constraints of a goal/action might be empty even though
the time of the goal/action is a variable.

5 State of a computee

At any given time, the state of a computee is a triple

〈KB,Goals, P lan〉

where Goals is a set of goals and Plan is a set of actions, as defined in section 4.
The Goals and Plan components of the state can be represented as a tree where:

• the root is ⊥;

• the nodes of the tree other than the root are labelled by goals in Goals or actions in Plan;

• the children of the root are the top-level goals in Goals;

• action can label only leaf nodes;

• for each non-leaf node labelled by a goal G, the children of the node are all the actions in
Plan and goals in Goals whose parent is G.

As an example, the tree for the following Goals and Plan of computee c1

Goals = {G,G1, G2}, where

G = 〈problem fixed(p2, t),⊥, 5 ≤ t ≤ 10〉
G1 = 〈get resource(r1, t1), G, 5 ≤ t1 ≤ t〉
G2 = 〈get resource(r2, t2), G, 5 ≤ t2 ≤ t〉

Plan = {〈tell(c1, c2, request(r1), d, t′), G1, {}, 5 ≤ t′ ≤ t1〉}

25

⊥

G : 〈problem fixed(p2, t),⊥, 5 ≤ t ≤ 10〉
PPPPPPPPPP

����������
G1 : 〈get resource(r1, t1), G, 5 ≤ t1 ≤ t〉

〈tell(c1, c2, request(r1), d, t′), G1, {}, 5 ≤ t′ ≤ t1〉

〈get resource(r2, t2), G, 5 ≤ t2 ≤ t〉

Figure 2: The tree view of the state of computee c1

is the tree in Figure 2.
It is worth pointing out that all variables occurring in the tree (and in particular the time

variables t, t1, t2 and t′ in the example above) are implicitly existentially quantified with scope
the whole tree.

For simplicity, we will assume that, given a state 〈KB,Goals, P lan〉, all occurrences of
variables inGoals and Plan are time variables (implicitly existentially quantified globally within
the Goals and Plan). In other words, our goals and actions are ground except for the time
parameter. Variables other than time variables in goals and actions. can be dealt with similarly.
We concentrate on time variables as time plays a fundamental role in our model. We avoid
dealing with the other variables to keep the model simple.

The KB component of the state is the union of various (not necessarily disjoint) knowledge
bases. Among them we distinguish KB0 which records the actions which have been executed
and their time of execution as well as the properties (i.e. fluents and their negation) which have
been observed and the time of the observation. Formally, KB0 contains assertions of the form:

executed(a[t], τ) where a[t] is a timed operator and τ is a time constant. This fact means
that an action a has been executed at time t = τ by the computee.

observed(l[t], τ) where l[t] is a timed fluent literal and τ is a time constant. This fact
means that the property l has been observed to hold at time t = τ .

observed(c, a[τ ′], τ) where c is a computee’s name, different from the name of the computee
whose state we are defining, τ and τ ′ are time constants, and a is an action operator.

26

This fact means that the given computee has observed at time τ that computee c has
executed the action a at time τ ′ (of course τ ′ ≤ τ).

Note that assertions in KB0 of the third kind are variable-free. These are intended to
represent reception of communication from other computees. These type of assertions have no
variable as they represent actions executed by other computees, whose (internal) time variables
are of no interest to the computee in question.

Instead, assertions of the first two kinds refer explicitly to the time t. We could have
represented these assertions simply as (variable-free) facts of the form executed(a[τ]) and
observed(l[τ]), without referring explicitly to their time t. We have chosen the above rep-
resentation with explicit variables in order to link the record in KB0 of observed properties
and execution of actions by the computee in order to link this record to the time of actions
in Plan and goals in Goals. Thus, the time of an action and of a goal serves implicitly as
an identifier, uniquely identifying the action or goal (due to the assumption on the uniqueness
of such variables, as indicated in section 4). Note that, as a consequence of the above, the
variables in KB0 are not properly speaking variables as such. Rather, they can be equated to
“named variables” as in [KMM00].

Note that at this stage of the development of the KGP model we assume that the com-
putee trusts its environment absolutely and therefore considers that the information in KB0 is
irrevocable.

In the sequel we will assume that KB0 is contained in all the remaining knowledge bases
that form KB.

Given a state S = 〈KB,Goals, P lan〉, we will denote by Σ(S) the valuation obtained as
follows:

Σ(S) = {t = τ | executed(a[t], τ) ∈ KB0} ∪ {t = τ | observed(l[t], τ) ∈ KB0}

When the state S we are referring to is clear from the context, we will write simply Σ instead
of Σ(S). Intuitively, Σ extracts from KB0 the instantiation of the (existentially quantified) time
variables in Plan and Goals, derived from having executed (some of the) actions in Plan and
having observed that (some of the) fluents in Goals hold (or do not hold). KB0 provides a
“virtual” representation of Σ.

Below, Σ(t), for some time variable t, will return the value of t in Σ, if there exists one,
namely, if t = τ ∈ Σ, then Σ(t) = τ .

The valuation of temporal constraints associated with goals or actions in a state S
will always take Σ into account. Let Tc be a (set of) temporal constraint with variables
t1, . . . , tn, tn+1, . . . , tm, m ≥ n ≥ 1, such that:

• for each i = 1, . . . , n, Σ(ti) = τi for some time point τi;

• for each i = n+ 1, . . . ,m, there exists no τi such that Σ(ti) = τi.

Then, a total Σ−valuation σ for Tc is a valuation for the time variables in Tc which are not
evaluated by Σ already, namely σ is a valuation {tn+1 = τn+1, . . . , tm = τm}, for some time
points τn+1, . . . , τm. Given a temporal constraint Tc and a total Σ−valuation σ for Tc, we will
write σ |= Tc if Tc is satisfied by the valuation σ ∪ Σ. Moreover, we will write Fσ to denote
the application of the valuation σ ∪ Σ to a formula F .

27

6 Capabilities

We will assume the reasoning capabilities given below. To refer to these capabilities, we use
entailment symbols with subscripts. However, these are not always intended to formally denote
entailment relationships but operators to achieve core forms of reasoning.

6.1 Planning

The Planning capability |=plan supports the planning by means of an abductive event calculus
theory [KS86, Sha89]. In effect, |=plan is a partial planning operator, which selects one individual
partial plan, if some exists, for every mental goal in the set of goals it is given as input.

Given a state 〈KB,Goals, P lan〉, and a non-empty set of mental goals {G1, . . . , Gn} ⊆ Goals,

KB,P lan, {G1, . . . , Gn} |=plan {〈G1,A1s,G1s〉, . . . 〈Gn,Ans,Gns〉}

standing for “the set of goals {G1, . . . , Gn} can be reduced to the set A1s∪ . . .∪Ans of actions
and G1s ∪ . . . ∪ Gns of subgoals, given KB and Plan”. In particular, each goal Gj can be
reduced to the set Ajs of actions and Gjs of subgoals, given KB and Plan. Note that each of
the Ajs, Gjs may be empty, e.g., if Gj has already been planned for. Moreover, each of the
Ajs, Gjs may be ⊥, if there exists no “viable” plan for Gj (in which case Ajs = Gjs = ⊥). 4

The Planning capability is defined with respect to a subset KBplan of the knowledge base
KB. KBplan is based upon the ontology of the event calculus [KS86] in the sense that

1. it allows parallel actions,

2. it deals with local states (not global states as with the situation calculus snap-shot ap-
proach),

3. it follows the approach of the event calculus in the definition of postconditions/effects and
preconditions.

Concretely, KBplan is an abductive variant of the event calculus (e.g., see [Sha89]). Note that
the event calculus theory we adopt can be obtained from translating theories in the E-language
[KM97b, KM97a] into the event calculus. In section 6.3 we will see how to extend KBplan so
that it can be used to perform temporal reasoning, again in the spirit of the E-language.

6.1.1 KBplan: Abductive Event Calculus

As the knowledge base KBplan used to represent the knowledge required for partial planning
we adopt (a variant of) the abductive event calculus, namely KBplan = 〈Pplan, Aplan, Iplan〉.
In the following specification of KBplan we adopt the notational conventions of the abductive
event calculus. In particular, an atom of the form holds at(G,T) stands for the fluent G holds
at time T and an atom of the form happens(A, T) stands for the action A takes place at time
T . In order to link these event calculus formulation to our time fluent and timed operators, we
extend the basic theory, originating from the conventional event calculus, with suitable bridge
rules.

4Note that we overload the symbol ⊥, to indicate both the parent of top-level goals and the absence of a
“viable” plan for a goal.

28

• Pplan consists of two parts: domain-independent rules and domain-dependent rules. In
the sequel, we assume that 0 is the initial time.

Domain independent rules

holds at(G,T2)← happens(A, T1), T1 < T2, initiates(A,G), not clipped(T1, G, T2)

holds at(¬G,T2)← happens(A, T1), T1 < T2, terminates(A,G), not declipped(T1, G, T2)

These rules ensure that positive fluents persist from the time they have been initiated by
some event and negative fluents persist from the time their corresponding positive fluents
have been terminated by some event.

holds at(G,T)← holds initially(G), 0 < T, not clipped(0, G, T)

holds at(¬G,T)← holds initially(¬G), 0 < T, not declipped(0, G, T)

These rules ensure that fluents persist from the initial time, if they held at that time.

clipped(T1, G, T2)← happens(A, T), terminates(A, G), T1 < T < T2

declipped(T1, G, T2)← happens(A, T), initiates(A, G), T1 < T < T2

These rules ensure that fluents do not persist if events occur terminating them (if they
are positive) of initiating their complementary fluent (if they are negative).

holds at(G,T2)← observed(G[], T1), T1 < T2, not clipped(T1, G, T2)

holds at(¬G,T2)← observed(¬G[], T1), T1 < T2, not declipped(T1, G, T2)

happens(A, T)← executed(A[], T)

happens(A(C), T)← observed(C,A[], T)

These rules serve as bridge rules for connecting the abductive event calculus theory to
KB0. Note that the third such rule implies that the effects of the action performed by
the computee C will be initiated at the moment of the observation of this action by the
computee whose knowledge base we are considering here. Alternatively, we could have
written

happens(A(C), T ′)← observed(C,A[T ′], T)

happens(A, T)← assume happens(A, T)

This rule links happens to the abducible assume happens (see below the definition of
Aplan).

Domain dependent rules

Pplan also contains domain-dependent rules defining the predicates holds initially,
initiates, terminates, e.g.

holds initially(at(c, (1, 1)))

This rule represents that computee c is initially (i.e., at time 0) at location (1,1) (assuming
that the environment in which c operates is a two-dimensional grid).

29

initiates(go(X,L1, L2), T, at(X,L2))← holds at(mobile(X), T)

terminates(go(X,L1, L2), T, at(X,L1)← holds at(mobile(X), T), L1 6= L2

These rules represent that an action go(X,L1, L2) executed at time T initiates the prop-
erty that the computee X is at location L2 and terminates the property that the com-
putee X is at location L1, provided that the computee X is mobile and, for the rule for
terminates, that L1 and L2 are different. In practice, the conditions in the body of these
rules serve as preconditions for the effects of the action to hold, after the execution of the
action. In addition to this kind of preconditions, KBplan might specify preconditions for
actions to be executable, e.g.

precondition(go(X,L1, L2), at(X,L1))

This rule represents a precondition for the event/action go to be executable, in that a
plan containing an action go(X,L1, L2) needs to contain also actions guaranteeing that
the precondition at(X,L1), at the same time as the action. The Iplan below specifies how
such preconditions are enforced by the Planning capability, as we will see in the next
section 6.1.2.

Pplan may also contain additional rules, e.g., defining domain-dependent predicates which
may be static.

• Aplan consists of the predicate assume happens.

• Iplan contains the following domain-independent integrity constraints:

holds at(F, T), holds at(¬F, T)⇒ false

These integrity constraints enforce that a fluent and its negation can never hold at the
same time, and that at every time either a fluent or its negation must hold.

happens(A, T) ∧ precondition(A,P)⇒ holds at(P, T)

This integrity constraint enforces that (all) the preconditions for the executability of
actions hold at the time of the execution of the action.

Iplan may also contain additional integrity constraints, e.g., defining domain-dependent
ramification statements, e.g.,

holds at(at(O,X), T), holds at(contains(O, I), T)⇒ holds at(at(I,X), T)

This integrity constraint represents that if an object O is located at some location X,
then whatever item I contained in O is also located at X.

Given a plan Plan, we denote by EC(Plan) its representation in the event calculus formu-
lation, that is the conjunction ∧

〈a[t], , ,T c〉∈Plan

(happens(a, t) ∧ Tc)

30

Similarly, given a set of goals Goals, we denote by EC(Goals) its representation in the event
calculus formulation, that is the conjunction∧

〈l[t], ,T c〉∈Goals

(holds at(l, t) ∧ Tc)

6.1.2 Specification of |=plan

Let S = 〈KB,Goals, P lan〉 be a state, and Gs be the (non-empty) set of mental goals
{〈l1[t1], G′1, T1〉, . . . , 〈ln[tn], G′n, Tn〉}. Then:

KB,P lan,Gs |=plan {〈G1,A1s,G1s〉,
. . . ,

〈Gn,Ans,Gns〉}

where, for each j = 1, . . . , n

• either Ajs = Gjs = ⊥, representing that there exists no “viable” partial plan for goal Gj

• or

Ajs = {(aj1[tj1], T j1), . . . , (ajmj [t
j
mj], T

j
mj)}, mj ≥ 0, each aji [t

j
i] is a timed operator and T ji

are temporal constraints and

Gjs = {(lj1[tj1], Sj1), . . . , (ljkj [t
j
kj

], Sjkj)}, kj ≥ 0, each lji [s
j
i] is a timed literal, and Sji are

temporal constraints, representing a partial plan for goal Gj ,

such that, if T is the set of all temporal constraints in Gs,A1s, . . . ,G1s, . . ., Ans, . . ., Gns:

• there exists a total Σ−valuation σ for T such that σ |= T .

Namely, all temporal constraints in the given set of goals and in the partial plans for them,
if any, are satisfiable. 5

T can be formally defined as⋃
j=1,...,n Tj ∪

⋃
j=1,...,n,Ajs 6=Gjs 6=⊥

⋃
i=1,...mj

T ji ∪
⋃
j=1,...,n,Ajs 6=Gjs 6=⊥

⋃
i=1,...kj

Sji .

For each j = 1, . . . , n, the sets Ajs,Gjs are defined as follows:

• either there exist sets Xj = {(aj1[tj1], T j1), . . . , (ajmj [t
j
mj], T

j
mj)}, mj ≥ 0 and Yj =

{(lj1[tj1], Sj1), . . . , (ljkj [t
j
kj

], Sjkj)}, kj ≥ 0 such that

(i) Pplan ∧ [
∧
i=1,...,mj

assume happens(aji , t
j
i) ∧

∧
`=1,...,kj

holds(lj` , s
j
`)]σ |=

holds at(lj , tj)σ, and

(ii) Pplan ∧ [
∧
j=1,...,n

∧
i=1,...,mj

assume happens(aji , t
j
i) ∧ EC(Plan)]σ

∧[
∧
j=1,...,n

∧
i=1,...,kj

holds at(lji , t
j
i) ∧ EC(Goals)]σ |=LP Iplan

and Ajs = Xj and Gjs = Yj

• or there exist no sets Xj , Yj as above, and Ajs = Gjs = ⊥.

5See section 5 for the definition of |=.

31

Intuitively, for each given goal in the initially given set of goals Gs, the Planning capability
yields a (partial) plan which contains a (possibly empty) set of actions and a (possibly empty)
set of goals. Each action and goal is equipped with temporal constraints, which are overall
satisfiable, jointly with the temporal constraints of all goals and other partial plans. The
actions and goals in each partial plan are such that they allow to entail the goal (condition (i))
and together with the current plan in Plan and with the current goals in Goals satisfy as a
whole the set of integrity constraints in Iplan (condition (ii)). If no partial plan exist satisfying
condition (i) or some exist but it does not satisfy condition (ii) then the Planning capability
returns ⊥, which stands for “no viable plan”.

6.1.3 Example of |=plan

Suppose the Planning capability of a computee x is given in input, at time τ = 5, the goal G:

〈in touch with(y, t),⊥, t ≤ 10〉

to be in touch with another computee y by time 10. Suppose KBplan contains the fol-
lowing domain-specific axioms (in addition to the domain-independent ones):

initiates(write(x, Y), T, in touch with(Y))
precondition(write(x, Y), have(connection))
precondition(write(x, Y), know address(Y))
holds initially(know address(y))

Then, |=plan, might return the following:

〈G, {(write(x, y, t′), t′ < t)}, {(have(connection, t′), t′ < t)}〉

Note that other outputs are also allowed by the formal specification of |=plan, e.g.

〈G, {(write(x, y, t′), t′ < t)}, {(know address(y, t′), t′ < t), have(connection, t′), t′ < t)}〉.

6.1.4 Possible variants of KBplan and |=plan

There are a number of abductive logic programs onto which to map the original event calculus
[KS86, Sha89]. However, they can be proven to be equivalent to each other [TK95]. Above, we
have chosen one concrete such abductive logic program, but others would have been possible.

All of possible choices of abductive event calculus theories provide an intensional description
of plans. In alternative, Pplan in KBplan could be a library of plans, providing an extensional
description of the plans, for given goals. Such library could be obtained by partially evaluating
(any of) the above event calculus. For example, Pplan might consist of

holds at(in touch with(Y), T)← happens(write(Y), T − 1),
happens(get address(Y), T − 2),
happens(get connection, T − 3)

32

6.2 Identification of preconditions

The capability |=pre supports the reasoning capability of identifying (observable) preconditions
for the executability of actions in plans. This capability is used when an action has to be inserted
in the plan of the computee.

KB, a[t] |=pre C stands for “C is a conjunction of (observable) preconditions of the action
operator a[t], given KB”. In effect, |=pre allows for conditional planning.

This capability does not require a separate part of the knowledge base KB. It is instead
defined in terms of the knowledge base for planning, KBplan.

6.2.1 Specification of |=pre

Given a state 〈KB,Goals, P lan〉 and a timed action operator a[t],

KB, a[t] |=pre Cs iff

• either there exists c such that Pplan |=LP precondition(a, c) and Cs =
∧
{c[t] | Pplan |=LP

precondition(a, c)}

• or, otherwise, Cs = true. 6

Note that, for a given action operator a, Cs is true whenever no preconditions are explicitly
indicated for a in Pplan. Note also that the time of the preconditions of an action is set to
that of the action itself. Further, note that preconditions of actions, as stored within Plan,
are not equipped with temporal constraints: temporal constraints for preconditions are indeed
inherited from the action itself. Finally, note that this capability, as we have concretely defined
it, involves hardly any reasoning. Indeed, the presence within the event calculus formulation of
KBplan of explicit precondition statements greatly facilitates the specification of this capability.

6.2.2 Example of |=pre

Let us consider the example in section 6.1.3, with

precondition(write(x, Y), have(connection))
precondition(write(x, Y), know address(Y))

and the timed operator write(x, y, t). Then, |=pre will return

have(connection, t) ∧ know address(y, t).

6.3 Temporal reasoning

The Temporal Reasoning capability |=TR allows to perform temporal reasoning by means of
the event calculus given in section 6.1, extended to reason with incomplete information about
fluents and for dealing with inconsistencies arising from observations in the environment.

6We assume that true is a formula which is always entailed by KB.

33

A computee’s knowledge for performing temporal reasoning is a subset of KB denoted by
KBTR, that together with the direct information that the computee obtains from the environ-
ment (and recorded in KB0) allows to derive new knowledge about how properties of the world
evolve in time, by means of |=TR.

Given a state 〈KB,Goals, P lan〉 and a (ground) timed fluent literal l[t] KB |=TR l[t] stands
for “the timed fluent literal l[t] holds in KB, namely it can be proven, within KBTR, to follow
from the set of actions known to have been executed and from the observations recorded in
KB0”.

Note that, differently from all other capabilities, |=TR is a genuine entailment relationship.
Note also that |=TR will be used to define all remaining reasoning capabilities within this
section 6, as well as some of the transitions in section 7.

In a nutshell, the Temporal Reasoning capability |=TR is used to:

• Derive extra knowledge about the state of the world at a certain time (in the future and
past) without the need to observe the world directly.

• Manage the change of the transient information obtained directly from the external world
so that the computee has a consistent view of the history of the world.

• Help the computee to recognise the successful or failed execution of an action to produce
its desired effects (and consequently recognise the success or failure of an attempt to
satisfy a goal via a particular plan).

Overall, this capability plays a fundamental role in rendering the computee adaptable to
changes in the environment of the computee.

We could adopt any framework of Reasoning about Actions and Change for the purpose
of performing the required temporal reasoning. The particular framework that we adopt here,
based on the event calculus and its E-Language extension as we have for planning, facilitates
the interface between these two modules of KBTR and KBplan in KB.

6.3.1 KBTR: Extended abductive event calculus

KBTR is an abductive logic program 〈PTR, ATR, ITR〉 where

• PTR is Pplan together with the additional rules 7

holds at(F, T)← assume holds(F, T ′), T ′ < T, not clipped(T ′, F, T)

holds at(¬F, T)← assume holds(¬F, T ′), T ′ < T, not declipped(T ′, F, T)

• ATR consists of the predicate assume holds;

• ITR is Iplan together with the additional integrity constraints

holds at(F, T) ∨ holds at(¬F, T)

holds at(F, T), assume holds(¬F, T)⇒ false

holds at(¬F, T), assume holds(F, T)⇒ false

7If we assume that 0 is the initial time point, as we have done in section 6.1, then we can replace these two
rules by
holds at(F, T)← assume holds(F, 0), not clipped(0, F, T)
holds at(¬F, T)← assume holds(¬F, 0), not declipped(0, F, T).

34

Basically, reasoning with KBTR as given above allows making assumptions on fluents hold-
ing or not, but does not allow making assumptions on events having happened (differently
from reasoning with KBplan). Assumptions on fluents allow filling gaps in the (incomplete)
knowledge of the computee.

The abductive logic program given so far for KBTR implicitly relies upon the assumption
that KB0 has a complete record of the relevant events that have occurred in the world (as no
assumptions on events having happened can be made within such KBTR). This assumption is
not appropriate for all problem domains, and in particular not for domains in global computing
environments. In such environments, it is possible for KBTR ∪ KB0 to be inconsistent, and
that the only way to recover from this is to assume a minimal set of occurrences of events
not recorded explicitly in KB0. In order to cope with such domains, we can extend the above
formulation by allowing ATR to contain abducibles of the form assume happens(A, T), for
every action operator A and time point T , as for the Planning capability.

• ATR consists of thee predicates assume holds and assume happens.

The knowledge base can also become classically inconsistent as we add new information in
KB0 namely in the case where there exists at least one time point where the set of facts in
KB0 together with the integrity constraints in KBTR cannot be satisfied together as classical
formulae. For example, the computee wants to record that at the same time point the same
fluent is true and false. A general way to deal with this would be to introduce a form of belief
revision for classical theories along the lines for example of the AGM framework [AGM85]. This
is beyond the scope of our work and we can adopt a simple (but weaker solution) solution of
not accepting to record (via the Passive and Active Observation Transitions as we will see in
section 7) a fluent observation when this makes KBTR ∪KB0 classically inconsistent. When
we have a set of observations we similarly record only a maximal subset of this that keeps
KBTR ∪ KB0 classically consistent. Other middle ground solutions, where the observations
that are deleted could be earlier ones already recorded in KB0 according to the reliability of
the source of the information etc, are also possible.

6.3.2 Specification of |=TR

Given an abductive logic program KBTR as discussed above and a (ground) timed fluent literal
l[t], |=TR can be defined in two alternative ways.

credulous |=TR (|=cred
TR): KB |=cred

TR l[t] iff there exists a set ∆ of (ground) atoms in the
predicates in ATR such that

1. PTR ∪∆ |=LP holds at(l, t),

2. PTR ∪∆ |=LP ITR, and

3. ∆∩{assume happens(a, t′)|a is an action operator and t′ is a time point } is minimal
(with respect to set inclusion),
namely, for all ∆′ ⊆ ATR satisfying 1 and 2, ∆′ ∩ {assume happens(a, t′)|a is an
action operator and t′ is a time point } ⊃ ∆∩{assume happens(a, t′)|a is an action
operator and t′ is a time point }.

Intuitively, condition 1 says that the timed fluent under consideration is entailed by ap-
propriately “completing” the logic program in KBTR by means of a set of assumptions

35

∆ from ATR, condition 2 says that the “completed” PTR ∪∆ satisfies the integrity con-
straints in KBTR, and condition 3 says that the subset of ∆ consisting solely of abducibles
on events having happened should be minimal with respect to set inclusion.

sceptical |=TR (|=scep
TR): KB |=scep

TR l[t] iff

• KB |=cred
TR l[t], and

• KB 6|=cred
TR l[t], where, if l is a fluent f , then l = ¬f , and, if l is a fluent literal ¬f ,

then l = f .

In the sequel we will assume that |=TR amounts to |=scep
TR .

6.3.3 Example of |=TR

Consider the following domain-specific rules and integrity constraints in KBTR:

initiates(turn on key, T, running ← holds at(battery, T)
terminates(turn off key, T, running)
holds at(broken, T)⇒ holds at(¬running, T)
holds at(¬petrol, T)⇒ holds at(¬running, T)

and the following KB0:

observed(battery(), 0)
executed(turn on key(), 2)

In this example, running is initiated at time 2 and the computee would derive that it
holds true from time 3 onwards as no known event occurrence after 2 terminates running. If
the computee now observes that a turn off key action has been executed at time 5 and so its
KB0 is updated with the additional statement executed(turn off key(), 5) then its Temporal
Reasoning capability would derive sceptically that running is true at times 3, 4, 5 and false
from time 6 onwards.

6.3.4 Extension of KBTR for failing actions

The version of KBTR presented earlier is not able to recognise and deal with failing actions, so
as to avoid obtaining inconsistencies.

Consider for example what would happen to the temporal reasoning of a computee if we add
to KB0 of the earlier example (in section 6.3.3), the fact observed(broken(), 0). Then since
this fact would persist everywhere (we have no information of an event occurrence that would
terminate broken) after time 2 we have that on the one hand, the integrity constraint

holds at(broken, T)⇒ holds at(¬running, T)

would require that running is false, and on the other hand that running should be true because
of the turn on key action. A similar problem would arise in the simpler situation when the
computee observes at some time after 2 that running is false whereas the action should have
made it true. Such situations could easily arise in a Global Computing environment where the
computee is expected to operate.

36

We can handle this problem 8 by changing the form of the temporal reasoning knowledge
base KBTR without the need to change the Temporal Reasoning |=TR capability specification.
We follow again the approach of the E-Language. This is based on turning the effect laws,
represented via rules defining the predicates initiates and terminates, into default laws. In-
formally, we then have that an action occurrence produces its effect under some preconditions
but only if we do not have information to the contrary, i.e., information that the effect is false
after the occurrence. We can achieve this by replacing the rules for initiates of the form:

initiates(A, T, F)← holds at(L1, T), . . . , holds at(Lk, T)

by the rules:

initiates(A, T, F)← holds at(L1, T), . . . , holds at(Lk, T), not contrary(F, T)

contrary(F, T)← observed(¬F (), T1), T1 > T, not clipped(F, T, T1)

Similarly, for the terminates rules. Note that clipped and declipped are defined via terminates
and initiates respectively and will thus use their new definitions automatically.

This extended formulation of KBTR is though only correct if the domain does not contain
any integrity constraints of the form:

holds at(L1, T), . . . , holds at(Lk, T)⇒ holds at(L, T)

that link fluents via ramifications. If we have such constraints then we need to replace
in the above rule for contrary(F, T) the condition observed(¬F (), T1) by a more general
evidence(¬F (), T1), defined either through a direct observation as before or indirectly through
some minimal proof of ¬F drawn from the theory. For example, in the above example
evidence(¬running, T) will be given by:

evidence(¬running, T)← observed(¬running(), T)

together with the rules:

evidence(¬running, T)← holds at(broken, T)

evidence(¬running, T)← holds at(¬petrol, T).

In fact these extra rules correspond to the prime implicants for ¬F drawn from the integrity
constraints when these are treated as statements of classical logic. The details for this can again
be found in [KM03a].

To illustrate the utility of this extension let us return to the example above and suppose
that observed(broken(), 0) is added to KB0. Then |=TR will derive that running holds false
sceptically for any time with the occurrence of turn on key at 2 failing to produce its effect.
This failure of the action is due to the fact that contrary(running, 2) holds as we can derive
from the rule evidence(¬running, T)← holds at(broken, T) evidence for ¬running at time 3.
This then blocks the initiates rule for running. Further examples that illustrate failing actions
and how such failing effects would interact with each other can be found in [KM03a].

8This problem is in fact directly linked to the qualification problem in reasoning about actions and change.
For details see [KM03a].

37

6.4 Reactivity

The capability |=react supports the reasoning capability of reacting to stimuli from the external
environment as well as to decisions taken while planning. 〈KB,Goals, P lan〉 |=react Gs,As
stands for “the set of goals Gs and set of actions As are introduced in order to react to some
observation recorded in (the KB0 part of the) given KB or to some goals in Goals and actions
in Plan”.

6.4.1 KBreact: reactive constraints

KBreact is a set of reactive constraints, of the form

Triggers, Pre⇒ h[T] ∧ Tc

where

• Triggers is a non-empty conjunction of items of the form observed(l[T ′], T ′′) or
observed(c, a[T ′], T ′′),

• Pre is a conjunction of any of the following:

– holds at(l, T ′), where l[T ′] is a timed fluent literal,

– happens(a, T ′), where a[T ′] is a timed action operator, and

– temporal constraints;

• h[T] is either a timed fluent literal or a timed action operator, and

• Tc are temporal constraints.

All variables in Triggers and Pre are implicitly universally quantified from the outside. All
variables in h[T] ∧ Tc not occurring in Triggers or Pre are implicitly existentially quantified
on the righthand side of the implication.

Intuitively, a reactive constraint Triggers, Pre⇒ h[T]∧Tc is to be interpreted as follows: if
(some instantiation of) all the observations in Triggers hold in KB0 and (some corresponding
instantiation of) Pre holds (to be tested by means of |=TR), then (the appropriate instantiation
of) h[T], with associated (the appropriate instantiation of) the temporal constraints Tc, should
be added to Goals or Plan (depending on the nature of h). The Triggers serve as a set
of triggers for the reactive rule, and are somewhat responsible for that rule to be “fired”.
There must be at least one such trigger. We will see that reactive rules are “fired” after new
observations are made in the environment and recorded in KB0.

Each such reactive constraint represents either a condition-action rule or a commitment rule
(if h is an action operator) or a condition-goal rule (if h is a fluent). Each such constraint is
a (conventional) condition-action rule if Triggers and Pre share the same time parameter S,
and the time T of h is S + 1.

Note that the left-hand side of a reactive constraint is written in the language of the event
calculus, as it is meant to be evaluated by means of |=TR. Instead, the right-hand side of the
constraint is written in terms of fluent literals and action operators, as it will contribute to
the Goals and Plan of the state. We could have written such constraints uniformly with left-
and right-hand sides written within the same language, but this would have complicated the
semantics of this capability, that we will see below.

38

For simplicity, below we will refer to a reactive rule simply as

Body ⇒ h[T] ∧ Tc

Finally, note that reactive constraints are special kinds of implicative integrity constraints
in abductive logic programming.

6.4.2 Specification of |=react

Given a state 〈KB,Goals, P lan〉,

〈KB,Goals, P lan〉 |=react Gs,As

where:

• Gs = {(l1[t], l′1[t′], T c1), . . . , (ln[t], l′n[t′], T cn)}, n ≥ 0, where li, l′i are fluent literals and
Tci are temporal constraints,

• As = {(a1[s], j1[s′], Sc1), . . . , (am[s], jm[s′], Scm)}, m ≥ 0, where ai is an action operator,
ji is a fluent literal and Sci are temporal constraints,

Gs,As are defined as follows. Let δ, δ∗ stand for either a fluent literal or an action operator.

(i) for each (δ∗[t], l′[t′], T c) ∈ Gs, there exists a (variant of a) reactive rule in KBreact of the
form

Body ⇒ δ[t] ∧ Tc

and a (possibly empty) subset Goals′ ⊆ Goals such that

– δ∗[t] = δ[t]θ and KBTR ∪ EC(Plan) ∪ EC(Goals) |=TR Bodyθ, for some (total)
valuation θ of the variables in Body,

– KBTR ∪ EC(Plan) ∪ EC(Goals) \ EC(Goals′) 6|=TR Bodyθ and

– either Goals′ 6= {} and 〈l′′[t′], l′[t′], 〉 ∈ Goals′, or Goals′ = {} and l′[t′] = ⊥.

(ii) KBTR ∪ EC(Plan) ∪ EC(Goals) ∪ EC(As) ∪ EC(Gs) |=LP ITR.

Intuitively, the conclusion of reactive rules which have “fired” are returned (condition (i)),
but only if they satisfy the integrity constraints in KBTR “globally” (condition (ii)), namely
together with all existing actions in Plan and goals in Goals, and together with all actions and
goals returned by this capability at the current time.

Note that the goals associated with the newly generated actions and goals will become their
parents within the appropriate transition (see section 7.3). These goals are the parents of goals
(l′′) that are “responsible” for the newly generated actions and goals. So, the newly generated
actions and goals, after the appropriate transition, will be siblings of these “responsible” goals.
Note that there might be many such “responsible” goals, and for each one of them there will
be a triple in As and Gs, respectively. This means that we will get many copies of the same
reaction in the state after applying the appropriate transition.

39

6.4.3 Example of |=react

A possible reactive constraint in the knowledge base KBreact of a computee x is the following:

observed(Y, request(Y, x,R, T), T ′), holds at(have(R), T ′)⇒
give(x, Y,R, T ′′) ∧ T ′ < T ′′ ≤ T ′ + 10

This represents the commitment rule that, if some computee Y requests some resource
R from x at some time T and x has the requested resources, then x commits to giving the
resource to the requesting computee Y at some later time, but within 10 units of time.

Suppose KB0 of the computee x consists of the facts

executed(acquire(pen, t), 2)
observed(y, request(y, x, pen, 3), 5)

and that KBTR contains rules

initiates(acquire(pen), T, have(pen))
terminates(give(pen), T, have(pen))

Then, |=react will return the triple

〈give(y, pen, t′),⊥, 5 < t′ ≤ 15〉.

6.5 Goal decision

Part of the knowledge base KB of a computee, denoted by KBGD, describes the policy of the
computee under which it decides which (top-level) goals it is to set in its internal state (in Goals)
at a certain time. The generated goals are the goals of current interest to the computee and for
which it will go on to generate plans in order to achieve them. This Goal Decision capability,
denoted by |=GD, depends on KBGD as well as on the state of the external environment as this
is perceived by the computee in KB0 and reasoned with using KBTR.

The Goal Decision capability |=GD is defined in terms of the entailment |=pr for reasoning
under preferences, as discussed in section 3.3. KBGD is an LPwNF theory that describes the
conditions or rules under which a goal can be chosen together with other local information of
priority amongst these rules that |=pr turns into a global preference.

6.5.1 The knowledge base KBGD

In general, the knowledge base KBGD contains two main parts: the lower-level part with rules
to generate goals and the higher-level part with rules that specify priorities between other rules
of the theory. The lower-level part of KBGD consists of rules in LPwNF of the form

L← L1, . . . , Ln (n ≥ 0)

where

40

• L1, . . . , Ln are either time-dependent conditions of the form holds at(l, t), where l[t] is
a timed fluent literal, or time-independent conditions, formulated in terms of auxiliary
predicates defined within KBGD, or temporal constraints.

• L is a timed fluent literal, together with (possibly empty) temporal constraints.

Thus, rules in the lower-level part of KBGD are of the form

g[t], T g ← L1, . . . , Lm, TC (m ≥ 0)

where g is a fluent, Tg is a (possibly empty) set of temporal constraints and the time
variable t is existentially quantified with scope the conclusion of the rule. As usual all variables
in the body of the rules are implicitly universally quantified from the outside and a rule then
represents all its ground instances under any total valuation of the time variables in the body
that satisfies TC . All variables in g[t], T g not occurring in the body of the rule are implicitly
existentially quantified with scope the conclusion of the implication.

The conditions of the rules are meant to be evaluated in KBGD together with KBTR
by combining the background derivability |=H of the LPwNF framework with the Temporal
Reasoning capability |=TR. With abuse of notation we will denote in this subsection this
derivability simply by |=TR.

The higher-level part of KBGD consists of rules in LPwNF of the form

h p(rule1, rule2)← L1, . . . , Ln, TC

where rule1, rule2 are (parameterised) names of other rules in the knowledge base KBGD.
These rules in the higher-level part of KBGD represent the (local) priorities amongst rules in
the lower-level part or other priority rules in the higher-level part. The conditions of these rules
can also be time depended and contain temporal constraints as for the case of the lower-level
part rules.

In order to accommodate conflicts other than the ones due to the classical negation, namely
between a fluent f and its negation ¬f , KBGD includes also statements of incompatibility of
the form

incompatible(l1, l2)

expressing that the fluent literals l1 and l2 are incompatible. In some cases this incompat-
ibility could hold only under some conditions B (a conjunction of literals), expressed by the
rule

incompatible(l1, l2)← B

This notion of incompatibility extends to timed fleunt literals l1[t1], l2[t2] with temporal
constraints Tg1, T g2, respectively, then we can extend the notion of incompatibility as follows.
l1[t1] and l2[t2] are incompatible iff for every (total) valuation σ satisfying Tg1, T g2, namely
such that σ |= Tg1 and σ |= Tg2, the ground instances of the goals l1[t1]σ and l2[t2]σ are
incompatible.

Finally, KBGD will contain rules defining any auxiliary predicates occurring in the remaining
part of KBGD. We will refer to the set of these additional rules as KBauxGD .

41

6.5.2 Specification of |=GD

Formally, the capability of |=GD is defined, using the admissibility semantics for LPwNF as
discussed in section 3.3, in the following way. Given a state 〈KB,Goals, P lan〉,

KB |=GD Gs

where Gs = {〈g1[t1],⊥, T g1〉, . . . , 〈gn[tn],⊥, T gn〉}, n ≥ 0, where gi are fluent literals and
Tgi are temporal constraints on ti, such that:

• KBGD |=pr gi[ti], T gi for each i = 1, . . . , n.

This means that a new (possibly empty) set of goals Gs is generated that is currently
preferred under the policy in KBGD and the current information in KB0 as used by the
Temporal Reasoning capability to evaluate conditions in these policy rules. Note that some of
these goals may already be present in the current state of the computee and their reappearance
in Gs simply means that they remain preferred goals to be achieved. The use of the Goal
Decision capability as we will see below in the Goal Introduction transition (see section 7)
takes care of such repeated goals and indeed of goals that need to be deleted from the current
state as they are not preferred anymore.

More explicitly, KB |=GD Gs iff there exists a subset ∆ of rules in KBGD such that for
each 〈G,⊥, TG〉 ∈ Gs

• ∆ contains an instance Rσ of a rule R of the form L, TL ← B, TC such that σ is a valuation
of the temporal constraints TC , Lσ = G, TLσ = TG and KB |=TR Bσ,9

• ∆ is admissible in KBGD

• no such ∆ can be constructed for any goal that is incompatible with G,TG.

6.5.3 Examples of |=GD

Let us consider two examples of |=GD to illustrate the above definitions. For simplicity, in these
examples conditions of the form l(T), where l is a fluent literal, are meant to stand for their
event-calculus counterpart holds at(l, T), unless otherwise specified. For example, weekend(T)
stands for holds at(weekend, T) and deadline(Job, T) stands for holds at(deadline(Job), T).

As a first example, suppose KBGD expresses a policy for deciding which top-level goals
amongst gardening, holiday and work a computee should set for itself. The lower-level or goal
generation part of KBGD contains the rules:

r1(T) : gardening(T)← weekend(T)
r2(Trip, T) : holiday(Trip, T)← weekend(T), short(Trip)
r3(Job, T) : work(Job, T)← deadline(Job, T)

that generates goals when certain conditions hold.

9We remind the reader that here in KB |=TR Bσ the auxiliary part KBauxGD of KBGD is used alongside
KBTR ∪KB0 to evaluate the conditions Bσ of the rules.

42

Note that short(Trip) can be seen as an auxiliary predicate. Note also that KBTR may
contain information about the future, e.g. that tomorrow is a weekend.

Let us also assume that the higher-level part of KBGD contains the priority rules:

R1(T) : h p(r1(T), r2(, T))← gardening season(T)
R2(T) : h p(r2(Trip, T), r1(T))← special offer(Trip, T)
R3(T) : h p(r3(Job, T), r1(T))← bonus offer(Job, T)
R4(T) : h p(r3(, T), r2(, T))← ¬bank holiday(T)

and the higher order priority rule:

C1(T) : h p(R2(T), R1(T))← bank holiday(T).

This theory expresses (via rule R1) the policy that during a gardening season the computee
would prefer to do gardening over taking a holiday trip. Rule R2 expresses the fact that the
computee would prefer to take a holiday trip for which there is a special offer rather than do
the gardening. Rules R3 and R4 express preferences a similar way. Finally, rule C1 expresses
the higher order preference that amongst the preference to do gardening when it is a gardening
season and the preference to take a special offer holiday trip we would choose the second at a
bank holiday.

In addition to the above rules, KBGD contains rules stating that the three given goals
are incompatible namely that no pair can be true simultaneously. For example, KBGD has
statements such as:

incompatible(gardening(T), holiday(Trip, T))

or if we want to render this incompatibility conditional on the Trip been abroad then we
have the statement:

incompatible(gardening(T), holiday(Trip, T))← abroad(Trip)

.
Consider now a scenario where a computee has to decide what to do at a weekend w amongst

the goals gardening(w), work(j, w), holiday(t, w), for all possible jobs j and trips t. Suppose
first that the computee has no jobs with a deadline. Then no work goal can be generated
by the lower-level part of KBGD and hence |=GD will not produce such a goal under any
circumstances. With this information alone both gardening and holiday(t) for any short trip
t are admissible and hence will each be a credulous conclusion of the policy theory KBGD. To
decide amongst these incompatible goals we need further information. So, if in addition this
particular weekend w is during a gardening season then only gardening(w) will be admissible
and hence a sceptical conclusions. Then |=GD will produced the goal gardening(w). But if
also there is a special offer for a particular trip t this weekend w, holiday(t, w) will also be
admissible and hence again we will have a dilemma and |=GD will not be able to generate any
goal.

Further information that w is a bank holiday weekend will render gardening(w) non admis-
sible and then only holiday(t, w) will be admissible. Hence under the circumstances of a bank
holiday weekend |=GD generates the goal holiday(t, w). Finally, suppose that the computee has

43

a particular job j with a deadline at the weekend w which is not a bank holiday. Then the goal
work(j, w) is admissible as is gardening(w) but not any holiday trip goal. With the additional
knowledge that there is a bonus for this job the only admissible goal is work(j, w) and will be
generated by the goal decision capability.

We have seen that in some cases it is possible for the computee to be in a dilemma as more
than one goal which are incompatible with each other are admissible from its goal decision
policy. In order to decide we either need more information, as in shown in the example above,
or we can use additional policies that refer to other preference criteria. For example, it maybe
possible (if the goals are appropriate) for the computee to use its general personality policy
(see below) to help it decide amongst two such goals. In the example above in order to decide
between work(j, w) and gardening(w) the computee could use its personality policy as follows.
Suppose work(j, w) is labelled addressing its “self-achievement” need and gardening(w) its
“social-affiliation” need. Then if its personality policy is selfish, i.e. “achievement” needs have
higher priority over ”social” needs, then under this policy only work(j, w) is admissible and
would be chosen by |=GD as the only goal to pursue. On the other hand, a computee with an
altruistic personality would favour gardening(w) over work(j, w). More details on personality
policies will be given below (see also [KM03b]).

The second example of KBGD describes a more specific policy for deciding whether to give
or keep objects as can arise for example within the context of a resource allocation problem
(see [STT02b, STT02a] for an exposition of this problem within abductive logic programming).
The lower-level part of KBGD contains the rules:

r1(Res, Ag, T1) : give(Res, Ag, T1), T1 ≥ T0 ← requested(Res, Ag, T0), have(Res, T0)
r2(Res, T0) : keep(Res, T0)← need(Res,Goal, T0), have(Res, T0)10

and the higher-level or priority part of KBGD contains the rules:

R1(Res, Ag, T0) : h p(r1(Res, Ag,), r2(Res, T0))← higher rank(Ag), alternative(Res,Res′, T0)
R2(Res, Ag) : h p(r2(Res,), r1(Res, Ag,))← competitor(Ag)
C1(Res, T0) : h p(R2(Res,), R1(Res, , T0))← urgent need(Res, T0)

This expresses a policy that depends on the relative roles of computees (e.g.
higher rank, competitor) and specific context (e.g. urgent need) that the computee
may find itself. The auxiliary predicates alternative and urgent need are defined as follows:

alternative(Res,Res′, T0)← have(Res′, T0), same type(Res′, Res)
urgent need(Res, T0)← need(Res,Goal, T0), urgent(Goal, T0)

together with a set of facts for the auxiliary predicate same type and an appropriate defi-
nition for urgent(Goal, T0).

We also have the following incompatibility statement between goals of giving and keeping:

incompatible(give(Res, , T), keep(Res, T))

10More realistically, this rule will give a goal to keep a resource for an interval of time starting from T0 till
the estimated time of use of the resource by the computee.

44

Consider now the case where a computee needs some resource res1 at the same time t0 that
this resource is requested from another computee ag1. Then if ag1 is neither of higher rank nor
a competitor then both goals G1 = keep(res1, t0) and G2 = ∃T1 : T1 ≥ t0, give(res1, ag1, T1)
are admissible and would both be generated by |=GD as they are compatible with each other
(G1 can be done at t0 and G2 at some later time).

If the computee has an alternative resource and the request comes from a higher ranking
computee then onlyG2 is admissible (G1 is attacked by the ground goalG3 = give(res1, ag1, t0))
and would be the only goal generated by |=GD. In the case where the request comes from a
higher ranking but also competitor then again both G1 and G2 will be admissible and thus
both will be generated by |=GD. In the special case where the need for the resource is urgent
the theory will derive that G1 is a sceptical conclusion and hence will be generated by |=GD,
i.e. the computee will prefer to keep the resource at time t0.

6.5.4 Goal decision and personality

As a more general example of KBGD we can consider the case where this contains a personality
theory (see [KM03b]) for the computee. In such a theory goals are generated and selected
according to a general theory of needs for the computee. The Goals of a computee are sep-
arated into classes according to a set of high-level needs that they address. For example, an
anthropomorphic computee will, according to theories of cognitive psychology, have its needs
separated into five major categories: Physiological, Safety, Affiliation or Social, Achievement
or Ego and Self-actualisation or Learning.

Then the lower-level or generation part contains, for each i that labels one of these categories
of needs, rules of the form:

Gi[T ′]← Ri[T]

where: (1) Ri[T] is a set of conditions under which this ith category of needs is not satisfied
at time T and (2) Gi[T ′] is any goal that when achieved at T ′ addresses the ith need. For
example for i = 2, i.e. for the need of Safety, we can have a set of such rules in the general
form of: protect from(Hazard, T)← danger(Hazard, T).

The higher-level or preference part of such a personality contains priority statements
implementing a basic hierarchy of needs under “normal conditions” together with exceptions
under “special circumstances”. Such statements of basic hierarchy can have the form:

R1
ij : h p(r1(Gi), r2(Gj))← Ni,

R2
ij : h p(r1(Gi), r2(Gj))← Ri,¬Nj

where r1(Gi) and r2(Gj) are any two rules for goals Gi and Gj pertaining to the ith and
jth need respectively, and Ni denotes conditions under which the ith need is critical. These
rules under the appropriate conditions give higher priority to rules (and hence to the respective
goals that they produce) generating goals for the ith need over those rules that generate goals
for the jth need. Hence a selfish computee will have in its personality theory the rules R1

43 and
R2

43 (since the 4th motivation is that of “self-achievement” and the 3rd motivation is that of
“social-affiliation”) while an altruistic one will have the rules R1

34 and R2
34.

This preference theory can be extended to cater for exceptions from the basic preference
given by the above rules under some given special circumstances. For the details of this see
[KM03b].

45

6.5.5 Goal Decision and Reactivity

The capabilities of Goal Decision and Reactivity are related in the sense that they both generate
new goals. In fact, the rules in KBreact can be shared by the KBGD in its lower-level part.
But the goals generated by the two capabilities serve two different purposes. In the case of
Goal Decision these are new goals that do not depend on the current set of Goals and Plan
in the state of the computee. These goals can be selected from an a-priori set of candidate
top-level goals that is identified at the design phase of the computee. In contrast, in the case of
Reactivity, the new goals that it generates depend on the existing Plan and Goals in the current
state of the computee. Its purpose is to adapt this Plan and Goals to take into account new
information that it might have acquired. In addition, Reactivity may also introduce actions, as
well as goals.

6.6 Sensing

In addition to the reasoning capabilities we have defined earlier, the computee is equipped
with a sensing capability that allow it to obtain (up-to-date) information from its environment.
This information can include reception of communication from other computees, observation
of (communication) actions performed by other computees, and satisfaction of some observable
property of the environment. We represent the sensing capability of a computee as an operator
|=τ
Env. In particular, we use the following conventions:

• |=τ
Env l: a fluent literal is sensed at time τ .

• |=τ
Env c : a: it is observed, at time τ , that a computee c is performing at that time an

action a.

We assume that this capability is time-stamped, to indicate the time at which it is applied
within transitions. Also, we assume that |=τ

Env is not total, in that it can be that for some
timed fluent f [t], neither |=τ

Env f [t] nor |=τ
Env ¬f [t] holds, for some τ . The implementation of

this capability (within WP4) will have to guarantee that these properties are satisfied.

7 Transitions

The state of a computee evolves by applying transition rules. In this section we give a catalogue
of such transitions, defined in terms of the capabilities given in section 6. We believe that
the given catalogue is a suitable set of transitions to accommodate the features required from
computees to face the challenges of the GC vision, as discussed in section 2. Note that computees
might be equipped with just a subset of the set of transitions above, and that other transitions
might be useful, as will be discussed in section 11.

Transitions will be denoted as

(L)
〈KB,Goals, P lan〉 X

〈KB′, Goals′, P lan′〉
τ

where L is the label of the transition, meaning that the transition takes place at time τ , it
is given as input X, and changes the state from 〈KB,Goals, P lan〉 to 〈KB′, Goals′, P lan′〉.
Depending on the transition, there might be no input and/or some components of the state

46

might not change. When the input exists, it represents a (non-empty) set of selected items (e.g.
goals and/or actions) which will be provided via selection functions, given in section 8.

The time τ only plays a role in some of the transitions, namely Passive Observation Intro-
duction, Active Observation Introduction, Action Execution and the revision transitions, as we
will see later.

7.1 Goal Introduction (GI)

Goal Introduction revises the top-level goals of the computee (and accordingly the rest of the
goal set) given the information from the goal decision capability |=GD which decides the goals
the computee should focus on depending on its current circumstances. This transition revises
also the current plan of the computee, in order to keep only actions which are relevant to the
goals in the new set of goals.

(GI)
〈KB,Goals, P lan〉
〈KB,Goals′, P lan′〉

τ

where

let Gs = {G ∈ Goals | parent(G) = ⊥}. Then,

(i) If either there exists no Gs′ such that KB |=GD Gs′ or Gs′ = {}, then

– Goals′ = {}
– Plan′ = {}.

(ii) If KB |=GD Gs′, then

– Goals′ = Gs′′ ∪ des(Gs′′, Goals) where:

(1) Gs′′ = {G ∈ Gs′|G = 〈g[t],⊥, TC〉 and there does not exist a (total) valuation
σ such that σ |= TC and KB |=TR g[t]σ}

(2) des(Gs′′, Goals) = {G ∈ Goals|∃G′′ ∈ Gs′′ such that G ∈
descendants(G′′, Goals)}

– Plan′ = {A ∈ Plan|A = 〈 , G, , 〉 and G ∈ Goals′}

In case (i) the computee has no goal to focus on, and this is reflected on the resulting
state, where both the goals and the plan are empty. In case (ii), the set of goals in the new
state is composed by the set of top-level goals returned by the goal decision capability, after
having filtered out those goals which have been achieved already. Moreover, from the current
set Goals, only (sub)goals relevant to the newly generated and not filtered away top-level
goals (represented by the set des(Gs′′, Goals)) are kept within the Goals′. Finally, the plan
component of the state is updated in order to keep only actions related only to goals which
were kept in the new state. Namely, actions whose parent is not in Goals′ are dropped from
Plan. Note that the resulting Plan′ may be empty as a consequence.

Notice that this transition performs some kind of revision too. Indeed, the |=GD capability
might remove as well as introduce some top-level goals. The goals that are eliminated are those
that are not preferred any longer. These may be replaced with more preferred goals, if any.

47

7.2 Plan Introduction (PI)

Plan Introduction revises the state of the computee by updating the current set of goals and
the current plan in order to take into account new plans for the goals selected for planning.
These new plans are provided by the Planning capability |=plan.

(PI)
〈KB,Goals, P lan〉 SGs

〈KB,Goals′, P lan′〉
τ

where SGs is a non-empty set of goals selected for planning (see section 8), and

Goals′ = Goals ∪
⋃
G∈SGs Subg(G)

Plan′ = Plan ∪
⋃
G∈SGs Pplan(G)

where, for each G ∈ SGs, the sets Subg(G) and Pplan(G) are obtained as follows.

(i) Mental goals: let {G1, . . . , Gn} ⊆ SGs, n ≥ 0, be the set of all mental goals in SGs. If
n > 0, let

KB,P lan, {G1, . . . , Gn} |=plan {〈G1,A1s,G1s〉
. . .

〈Gn,Ans,Gns〉}

Then for each i = 1, . . . , n,

(i.1) either Gis = Ais = ⊥ and Subg(Gi) = Pplan(Gi) = {},
(i.2) or Gis 6= Ais 6= ⊥ and

Subg(Gi) = {〈l[t], Gi, S〉|(l[t], S) ∈ Gis}, and
Pplan(Gi) = {〈a[t], Gi, C, T 〉|(a[t], T) ∈ Ais ∧KB, a[t] |=pre C}.

(ii) Sensing goals: for each sensing goal G = 〈l[t], G′, T 〉 ∈ SGs,

– Subg(G) = {}, and

– Pplan(G) = 〈sense(l[t]), G′, C, T 〉,
where KB, sense(l[t]) |=pre C.

Basically, plan introduction adds to the current state a plan for each of the goals selected
for planning. For each such goal G, a (partial) plan has two components: a set of (sub)goals
represented by Subg(G), and a set of actions represented by Pplan(G). The new state is
updated by adding each set Subg(G) to the current set of goals and each set Pplan(G) to the
current plan.

In the case of sensing goals (case ii) no subgoal is added and only the corresponding sensing
action needs to be added to the current plan. Notice that the capability |=pre is used in order
to determine the preconditions of this sensing action.

In the case of a mental goal there are two possibilities: either the Planning capability cannot
determine any plan for the goal (case i.1), in which case the goal does not contribute to the
updating of the state (both Subg(G) and Pplan(G) are empty); or the Planning capability
actually determines a plan for G (case i.2). In this case, the Planning capability returns a set of

48

timed literals, each associated with a (possibly empty) temporal constraint, and a set of timed
operators, each associated with a (possibly empty) temporal constraint. For each timed literal,
the corresponding goal structure (in which the parent goal G is recorded along with the timed
literal and the temporal constraint) is built and added to the current set of goals. Analogously,
for each timed operator the corresponding action structure is built and added to the current
plan. Notice that the capability |=pre is needed to determine the preconditions of the actions
being built.

Notice that if all the goals in SGs are mental goals and have already been planned for, then
the state will not change, i.e. Goals′ = Goals and Plan′ = Plan. However, as we will see in
section 9, this transition will only be triggered when the set of goals SGs does not have this
feature. Hence, it cannot be the case, in (i), that both Ais = {} and Gis = {} for some mental
goal Gi which can still be planned for.

Our definition of |=plan does not currently allow to take into account preferences amongst
all possible plans for a goal. If the preferences of a computee over plans were allowed to change
over time then, in the plan revision and goal revision transitions (see sections 7.9 and 7.8,
respectively), actions in old, less preferred plans would need to be tidied up, by deleting them,
in a more complex manner.

7.3 Reactivity (RE)

Reactivity revises the current state according to the results provided by the |=react capability,
which determines goals and actions deriving from the reactive constraints.

(RE)
〈KB,Goals, P lan〉
〈KB,Goals′, P lan′〉

τ

where, if 〈KB,Goals, P lan〉 |=react Gs,As, then

Goals′ = Goals ∪ {〈l[t], l′[t′], T c〉|(l[t], l′[t′], T c) ∈ Gs}

Plan′ = Plan ∪ {〈a[t], l′[t′], C, T c〉|(a[t], l′[t′], T c) ∈ As ∧ KB, a[t] |=pre C}.

The |=react capability returns a set of goals and a set of actions deriving from the firing of
reactive constraints. The goals are added to the current set of goals, and the actions are added
to the current plan, each equipped with the corresponding preconditions determined by the
|=pre capability. The parent of each newly added action and goal is determined by the reactive
capability itself.

Notice that, if the |=react capability returns an empty set of goals and an empty set of
actions, the state is unchanged (i.e. Goals′ = Goals and Plan′ = Plan).

7.4 Sensing Introduction (SI)

The Sensing Introduction transition allows a computee to explicitly add to its current plan a
set of sensing actions in order to check whether or not some preconditions of other actions in
Plan are satisfied.

(SI)
〈KB,Goals, P lan〉 SPs

〈KB,Goals, P lan′〉
τ

where SPs is a non-empty set of preconditions of actions, associated with the parent of
these actions, selected for sensing (see section 8), and

49

Plan′ = Plan ∪ {〈sense precondition(c[t′], G,D, Tc〉 | (c[t], G) ∈ SPs}

where, for each (c[t], G),

(i) Tc = (t′ < t), and

(ii) KB, sense precondition(c[t′]) |=pre Di.

Intuitively, SPs is a set of preconditions of actions in Plan, together with the parents of
those action. Those parents are used as parents of the sensing actions added to Plan by this
transition. Condition (i) imposes that the actual sensing action for a certain precondition c
should be executed before the action of which c is a precondition is executed. On the other
hand, condition (ii) amounts at determining (if any) the preconditions for the sensing action.
Depending on KBplan, it might be that KB, sense precondition(c[t]) |=pre ∅, for some or all c.
Indeed, this will be the case if the sensing actions are not explicitly represented in KBplan.

7.5 Passive Observation Introduction - (POI)

The Passive Observation Introduction transition updates the current knowledge base of the
computee by adding new observed facts which derive from changes in the environment.

(POI)
〈KB,Goals, P lan〉
〈KB′, Goals, P lan〉

τ

where, if |=τ
Env l1 ∧ . . .∧ ln, c1 : a1[τ1]∧ . . .∧ ck : ak[τk], n, k ≥ 0, either n > 0 or k > 0, each

li being a fluent gi[] or the negation of a fluent ¬gi[], each cj being the name of a computee
and each aj [τj] being a timed action operator,

KB′0 = KB0 ∪ {observed(l1, τ), . . . , observed(ln, τ)}
∪{observed(c1, a1[τ1], τ), . . . , observed(ck, ak[τk], τ)}

For each fluent l[] which the computee passively observes to hold in the environment at
the current time, a corresponding observation is added to the knowledge base. For each action
a[] which the computee passively observes other computees have performed, a corresponding
observation is added to the knowledge base. Notice that the observation records both the time
at which the action was performed and the (current) time of observation.

A passive observation may be seen as the reaction of the computee to some (unexpected
or unpredictable) event (e.g. an interrupt) which happens in the environment. The transition
allows the computee to passively absorb or incorporate the observable effects of these events
(interrupts) into its knowledge base.

7.6 Active Observation Introduction - (AOI)

Similarly to (POI), the Active Observation Introduction transition allows the computee to up-
date its current knowledge base by possibly adding new observations from the environment.
Differently from (POI), however, the computee is deliberately looking for some properties to
hold in the environment.

50

(AOI)
〈KB,Goals, P lan〉 SFs

〈KB′, Goals, P lan〉
τ

where SFs = {l1[t1], . . . , ln[tn]}, n > 0, is a set of fluents selected for being actively sensed (see
section 8) and

KB′0 = KB0 ∪
⋃

i=1,...,n

Si

where, for each i = 1, . . . , n:

• Si = {observed(li[ti], τ)} if |=τ
Env li[τ]

• Si = {observed(¬li[ti], τ)} if |=τ
Env ¬li[τ]

• Si = {} if neither |=τ
Env li[τ] nor |=τ

Env ¬li[τ]

For each fluent the computee is checking in the environment, there may be three possibilities:
either the fluent holds in the environment at the current time (first bullet), or the negation of
the fluent holds (second bullet), or the environment has no evidence for the fluent nor for its
negation (last bullet). In the latter case, no update is made to the knowledge base as far as the
fluent is concerned.

7.7 Action Execution (AE)

Action Execution is the transition which caters for actually performing actions in plans. Its
effect amounts at recording in KB0 the fact that certain actions have been executed and, in
the case of sensing actions, the effect of sensing.

(AE)
〈KB,Goals, P lan〉 SAs

〈KB′, Goals, P lan〉
τ

where SAs is a non-empty set of actions selected for execution (see section 8), and for each
A ∈ As, A = 〈a[t], G,C, Tc〉 such that {t = τ} |= Tc

(i) If A is not a sensing action then

KB′0 = KB0 ∪ {executed(a[t], τ)}.

(ii) if A is a sensing action, namely if A = p(l[t]) where p = sense or p = sense precondition,
then:

KB′0 = KB0 ∪ {executed(p(l[t]), τ)} ∪ S

where:

– S = {observed(l[t], τ)} if |=τ
Env l[τ]

– S = {observed(¬l[t], τ)} if |=τ
Env ¬l[τ]

– S = {} if neither |=τ
Env l[τ] nor |=τ

Env ¬l[τ]

51

First of all, notice that, given the set of actions selected for execution, only actions whose
temporal constraints are satisfied by the current time are actually executed. The execution of
the action is recorded inKB0. In the case of non-sensing actions (i.e. physical or communication
actions) nothing else needs to be updated in the state. In the case of a sensing action, the actual
effect of sensing is added, if any, to the current knowledge base, similarly to what is done in
the case of active observation introduction.

Also, notice that we are not addressing, in the definition of (AE) above, the problem of
actually performing the selected actions so that other computees may be able to observe them.
This issue will have to be addressed by any concrete realisation of the model.

Finally, note that actions performed by (AE) are not deleted from the Plan. Indeed, their
execution might not have been successful and thus it might need to bee repeated at a later
stage. We will see below how the Plan Revision transition takes care of the removal from Plan
of any action that has been executed successfully. The success of an action is measured in terms
of the achievement of the goal that the action has been introduced for, namely its parent.

7.8 Goal Revision (GR)

The Goal Revision transition caters for revising the state by keeping only those goals which are
still worth achieving.

(GR)
〈KB,Goals, P lan〉
〈KB,Goals′, P lan〉

τ

where Goals′ is such that for each G = 〈l[t], G′, T c〉 ∈ Goals′

(i) either G′ = ⊥ or G′ ∈ Goals, and

(ii) there is no total valuation σ such that σ |= Tc ∧ KB |=TR l[t]σ, and

(iii) if G is a mental goal, there exist As 6= ⊥,Gs 6= ⊥ such that

KB,P lan, {G} |=plan {〈G,As,Gs〉}, and

(iv) there exists a total valuation σ such that σ(t) = τ ′, τ ′ > τ and σ |= Tc.

First of all, all goals kept in the new state are either top-level goals or descendants of goals
themselves kept in the new state (case i). Furthermore, a goal is kept if it has not been achieved
yet (case ii). Moreover, a mental goal is kept in the new state if there is still a “viable” plan
for it, i.e. it can still be planned for (case iii). Finally, only goals whose time has not run out,
i.e. their temporal constraints are still satisfiable, are kept in the new state (case iv).

It is possible to introduce a further Goal Revision capability which takes into account some
heuristics for goal revision, and to incorporate such heuristics (via the new capability) within
the (GR) transition given earlier (see later in section 11).

7.9 Plan Revision (PR)

Similarly to Goal Revision, the Plan Revision transition caters for revising the state by keeping
only those actions in the plan which are still relevant and which can still be executed.

52

(PR)
〈KB,Goals, P lan〉
〈KB,Goals, P lan′〉

τ

where Plan′ is such that for each 〈a[t], G,C, Tc〉 ∈ Plan′:

(i) G ∈ Goals or G = ⊥, and

(ii) there exists a total valuation σ for the (implicitly existentially quantified) variables in Tc
and t such that σ |= Tc ∧ t > τ , and

(iii) if C is a non empty conjunction of preconditions, then there exists a total valuation σ
such that σ |= Tc ∧ t ≥ τ , and KB |=TR Cσ

(iv) if a[t] = sense precondition(C) then there exists an action

〈a′[t′], G′, C, T c′〉 ∈ Plan′.

First of all, an action from the original Plan is kept in the current state (case i) only if
it belongs to a plan for one of the current goals (i.e. the goal which generated that action is
still in the current set of goals). Furthermore, the time of the action has not run out yet (case
ii), i.e. the temporal constraints associated with it can still be satisfied in the future, and the
preconditions of the action, if any, are still satisfiable (case iii). Finally, an action which has
been introduced to sense the preconditions of another action, should be kept if the latter is still
an action in Plan′ (i.e. it still belongs to the current plan.)

As for (GR), we may incorporate within this transition some heuristics for plan revision,
via a further Plan Revision capability (see section 11 for more details).

8 Selection functions

Some of the transitions given in the earlier section take, in addition to a state, some other
input, as indicated. We will see, in the next section 9, that such additional inputs are selected
by means of selection functions, defined here. These selection functions will play an important
role in the cycle theories of computees that control its operational behaviour.

The selection functions are goal selection, action selection, fluent selection and precondition
selection, and they are all defined as mappings of the form

m : States× TimeConstants→ Sets

from the set of all possible states of the computee and the set of all possible time-points to the
set of all possible sets of items of interest. Depending on the concrete selection function, these
items are

• actions in Plan,

• goals in Goals,

• fluents occurring anywhere in Goals,

• preconditions of actions in Plan.

53

We define two classes of selection functions. The first class, called core selection functions,
are fixed in the model 11, while the second class, of heuristic selection functions, are variable
and can be chosen differently for each computee. As we will see below, the core selection
functions only select goals (for goal selection) and actions (for action selection), preconditions
(for precondition selection) and fluents (for fluent selection) that still have a chance of “success”
(that have not become invalid in some way), for example, they have not yet timed out 12. On the
other hand, the heuristic selection functions are used to complement the core selection functions
in order to capture different behaviours for different computees. For example, if we want a
computee which is timely, then its heuristic selection functions will select goals/actions/fluents
according to their urgency.

Hence the core selection functions are used to indicate items that are viable selections,
whereas the heuristic selection functions are used to decide which of all candidate items (as
chosen by the core selection functions) are preferred and thus effectively selected. Items cho-
sen by the heuristic selection functions are items that are preferable, in being selected, over
those that are not. The actual selection of items preferred according to the heuristic selection
functions will depend on the semantics of the cycle theories we will see in section 9.

8.1 Core selection functions

8.1.1 Action selection

Intuitively the action selection function only selects actions that are not yet timed out, are not
redundant and are still “useful” to perform.

This is a function cAS from the set of all possible States and the set of all possible
TimeConstants to the set of all actions in Plan.

Informally, the set of conditions for core action selection is as follows. Given a state S =
〈KB,Goals, P lan〉 and a time-point τ , the set of all actions selected by cAS is the set of all
actions A in Plan such that at time τ :

1. A is not timed out,

2. no ancestor (except for ⊥) of A in Goals is satisfied in the state S,

3. no ancestor or sibling of A in Goals and Plan is timed out,

4. no precondition of A is known to be false in the state S,

5. there exists no goal G′ with no children in Goals that is a sibling of A or that has an
ancestor in common with A (except for ⊥) such that there exists no plan for G′.

Formally, given a state S = 〈KB,Goals, P lan〉 and a time-point τ , the set of all actions selected
by cAS is the set of all actions

A = 〈a[t], G,C, Tc〉 ∈ Plan

such that:
11We note that in principle these could be changed, without the need for adjusting any other component of

the model. However, we believe that the concrete choices for the core selection functions that we give below,
form a basis for any choice of core selection functions that would extend them.

12Informally, an action/goal has timed out if there is no possible valuation of its temporal constraint at or
after the current time.

54

1. there exists a total valuation σ for the variables in Tc and t such that σ |= Tc ∧ t > τ ,

2. there exists no G′ = 〈l[t′], G∗, T c′〉 ∈ Goals, G∗ 6= ⊥, such that

• G∗ = G or G∗ ∈ ancestors(G,Goals)

• there exists a total valuation σ for the variables in Tc′ and t′ such that σ |= Tc′∧t′ ≤ τ
and KB |=TR l[t′]σ,

3. there exists no A′ = 〈a′[t′], G∗, C ′, T c′〉 ∈ Plan, and there exists no G′ = 〈l[t′], G∗, T c′〉 ∈
Goals such that

• G∗ = G or G∗ ∈ ancestors(G,Goals), Tc′,

• there exists no total valuation σ for the variables in Tc′ and t′ such that σ |= Tc′∧t′ >
τ ,

4. let C = l1[t1] ∧ . . . ∧ ln[tn]; if n > 0, then for every i = 1, . . . , n there exists a total
valuation σ for the variables in Tc, t and ti such that σ |= Tc, KB |=TR li[ti]σ

5. there exists no G′ = 〈l[t′], G∗, T c′〉 ∈ Goals such that

• there exists no goal G′′ ∈ Goals whose parent is G′,

• G∗ = G or G∗ ∈ ancestors(G,Goals),

• KB, {G′} |=plan {(G′,⊥,⊥)}. 13

8.1.2 Goal selection

Intuitively, the goal selection function only selects goals that are not already satisfied or goals
that have not yet timed out.

Goal selection is a function cGS from the set of all possible States and the set of all possible
TimeConstants to the set of all goals in Goals.

Informally, the core set of conditions for goal selection is as follows. Given a state S =
〈KB,Goals, P lan〉 and a time-point τ , the set of all goals selected by cGS is the set of all goals
G+ in Goals such that, at time τ :

1. G+ is not timed out,

2. no ancestor (except for ⊥) or sibling of G+ in Goals and Plan is timed out,

3. no ancestor of G+ in Goals is satisfied in the state S,

4. there is a (partial) plan for G+,

5. G+ has no children and there exists no goal G′ with no children in Goals that is a sibling
of G+ or that has a common ancestor (except for ⊥) with G+ such that there exists no
plan for G′.

13Recall that KB, {G′} |=plan {(G′,⊥,⊥)} means that there is no “viable” plan for G′.

55

Formally, given a state S = 〈KB,Goals, P lan〉 and a time-point τ , the set of all goals
selected by cGS is the set of all goals

G+ = 〈l[t], G, Tc〉 ∈ Goals

such that:

1. there exists a total valuation σ for the variables in Tc and t such that σ |= Tc ∧ t > τ ,

2. there exists no A′ = 〈a′[t′], G,C ′, T c′〉 ∈ Plan, and there exists no G′ = 〈l[t′], G∗, T c′〉 ∈
Goals such that

• G∗ = G or G∗ ∈ ancestors(G,Goals),
• there exists no total valuation σ for the variables in Tc′ and t′ such that σ |= Tc′∧t′ >
τ ,

3. there exists no G′ = 〈l′[t′], G∗, T c′〉 ∈ Goals, G∗ 6= ⊥, such that

• G∗ = G or G∗ ∈ ancestors(G,Goals),
• there exists a total valuation σ for the variables in Tc′ and t′ such that σ |= Tc′∧t′ ≤ τ

and KB |=TR l
′[t′]σ,

4. there exists As 6= ⊥, Gs 6= ⊥ such that KB, {G+} |=plan {(G+, As,Gs)},

5. there exists no 〈 , G+, 〉 ∈ Goals, 〈 , G+, , 〉 ∈ Plan and there exists no G′ =
〈l′[t′], G∗, T c′〉 ∈ Goals such that

• there exists no goal G′′ ∈ Goals whose parent is G′,

• G∗ = G or G∗ ∈ ancestors(G,Goals) for some t′ and Tc′,

• KB, {G′} |=plan {(G′,⊥,⊥)}.

8.1.3 Fluent selection

Fluent selection is a function cFS from the set of all possible States and the set of all possible
TimeConstants to the set of all fluents. Informally, a core set of conditions for fluent selection
is as follows. Given a state S = 〈KB,Goals, P lan〉 and a time-point τ , the set of all (timed)
fluents selected by cFS is the set of all (timed) fluents F such that:

• F or its negation is one of the effects of some action that has recently been executed.

Note that F selected by cFS may not occur in Goals but could be some other (observable)
effect of the executed action not necessarily the same as the goal that the action aims to achieve.

Formally, the set of all (timed) fluents selected by cFS is the set of all (timed) fluents F
such that:

• either KBplan |=LP initiates(A,F, T) or KBplan |=LP terminates(A,F, T) and

KB0 |=LP executed(A, T) and

τ − ε < T < τ ,

where ε is a sufficiently small number.

56

8.1.4 Precondition selection

Intuitively precondition selection selects all those preconditions not yet known to hold or not
to hold of those actions in Plan that would be selected by the action selection function.

Precondition selection is a function cPS from the set of all possible States and the set of
all possible TimeConstants to the set of all preconditions of actions in Plan, each associated
with a goal in Goals.

Informally, a core set of conditions for precondition selection is as follows. Given a state
S = 〈KB,Goals, P lan〉 and a time-point τ , the set of all preconditions (of actions) selected by
cPS is the set of all pairs (C,G) of preconditions C and goals G such that:

1. there exists an action A in Plan such that C is a precondition of A and G is the parent
of A,

2. C is not known to be true in the state S,

3. A ∈ cAS(S, τ).

Formally, given a state S = 〈KB,Goals, P lan〉 and a time-point τ , the set of all precon-
ditions of actions selected by cPS is the set of all pairs (C,G) of preconditions C and goals G
such that:

1. there exists A = 〈a[t], G,Cs, T c〉 ∈ Plan such that C is a conjunct in Cs,

2. there exists no total valuation σ for the variables in Tc and t such that σ |= Tc and
KB |=TR Cσ,

3. A ∈ cAS(S, τ).

8.2 Heuristic selection functions

In this section we will provide a catalogue of possible requirements of the heuristic selection
functions. These requirements are added to the requirements posed by the core selection func-
tions. Namely, the set of items selected by the heuristic functions are (possibly proper) subsets
of the sets of items selected by the core selection functions.

The catalogue we provide in this section is by no means exhaustive, and it aims at illustrating
the range of possibilities available in constructing computees. In principle, any combination of
these characteristics is allowed.

As mentioned above, the heuristic selection functions will play a fundamental role in defining
the cycle theories (see section 9), thus determining the range of operational behaviours that
computees can exhibit by adopting different cycle theories. In the third phase of the project,
both within WP5 and WP6, we will study the correlation between choices of heuristic functions
and behaviours/properties of computees.

8.2.1 Heuristic action selection

Heuristic action selection is a function hAS from the set of all possible States and the set of
all possible TimeConstants to the set of all actions in Plan. Informally, we will assume that
given a state S = 〈KB,Goals, P lan〉 and a time-point τ , the set of all actions selected by hAS
is the set of all actions A such that A is selected by cAS and in addition any (subset) of the
following criteria holds for A:

57

• A is an urgent action in Plan; in the sequel we will refer to a heuristic action selection
function which selects the most urgent actions as huAS ;

• all the preconditions of A are known to hold in S, providing a measure for predicting the
successful execution of the action; in the sequel we will refer to a heuristic action selection
function which selects actions whose preconditions are known to hold as hpreAS ;

• the computee has a “high” level of confidence that executing A will lead to achieving its
intended effects; a measure of this confidence could be provided by counting the number
of attempted but failed executions of the action; in the sequel we will refer to a heuristic
action selection function which does not select actions tried once and failed as hfailAS ;

• A belongs to the same plan as the actions previously executed, if any; here we can interpret
two actions as belonging to the same plan if they have a common ancestor (except for
⊥); in the sequel we will refer to a heuristic action selection function which selects actions
belonging to the same plan as actions previously executed as hspAS ;

• there exists no other earlier action in Plan as yet unexecuted that is linked (i.e. have a
common ancestor apart from ⊥) to A.

8.2.2 Heuristic goal selection

Heuristic goal selection is a function hGS from the set of all possible States and the set of all
possible TimeConstants to the set of all goals in Goal. Informally, we will assume that given
a state S = 〈KB,Goals, P lan〉 and a time-point τ , the set of all goals selected by hGS is the
set of all goals G such that G is selected by cGS and in addition any (subset) of the following
criteria holds for G:

• G is the most urgent goal in Goals; in the sequel we will refer to a heuristic goal selection
function which selects the most urgent goals as huGS ;

• G belongs to the same plan as the actions previously executed, if any; in the sequel we
will refer to a heuristic goal selection function which selects goals belonging to the same
plan as actions previously executed as hspGS ;

• there exists no other earlier goal in Goals that is linked (i.e. have a common ancestor
apart from the root) to G and has no children.

8.2.3 Heuristic fluent selection

Heuristic fluent selection is a function hFS from the set of all possible States and the set of
all possible TimeConstants to the set of fluents. Informally, we will assume that given a state
S = 〈KB,Goals, P lan〉 and a time-point τ , the set of all fluents selected by hFS is the set of
all fluents F such that F is selected by cFS and in addition criterion holds for F :

• F is the effect of an action that has already been tried a given number of times (more
than once) unsuccessfully; the computee had tried the action again, and wants to check
its effects soon after retrying.

58

8.2.4 Heuristic precondition selection

Heuristic precondition selection is a function hPS from the set of all possible States and the set
of all possible TimeConstants to the set of all pairs consisting of a precondition of an action
in the Plan and a goal in the Goals of the state. Informally, we will assume that given a state
S = 〈KB,Goals, P lan〉 and a time-point τ , the set of all pairs selected by hPS is the set of all
pairs (C,G) such that (C,G) is selected by cPS and in addition the following criterion holds:

• there exists A = 〈a[t], G,Cs, 〉 ∈ Plan such that A would be selected by hAS and C is a
conjunct in Cs.

8.3 Selection functions and revision transitions

Note that there exists a strong link between the core selection functions and the revision tran-
sitions (PR) and (GR). Indeed, none of the items selected by the selection functions will ever
be deleted by the revision transitions (PR) and (GR), if these are applied before the selections.

Note also that the revision transitions (PR) and (GR) could be extended to incorporate
heuristics for goal and plan revision. These heuristics would correspond to the heuristic selection
functions.

8.4 Resource-boundness

Selection functions typically select a set of items, i.e. a set of goals, actions etc, rather than
one such item at a time. These sets are then intended to be used as input to the appropriate
transitions. In many cases though, the computee may not have the resources (e.g. time) to
execute a transition for all the selected items. For example, computees may not have enough
resources to execute more than a certain number of actions at a time, or plan for a certain
number of goals at a time.

Resource-boundness considerations thus may force the computee to restrict its selections to
sets of items for which it has sufficient resources.

The issue of resource-boundness depends strongly on the problem application domain but
nevertheless we can accommodate this within the KGP model in a general way as an additional
selection criterion. One way to do this is to use a set of projection functions on the output of the
selection functions which separate the items selected into subsets each one of which is within
the resource-bounded capabilities of the computee. These projection functions are formalised
as mappings of the form:

r : Sets→ 2Sets

from the set of all possible sets of items to its power-set where given A ∈ Sets

• if A′ ∈ r(A) then A′ ⊆ A,

• if Ai, Aj (i 6= j) ∈ r(A) then Ai ∩Aj = ∅,

•
⋃
i:Ai∈r(A)Ai = A.

The detailed definition of these functions will depend on the problem domain and the re-
source cost of the various items.

59

These projection functions will be composed with the selection functions to split the set of
selected items into subsets that fulfil the resource-boundedness criteria.

Finally, we note that an alternative way to handle the issue of resource-boundness is to
include this within the selection functions rather than apply it a-posteriori on the items selected
by the selection functions. This would be more appropriate for example in the case where even
some singleton items could not be “executed” due to the limited resources that the computee
has. In this case, we could use the resource-boundness criterion within the core selection
function to avoid selecting such items. Furthermore, resource-boundness can also be used
inside the heuristic selection functions as a heuristic selection criterion where for example the
computee selects according to resources needed by the selected items.

9 Cycles of behaviour of computees

So far our model of computees has defined in isolation its internal state and the possible individ-
ual state transitions that a computee may have, in terms of the reasoning and sensing capabilities
of the computee. In order to complete this model we need to specify how a computee operates
via the execution of its transitions. The operation of a computee will be understood in terms
of sequences of transitions. Such sequences can be obtained from fixed cycles of operation of
computees as in most of the literature on agents. Alternatively, such sequences can be obtained
via fixed cycles together with the possibility of selecting amongst such fixed cycles according
to some criteria e.g. the type of external environment in which the computee will operate (see
recent work of [DdBD+02]) Yet another possibility is to specify the required operation via more
versatile cycle theories. Whereas fixed cycles can be seen as providing a conventional proce-
dural control, cycle theories act as declarative control theories specifying requirements on the
operation of computees. These cycle theories will form the basis for specifying the operation of
computees.

Fixed cycles can be defined simply as sequences of transitions, to be repeatedly applied. A
cycle theory will be defined as a logic program with priorities over rules with its argumentation
based semantics (see section 3.3).

The role of the cycle theory is to control the sequence of the internal transitions that the
computee does in its life. It regulates these “narratives of transitions” according to certain
requirements that the designer of the computee would like to impose on the operation of the
computee where any sequence of transition rules can be allowed in the “life” of a computee by
a cycle theory. Thus, whereas a fixed cycle can be seen as a restrictive and rather inflexible
catalogue of allowed sequences of state transitions (possibly under pre-defined specific condi-
tions), the cycle theory is there to identify preferred patterns of sequences of transitions and in
this way regulate in a flexible way the operational behaviour of the computee.

The aim of the cycle theory is therefore twofold. On the one hand it aims at controlling
and at helping to characterise the operational behaviour of a computee, by giving a form of
intelligent control that is rooted in the knowledge of the computee and is responsive to changes
in its external environment. On the other hand the use of different selection functions (see
section 8) and in particular the heuristic selection functions and other such conditions, using
criteria such as urgency, utility and significance, aims at obtaining different kinds of computee.
Examples of types of computees are timely computees, focused computees, impatient computees,
cautious computees, etc. The formal definition of such “profiles of behaviour” for computees and
the formal verification that certain choices of selection functions and cycle theories give these

60

profiles will be studied in the third phase of the project, in workpackage WP5. In section 9.3,
we give concrete examples of some such profiles that can be modelled within our approach.

We will assume that the operation of a computee follows a simple top level loop of the kind
“Receive Information - Respond”, allowing the computee to constantly aim at achieving its own
goals while being alert to the environment and its changes. The computee receives information
from its environment via the transitions of Passive Observation Introduction (POI) and Active
Observation Introduction (AOI). POI is the only transition that the computee cannot control
itself. A cycle theory will interpret POI as a form of interrupt in the operation of the computee.
The new information, obtained via POI, can change the decision for the next transition to be
executed, as specified and thus regulated by the cycle theory itself. A fixed cycle, instead,
cannot be interrupted, and it will consider information as obtained via POI only when POI’s
turn will come within the cycle.

Both for fixed cycles and cycle theories, we will assume that the operation of a computee
will start from some initial state. This can be seen as the state of the computee at its “birth”.
The state then evolves via the transitions, as commended by the fixed cycle or cycle theory.
For example, the initial state of the computee could have an empty set of goals and an empty
set of plans, or some designer-given goals and an empty set of plans. In the sequel, we will
indicate the given initial state as S0.

In this section, we will denote by I the set I = {GI, PI,RE, SI, POI,AOI,AE,GR, PR},
namely I is the set of all possible labels (indexes) of transitions, as given in section 7.

Finally, in this section we will assume the existence of a clock (external to the computee)
whose task is to mark the passing of time. Each clock tick could be modelled as a social event,
as in deliverable D5. The clock is responsible for deciding the time at which the transitions are
applied.

9.1 Fixed cycles

In this section, any transition of the computee (as defined in section 7) of the form

(L)
S X

S′
τ

where S, S′ are states of the computee, and X may be empty, will be denoted by an atom

TL(S,X, S′, τ)

Whenever the time τ of the transition is not relevant to the discussion, this will be written
simply as

TL(S,X, S′)

Also, we will mostly incorporate within transitions the selection, via appropriate selection
functions, of the conditions X prior to the application of a transition, and write

TL(S,X, S′, τ)

instead of
f(S, τ) = X, TL(S,X, S′, τ)

61

where f is the appropriate selection function. 14 Indeed, for fixed cycles, the role of
selection functions is exclusively to select the inputs for the appropriate transition when the
turn of the transition comes within the fixed cycle. (Instead, as we will see in the next section,
the role of selection functions for cycle theories is to help deciding which transition should
be applied next.) Thus, for fixed cycles, selection functions and (appropriate) transitions are
strongly coupled. In particular,

TPI(S,X, S′, τ) will stand for fGS(S, τ) = X, TPI(S,X, S′, τ)
TSI(S,X, S′, τ) will stand for fPS(S, τ) = X, TSI(S,X, S′, τ)
TAOI(S,X, S′, τ) will stand for fFS(S, τ) = X, TAOI(S,X, S′, τ)
TAE(S,X, S′, τ) will stand for fAS(S, τ) = X, TAE(S,X, S′, τ)

namely, PI must be applied immediately after its inputs have been selected by fGS , SI must
be applied immediately after its inputs have been selected by fPS , and so on.

In addition, in this section we will mostly drop the conditions X, and represent a transition
simply as

TL(S, S′, τ)

Then, a fixed cycle is a fixed sequence of transitions of the form

T1, . . . Tn

where i ∈ I, i = 1, . . . , n, n ≥ 2. This gives an operational trace of the computee of the form

T1(S0, S1, τ1), T2(S1, S2, τ2), . . . , Tn(Sn−1, Sn, τn),
T1(Sn, Sn+1, τn+1), . . . , Tn(S2n−1, S2n, τ2n),
. . .

where S0 is the initial state of the computee, and each τi is given by the clock of the
system at the time that Ti is applied. Note that we assume that τi < τj , for i < j.

The classical “observe-think-act” cycle [KS99] (for a rather limited computee) can be rep-
resented in our approach as the cycle:

TPOI , TRE , TPI , TAE .

A more sophisticated version of the “observe-think-act” cycle, incorporating goal decision and
sensing actions, may be as follows:

TPOI , TRE , TGI , TPI , TAOI , TAE , TPR, TGR.

A purely reactive computee (which has very limited knowledge) can execute the following cycle:

TPOI , TRE , TAE .

Note that POI is interpreted here as a transition which is under the control of the computee,
but is passive in the sense that, via such transition, the computee does not look for anything

14In this subsection, we use a neutral symbol f for selection functions. f could be either a core selection
function c or a heuristic selection function h, as the distinction amongst the two types of selection functions
does not play a role for fixed cycles.

62

special. Rather, it opens its reception channel and waits for some input. Below, in section 9.2,
we will see a different interpretation of POI as an interrupt.

Note that, although fixed cycles such as the above are quite restrictive, they may be “sen-
sible” in some circumstances. For example, the cycle for a purely reactive computee may be
fine in an environment which is highly dynamic, whereas the more sophisticated version of
the “observe-think-act” cycle may be appropriate in an environment with few and infrequent
changes. A computee may then be equipped with a catalogue of fixed cycles, and a number of
conditions on the environment to decide when to apply which of the given cycles. This would
provide for a limited form of intelligent control, paving the way towards the more sophisticated
and fully declarative control given in the next section. This would be in the spirit of [DdBD+02].

9.2 Cycle theories

Our model does not propose any fixed cycle or cycles for a computee. Any sequence of the
transition rules can be allowed in the “life” of a computee. As mentioned above the cycle theory
is there to allow the computee to reason about preferred patterns of sequence of transitions and
to give a mechanism of how such patterns may be selected by the computee. It can be viewed
as a preference policy that will determine at each step the preferred next internal transition(s)
to be executed. In effect, this policy ranks the various alternative transitions that can follow
the current 15 transition in the operation of the computee so that the most preferred can be
chosen.

A cycle theory is a logic program Tcycle with priorities over rules in the logic programming
framework LPwNF described in section 3.3. Such a logic program is a meta-program in that
it reasons on the whole state of the computee. It is, however, of the same format as the object
level knowledge componentKBGD of KB, that is expressed within the same framework.

Concretely, Tcycle consists of three components:

• A basic part Tbasic that determines the basic steps of operation by specifying the allowed
unitary cycle-steps from one transition to another.

• An interrupt part Tinterrupt that specifies the cycle-steps that can follow a POI, i.e. an
interrupt with new information. These are viewed as re-initialisation steps for the cycle
operation.

• A behaviour part Tbehaviour that determines via preference rules on the alternatives given
in the basic and interrupt parts the special characteristics of the operation (and thus
behaviour) of the computee.

Below, in sections 9.2.2, 9.2.3 and 9.2.5, we give formal definitions and examples for the
above Tbasic, Tinterrupt, Tbehaviour, respectively. In section 9.2.4 we define the theory Tinitial, in
a format analogous to that for Tbasic and Tinterrupt for deciding which transition the computee
should start with. In the sequel, we will denote by Tcycle = Tinitial∪Tbasic∪Tinterrupt∪Tbehaviour.

The cycle-steps in Tbasic ∪ Tinterrupt are rules of the form

15We will assume that the choice for the next transition depends only on the current transition and not on
the longer history of the previous transitions. Note that this does not mean that information from the past
operation of the computee is not used in deciding the next transition. Such information will be used as this
is recorded in the state of the computee. Our assumption rather means that the only explicit reference to the
(type of) transitions that the computee has carried out till now that is needed in order to make the choice for
the next transition is that to the current transition.

63

T ′(S′, X ′, τ)← T (S,X, S′, τ ′, τ), C(S′, τ,X ′)

sanctioning that, if at time τ , which is the time at which the current transition T has finished
(having started at time τ ′), the conditions C evaluated in the resulting state S′ are satisfied,
then transition T ′ should follow transition T and applied with inputs the state S′ and the set
of items X ′, if required. Note that evaluating the conditions C allows us to compute X ′ from
S′. Below, except for section 9.2.1, we will write cycle-step rules in short as

T ′(S′, X ′)← T (S,X, S′), C(S′, τ,X ′)

concentrating on the arguments of interest.
The rules in Tinitial are of the form

T (S0, X)← C(S0, τ,X)

sanctioning that, if the conditions C are satisfied in the initial state S0 at time τ , then
the initial transition should be T , applied to state S0 and input X, if required. Note that
C(S0, τ,X) may be empty, and Tinitial might simply indicate a fixed initial transition T1.

In the following section 9.2.1 we show how a cycle theory Tcycle induces the operational
trace of the computees, defined in terms of sequences of transitions.

9.2.1 Operational Trace

As earlier, let us suppose that S0 is the given initial state of the computee. In addition, until
later in this section, let us suppose that the computee is given some initial transition T1, that
the computee will start to operate from. A natural choice for T1 could be GI, namely the
computee starts by deciding which goals to set for itself, if not already equipped with some
goals by its designer.

Then, the operational trace given by Tcycle is a sequence of sequences of transitions, each of
the form

T j1 (Sj0, X
j
1 , S

j
1, τ

j
1), . . . , T ji (Sji−1, X

j
i , S

j
i , τ

j
i), T ji+1(Sji , X

j
i+1, S

j
i+1, τ

j
i+1), . . .

(where each of the Xjs may be empty) such that

• j = 1, . . . , n, . . . gives the number of sequences for the computee, which is typically infinite;

• S1
0 = S0, namely the state from which the first sequence starts is the initial state;

• T 1
1 = T1, namely the first transition in the first sequence is the given initial transition T1;

• for each j = 2, . . . , n, . . ., T j1 = POI, namely each sequence (except for the first one),
starts with a POI transition;

• for each j = 1, . . . , n, . . ., if there exists a j+ 1th sequence then the jth sequence is finite,
say

T j1 (Sj0, X
j
1 , S

j
1, τ

j
1), . . . , T jmj (S

j
mj−1, X

j
mj , S

j
mj , τ

j
mj)

for some mj ≥ 1, and Sj+1
0 = Sjmj , namely the initial state of the j + 1th sequence is

the final state of the jth sequence; the transition T jmj is referred to as final within the
sequence;

64

• for each j = 1, . . . , n, . . ., if there exists a j + 1th sequence then there exists a POI
(interrupt) between times τ jmj−1 and τ jmj , namely a new sequence is only started because
of the occurrence of a POI;

• τ ji is given by the clock of the system at the time that T ji is applied (with the property
that τ ji < τ ji+i, and τ jmj < τ j+1

1 , for each j, i), namely time increases;

• for each j = 1, . . . , n, . . ., i < mj ,

Tcycle ∧ T ji (Sji−1, X
j
i , S

j
i , τ

j
i , τ

j
i+1) |=pr T

j
i+1(Sji , X

j
i+1, τ

j
i+1)

namely each (non-final) transition in a sequence is followed by the most preferred transi-
tion, as specified by rules with priorities in Tcycle.

Note that the definition of operational trace above does not impose that all POI are taken
into account. Moreover, POI does not interrupt a transition that has already started being
applied. Rather, the definition above imposes that POI is kept waiting until the transition that
had already started has completed. In a more advanced execution model, this restriction could
be relaxed, to allow for a POI to effectively interrupt the computation of the current transition,
or for POI to be executed concurrently with the ongoing transition. In such a case we need to
decide which of the partial information (if any) computed by the current transition should be
kept in the state of the computee. Also, the given definition of operational trace prevents the
concurrent execution of transitions, and a more advanced execution model could avoid this. We
will discuss some of these issues further in section 11.

Also, note that, some transitions might leave the state of a computee unchanged. This
might happen, for example, if the Goals and Plan of the computee are empty and GI (the only
transition that makes sense in this state), does not introduce any new goals.

Further, note that, by means of the last condition above, because of the definition of |=pr

and because of the assumption that all transitions are incompatible with each other (see below),
we assume that at most one cycle-step is enabled at any time. This requirement imposes certain
conditions on the form of the cycle theory, as we will see below in section 9.2.6.

Finally, note that assuming that the computee is given the initial transition T1 may be
restrictive. Indeed, for the computee to be truly intelligent, we want it to be able to decide
which transition to start with, depending on its initial state and its environment. For example, it
might be useful for the computee to start with a POI, if one occurs, or with GI, if goals and plan
in the initial state are empty. In general, a computee may be equipped with a theory Tinitial to
decide the initial transition by reasoning. Then, Tcycle = Tinitial∪Tbasic∪Tinterrupt∪Tbehaviour.
We will discuss Tinitial further in section 9.2.4.

If Tinitial is given, then the third bullet above becomes:

• Tinitial ∪ Tinterrupt ∪ Tbehaviour |=pr T
1
1 (S0, X

1
1).

9.2.2 The basic component: Tbasic
Each rule in any given Tbasic is called a cycle-step rule and is of the form

ri|k(S′, X ′) : Tk(S′, X ′)← Ti(S,X, S′), Ci|k(S′, τ,X ′)

where i, k ∈ I, i, k 6= POI. Any such rule specifies which transition Tk might follow a transition
Ti. Note that cycle-step rules do not specify what might follow a POI transition (as i 6= POI).

65

This is done by the Tinterrupt theory. Note also that cycle-step rules cannot indicate that a
POI transition should follow any transition (as k 6= POI) since POI is the only transition not
under the control of the computee.

The conditions Ci|k in a cycle-step rule as the above are called enabling conditions as they
determine when a cycle-step from the transition Ti to the transition Tk is allowed or enabled.
In particular, they determine the input X, if any is required, of the ensuing transition Tk. Such
input will be determined by calls to the appropriate selection functions, when required. Hence
such a rule is parameterised by X as well as the state S′ resulting from the application of the
currently finished transition Ti.

For example, the following cycle-step rule

rAE|PI(S′, Gs) : TPI(S′, Gs)← TAE(S,As, S′), CAE|PI(S′, τ, Gs)

expresses the possibility that an Action Execution transition (AE) can be followed by a Plan
Introduction (PI) transition. The enabling conditions CAE|PI(S′, τ, Gs) determine the set of
goals Gs that are to be planned for by the ensuing PI transition. Such goals are determined by
a call to the core goal selection function cGS , namely

CAE|PI(S′, τ, Gs)← Gs = cGS(S′, τ), Gs 6= {}

We will see below that the heuristic goal selection function will be used within Tbehaviour. Also
we remind the reader that these conditions may also contain the application of a projection
function to take into account resource bounds, in which case we will have a collection of such
rules, one for each subset of the selected goals Gs, as given by the appropriate projection
function.

A full Tbasic part of a cycle theory may contain the following cycle-step rules for deciding
what might follow an AE transition:

rAE|PI(S′, Gs) : TPI(S′, Gs)← TAE(S,As, S′), CAE|PI(S′, τ, Gs)
rAE|AE(S′, As′) : TAE(S′, As′)← TAE(S,As, S′), CAE|AE(S′, τ, As′)
rAE|AOI(S′, Fs) : TAOI(S′, Fs)← TAE(S,As, S′), CAE|AOI(S′, τ, Fs)
rAE|PR(S′) : TPR(S′)← TAE(S, S′)

Namely, AE could be followed by another AE, or by a PI, or by an AOI, or by a PR.
Any other possibility, e.g. for GI to follow AE, is excluded within this particular Tbasic theory.

The enabling conditions, CAE|AE(S′, τ, As′), of the second cycle-step rule above determine
the set of actions As′ that are to be executed within the ensuing AE transition. Such actions
are determined by a call to the core action selection function cAS , namely

CAE|AE(S′, τ, As′)← As′ = cAS(S′, τ), As′ 6= {}

Similarly, the enabling conditions, CAE|AOI(S′, τ, Fs), of the third cycle-step rule above
determine the set of fluents Fs that are to be sensed next within the ensuing AOI transition.
Such fluents are determined by a call to the core fluent selection function cFS , namely

CAE|AOI(S′, τ, Fs)← Fs = cFS(S′, τ), Fs 6= {}

We will see that the heuristic action selection and fluent selection functions will be used within
Tbehaviour.

66

A cycle-step rule in Tbasic only determines what might follow a transition that is different
from POI. The potential follow-ups of POI are determined by the Tinterrupt part of the cycle
theory, as given in the following section.

9.2.3 The interrupt component: Tinterrupt
The interrupt component of Tcycle is analogous, in syntax, to the basic component. However,
each rule in Tinterrupt specifies what might follow a POI transition, which acts as an interrupt.
Concretely, each rule in Tinterrupt is an interrupt cycle-step rule of the form

rPOI|k(S′, X) : Tk(S′, X)← TPOI(S, S′), CPOI|k(S′, τ,X)

where k ∈ I, k 6= POI. In fact, it is reasonable to allow only the rules below:

rPOI|GI(S′) : TGI(S′)← TPOI(S, S′)
rPOI|RE(S′) : TRE(S′)← TPOI(S, S′)
rPOI|GR(S′) : TGR(S′)← TPOI(S, S′)

These concrete interrupt cycle-steps have no enabling conditions, and thus in principle they
allow for any of GI, RE and GR to follow POI. Part of the Tbehaviour part of the cycle theory
can contain priority rules amongst the rules of Tinterrupt so that there exists a unique preferred
transition to follow POI.

9.2.4 The initial component: Tinitial
The Tinitial part of a cycle theory consists of rules of the form

r0|k(S0, X) : Tk(S0, X)← C0|k(S0, τ,X)

such that k ∈ I, k 6= POI, and S0 is an initial state of the computee.
Examples of such rules are the following.

r0|GI(S0) : TGI(S0)← S0 = 〈KB,Goals, P lan〉, Goals = {}

namely the computee should start with GI if it is equipped with no goals by its designer.

r0|PI(S0, Goals) : TPI(S0, Gs)← Gs = cGS(S0, τ), Gs 6= {}

namely the computee should start with PI if it has some goals, and PI is given as input (some
of) those goals in the state S0, as selected by the goal selection function, applied to S0 at time
τ .

The initial transition could also be POI linking then with Tinterrupt as above.

9.2.5 The behaviour component: Tbehaviour
In the previous subsections we have defined the components Tbasic and Tinterrupt of Tcycle. We
are now going to define the fourth and last component Tbehaviour. Its main task is to specify
local priorities over rules in Tbasic and Tinterrupt of the cycle theory so that this can decide,
amongst all enabled cycle-steps, which one should be preferred. Also it has the task to enforce

67

that the interrupt component Tinterrupt overrides the decisions on the next transition to apply
as given by the basic component Tbasic. Note that, although we have implied so far that indeed
the interrupt cycle-step rules always override the basic cycle-step rules, in a more general setting
we can also allow in Tbehaviour priorities across the basic and interrupt cycle-step rules so that
in some cases the basic rules would be preferred. 16

The general form of the rules in Tbehaviour is

Rik|l : h p(ri|k(S,Xk), ri|l(S,Xl))← BCik|l(S,Xk, Xl, τ)

where ri|k and ri|l are (names of) rules in Tbasic ∪Tinterrupt. This rule says that at time τ after
transition Ti if the conditions BCik|l hold then we prefer the next transition to be Tk over Tl.

The conditions BC are called behaviour conditions and determine when the preferences
apply. These conditions depend on the state of the computee after Ti and on the parameters
chosen in the two cycle-steps ri|k and ri|l. In contrast with the enabling conditions of the cycle-
step rules, behaviour conditions are heuristic conditions that we can choose appropriately in
order to get different patterns of behaviour. These conditions are defined in terms of heuristic
selection functions, where appropriate. We will see several examples of such rules in the next
subsections below.

Note also that Tcycle also contains that

incompatible(Tk(S,Xk), Tl(S,Xl))

for any k, l k 6= l, stating that all transitions are incompatible with each other. This condition
can be relaxed if we want to allow for concurrent execution of transitions, as we will discuss in
section 11, but this is beyond the scope of this report.

9.2.6 Properties of Tcycle

We have seen in section 9.2.1 that we require that for any given cycle theory, at most one
transition is enabled at each time. In order to ensure that at most one next cycle-step is
preferred, we can require that the behaviour conditions must be such that no two cycle-steps
are (in any possible state) given higher priority than all other cycle-steps in the same family,
where by a family of cycle-steps rules we intend the set of all cycle-step rules for the same
current transition. This means that families of behaviour conditions are exclusive. We will see
below when it is appropriate to relax this last condition and how this can be replaced in a
suitably generalised from.

Similarly, we can impose conditions over Tinitial so that at most one initial transition can
be generated from it.

In addition, we could impose that at least one transition is enabled at each time. Together
with the earlier requirement this would mean that exactly one transition is enabled at each
time. Again, this imposes some requirements on the form of Tcycle, so that at least one cycle-
step is enabled at each time. One such requirements, for example, could be that the set of
enabling conditions for cycle-step rules in Tbasic and Tinterrupt are exhaustive, namely one of
such conditions is always satisfied. Also, the behaviour conditions must be always (in any

16Note that, in a more advanced execution model, we could even force that the current transition is interrupted
when a POI needs to be executed. In such a case we need to decide which of the partial information (if any)
computed by the current transition should be kept in the state of the computee before engaging into the POI
transition. This is beyond the scope of this report.

68

possible state) given higher priority than all other cycle-steps in the same family. This again
can be achieved by requiring that each family of behaviour conditions are exhaustive.

If we impose this additional requirement, then we impose that computees cannot be ever
idle.

9.3 Cycle Patterns and Profiles of Behaviour

In this section we will show how different patterns of operation can arise from different cycle
theories aiming to capture different profiles of operational behaviour by the computees. We
will first show how fixed cycles are a special case of cycle theories and then give examples of
Tbehaviour to show the ease with which we can capture in a cycle theory a certain pattern of
behaviour.

9.3.1 Fixed cycles via cycle theories

Cycle theories generalise fixed cycles in that the behaviour induced by a fixed cycle can be
obtained via the behaviour induced by a cycle theory, for some special cycle theories. These
are theories where

• all rules in Tbehaviour have empty (or true) behaviour conditions

• for each pair k, l ∈ I, k 6= l, there is only one rule Rik|l or Ril|k in Tbehaviour, and

• there exists no sequence of rules Rik|l1 , Ril1|l2 , . . ., Riln|k in Tbehaviour, such that k, lt ∈
I, k 6= lt, for t, j = 1, . . . , n, lt 6= lj , for t 6= j, and n > 1.

We then have a fixed total order amongst the cycle-step rules in the same family, for each current
transition. This gives a pattern of operation of the computee that depends only on the enabling
conditions of the cycle-steps. Assuming that the top-most transition, with respect to this total
order, is enabled at each step, we get a fixed cycle that underlies the operation of the computee.

9.3.2 Patterns and Profiles of Behaviour

Relaxing the above simplification that all the behaviour conditions are true, and letting the
preference rules in Tbehaviour be conditional on the current state of the computee opens up the
possibility to produce a variety of patterns of operation. The overall operational behaviour of
the computee as given by generic cycle theories is thus dynamic, depending on the particular
circumstances under which the transitions are executed. Many different patterns of profiles of
behaviour can be defined by choosing these conditions appropriately. Changing the behaviour
conditions we can engineer the pattern or profile of operational behaviour of the computee.

Some examples of profiles of (operational) behaviour are the following.

Punctual or Timely This is a pattern where the computee attempts to satisfy its goals on
time. It plans and executes its actions in order to achieve a timely completion of its goals.
Hence transitions for the completion of actions and goals that are becoming relatively
urgent are given preference over ones for other goals and actions and over other operations
of the computee.

69

Focused or Committed This is a pattern where once a computee has chosen a plan to exe-
cute prefers to continue with this plan (refining and/or executing further) until the plan
is finished or it has become invalid at which point the computee can consider other plans
or other goals etc. Hence transitions that relate to an existing plan have preference over
transitions that relate to other plans e.g transitions that introduce other plans.

Impatient This is a pattern where whenever a computee finds out that an existing action or
plan is invalidated by the environment prefers to abandon it. Hence it prefers to execute
other plans for other goals or for the same goal.

Efficient This is a pattern where a computee prefers to follow a sequence of transitions that
allows it to achieve its goals in an optimal way with respect to some utility or cost cri-
terion e.g. minimise the number of observations. Hence as in the case of the punctual
computee (where the utility is time) the utility will determine preferences amongst alter-
native choices of transitions.

Cautious This is a pattern where the computee prefers not to attempt to execute an action
when it does not know that this can be done, i.e. it does not know that its preconditions
hold. It prefers to execute actions for which it knows that the preconditions hold. Hence
it would also prefer to do a sensing introduction transition over an action execution
transition. Similarly, in a cautious pattern the computee would prefer to check that the
desired effects (in a plan) of an action hold after its execution.

Careful This is a pattern where when some failure occurs, e.g. some action execution has failed
or has timed out, then the computee prefers to first re-examine its current goals and plans
before continuing with their further reduction and execution. Hence the computee prefers
to do revision transitions over the other transitions in order to first let the effect of the
failure propagate in its current state.

Let us illustrate, by means of examples, how we could capture some of these patterns of
operation. Consider again Tbasic as given earlier in section 9.2.2, for deciding what might
follow an AE transition:

rAE|PI(S′, Gs) : TPI(S′, Gs)← TAE(S,As, S′), CGI|PI(S′, τ, Gs)
rAE|AE(S′, As′) : TAE(S′, As′)← TAE(S,As, S′), CAE|AE(S′, τ, As′)
rAE|AOI(S′, Fs) : TAOI(S′, Fs)← TAE(S,As, S′), CAE|AOI(S′, τ, Fs)
rAE|PR(S′) : TPR(S′)← TAE(S, S′)

The behaviour component Tbehaviour for a punctual profile of operation would then con-
tain the following rules 17:

RAEAE|∗ : h p(rAE|AE(S,As), rAE|∗(S,X))← As = huAS(S, τ), As 6= {}
RAEPI|∗ : h p(rAE|PI(S,Gs), rAE|∗(S,X))← Gs = huGS(S, τ), Gs 6= {}
RAEAOI|∗ : h p(rAE|AOI(S, Fs), rAE|∗(S,X))← Fs = huFS(S, τ), Fs 6= {}
RAEPR|∗ : h p(rAE|PR(S), rAE|∗(S,X))← nothing urgent or to be sensed(S, τ)

where the behaviour condition nothing urgent or to be sensed(S, τ) can be defined as
17Here and below we will use * to denote a variable that can take the value of any transition index in I.

70

follows:

nothing urgent or to be sensed(S, τ)← huAS(S, τ) = {}, huGS(S, τ) = {}, huFS(S, τ) = {}

Here, we use the heuristic selection functions for actions and goals, huAS and huGS , re-
spectively, encapsulating urgency, as given in section 8. Intuitively, As are “the most urgent
actions” in S and Gs are “the most urgent goals” in S, at time τ . huFS is some heuristic
function for the selection of urgent fluents to be sensed, as given in section 8. The PR transition
will be selected only if there is nothing urgent to be dealt with within the state, and nothing
to be sensed. Basically, the last rule says that we prefer a PR transition when “there is time
to tidy up the state of the computee”. Note that these behaviour conditions are exhaustive so
that always one of these rules will apply. If we also assume that they are exclusive then only
one will apply and this will determine the next transition as the most preferred one.

If we want to capture a careful behaviour where the computee revises its state when one of
its goals or actions times out (being careful not to have in its state other goals or actions that
are now impossible to achieve in time) we would have in Tbehaviour the rule:

R∗PR|∗ : h p(r∗|PR(S), r∗|∗(S))← time out(S, τ)

where the PR transition is preferred over all other transitions. The behaviour condition
time out(S, τ) can be defined as follows:

time out(S, τ)← S = 〈KB,Goals, P lan〉, A = 〈 , , , T c〉 ∈ Plan, 6 ∃σ[σ |= Tc]

Moreover, if we wanted to have a PR transition always followed by a GR transition, then we
would add the rule (with empty behaviour conditions):

RPRGR|∗ : h p(rPR|GR(S), rPR|∗(S))

A focused profile of behaviour could be captured by rules:

RAEAE|∗ : h p(rAE|AE(S,As), rAE|∗(S,X))← As = hspAS(S, τ), As 6= {}
RAEAE|∗ : h p(rAE|PI(S,Gs), rAE|∗(S,X))← Gs = hspGS(S, τ), Gs 6= {}

which state that we prefer to execute actions or reduce goals from the same plan (i.e
with a common ancestor) as the actions that have just been executed. Here, the behaviour
conditions are defined in terms of the heuristic selection functions hspAS and hspGS , as given in
section 8. Intuitively, As and Gs, respectively, belong to the same plan as the actions executed
within the current transition AE.

A cautious profile of behaviour would involve rules of the form:

R∗SI|AE : h p(r∗|SI(S, Fs), r∗|AE(S,As)) ← pre(As, Fs)

stating that a sensing introduction transition for the preconditions of an action is preferred
over the execution of that action. The predicate pre(As, Fs) is true if Fs is the set of all
preconditions of all actions in As.

Alternatively, we could have a rule to prefer to execute actions whose preconditions are
known to be true:

R∗AE|AE : h p(r∗|AE(S,As1), r∗|AE(S,As2)) ← hpreAS (S, τ) = As1, As1 6= {}

71

Basically, the execution of “executable” actions (As1) is preferred over the execution of “non-
executable” actions (As2). Actions are “executable” if their preconditions are known to hold.
Here, the behaviour conditions are defined in terms of the heuristic action selection function
hpreAS , given in section 8, that selects all actions in a state whose preconditions are known to
hold in that state..

An impatient pattern where actions that have been tried and failed are not tried again would
involve rules of the form:

R∗∗|AE : h p(r∗|∗(S), r∗|AE(S,As))← hfailAS (S, τ) = As,As 6= {}

where AE is given less preference than any other transition. Intuitively, As are “failed” actions,
returned by the heuristic action selection function hfailAS , defined in section 8. As a result of this
priority rule it is possible that such failed actions would remain un-tried again (unless nothing
else is enabled) until they are timed out and dropped by PR.

Finally, let us give an example where preference rules on the interrupt cycle-steps can also
determine a characteristic of the behaviour of the computee. Referring to the interrupt theory
given in section 9.2.3, if we have the rule:

RPOIRE|∗ : h p(rPOI|RE(S), rPOI|∗(S))

then a computee will be focused on its current plans as it prefers to use the new external input
provided by POI to adapt its current plans and goals by RE rather than to introduce possible
new goals through GI or to revise its goals through GR.

Note also that we can use a preference rule in Tbehaviour to override the interrupt theory
under certain circumstances. Suppose for example that we do not want to carry out any of the
interrupt cycle-steps at the expense of delaying the execution of very urgent actions. Then we
could have a cross preference rule:

RPOIAE|∗ : h p(rPOI|AE(S,As′), rPOI|∗(S)) ← huAS(S, τ) = As′, As′ 6= {},
very urgent(As′, τ)

with some appropriate definition of the predicate very urgent. This rule achieves the preference
to carry on with the execution of the very urgent actions despite the interrupt.

9.4 Hierarchies and multi behaviour criteria

The behaviour part Tbehaviour of the cycle theory allows us to view the operation of the computee
as a form of heuristic search, obtained by using the heuristic selection functions and other
heuristic criteria to define the behaviour conditions. But how can we synthesise these different
criteria to get an effective and intelligent search for the operation of a computee? Each heuristic
corresponds to a criterion of evaluation and hence we need to have ways to perform, via the
cycle theory, a multi-criteria decision in order to take into account simultaneously a variety of
heuristics, e.g. resource limitations, urgency, utility and qualitative criteria such as executability
or failure of actions.

We can study these questions in two steps. First we will consider further the issue of how
one heuristic on its own ensures that a decision can be taken at each step of the operation. Then
we will see how we can synthesise criteria so that ambiguities left at the level of one criterion
could be resolved using another heuristic criterion.

72

Given a basic part of a cycle theory with the possibility of more than one cycle-step in a
family to be enabled the behaviour part needs to contain preference rules that would decide
which one of these enabled cycle steps will be preferred. Hence if we name these cycle-steps
by r1, ..., rn we would generally have in the behaviour part for each pair of these rules two rules18:

Rkij : h p(ri, rj)← BCij
Rkji : h p(rj , ri)← BCji

that show that ri is preferred over rj when the condition BCij holds and vice-versa
when BCji holds. As we have seen, these conditions typically refer to a heuristic criterion that
takes different values in the different rules. For example, in the punctual pattern of behaviour,
where we have the heuristic criterion of “urgency”, we can have the following two rules using
this criterion:

RAEAE|∗ : h p(rAE|AE(S,As), rAE|PI(S,Gs))← As = huAS(S, τ), As 6= {}

RAEPI|∗ : h p(rAE|PI(S,Gs), rAE|AE(S,As))← Gs = huGS(S, τ), Gs 6= {}

If only one of such rules has its conditions satisfied then this effectively decides the cycle-
step to be applied. But what happens if conditions BCij and BCji are not exclusive, i.e. it
is possible that in some states more than one hold true? For example, what happens when in
a state we have both actions and goals that are urgent and so the behaviour conditions of the
above two rules are both true? Then the heuristic embodied in these conditions cannot decide
on the next cycle-step to be applied. None of the possible next transitions given by these cycle
steps would be a sceptical conclusion. These would be credulous conclusions i.e. possible next
transitions, but as the transitions are incompatible with each other the theory could be in a
dilemma 19.

In order to resolve this dilemma we can have additional preference rules in the behaviour
part that would compare the overlapping preference rules and give a priority amongst them.
These additional rules therefore express a higher-order preference on the lower-level preference
rules. They have the same form as the preference rules examined so far except that now they
apply on preference rules rather than cycle-step rules. Their form is:

Cim|n : h p(Rim(S,Xm), Rin(S,Xn))← ECim|n(S,Xm, Xn, τ)

where Rim and Rin are preference rules. The conditions EC can be seen as a refinement
of the heuristic criterion involved 20, where more information from the criterion is used to
evaluate the alternatives. In the above example, where we have a dilemma amongst urgent
goals and actions, we could have:

C : h p(RAEAE|PI(S,Gs,As), R
AE
AE|AE(S,As,Gs))← more urgent goal(S,Gs,As, τ)

18For simplicity, we will drop the parameters in the rules and the names of rules when these are not needed.
19We repeat here that if the particular transitions are not incompatible with each other then we can generalise

the decision process of the cycle theory to allow all of them as next transitions to be executed concurrently.
20These conditions can be called Exception conditions as these higher order preference rules can change the

“normal” default preference given by the lower-level preference rules of the form Rim.

73

C ′ : h p(RAEAE|AE(S,As,Gs), RAEAE|PI)(S,Gs,As)← more urgent action(S,As,Gs, τ).

These say that if the goals are more urgent than the actions, then the preference to re-
duce these urgent goals further by a PI transition next is stronger than the preference to next
execute the urgent actions and vice-versa. This can then resolve the dilemma of which is to be
the next transition.

The behaviour (or exception) conditions at this higher level need to be exhaustive and
exclusive otherwise it is possible to arrive again in a state of dilemma (the preference reasoning
will not give a sceptical conclusion) where this has now been transferred one level higher. If
this is the case we can use another level of preference rules that stipulate the relative priority
of these higher-level rules and so on.

This then results in a hierarchy of preference rules where each level uses a more refined
or detailed form of the heuristic. We require only that at some level the conditions of the
preference rules are exhaustive and exclusive. Thus the overall decision process for the cycle
step to be applied is carried out at stages following a hierarchy where each time we refine the
information drawn from the heuristic.

We can generalise this extension with higher-order preference rules by allowing these rules
to refer to other heuristic criteria, i.e instead of using further information from the same
heuristic these rules could be conditional on a different criterion. For example, to decide
amongst equally urgent actions and goals we can use some other utility criterion using the
higher-order preference rules:

C : h p(RAEAE|PI(S,Gs,As), R
AE
AE|AE(S,As,Gs))← utility(S,Gs, U1)

C ′ : h p(RAEAE|AE(S,As,Gs), RAEAE|PI(S,Gs,As)← utility(S,As, U2).

The hierarchy then becomes a hierarchy of different criteria and the decision using the
preference reasoning |=pr becomes a multi-criteria decision problem. Starting from the ba-
sic part of the cycle theory and its enabling conditions we can have a hierarchy of criteria
Core Selection Criteria w Criterion1 w Criterion2 w ..., e.g. Core Selection Criteria w
Urgency w Utility as we have seen above. In this way we are effectively synthesising different
patterns of behaviour corresponding to different heuristic criteria.

For total hierarchies where criteria are separated at different levels of the preference rules
the multi-criteria decision required is simply following the hierarchy step by step. If this is not
so and different criteria are mixed at the same level then we need to apply more complex forms
of multi-criteria decision making.

10 Computees in Societies

Individual computees, as modelled in this document, will not be created to function in isolation,
but instead they will be parts of artificial computee societies. In this section we discuss the
features a computee should have in order to function within an artificial society. Such features
will allow the computee to communicate with other computees and take into account any
opportunities offered by the society without overlooking any requirements that the society
may impose. In this section we describe four specific features that facilitate the functioning
of computees within societies and that provide the necessary connections between the models

74

described in this document and deliverable D5 (where the reader can find out more details
about the social modelling of computees). These features are:

1. Communication;

2. Conforming to society’s (communication and other) protocols;

3. Entering and leaving societies;

4. Responding to society’s expectations.

10.1 Communication

In this section, we describe in more detail how communication can be embedded within the
KGP model developed in this document. The KGP model assumes that a computee has,
within the set of actions it can perform, a set of communication actions. In general, in order
for a computee to communicate with other computees it requires:

1. a language for communication,

2. a collection of communication actions,

3. a way of generating communication actions as part of plans to achieve goals,

4. policies for determining which communication acts to perform when, and policies for
generating communication actions in response to utterances it receives or in reaction to
events in the environment,

5. a way of deciding who best to communicate with in order to achieve its objectives.

In the following we address each point and show how the KGP model of D4 and our current
and previous work cater for it.

10.1.1 Language for communication

In D5 we give a framework to equip a Computee Communication Language (CCL) with a se-
mantics which is independent of the computee’s internal state. The social semantics is provided
to give a social meaning to the computees’ communication actions. Here, instead, we explain
the internal functioning of computees which allow for communication (as explained below).

Throughout this section, we rely upon a language for communication defined in [STT02a]
for a resource exchange scenario, and grounded on a computational logic framework. This
language is also adopted/described in some examples presented within D5.

The language can be summarised as follows. It contains a predicate of the form

tell(Utterer,Recipient, Content, Context, T ime)

that denotes a communication act from the Utterer to the Recipient at time Time. Context is
a unique identifier for the context (dialogue in [STT02a]) and could relate to an instance of the
protocol, if any (to which this dialogue conforms). In the sequel, we will often abuse the syntax
and omit the identifier representing the Context of an utterance, for simplicity of presentation.
Content is the content of the utterance. Content can, for example, be: request(Resource)

75

accept(request(Resource))
refuse(request(Resource))
For an exhaustive list of performatives to be adopted for resource exchange, with detailed

explanations, the reader should refer to [STT02a], while for additional information about the
communication language and its social semantics, the reader should consult D5.

10.1.2 Communication actions

Within the KGP model, concrete utterances, namely instances of the generic ‘tell’ predicate,
are interpreted as (communicative) actions. These can be used as actions in a plan, just as any
other (physical or sensing) actions. Thus, from the viewpoint of the KGP model, communicative
actions do not differ from any other actions.

Within the reasoning capabilities of planning and temporal reasoning, we can view the com-
munication language as providing a collection of communication action operators. These can
be used within the event calculus happens predicate (see below for some examples). Within the
KB0 of a computee, communicative actions performed by the computee itself (output messages)
are recorded within the executed predicate (by means of AE), whereas communicative actions
performed by other computees (input messages), and observed by the computee, are recorded
within the observed predicate (via the Passive Observation Introduction).

10.1.3 Generating communication actions as part of a plan

The planning capability and subsequently the Plan Introduction transition (PI) depend on
the theory KBplan. This theory is an abductive event calculus theory that describes how
actions initiate and terminate properties. It allows communication actions as well as physical
ones. Consider the event calculus theory given in section 6.1. To this core we can add domain
dependent axioms for the initiates, terminates and precondition predicates. For example the
KBplan of computee “a” will include the following program for the ownership of a resource:

initiates(get(a,Owner,Rsrc), T, have(a,Rsrc))← holds at(have(Owner,Rsrc), T),
precondition(get(a,Owner,Rsrc), approves(a,Owner,Rsrc)),
initiates(tell(Owner, a, accept(request(Rsrc)), , T), T, approves(a,Owner,Rsrc))

Similarly, we can define the dual terminates rules when a is giving away a resource
after accepting a request from another computee.

Communicative actions can be introduced within the goals or plan of the computee also
by the Goal Introduction and Reactivity transitions. More concretely, communication actions
are introduced from the representation of communication policies/strategies within KBGD and
KBreact, respectively, as it will be discussed in the next section below.

10.1.4 Policies for communication

Policies for determining which communication acts to perform when and generating commu-
nication actions in response to utterances the computee receives or in reaction to events in
the environment can be represented in abductive logic programming as integrity constraints
[STT01, STT02b, STT02a] or in logic programming with priorities as policy rules.

The reactive capability and the Reaction transition depend on KBreact, which consists of
a collection of integrity constraints. Amongst these we incorporate the communication policies

76

of the computees. These, in turn, will be used by the capability and the transition to generate
(add to the plan) communication actions in response to other computees and the environment.

Here are examples for the KBreact of computee a21:

tell(X, a, request(R), T), have(R, T)⇒ tell(a,X, accept(request(R)), T + 5)
injured(X,T), first aid officer(Y, T)⇒ tell(a, Y, request(bandage), T + 1)

where have, first aid officer and injured are fluents.
The first constraint specifies that if a request is made to a for a resource R and a has

that resource then 5 time points later a should respond by accepting the request. The second
constraint specifies that if (a observes that) someone is injured then one time point later a
should ask a first-aid officer for bandage.

An event happening in the environment or a communication action sent by another computee
can be received and recorded by a computee through its Passive Observation Introduction
transition. This will update the state of the computee, in particular the KB0. Then in response
to this update the application of the Reaction and/or Goal Introduction transitions will generate
any appropriate reaction as specified by the policy captured by the integrity constraints similar
to the above.

10.1.5 Deciding who best to communicate with in order to achieve objectives

In many cases a computee will need to decide which particular computee (or computees) it
should communicate with. For example when requesting some information or a resource it will
need to ensure that the computee to which it will make the request is appropriate (i.e. it is
likely to have/be able to provide this type of information or resource). Moreover, amongst all
such possible computees it may want to select one which it judges to be best suited for the
particular request under the particular circumstances of the request.

In order to incorporate this type of decisions we can supply the computee with a specific
policy for this. Such a policy will be part of its KBplan, KBreact and KBGD knowledge and
can be represented either as integrity constraints or as rules with priorities. As an example
consider the axioms given earlier for communicative actions of requests and accepting these. A
computee will often need to select a suitable computee to which to make its requests. For this
we can add in its knowledge the rule:

precondition(tell(a,Owner, request(Rsrc), T), suitable(Owner,Rsrc, T).

This now says that to ask for some resource, the computee needs to determine a suitable
computee to ask. The definition of suitable to be incorporated in its knowledge can be in the
form of simple rules that can allow one to “guess” intelligently which computees are helpful in
which cases. For example:

suitable(X,R, T)← holds at(friend(X), T)
suitable(X,R, T)← trades in(X,R, T)

21In this example we simplify the notation and write the fluents without using hold at

77

which say that X is a suitable computee to ask for resource R if X is a friend or X trades in
R.

More generally, suitable can be decided according to a preference policy of the computee.
For example,

r1(X,R) : suitable(X,R, T)← trades in(X,R, T)
r2(X,R) : ¬suitable(X,R, T)← urgent(R, T), slow delivery(X,R)
R1 : h p(r1(X1, R), r1(X2, R))← friend(X1),¬friend(X2)
R2 : h p(r1(X1, R), r1(X2, R))← ¬trust worthy(X2),¬trust worthy(X1)
R3 : h p(r2(X,R), r1(X,R))
C1 : h p(R2, R1)
This expresses the preference to select a friend and avoid computees which are not trustwor-

thy even in the case when they are friends. Also according to whether the need for a resource is
urgent or not the computee equipped with these rules will not select a computee which is slow
in delivery when it needs the resource urgently.

10.2 Conforming to society’s protocols

Societies may have their own protocols governing the communications of their members. Such
protocols, typically, specify the range of acceptable responses that can be made to a communi-
cation act, possibly with time constraints imposed on such responses.

In D5 we have proposed the adoption of social integrity constraints to express communication
protocols, and we have interpreted the society model in terms of abductive logic programming.
Conformance to communication protocols can be checked on-the-fly using a proof procedure,
able to consider (possibly in an incremental way) social events that have happened and detect
fulfilment or violation with respect to the specified protocols. In accordance with the GC vision,
this conformance is determined without any assumption on the computees’ internal behaviour,
but only requiring to monitor and check the utterances of the society members.

Within the project we have also explored two different approaches for individual computees
to deal with such society protocols [EMST03a, EMST02, EMST03b], assuming that the internal
behaviour of computees can be programmed appropriately. Recall that computees have their
own (private) policies regarding communications with other computees, recorded within their
knowledge base. On entering a society they can “observe” the protocols of the society and they
may decide to ensure conformance to them or more generally to take integrated decisions from
both private policies and public protocols.

One approach proposed in [EMST03a, EMST02, EMST03b] amounts to ensuring confor-
mance by adding the society protocols, expressed as special kinds of integrity constraints (with
disjunction in the head, as adopted in D5) to the KBreact of the computee. Thus the com-
munication actions of the computee will be governed by the combination of its own private
policies and the public protocols of the society (societies) it belongs to. This will ensure a
form of weak conformance whereby the computee will never make any “illegal” utterances. The
reactive capability and the Reaction transition attempt to ensure consistency of the computee’s
communication actions with respect to both the private policies and the public protocols now
in its knowledge base.

The second approach proposed in [EMST03a, EMST02, EMST03b] does not ensure confor-
mance but provides a technique for checking a priori whether or not the private policies of a

78

computee are conformant with the public protocols of a society before the computee makes any
utterances.

We have also studied in [KM03b] how the decision of a computee can integrate its different
private and public protocols. Policies are expressed in logic programming with priorities and
are simply added together in the knowledge base of the computee. Then conflicts between the
private policies and public protocols are treated, using the underlying preference reasoning |=pr

of the computee, in the same way as conflicts within its own private policies are treated. This
gives a uniform way to resolve conflicts between private policies and public protocols. We have
also examined how this form of uniform integration of policies can be extended using methods
from multi-criteria decision theory.

10.3 Computees entering and leaving societies

In D5 we have shown how social integrity constraints can be exploited to regulate expected or
forbidden actions in terms of membership. Membership is, in turn, dynamically determined on
the basis of relevant social events, e.g. joining, leaving, being expelled, etc, depending on the
kind of society (open, semi-open and semi-closed, following the classification of [Dav01]).

In an open society there are no restrictions for computees to join/leave the society. In
semi-open societies membership is a property that is initiated by the event of joining, if then
admitted by the society, and terminated by the events of leaving or being expelled. Finally,
in semi-closed societies, membership is a property that is initiated by the event of joining and
being assigned a proxy computee within the society to represent the computee itself within the
society.

In [TS02], the authors provide an event calculus based formalisation of membership of open,
semi-open and semi-closed societies, following [Dav01]. More formally: 22

holds at(member(C,SOC), T)← happens(tell(C,SOC, join(C,SOC)), T ′),
T ′ < T, not clipped(T ′,member(C,SOC), T),
open(SOC)

holds at(member(C,SOC), T)← happens(tell(C,SOC, join(C,SOC)), T ′),
happens(tell(SOC,C, admit(C,SOC)), T ′′),
T ′ < T ′′ < T, not clipped(T ′′,member(C,SOC), T),
semi open(SOC)

holds at(member(C,SOC), T)← happens(tell(C,SOC, join(C,SOC)), T ′),
happens(tell(SOC,C, represent(C,C ′, SOC)), T ′′),
T ′ < T ′′ < T, not clipped(T ′′,member(C,SOC), T),
semi closed(SOC)

clipped(T ′,member(C,SOC), T)← happens(tell(C,SOC, leave(C,SOC)), T ′′),
T ′ < T ′′ < T

clipped(T ′,member(C,SOC), T)← happens(tell(SOC,C, expel(C,SOC)), T ′′),

22The formulation given here is syntactically different from the one adopted in [TS02] but semantically equiva-
lent to it. Here, we basically rewrite the formulation of [TS02] so that it is in line with the syntactical conventions
introduced in section 6 and earlier on in this section.

79

T ′ < T ′′ < T

In [TS02], it is assumed that this knowledge is held by all computees, so that they can reason
about themselves and other computees being part of societies, starting from the recording of
actions and from the (subjective) knowledge of the nature of societies. In general, this knowledge
may be held just by the society itself (or by any computee serving the role of authority in
the society) so that it can “reason” about membership within itself from the observation of
communication amongst computees and with the society, as shown in D5 . The society can
also provide a “yellow pages” of members, updated by each new entry and departure, that
computees can consult when needed.

Within the KGP model, knowledge such as outlined above is held within KBplan. The
recording of actions (happens events) is kept, as usual in this model, within KB0.

Societies (or authority computees within them) can formulate their own policies regarding
admission and expulsion of members. In [TS02], some examples of these policies are presented,
formulated as integrity constraints in abductive logic programming. For example, if some
computee attempts to join a semi-open society, then the society (possibly via a gatekeeper
authority in it) will communicate to the computee that it has been admitted. More formally
(and again using the conventions adopted in section 6):

happens(tell(C,SOC, join(C,SOC)), T), semi open(SOC)⇒
happens(tell(SOC,C, admit(C,SOC)), T ′) ∧ T < T ′

This integrity constraint is assumed to be held by the society (or by any authority in
it). Within the KGP model, knowledge such as this is held within KBreact, and represented
as (we assume this knowledge is held by SOC):

tell(C,SOC, join(C,SOC), T), semi open(SOC)⇒
tell(SOC,C, admit(C,SOC), , T ′) ∧ T < T ′

10.4 Responding to the society’s expectations

The society model in SOCS allows for the society to generate expectations for individual com-
putees inhabiting it. These expectations may, for example, be related to the society goals, if
any, and might be communicated to computees. An appropriate response by the computee
to such expectations could be to import these expectations as integrity constraints or reactive
rules in its knowledge. Alternatively, it can generate goals for itself related to the expectations.
Such responses to the expectations can then be catered for by the Reactive capability together
with the Reactivity transition and the Goal Decision capability with the Goal Introduction
transition of computees.

A computee can react to society’s expectations in different ways. This is possible because the
model of the society envisaged in D5 leaves the computees free to act as they wish even if this
might be not compliant with protocols. The computee can weigh up the society’s expectations
and the (simple) goals that it generates against its own goals to make a new decision about its
current goals.

Then a socially “obedient” computee would assign (in the higher level part of its KBGD)
to such generation of goals via expectations higher priority over all other types of rules. Hence
these expectations will be adopted as goals for the computee when this executes its goal intro-
duction transition. However, different computees could attach different levels of priority to goals

80

generated by society expectations in comparison to their own private goals thus allowing for
different degrees of conformance to the societies expectations. Also this relative priority of goals
from expectations and own goals can be dynamic depending on the particular circumstances
in which the computee finds itself at the time of becoming aware of a particular expectation.
The higher level part of the KBGD can accommodate such a versatile spectrum of treatment
of society expectations.

11 Possible extensions

In this section we discuss briefly some of the possible extensions of the KGP model. These
are beyond the scope of this report, as they are not needed to meet the minimum success
requirements set for WP1 within deliverable D3. Nonetheless, they would be useful extensions
for a wider applicability of our approach.

11.1 Plan introduction transition with intelligent selection of plans

At the moment, the Plan Introduction (PI) transition is defined in such a way that any plan
given by the Planning capability can be incorporated within the state of the computee, for the
goals selected for planning. In general, it would be useful to be able to apply preferences over
plans in order to select, say, plans that may be more likely to succeed than others or plans that
have less cost in executing. We could use the same form of preferential reasoning, that we have
adopted already for the goal decision capability and for the behaviour as given by cycle theories,
in order to decide which plan to choose at any point according to some preference policy. We
have already started studying this problem [DK03] by investigating the integration of abduction
and argumentation where preference reasoning via argumentation on the abductive hypotheses
is performed while generating an explanation or plan through abduction.

Apart from the Planning capability this extension would also affect the revision transitions,
selection functions and the range of possibilities for cycle theories to take into account possible
changes of preferences of plans over time.

11.2 Knowledge base revision transition

We have allowed for plans and goals in the state of a computee to be revised dynamically, within
PR and GR transitions. For the knowledge base of the computee we have assumed that this can
only change in its KB0 component recording new information from the environment. Changes
to KB0 of course implicitly cause changes to the conclusions that can be derived within KB, as
indicated via KBTR. However, we have not allowed for the rest of the knowledge, KB −KB0,
to change directly. For this we could introduce a new transition for Knowledge Revision (KR),
of the form

(KR)
〈KB,Goals, P lan〉
〈KB′, Goals, P lan〉

τ

whereKB′ is obtained via a new reasoning capability |=KBR, namelyKB |=KBR KB
′, standing

for “KB′ is the result of revising KB”, according to some knowledge revision policy.
With this transition we could address the problem of revising the knowledge base when the

expansion of KB0 with a new observation would imply that the knowledge base of the computee

81

becomes classically inconsistent (see section 6.3.1). We could then employ revision policies that
take into account the reliability of the source of the observed information and the level of trust
that the computee has in its sensing capabilities, in order to decide how to revise its KB0 to
avoid such an inconsistency.

Also the |=KBR capability may use evidence collected in KB0 to update the general model
of the world that is present in KB \ KB0. In particular, this new capability and transition
can be used for the computee to generalise and learn from its past experience. It can generate
“compiled” knowledge that links direct observations to “internal” properties of the model of
the world that the computee has. For this the |=KBR capability can use different methods of
relational learning such as those of predictive Inductive Logic Programming (ILP) for learning
rules for useful concepts and descriptive ILP for learning integrity constraints.

The modular definition of the transitions facilitates the addition of such a KR transition.
Such an addition would affect only the spectrum of cycle theories that one could define but
does not require a re-examination of the structure of cycle theories. In fact, the present form of
cycle theories could include this transition giving its relative priority over the others and thus
the only task that remains is for the transition itself to be defined, by defining the underlying
capability.

11.3 Conditional Goals

In some cases when the computee operates in a highly unknown or unpredictable environment
it is useful for it to be able to derive conclusions conditional on certain properties of the environ-
ment. The Planning capability already operates in this way as plans can contain, together with
actions, subgoals some of which are not to be planned further but rather act as assumptions
that can be tested in the environment. Similarly, we can extend the goal decision capability
so that the computee can derive conditional goals for itself, e.g. “go on a holiday trip if the
weather is good” or “give a resource to another computee if it agrees to pay a certain price”
etc. This extension can be supported within an integrated framework [KM03b, DK03] of logic
programming with priorities and abduction. This is the same framework mentioned above for
the intelligent planning extension but where now the argumentative reasoning with logic pro-
grams and priorities is the primary form of reasoning that uses abduction if and where this is
needed.

11.4 Concurrent execution and interruption of transitions

In the definition of cycle theories and their induced operation we have assumed that transitions
may not be executed concurrently. This may be restrictive. For example, it might be useful to
be able to plan for one goal, via PI, while executing actions in a plan for another goal, via AE.
In order to accommodate concurrent execution of transitions we need to relax the conditions
that all transitions are incompatible thus obtaining a partial order over the transitions, and
have more than one cycle step equally preferred at some times. We should then modify the
induced operation by a cycle theory to allow for concurrency and study how the state is updated
through the concurrent execution of transitions.

In our model we impose that until a transition is completed, no interrupt, as provided by
a POI, can be taken into account. In a more advanced execution model, we could force that
the current transition is interrupted when new information arrives at the computee and a POI
needs to be executed. In such a case we need to decide which of the partial information (if any)

82

computed by the current transition should be kept in the state of the computee before engaging
into the POI transition.

11.5 Utilities and Costs

In this document we have not studied in any detail how a computee can use knowledge of
explicit and numerical utility of goals and actions. Also global utilities of states can be useful
in taking local decisions on actions and goals. Different measures of utility can be used in
several places in the model. In particular, they can be used as heuristics in the model. For
example, in goal selection we could select any goal G such that G is the most “useful” goal to
achieve, in that achieving that goal will bring the computees into a state of maximal utility.
We could also accommodate costs of actions within the framework, and add new heuristics
for action selection such as the selection of all A in Plan such that A is of low cost below a
threshold.

12 Related work

During the past few years we have witnessed an explosion of proposed models and architectures
for individual agents. In this section, we identify a set of proposals that we believe are directly
relevant to the KGP model. We expose the similarities and differences between KGP and those
related proposals, resulting in a critical evaluation that is based on the relative advantages and
disadvantages of KGP with respect to these related models.

We start with a number of existing proposals that are popular in modelling agents and
multi-agents systems, most notably, the classical BDI model [RG97], the modelling features
of the agent-programming languages: Agent0 [Sho93], AgentSpeak [Rao96] and its variants,
3APL [HdBvdHM99a], and the agent-modelling framework DESIRE [BDKTV97]. Then we
compare KGP with existing computational logic-based approaches that use, as we do here,
non-monotonic logic programming frameworks and techniques to model, specify and implement
software agents. These include the work developed by the IMPACT project [AEK+99], the logic-
based systemMINERVA [LAP01b], the agent specification language GOLOG [LRL+97] and
its variants, and Vivid Agents [SW00].

Throughout this section we advocate a number of advantages for KGP , which we explicitly
list below for the sake of readability. These are as follows:

• The KGP model provides a simple but powerful specification framework that synthesises
in a single framework: Abductive Logic Programming (ALP), Temporal Reasoning based
on the Event Calculus, Constraint Logic Programming (CLP), and Preference-based Rea-
soning based on Argumentation.

• The KGP model supports the computational logic formulation of an agent’s knowledge,
goals, plans, and reasoning capabilities represented as non-monotonic logic programs to-
gether with a logical cycle-theory that is specified separately. All these specifications are
modular and executable, by relying computationally on existing proof-procedures and
their extensions (to be developed within WP3).

• The KGP model is flexible in that it supports heterogeneity of computees because of the
modular definition of the capabilities and the transitions, as well as the modularity of the
cycle theory.

83

• The KGP model does not rely upon any fixed sequence of operations, computees can
take run-time decisions about what to do next, depending on their personalities and the
information they receive from the environment.

• The flexibility of the KGP model and the way certain transitions are specified allow for
computees to be autonomous and adapt their operation to the open and continuously
changing environment. In addition, the model allows computees to be tolerant of partial
information and recover from some inconsistencies that may arise from directly observing
the environment.

• Computees specified in the KGP model have social ability through communication and
interaction with the environment, and can contain social knowledge and capability as
specified and supported by the model.

We proceed to discuss how these advantages compare with the features of existing agent
models.

12.1 The BDI model

Perhaps one of the most influential approaches for modelling complex systems in the form of
agents, is based on the intentional stance proposed by Dennet in [Den87]. This approach refers
to treating a complex system as if it had intentions, irrespective of whether it does or not. The
advantage of treating a system as a rational agent is that one is able to predict the system’s
behaviour. The idea here is that first one ascribes beliefs to the system, as those the agent
ought to have given its abilities, history and context. Then one attributes desires to the system
as those the agent ought to have given its survival needs and means of fulfilling them. One can
then predict the system’s behaviour as that of a rational agent would undertake to further its
goals given its beliefs.

Dennet argues for three main reasons in taking an intentional stance. First it fits well with
our understanding of the processes of natural selection and evolution in complex environments.
Second, it has been shown to be an accurate method of predicting behaviour. Third, it is
consistent with our folk psychology of behaviour.

Within the intentional stance approach, the BDI (Beliefs, Desires and Intentions) model
has been proposed by Bratman et al [BIP88] to represent resource-bounded practical reasoning
for programmable agents. The main philosophy of the approach requires that the Beliefs hold
the partial knowledge that agents have about their environment, the Desires contain the goals
the agents are aiming at, and the Intentions include the plans agents set in order to achieve
their goals.

12.1.1 Classical BDI: Architectures, Logics, and Implementations

One important contribution of the original paper by Bratman et al [BIP88] is an architecture for
practical reasoning. In this architecture the agent’s intentions are viewed as being structured
into larger plans. The architecture distinguishes between plans that the agent has actually
adopted (intentions that are structured into plans as a result of deliberation), and plans-as-
recipes, or operators, that are stored in an additional structure called the plan library.

What makes the architecture suitable for practical reasoning are four main processes:

84

• Means-End-Reasoner – generates a set of options (which can be thought of as sub-plans
or eventually actions) from the current beliefs, intentions, and plans in the plan library;

• Opportunity Analyser – generates a set of options based on the current beliefs and the
current desires;

• Filtering Process – provides the options that survive given the options generated by the
Means-End-Reasoner and the Opportunity Analyser, and the current beliefs, and inten-
tions;

• Deliberation Process – generates a new set of intentions from the current set of surviving
options generated by the Filtering Process, the current beliefs, and desires.

Together with an additional reasoning process that specifies how the agent’s beliefs change
due to the agent’s perception of the environment, the above four processes constitute a system,
by which an agent forms, fills in, revises and executes (actions from) plans.

It is important to note that the architecture requires that the plans are partial due to the
bounded resources and knowledge that the agent has. Plans can be partial in two different ways.
They may be temporarily partial, accounting for some periods of time and not for others. They
may also be structurally partial, accounting for situations where they need to decide upon the
ends, leaving open for later deliberation questions about the means to those ends.

Following [BIP88], Cohen and Levesque [PL90] have formalised some philosophical aspects
of Bratman’s theory [Bra87]. In their formalism, intentions are defined in terms of temporal
sequences of an agent’s beliefs and goals. In related work, Rao and Georgeff have developed
a modal logic framework for agent theory based on the three primitive modalities of beliefs,
desires, and intentions [RG91, RG97]. Their formalism is based on a branching model of time in
which belief-, desire-, and intention-accessible worlds are themselves branching time structures.

To establish the link between BDI theory and practice Rao and Georgeff have also presented
an abstract architecture [RG92, RG95] that focuses on practical/computational concerns (unlike
that of Bratman et al), where amongst other things, it illustrates how a BDI system can be
designed to have data structures that correspond to beliefs, desires, and intentions, together
with update and query operations on these structures. The rationale for such a choice is useful,
Rao and Georgeff argue, when an agent has to communicate with humans and other agents, and
can be expected to simplify the building, maintenance, and verification of application systems.

However, the architecture does not rely on the use of modal-logic theorem provers, as
one might have expected. The reason for this is that by using such computational tools
the time taken to reason, and thus the time taken to act, is potentially unbounded, thereby
destroying reactivity that is essential in the agent’s survival. Instead, the update operations
on the beliefs, desires, and intentions structures are controlled by an interpreter as shown below:

BDI-interpreter
initialise-state();
repeat

options:= option-generator(event-queue);
selected-options := deliberate(options);
update-intentions(selected-options);
execute();
get-new-external-events();

85

drop-successful-attitudes();
drop-impossible-attitudes();

end repeat

At the beginning of every cycle, the option-generator() reads an event-queue structure and
returns a list of options. The deliberate() selects a subset of selected-options to be adopted and
adds these to the intentions structure. If there is an intention to perform an atomic action at
this point in time, the agent then executes it by calling execute(). Any external events that
have occurred during the interpreter cycle are then added in the event-queue by calling get-new-
external events(). Internal events are added as the occur. Next, the agent modifies the intention
and desire structures by calling drop-successful-attitudes() and drop-impossible-attitudes() to deal
with successful as well as unrealisable (or impossible) intentions and desires.

The ideas behind this new, computing-centric, abstract architecture is to bridge the gap,
between BDI theory - presented in terms of the BDI architecture and the modal logics on
the one hand, and a number of existing BDI implementations - most notably the work on the
systems PRS [GL86, GI89a, GI89b, IGR92] and dMARS [GL87] on the other.

12.1.2 Classical BDI and KGP : A comparison

Wooldridge and Jennings in [WJ95] inform us that: “. . . precisely which combination of infor-
mation attitudes (such as knowledge or belief) and pro-attitudes (such as intentions, desires
and obligations) is important to characterise an agent, is an issue of some debate”. In fact, this
issue is still ongoing and there is no universal agreement as to what such pro-attitudes should
be. For the purposes of SOCS, and inspired by BDI, we chose the structure of Knowledge
Bases, Goals and Plans.

We could safely say that, at a first glance, the KGP model seems to be falling within the
general philosophy of the classical BDI model, but with more emphasis on a computational
logic characterisation. Moreover, using the categories discussed in [WJ95], we can say that the
relation between classical BDI and KGP can be described as follows. The information attitude
of belief in BDI is similar to that of knowledge in KGP . The pro-attitude of desires in BDI
is similar to the more specific computational notion of having explicit goals in KGP and, in
particular, it can be thought of as a superset of the KGP goals. The pro-attitude of intentions
in BDI is similar to the set of goals in KGP that have been chosen so far to be planned for,
together with any (partial) plan generated for them.

By examining closer the BDI and KGP models, however, we find a number of important
differences, most of which result from the notions of information attitudes used, the granularity
of the pro-attitudes represented, and the different computational logic tools used to represent
and reason with these attitudes and pro-attitudes.

One major difference between BDI and KGP is that KGP is not based on a modal-logic
approach to represent an agent’s beliefs but instead it is based on a non-monotonic computa-
tional logic that supports defeasible reasoning for the knowledge of agents. The KGP model
takes a simpler (certainly a less expressive) specification language where belief is ascribed as a
mental attitude from an external viewpoint.

Still the KGP model does not loose the generality of the BDI model in the way plans are
constructed and used. Both in the BDI and in the KGP models, plans can be drawn from a
plan library or generated as part of a deliberation process (in the case of KGP model we allow
plans to be generated as a result of reasoning). However, even if both BDI and KGP address

86

resource boundedness by constructing partial plans, KGP also uses a meta-logical component
focusing on urgency (see the action and goal selection discussed earlier in section 9) to facilitate
timely action execution and planning.

Also, the KGP model uses goal–selection policies that are similar to the generate-options()
functions in BDI. However, the KGP policies are specified as preference theories that can be
used to describe the personality of the agent. These can be added in a modular way when the
agent is created, or even in real time, thus providing more possibilities for engineering flexible
behaviour, when this is required. In principle, we plug in different modules to reflect different
personalities. Moreover, our goal–selection policies are interpreted in an argumentation–based
framework, which attributes to our approach a more detailed and formal model than that
proposed by the classical BDI.

Another important difference between the BDI and the KGP models is that in KGP we
provide a more flexible cycle theory to regulate the behaviour of a computee, in the sense that
this theory can be customisable, rather than relying on an one-size-fits-all cycle as in classical
BDI (and its recent interpretations discussed in sections 12.3, 12.4 and 12.5.

Another advantage of the KGP model over the classical BDI is that in KGP the correspon-
dence between agent specification and executable implementations is closer than that provided
by classical BDI. In our review of the BDI work we agree with Rao’s more recent views on BDI
[Rao96], viz., that the complexity of the code written for classic BDI implementations such as
PRS and the simplifying assumptions made by them have meant that these implementations
have lacked a strong theoretical underpinning.

Rao’s recent views is that the specification logics for BDI have shed very little light on
the practical problems and, as a result, the two streams of work on theory and practice seem
to have been diverging. By looking back at the abstract architecture provided in [RG92],
Rao also argues that “. . . due to its abstraction this work was unable to show a one-to-one
correspondence between the model theory, proof theory, and the abstract interpreter”. He then
goes on to further conclude that “. . . the holy grail of BDI agent research is to show a one-to-one
correspondence with a reasonably useful and expressive language”.

We will see later, in section 12.3, how Rao, who is undoubtedly one of the major contributors
in the development of modal BDI logics, turns to the use of logic programming techniques to re-
interpret his earlier BDI work. Independently of Rao’s change of perspective, the development
of our KGP model has been motivated by similar observations. However, in our work we are
driven mainly by the possibility of providing a computational logic model for the specification
and implementation of software agents that relies solely on logic programming techniques and
their extensions, hoping to demonstrate that the so much desired one-to-one correspondence
between agent theory and practice is indeed possible.

Still, one important advantage of BDI over KGP is that agents in BDI can be introspective
in that they can reason about their own beliefs and reasoning capabilities. In addition to
introspection, a BDI agent can also model the beliefs and capabilities of other agents. Although
KGP does not support reasoning about other agents, it does support reasoning about actions,
with incomplete information and how to recover from inconsistencies that arise from direct
observation. We could have extended KGP to support introspection and modelling of other
agents using existing computational logic techniques based on meta-logic [BK82, Sat92, Jia94].
Indeed, in earlier work we have made a start in modelling such introspection [DST98, DST99].
We have chosen not to deal with issues of introspection in this document, mainly because we
wanted to concentrate on other issues of more direct relevance to Global Computing.

As a final remark on BDI it is worth saying that the model has been criticised for not

87

taking into account social notions, in particular obligations. It was extended by Broersen et al
[BaJHHvdT01] to accommodate such notions. A new architecture contains four components
that output: beliefs, obligations, intentions, and desires only for certain inputs. Conflicts
between these outputs are either resolved by the architecture’s control loop (BDI-like) or by
a separate selection component that outputs new intentions. Agent types are represented by
different control loops. In a realistic agent, beliefs override obligations, intentions or desires,
while in a single-minded agent intentions override desires and obligations. Other types of agents
are also defined such as open-minded and selfish agents. An implementation of the extended
model is available as a production system using propositional rules with only a partially-specified
semantics.

KGP takes into account social notions such as protocols and society expectations, as dis-
cussed in section 10. In common with Broersen et al [BaJHHvdT01] KGP attempts to facilitate
the heterogeneity of computees by its modular and general cycle theories modelling different
computee personalities.

12.2 AGENT0

AGENT0 [Sho93] is as an agent-oriented programming language that extends the AI language
Lisp. It is probably one of the first attempts to promote a social view of computation based on
the interaction of different co–operating agents. The approach is grounded on a multi–modal
logic with an explicit representation of time, with modalities such as beliefs and commitments,
and communication primitives, such as REQUEST and INFORM.

Using the AGENT0 architecture an agent has four component data structures: a set of
capabilities – specifying what an agent can or is able to do; a set of beliefs – stating what an
agent believes at certain times and about certain times; a set of commitments – representing the
actions that the agent ought to do at specific times; and a set of commitment rules – describing
how new commitments can be introduced or old commitments can be dropped.

An agent cycle interprets commitment rules in AGENT0 roughly as follows: a new incoming
message may update the beliefs and will be matched against the agent’s message conditions of
the commitment rules set. These conditions are then matched against the beliefs of the agent.
If the commitment rule fires (i.e. both the message and the conditions of the commitment rule
are satisfied), then the agent becomes committed to the action. The execution of an action
then may update the commitments and the beliefs of the agent.

In AGENT0, the capabilities, the beliefs the commitments and the commitment rules cor-
respond, respectively, to the list of available actions that the computee can perform in the
environment, the knowledge of a computee at specific times and about specific times, the goals,
and the knowledge bases underlying the Reactive and Goal Decision capabilities in KGP .

One main difference between KGP and AGENT0 is that in KGP (like BDI) we have plans
and goals that are explicitly related through transitions, while in AGENT0 these relations are
missing. Also, goals in KGP can have varying degrees of priority, which can be determined
dynamically (not like commitments which are prioritised only according to time).

AGENT0 was only intended as a prototype, to illustrate the principles of agent–oriented
programming. AGENT0 makes some limited provision for agents making requests for actions
to other agents. This is an issue which we have not addressed in the KGP model. A further
refinement of AGENT0 to deal with the limitation of such requests has been reported by Thomas
in the Planning Communicating Agents (PLACA) language [Tho95]. Despite the improvements
of PLACA over AGENT0, the language still inherits the gap that there is in AGENT0 between

88

the high–level concepts such as beliefs and commitments and the implementable architecture.
In contrast, one of the main aims of KGP in using computational logic has been to bridge the
gap between the formal model and the implementation.

Moreover, as we have seen in the introduction of this section, the KGP model has a more
flexible control theory than AGENT0, which relies on a one-size-fits-all interpreter. In addition
to that the KGP model is defined to facilitate a more concrete computational counterpart (to be
developed within WP3). For example, the notion of how beliefs persist in AGENT0 is described
in terms of informal guidelines, which need to be followed at the agentification (implementation)
stage. Instead, in KGP , the way the knowledge persists and changes is described with concrete
event calculus axioms that are precisely specified and can be be directly executed as logic
programs.

Finally, the resulting AGENT0 language, although quite expressive, lacks sensing actions
and at the same time makes a strong simplifying assumption, namely, that the internal beliefs
of an agent are assumed to be consistent. Instead in KGP , the internal consistency of the
knowledge base of the computee is not assumed but is ensured by the choice of the representation
language of the computational logic used and the way observations are assimilated in the agent’s
knowledge base.

12.3 AgentSpeak

12.3.1 (Concurrent, Object-Oriented) AgentSpeak

The first version of AgentSpeak [WRR95] attempted to provide an agent-oriented programming
language with BDI–like modelling capabilities such as PRS [IGR92] and appropriate language
constructs, influenced by work in object-based programming languages. Agents in the system
are organised into agent families, a class of agents whose instances offer specific types of services
to other agents. Services are realized through the execution of an associated plan. Each agent
is also associated with a database. Some of the services and a portion of the database could be
public; i.e. available outside the agent. The remainder of the database and the services and
all of the plans are private to the agent family. The language supports and extends concurrent
object-oriented language features such as synchronous and asynchronous messages and has
well-developed communication primitives for groups.

12.3.2 AgentSpeak(L)

Like with PRS, however, there was a large gap between AgentSpeak programs and the theory of
the BDI model. To bridge this gap, Rao in [Rao96] proposes AgentSpeak(L), a programming
language that can be viewed as an abstraction of the BDI implemented systems (such as PRS
- described in [GI89a] and dMARS - in the way formalised in [dKLW98]) and allows agent
programs to be written in a restricted first-order language with events and actions. In this
context, Rao argues that the shift in perspective of taking a simple specification language as
the execution model of an agent and then ascribing the mental attitudes of beliefs, desires
and intentions, from an external viewpoint is likely to have a better chance of unifying theory
and practice. It is worth saying here that KGP has been constructed very much in this
spirit. In fact, the argument above, presented by Rao relates quite closely the KGP model and
AgentSpeak(L), while at the same time it also enforces the link between of KGP with BDI.

The current state of an AgentSpeak(L) agent, which is a model of itself, its environment,
and other agents, can be viewed as its current belief state. From this abstract description of an

89

agent’s state one can conclude that an AgentSpeak(L) agent is like a BDI agent but different
from a KGP one, in that it contains a model of itself and other agents. However, it is not
clear from the description in [Rao96] how this claim is supported, as no examples are given in
the modelling language to model, say, the self or other agents. An example is provided of how
the environment can be represented, not in a “meta-level” sense but as a set of object-level
predicates. If the modelling of the self and the other agents is meant to be done in this way (i.e.
via ordinary object-level predicates), then an equivalent object-level representation can easily
be expressed in KGP too.

States which the agent wants to bring about in AgentSpeak(L) can be viewed as desires,
while the adoption of partially instantiated rules/programs to satisfy such desires can be viewed
as intentions. Although the notion of goals are used to represent desires, the treatment of
goals in AgentSpeak(L) is different from the treatment of goals KGP , where goals are data
structures with temporal constraints and links to a goal hierarchy, forming part of the agent’s
state. On the other hand, intentions are similar to KGP plans in that in KGP plans are set of
partially instantiated actions (the un–instantiated part may include the temporal constraints
of the action) that change as a result of new incoming observations reflecting changes in the
environment. However, KGP plans are not programs in the AgentSpeak(L) sense, as we will
see shortly.

In AgentSpeak(L), an agent contains apart from a set of beliefs, a set of plans, and a set of
intentions, also a set of events, a set of actions, and a set of selection functions. The selection
of plans, their adoption as intentions, and the execution of these intentions are described by
providing the operational semantics in terms of an interpreter that runs the agent programs
specified in AgentSpeak(L).

The beliefs, desires and intentions are not defined as modal formulas, but instead as a set of
base beliefs (or as Rao puts it: facts in the logic programming sense) and a set of plans. Plans
are context–sensitive, event–invoked recipes that allow hierarchical decomposition of goals as
well as decomposition of actions. The key characteristic to remember here is that plans are
drawn from a plan library, that is, they are different from plans in KGP that are generated
on–line. Similarly, although events (especially those generated externally from changes in the
environment) in AgentSpeak(L) are like the KGP observations, a new observation in KGP
may cause amongst other things a Goal Introduction or a Goal Revision, which combined with
the dynamic planning facility allows for a more dynamic behaviour from that provided by
AgentSpeak(L).

The proof theory of the AgentSpeak(L) language is provided in terms of a labelled transition
system. The notion of configuration is a labelled description of the set of events, beliefs, inten-
tions, and actions of an agent. Proof rules define how the agent transits from one configuration
to the next. It is argued that these transitions have a direct relationship to the operational
semantics of the language and hence help to establish the strong correspondence between the
interpreter and the proof theory.

However, the interpreter of AgentSpeak(L), like the BDI cycle, is a one-size-fits-all inter-
preter, and not the flexible cycle provided in the KGP model. Moreover, up until recently,
there was no implementation of the AgentSpeak(L) interpreter. AgentSpeak(L) also suffers
from proof–rules being embedded in the cycle algorithm, that is, they are not defined sepa-
rately and modularly, as in the KGP cycle theories.

Undoubtedly the AgentSpeak(L) work has opened up an alternative, restricted, first–order
characterisation of BDI agents, which bridges the gap between theory and practice. However,
another disadvantage of AgentSpeak(L), with respect to some other abstract agent–oriented

90

programming languages (e.g. 3APL as we will discuss it in section 12.4), is that it does not
provide ways of dealing with plan failure. In fact, Rao has pointed out that AgentSpeak(L)
events for goal deletion were supposedly intended for dealing with plan failures, but he did not
include them in the semantics of the language. The KGP model deals with plan failure and
goal failure with the Plan Revision and Goal Revision transitions, which update the agent state.

12.3.3 AgentSpeak(XL)

Bordini et al [BBJ+02, HM02] have implemented an extended AgentSpeak(L) interpreter which
they call AgentSpeak(XL). This extended interpreter allows the programmer to handle plan
failures as well as specify un–instantiated variables within negated belief atoms in the context
(KGP preconditions) part of plans (AgentSpeak(L) required that only ground atoms are used
in negated context conditions). However, this work emphasises that the formal semantics for
these extensions is not as yet fully specified, but is work in progress. In the AgentSpeak(XL)
paper, not even an informal account of these extensions have been defined, as the main focus
of this more recent work has been to extend the original AgentSpeak(L) interpreter with a
scheduler for the on-the-fly generation of plans.

Another important extension specified in AgentSpeak(XL) is that it improves AgentS-
peak(L) by adding agent communication capabilities in the style of KQML. To accommodate
these capabilities, changes to the original AgentSpeak(L) abstract interpreter have been defined
in order to reflect the communications in which agents are engaged.

Finally, it is not clear in AgentSpeak and AgentSpeak(L) how resource boundedness can be
supported, although an example of how to use AgentSpeak(XL) with deadlines is provided in
[BBJ+02]. In KGP we have made some limited provision for resource boundedness within the
selection functions, as discussed in section 8.

12.4 3APL

Another programming language for agent programming relevant to KGP is 3APL, presented in
a number of articles by Hindriks et al [HdBvdHM98, HdBvdHM99a, HdL00, HdBvdHM99b].
Unlike KGP which is based purely on a declarative language, the 3APL language is a combina-
tion of imperative and logic programming. From the imperative programming viewpoint, 3APL
inherits the full range of regular programming constructs, including recursive procedures and
state-based computation. States of agents in 3APL, however, are belief (or knowledge) bases,
which are different from the usual variable assignments of imperative programming. From the
computational logic perspective, also taken by our KGP model, answers to queries in the beliefs
of a 3APL agent are proofs in the logic programming sense.

12.4.1 Agent Programs

At run–time an agent program in 3APL is viewed as consisting of a set of Beliefs, a set of Basic
Actions, a set of Goals, and a set of Practical Reasoning Rules. These concepts are discussed
below, the discussion includes also their relation to concepts of the KGP model.

Beliefs – Although the beliefs in [HdBvdHM99a] are exemplified in a logic programming like
(first-order) language with integrity constraints, any logical language, even a modal language
could in principle be used. In KGP , however, we have already seen that the representation
language is fixed to be a combination of ALP, CLP, and LP with Preferences.

91

Basic Actions – Another interesting feature of 3APL is that basic actions are viewed as
simple goals in the language (because actions are seen as the capabilities that can achieve a
particular state of affairs). This perspective is due to the fact that the language treats an agent
more like a mental concept rather than something that requires an interface to an external
environment (but see section 12.4.3 on communication). This is an important difference with
the KGP model that models an agent as a mental entity too, but it also models explicitly the
link of the agent with the environment through sensing and action execution.

Goals – Apart from basic actions, there are two other types of goals: achievement goals
and test goals. Achievement goals act like procedures in imperative programming and have
a procedural meaning for things that agent has to do. Test goals on the other hand, allow
the agent to query its beliefs, and are evaluated relative to the current beliefs of the agent,
similar to preconditions of actions in KGP . Together, the basic actions, achievement goals and
test goals are the basic goals of the 3APL language. Complex goals are then composed from
basic goals by using programming constructs for sequential composition and non-deterministic
choice, constructs drawn from imperative programming.

It is important to say that the notion of goal is used in 3APL as a more general notion to
that of intention, the reason being that intentions in the BDI context are often viewed as some
kind of choice with an associated level of commitment [PL90]. The commitment made to a
choice determines when an agent will reconsider or drop its intentions. An agent may adopt
several commitment strategies towards its intentions. In 3APL, however, a goal reflects a choice
that the agent has made, while there is no explicit level of commitment associated with each
of the goals. The commitment or the revision strategies of an agent are more or less implicit
in the practical reasoning rules of the agent (to be described below). Put another way, it is the
practical reasoning rules that determine which goal can be considered as an intention.

Note the similarities and differences of 3APL and KGP goals. Like in 3APL, KGP goals
also reflect choices made by the agent but the difference is that KGP supports a specific Goal
Decision theory for choosing goals. In addition, KGP also provides explicit transitions for Goal
Introduction and Goal Revision, as a way to deal with the similar notions of commitment and
revision strategies in the style of BDI.

Practical Reasoning Rules – The main purpose of the practical reasoning rules is that
they supply the agent with a facility to manipulate goals. In our framework we can interpret
the practical reasoning rules as specifying plans to achieve goals Thus, practical reasoning rules
can be used to build a plan library from which an agent can retrieve plans for achieving goals.
In addition, they provide a facility for monitoring goals, similar to the concept of guards, as in
concurrent programming languages, to allow the agent to commit to a plan. It is important to
note that in [HdBvdHM99a] practical reasoning rules are classified under four classes:

• Failure rules – these are rules that revise the goals of an agent in order to avoid failure,
or clean up the state of the agent after failure. Alternatively, the agent may substitute
some alternative means to deal with a failure situation and try to achieve a goal in some
other way. To avoid behaviour that leads to catastrophic consequences, this type of rules
are assigned highest priority.

• Reactive rules – the application of these rules does not depend on the current goals of the
agent but only on the current beliefs. This class of rules specify a plan of action in the
body of the rule which is required to respond appropriately to a type of situation that is
represented by the conditions (guard) of the rule. As agent responses using these rules
are time critical, the priority assigned to these rules is the second highest.

92

• Plan rules – agents use these rules to find the appropriate means to achieve their achieve-
ment goals. Plan rules provide a plan in the body of the rule to achieve the achievement
goal in the head of the rule. The lower priority assigned to this class of rule, third highest,
reflects the assumption that it is important to avoid failure and be reactive, and that only
after this has been accomplished the agent should worry about how to be proactive.

• Optimisation rules – these rules are used to identify situations where a suboptimal plan is
being pursued by the agent to achieve a goal, and, if such situations are found, then the
rules optimise the behaviour of the agent by choosing a more optimal way to achieve it
achievement goals. Without these rules nothing can go wrong, but without them more cost
may be induced by the agent’s current plan than necessary. For this purpose, optimisation
rules have the lowest priority.

Given the above structure of the practical reasoning rules, there is an obvious similarity
between Failure rules and Goal Revision in KGP , Reactive Rules and Reactivity in KGP , Plan
Rules and Plan Introduction in KGP . The difference is that the classification and prioritisation
scheme above is not imposed by the 3APL language, but it is recommended by the designers of
the language when writing a practical application. Instead, in KGP we have committed to a
specific structure of transitions that are explicitly supported by the model, in that they have a
formal specification, whose prioritisation is specified modularly in the cycle theories according
to the agent personality. There are no Optimisation Rules in KGP , but we discuss such rules
in section 11 as a possible extension to the existing model.

12.4.2 Operational Semantics and Control

The operational semantics of 3APL are specified in terms of transition rules, which – similarly to
AgentSpeak(L) – are relations on so-called configurations, but here transitions are not labelled.
Two distinct classes of transition rules are defined. The first type defines what it means to
execute a single goal given the current belief base of an agent and the current computational
state (which include the variable bindings). At this level, transition rules provide a formal
specification for 3APL basic actions, achievement goals, test goals, complex goals, and practical
reasoning rules. The second type of transitions is defined in terms of the first type and defines
what it means to execute an agent in terms of executing multiple goals.

To deal explicitly with selection mechanisms for goals and actions, 3APL introduces a sep-
arate formal specification for the control structures of the agent language. A second transition
system is introduced, called the meta-transition system, which includes features for referring to
the object level language, as well as operators for programming control structures for the object
(agent) level. The meta-transition system also supports a set of basic actions that allow the
agent to select, apply rules, and execute goals. For this purpose four actions are introduced:
(1) an action for selecting an applicable rule, (2) an action for the application of a number of
rules, (3) an action for selecting an enabled goal, and (4) an action for the execution of a set of
goals. Finally, constructs for expressing the preference order over goals and rules (such as the
practical reasoning rules base) are also provided.

The control structure that is proposed by 3APL [DdBD+02] is a specialisation of a
one-size-fits-all update-act interpreter [Sho93, Rao96, KS96a] as follows:

Update-Act Cycle
1 Select a rule R to fire

93

2 Update the goal base by firing R
3 Select a goal G
4 Execute (part of) G
5 Goto 1

Steps (1) and (2) form part of the application phase. In step (1) a rule is selected using the
classification of rules. In step (2) the goal base of the agent is modified by applying the selected
rule. Steps (3) and (4) constitute the execution phase. At step (4), it is decided when part of
the goal is to be executed. A goal is not completely executed, as there is no way of deciding
in advance whether or not it is possible to execute a goal completely. In addition, if a goal
is completely executed, there is no reason of having fail rules to check possible failure when
executing a goal. So, at each cycle at most one rule is fired and at most one goal (is partly)
executed. The full representation of the cycle in the 3APL meta-language is presented in
[HdBvdHM99a]. In [DdBD+02] an extension of the meta-language is discussed, whose aim is
to make the cycle of 3APL programmable, however, all articles about 3APL control leave many
issues as part of future work.

In KGP we share the 3APL aims, in particular, to make the cycle theory programmable
and the selection mechanisms explicit [DdBD+02]. For this purpose KGP proposes a core set
of selection functions that can be extended via heuristic rules to model different behaviours
and types of agents. KGP also supports declarative theories for the cycle in order to provide
declarative control, while in 3APL the cycle relies more on imperative control constructs. In
addition, we allow for flexible orderings of transitions in that in KGP we can reason with
preferences about which transitions can be applied at a specific point in time. These preferences
may change according to external events or changes in the knowledge of the agent. Instead in
3APL the ordering is fixed. Within this fixed cycle it is possible to program specific operational
strategies on how the agent is to achieve its goals depending on the goals and other conditions
in the environment. This is in contrast with KGP where such strategies are separated out as
part of the preference policies of the computee in its knowledge base, and where in the cycle
we can arrange for the general operation of the computee according to some overall profile of
behaviour that we want the computee to have. Hopefully, our use of declarative control theories
will also allow us to specify and prove formal properties.

12.4.3 Agent Communication

3APL also provides support for communication between agents in two ways. The first, de-
scribed in [HdBvdHM99b], extends the set of basic actions with synchronous communication
actions such as tell and ask to exchange information or offer and request for requests between
agents. The arguments of the synchronous communication actions are unified and the resulting
variable bindings are the result of the communication that form the contents of the messages
being exchanged. In this approach, the synchronised actions are matched on the basis of the
performatives they enact, i.e. the tell action is a speech act with performative ‘tell’, which
should be matched with the complementary performative ‘ask’. Deduction is used to derive
information from a received message, while abduction is used to provide semantics for request
and offer.

To avoid some of the problems that arise from synchronous communication as in Hindriks
et al [HdBvdHM99b], the work of Dastani et al [DvdHD02] extend 3APL with asynchronous
communication. In this approach 3APL agents send and receive messages with contents com-

94

pliant to the FIPA specification. In order to model asynchronous communication in the 3APL
framework, the 3APL specification is extended with a buffer, called the message–base. The
message-base of a 3APL agent contains messages that either are sent by the agent to other
agents or are received from other agents. The message base makes possible for an agent to
continue with its own goals after sending a message. It does not have to wait for the receiv-
ing agent to synchronise before it continues. In the same way, the receiving agent can receive
messages at any time and does not have to form a goal to receive a message.

Like 3APL, the KGP model supports both synchronous and asynchronous communica-
tion as follows. Messages are special kinds of actions called communicative actions. Sending
messages involves applying Action Execution on communicative actions. Receiving messages
involves applying Active Observation - if the mode of communication is synchronous, or Pas-
sive Observation - if the mode of communication is asynchronous. Note, however, that KGP
abstracts away from the model the issue of how messages are being sent and received, as this is
a matter of the model’s implementation. Instead, in 3APL, the work discussed in [DvdHD02]
mixes in the modelling part implementation issues such as the notion of the message–base,
which is essentially an implementation concept of a message buffer. In addition, in KGP we
can specify private communication policies, which can be imported in the agent in a modular
way.

12.5 DESIRE

DESIRE (DEsign and Specification of Interacting REasoning components) is a high–level mod-
elling framework that explicitly models the knowledge, interaction, and coordination of complex
tasks and reasoning capabilities in agent systems [BDKJT97, BDKTV97, BKJT95]. The frame-
work views both individual agents and the overall system in terms of a compositional architec-
ture – where all functionality is designed as a series of interacting, task-based, hierarchically
structured components.

Tasks are characterised in terms of their inputs, their outputs and their relationship to
other tasks. Interaction and co–ordination between components, between components and the
external world, and between components and users is specified in terms of informational ex-
change, sequencing information and control dependencies. The components themselves can be
of any complexity, from simple functions and procedures up to whole knowledge-based sys-
tems, and can perform any domain function (e.g. numerical calculations, information retrieval,
optimisations, etc).

In [BDKTV97], DESIRE has been extended to define a generic BDI model to incorporate
beliefs, desires and intentions (in which intentions with respect to goals are distinguished from
intentions with respect to plans). The result is a more specific BDI agent where an agent’s
task control is capable of six tasks: the own process control deals with how the agent determines
its own beliefs, desires and intentions, the agent specific tasks deals with the agent performing
its own tasks, the world interaction management deals with managing interaction with the en-
vironment, the agent interaction management deals with communication with other agents, the
maintenance of world information deals with modelling the world, and the maintenance of agent
information deals with modelling other agents.

In KGP terms, we can think of the agent’s task control as the cycle theory, whose various
tasks map into (combinations of) transitions and/or capabilities. Briefly, we can say that
the world interaction management maps to the Sensing capability and the Action Execution
transition in KGP , the agent interaction management maps naturally to the combination of

95

Active Observation and Passive Observation transitions of KGP , the agent specific tasks maps
to the Action Execution transition of KGP , and the maintenance of world information maps
to the way we use the Temporal Reasoning in the KB0 part of the knowledge base. A more
detailed comparison between KGP and the rest of an agent’s tasks in DESIRE follows next.

The agent’s own process control task consist of three main components, as follows.

• The belief determination component – performs reasoning on relevant beliefs and includes
beliefs that change as a result of observations. The equivalent of belief determination in
KGP is the notion of proof (in the logic programming sense), combined with the temporal
reasoning using an extended version of the Event Calculus, in order to deal with beliefs
that change as a result of observations.

• The desire determination component – determines the desires of the agent (knowledge on
how desires are generated is left unspecified in the model). In KGP we handle goal
determination through the Goal Introduction and Goal Revision transitions, based on
a theory of needs and personality. We also have argumentation as a way of specifying
preferences over goals.

• The intention and commitment determination component – derives the agent’s intended
and committed goals and plans. Although in KGP we have Plan Introduction and Plan
Revision to deal with committed plans, we do not have in the model the DESIRE dis-
tinction between intended and committed goals and plans. In other words, in KGP the
agent commits to all plans and goals without any further distinction, but uses the notion
of preferences to choose between goals that are, for example, more urgent.

Although we have seen that KGP does not distinguish between intended and committed
goals and plans, it is important for the discussion that follows to say that the intention and
commitment determination component introduces the goals and/or plans it intends to pursue
before committing to the specific selected goals and/or plans. In order to do that DESIRE uses
two main sub-components, as follows.

• The goal determination component – which consists of two additional sub–components, the
intended goal determination and the committed goal determination, in order to determine the
intended and committed goals of the agent respectively. The intended goal determination
contains the goals that the agent intends to pursue; in this component different agents
also hold different strategies specifying under which conditions a goal needs to be revised.
In the committed goal determination, on the other hand, a number of intended goals
are selected to become goals to which the agent commits; again different agents have
different strategies for selecting committed goals. In both cases the components hold
selection strategies specified as meta–knowledge. In KGP terms the union of intended and
committed goals is a superset of the KGP goals, while the committed goal determination
can be thought of as a combination of the Goal Decision capability as it is used in the
goal transitions and goal selection functions of the cycle theory.

• The plan determination component – which consists of two additional sub-components, the
intended plan determination and the committed plan determination, in order to determine the
intended and committed plans of the agent respectively. In the component intended plan
determination plans are generated dynamically, combining primitive actions and predefined
plans known to the agent (stored in an implementation, for example, in a library). On the

96

basis of knowledge of the quality of plans, committed goals, beliefs and desires, a number
of plans become intended plans. The component committed plan determination determines
which of these plans should actually be executed. In other words, to which plans an agent
commits. If no plan can be devised to reach one or more goals to which an agent has
committed, the result is communicated back to the goal determination component. There
is no equivalent of intended plan determination in KGP , however, the committed plan
determination can be obtained in KGP terms by a combination of the Planning capability
with the Plan Introduction and Plan Revision transitions of the cycle theory.

The global reasoning strategy specified by task control knowledge in the model is that some
chosen desires (depending on knowledge in the component intended goal determination, exist-
ing beliefs and specific agent characteristics) become intentions, and some selected intentions
(depending on knowledge in the component committed goal determination and specific agent
characteristics) are translated into committed goals to the agent itself and to other agents. The
agent then reasons about ways to achieve the committed goals on the basis of knowledge about
planning in the component committed plan determination, resulting in the construction of a
committed plan. This plan is transferred to one or more of the other high–level components
(e.g. world interaction manager) for execution.

Task control knowledge of the component own process control determines the following pro-
cess:

1. initially all links within the component own process control are awakened, and the com-
ponent belief determination is activated.

2. Once the component belief determination has succeeded in reaching all possible conclusions
(specified in the evaluation criterion goals) desire determination is activated and belief
determination is made continually active (awake).

3. Once the component desire determination has succeeded in reaching all possible conclusions
(specified in the evaluation criterion desires), the component intention and commitment
determination is activated and desire determination is made continually active (awake).
In addition, the desires in which the agent may want to believe (wishful thinking) are
transferred to the component belief determination.

4. Intended and committed goals and plans are determined by the components goal determi-
nation and plan determination. Each of these two components first determines the intended
goals and/or plans it wishes to pursue before committing to a specific goal and/or plan.
In the component goal determination commitments to goals are generated in two stages.
In the component intended goal determination, based on beliefs and desires, but also on
preferences between goals, specific goals become intended goals. Different agents have
different strategies to choose which desires will become intentions.

Differences in agent characteristics can be expressed in the (meta-)knowledge specified for
intended goal determination. For each intended goal a condition is specified that expresses the
adequacy of the goal, i.e., that the goal is not subject to revision. As soon as it has been
established that the intention has to be dropped, the intended goal becomes inadequate, so
this condition no longer holds, which in turn leads to the retraction of the intended goal on
the basis of the revision facilities built-in in the execution environment of DESIRE. These
characteristics are similar to KGP , but the difference is that in KGP we use the transitions

97

for Goal Introduction and Goal Revision, and argumentation for the reasoning required about
goals.

DESIRE also allows different agents to have different strategies to select committed goals,
and these different strategies can be expressed in the (meta-)knowledge specified for the com-
ponent committed goal determination. In KGP it is again the transitions of Goal Introduction
and Goal Revision that are changing the commitments to current goals, selected modularly by
a separate goal decision theory.

Another similarity between DESIRE and KGP is that they both allow for dynamic plan
generation. DESIRE uses the component plan determination where commitments to goals are
analysed and commitments to plans are generated in two stages. In the component intended
plan determination plans are generated dynamically, combining primitive actions and predefined
plans known to the agent (stored in an implementation, for example, in a library). KGP on
the other hand, uses the Planning capability, which is called in Plan Introduction to generate
partial plans.

One major difference between DESIRE and KGP is that in DESIRE if a plan has been
devised, execution of a plan includes determining, at each point in time which actions are to
be executed. However, in KGP action execution is determined by when the Action Execution
transition will be called by the cycle theory. However, similar to DESIRE, where during plan
execution, monitoring information can be acquired by the agent through observation and/or
communication, KGP too support for this to happen through the sensing capabilities and the
observation transitions. Both models allow for plans to be adapted on the basis of observations
and communication, but also on the basis of new information on goals to which an agent has
committed.

One issue that it is unclear with DESIRE is that nowhere in the specification of the system’s
control one can find a notion similar to that of the KGP interrupt.

Finally, the formal specification of DESIRE is based on a many–sorted predicate
logic [DKT95], which distinguishes between object-level and meta-level descriptions of com-
ponents. In KGP we have logic programming with extensions, where as we said in the com-
parison with BDI, we have not included meta–level reasoning. The dynamics of the overall
compositional system in DESIRE is modelled through temporal models based on temporal
logic [BTWW95], a feature that is beyond the scope of the KGP model.

12.6 Computational logic-based approaches

12.6.1 IMPACT

The principal goal of the IMPACT (Interactive Maryland Platform for Agents Collaborating
Together) project [AEK+99, ES98, ESP99, ES99, ESR00, SBD+00], has been to develop both
a logic-based theory as well as a software implementation that facilitates the creation, deploy-
ment, interaction, and collaborative aspects of software agents in a heterogeneous, distributed
environment. IMPACT provides a set of servers (yellow pages, thesaurus, registration, type
and interface) that facilitate agent inter-operability in an application independent manner. It
also provides an Agent Development Environment for creating, testing, and deploying agents.

Unlike the assumption we make in the KGP model, where agents are built from scratch
by assuming a logic programming approach, an IMPACT agent may be built on top of an
arbitrary piece of software, defined in any programming language. To see how this is achieved
in IMPACT, we need to look closer at the structure of IMPACT agents. Each one of these
agents consist of the following components:

98

• Application Program Interface (API): provides a set of functions which may be used
to manipulate the data structures managed by the agent in question. This component
consists of a set of procedures that enable external access and utilisation of the system,
without requiring detailed knowledge of system internals such as the data structures and
implementation methods used.

• Service Description: specifies the set of services offered by the agent.

• Message Manager: manages the incoming and outgoing messages of the agent.

• Actions, Action Policies, and Constraints: describe the set of actions that the agent
can physically perform, an associated action policy that states the conditions under which
the agent may, may not or must do some actions. The actions an agent can take, as well
as its action policy, must be clearly stated in some declarative language. Furthermore,
there might be constraints stating that certain ways of populating a data structure are
invalid and that certain actions are not concurrently executable.

• Meta–knowledge: holds beliefs about the environment and other agents, used to pro-
duce action policies.

• Temporal Reasoning: supports an agent to schedule actions that take place in the
future, which could be interpreted as the commitments of the agent.

• Reasoning with Uncertainty: allows the agent to take into account that a state can
be uncertain. For example, based on its sensors, an agent may have uncertain beliefs
about the properties of the environment’s state, as well as uncertainty about how the
environment is likely to change.

• Security: supports the designer of the agent to enforce security policies according to the
application requirements of the agent.

If we ignore implementation components such as the API and the Message Manager, an
IMPACT agent appears to be similar to a KGP one as far as they can both support actions,
action policies and constraints. However, the formalism used to represent these notions in the
two models differ in that in IMPACT the actions are STRIP like structures (with preconditions,
an add and a delete list) while in KGP actions are data structures that abstract away from
what is recorded in the KB (this is handled by the way observations are assimilated in KB0).
In addition, the IMPACT specification supports concurrent actions, which in KGP are sup-
ported in the execution of actions, planning for goals and sensing of fluents and preconditions.
Concurrency at the level of KGP transitions is a subject for future extensions.

Another similarity between IMPACT and KGP is that in IMPACT integrity constraints
have a logic-based interpretation like in KGP , however, they differ from the ones specified in
KGP in that their syntax also allows the programmer to access data structures that represent
existing programs/information sources, to allow for information integration using IMPACT
agents. Apart from actions, action policies and integrity constraints, IMPACT also provides
a richer language than that of KGP , in that it allows in the rules that describe actions to be
specified using deontic concepts, by building on existing deontic systems that use operators
about permission and obligation explicitly in the language.

99

One main difference between IMPACT and KGP is how the Temporal Reasoning capabil-
ity is interpreted in an agent. In IMPACT this is supported through Temporal Agent Pro-
grams [DKS01] that rely on a simple interval-based logic [All84], and introduce a mechanism
for specifying intermediate effects of an action. A sound, iterative, fix-point computational
procedure that is also complete, and polynomial–time under certain conditions is also pro-
posed. Compared with IMPACT, Temporal Reasoning in KGP is, as we have already discussed,
based on an abductive Event Calculus that is extended to reason with incomplete information
about fluents and inconsistencies arising from observations in the environment. Existing proof-
procedures are then used to interpret the temporal logic programs that are required in this
context.

It is important to note that the IMPACT support for Reasoning under uncertainty (using
probabilities in the logic-based rules) and Security is not provided in KGP . In addition, there
is no equivalent of the IMPACT meta–knowledge in KGP . We have also already seen that in
KGP we can only have a much poorer model of other agents, in that we do not allow simulation
of their reasoning capabilities, just simple beliefs about them. However, planning in IMPACT
is complete, in the sense that the system does not support partial plans as we do with KGP .
Also, reactivity in the sense of KGP is not supported in IMPACT. Moreover, communication in
IMPACT is an implementation concept that allows an agent to use a message box that contains
functions for sending and receiving messages. In KGP , however, communication is supported
by a separate class of actions, called communicative actions, that are uniformly represented
in communication policies described by integrity constraints, as we have shown in detail in
section 10.

To summarise, the IMPACT project proposes a unifying approach for many different features
of agent behaviour based on the adoption of computational logic as the underlying methodology
for system development and analysis. On one hand, IMPACT is centered on the integration,
based on agentification, of heterogeneous, possibly legacy, information sources, and in their co-
operation in order to successfully accomplish a coordinated task. The notion of agentification,
however, often makes it difficult to distinguish the implementation from the modelling of an
agent. On the other hand, our work keeps the different concerns of the implementation separate
from the modelling, and focuses on building autonomous agents by integrating existing logic
programming techniques and their extensions in order to cope with highly dynamic nature of
open and global computing environments. The different motivations of KGP and IMPACT
make apparent the different ways agents are modelled in the two systems, most notably differ-
ences in the treatment of beliefs and actions, including the treatment of temporal reasoning,
planning, goals, communication, proofs, and control.

12.6.2 MINERVA

MINERVA is an agent architecture which exploits computational logic as a means for inte-
grating diverse non-monotonic formalisms within a unique (dynamic) model, [LAP01b]. The
basic architecture consists of a structured knowledge base encompassing both the knowledge of
the agent, i.e. its representation of the environment and other agents, and (BDI-like) features,
like capabilities, intentions, goals, and plans. The knowledge base is controlled by a varying
set of modules, each of which is devoted to a specific task, like, for instance, a communicator,
a sensing and reacting module as interface with the environment, a planner, a learner, and a
scheduler module. All of these components update the agent’s knowledge base.

At first glance, the architecture resembles many of the features that we have proposed in

100

KGP in order to model agent behaviour. However, unlike KGP , MINERVA relies on the
Multidimensional Dynamic Logic Programming (MDLP) model [LAP01c], in order to represent
the dynamic evolution of an agent’s knowledge. MDLP is a non–monotonic LP–based model
which models evolutions of a (generalised) Logic Program, and it is equipped with both a
stable-model-based declarative semantics and an operational semantics.

MDLP is an extension of Dynamic Logic Programming (DLP) [ALP+00], initially designed
for modelling program evolutions over (linear) time. DLP contains “persistent by inertia” rules
and caters for events that can change the program. DLP makes use of a logic program command
language (LUPS) for specifying updates [APPP99]. In this language one can specify update
rules for assert/retract under certain (event-based) conditions. In DLP, program evolutions are
linear and the program at each state (instant) is defined by all the rules belonging to previous
states which have not been overridden during the evolution of the program and all the newly
added rules [Lei02].

MDLP extends DLP in allowing for a non-linear structure of programs evolutions, as a
directed acyclic graph. In this context, the time–line relation becomes a ‘dependency’ rela-
tion which can model different situations, as a program can be considered as the (consistent)
evolution of its (many) ancestor programs in the graph.

The agent architecture consists of a knowledge base (KB) and of specialised, concurrent, sub-
agents. The KB is conceptually divided in modules which are based on MDLP for knowledge
representation and LUPS for state transitions. KB modules consist of:

• Object Knowledge Base – which contains object-level knowledge about the world
represented as an MDLP, as well as information about the society in which the agent is
situated.

• Capabilities – which describe the actions that the agent is able to perform and their
effects. Typically, the execution of an action is considered as an event that may trigger a
KB update.

• Intentions – which consist of the actions which an agent has committed to according to
its plans, and are subject to conditions and temporal constraints.

• Goals – which contain the goals that must be achieved by the agent. Each goal has a
priority and a temporal constraint. Goals are managed by a Goal Manager which can
update them.

• Plans – planning is supported by means of LUPS and abduction [LAPQ00], and consists
of a (conditional) sequence of (timed) actions. Plans are generated by a Planner sub-
agent and stored in KB for future reference. Plans in the KB are executed, together with
Reactions (see below), by a Scheduler sub-agent.

• Reactions – which are a set of rules describing the (timely) reactive behaviour of an
agent.

• Internal Behaviour Rules – describe the rules of the (reactive) behaviour of an agent
which may affect the Object Knowledge Base. They are managed by a Reactor sub-agent,
which is in charge of ‘executing’ the behaviour of an agent, but are relevant also for other
sub-agents, like, for instance, the Planner, which must be aware of the actions that have
been executed.

101

• An internal clock.

The architecture is modular in that it is composed of functional sub-agents, which may add
and remove functionality to the single agent. This is similar to the modular specification in
KGP .

In addition to the sub-agents already discussed, aMINERVA agent also consists of, among
others, a Sensor, which perceives the external world and updates the KB, a Dialoguer, whose
LUPS program can update KB and Goals according to the communications it performs with
the other agents, and a Goal Manager, in charge of managing goals, possibly resolving conflicts
among goals generated by different sub-agents.

Interestingly, many of the apparent similarities between MINERVA and KGP are really
differences, if we look at the details. For example, what KGP uses as a sensing capability
with transitions that support Passive and Active Observation in MINERVA it is a Sensor
sub-agent, when the knowledge base of KGP is updated implicitly via the use of the Event
Calculus MINERVA specifies the evolution via explicit rules, while in KGP communication
is only a special kind of action in MINERVA there is a Dialoguer sub-agent, and the re-
sponsibilities of Goal Manager are incorporated in KGP via special transitions that rely upon
capabilities incorporated in the cycle theories, with preferences specified via argumentation.
Moreover, the KGP link to society via a series of components such as Action Execution, Active
and Passive Observation to support communication, is achieved in MINERVA agent via the
Dialoguer sub-agent that works by combining inter- and intra-agent viewpoints, as it has been
demonstrated in [LAP01a].

There are also many actual similarities betweenMINERVA and KGP , namely, the notion
of goals in both systems, theMINERVA intentions with the KGP actions, the notion of plans
and reaction in both system. An apparent difference, however, betweenMINERVA and KGP
is that it is not clear in MINERVA how the control of the agent is achieved, while KGP
models control in an explicit and flexible manner, through the notion of cycle theories.

In conclusion, the MINERVA project appears to share with KGP many underlying as-
sumptions for modelling an agent, most notably the use of Computational Logic and the ex-
ploitation of the twofold reading of agents in terms of a declarative and an operational semantics.
Although the overall updating mechanisms for reasoning on changes appear based on a clear
and expressive model, it is difficult, at this stage, to compare its expressiveness with that of
KGP . At this level of comparison, however, it will be fair to say that the way evolution is
modelled in MINERVA can be complementary to the way the KB of KGP is being revised;
given a set of conditions on events that have happened, the former revises the KB with new
rules while the latter implicitly changes it with new facts. Still, there are important differences
between the two approaches, notably the commitment to different representation formalisms
that rely on different assumptions and LP semantics.

12.6.3 GOLOG

GOLOG, after alGOl LOGic, [LRL+97] is another approach to a logic-based modelling of
multi-agent systems. As the name suggests, GOLOG is a language which tries to import the
programming paradigm of a procedural language like Algol into the realm of logic. In particular,
it is based on the situation calculus [MH69], which represents a sophisticated logic of actions.

GOLOG is provided with procedural constructs like sequencing, choice and iteration of
situation transforming actions, and it has a computational implementation based on Logic Pro-
gramming. An explicit representation of the dynamic world being modelled evolves according

102

to actions, which are characterised by (user supplied) axioms about their preconditions and
effects. This allows programs to reason about the state of the world and consider the effects
of various possible courses of action before committing to a particular behaviour. Given a
representation of the word, the pre-/post- conditions for actions and the agent program, it is
possible to prove that the course of actions, when executed, brings the world in a desired state.

A concurrency-based extension of the original language [GLL00] provides an high-level agent
control based on facilities for prioritising the concurrent execution, interrupting the execution
when certain conditions become true, and dealing with exogenous actions. This sort of high-level
agent control constitutes an alternative to planning, being the courses of actions constrained
by their concurrent synchronisations. A distinguishing feature with respect to other procedural
formalisms for concurrency, which are valuable when modelling open systems, is the possibility
of dealing with incompletely specified states, which represent a partially accessible environment.

This logic-based approach to modelling the evolutions of a dynamic word shares with the
our work here many motivations, and in particular the interest in a representation of the
agent’s state which allows for reasoning about changes occurring over time. However, while
GOLOG, and ConGOLOG, can be seen as models of a concurrent execution of different action-
based programs, our work here is more oriented towards the concept of agents as autonomous
and flexible entities which exhibit a richer set of features other than a concurrent execution of
actions, like coordination of their tasks, capability of executing a negotiation dialogue, adoption
of common policies ruling their behaviour, activities of knowledge and plan revision, failure
recovery, as well as dealing with open-world settings such as environments envisaged in global
computing.

To evaluate programs in an open world setting, an extension of Golog and ConGolog is
specified in [GLS01], and is known as IndiGolog (Incremental deterministic Golog). This system
allows a programmer to specify guarded action theories that allow a programmer to control the
online and off–line execution of conditions. In the online execution case, a sensing capability
affects the current state of the computation, which is obtained by incrementally executing
programs represented as guarded theories. Such implementation is provably correct under
certain conditions, and is reminiscent of the KGP combination of sensing capability combined
with the knowledge revision obtained by event calculus theories.

12.6.4 Vivid Agents

We close our related work with vivid agents [SW00], a software-controlled system whose state
comprises the mental components of knowledge, perceptions, tasks, and intentions, and whose
behaviour is represented by means of action and reaction rules. The basic functionality of a
vivid agent comprises a knowledge system (including an update and an inference operation)
acting on a knowledge base specified with an Extended Logic Program [AP92], a perception
(event handling) system, and the capability to represent and perform reactions and actions in
order to be able to react to events, and to generate and execute plans.

Reactions may be immediate and independent from the current knowledge state of the agent
but they may also depend on the result of deliberation. In any case, reactions are triggered by
events which are not controlled by the agent. A vivid agent without the capability to accept
explicit tasks and to solve them by means of planning and plan execution is called reagent.
The tasks of reagents cannot be assigned in the form of explicit (‘see to it that’) goals at run
time, but have to be encoded in the specification of their reactive behaviour at design time.
The concept of vivid agents is not based on a specific logical system for the knowledge base of

103

the agent. Rather, it allows to choose a suitable knowledge system for each agent individually
according to its domain and its tasks.

There are a number of similarities between vivid agents and KGP , for example the use of
reactions and plans being described separately in the model, the use of transitions to specify
formally the evolution of an agents state, and the use of a LP–based cycle to represent the
control of the agent. However, the use of transitions in vivid agents are used for capturing the
temporal behaviour of the agent, which in KGP is done via the specification of Event Calculus
theories. Also, the notion of transitions is more general in KGP , where goal, plan and action
representation and execution are supported via the integration of existing proof-procedures
and their extensions. In addition, these proof procedures allow KGP to plan and specify the
reasoning with preferences in order to manage a flexible control mechanism based on a cycle
theory. Moreover, communication in vivid agent is specified at a low-level, while in KGP it is
specified abstractly as part of the modelling of the actions.

13 Evaluation

This document reports of the work carried out within Workpackage 1 (WP1): ”A logic-based
model for computees” of the SOCS project during its first year. As such it aims to address
the objectives and requirements set out for this workpackage. In this section we examine, with
respect to a given set of evaluation criteria, to what extent the KGP model (at its current state
of development) achieves these objectives.

The evaluation criteria for WP1 have been proposed in the self assessment deliverable D3
[LMM+03] of the project, where, in particular, the main objective of WP1 to provide a formal
logic-based model for computees has been analysed within the Global Computing (GC) vision.
The criteria are divided into two groups. The first group relates directly to the basic require-
ments of GC that SOCS aims at addressing. The second group of criteria are derived from the
criteria of the first group as properties that will help the model address the requirements set
out by this first group, and are motivated by SOCS’ specific approach. These criteria are set
out as follows:

First Group of GC Related Criteria

ADAPTABILITY – The model should allow the computee to be autonomous and
adapt its operation to a changing environment.

TOLERANCE TO PARTIAL INFORMATION – The model should allow com-
putees to be tolerant to partial information, by continuing to operate and take deci-
sions despite the incompleteness of the available information. Also, the model should
cope with the increase of information available to the computees over time.

OPENNESS– Societies are dynamic, in that computees might join and leave them at
all times. As a result of this dynamicity, the computees already within the dynam-
ically changing societies need to adjust their decisions to reflect the new state of
the environment, due to the addition/deletion of other computees (OPENNESS
(1)). Moreover, the computees that move and join new societies, should adjust their
decisions and behaviour to take into account the different expertise and the different
social rules available in the new society (OPENNESS (2)).

DISTRIBUTION – The model should allow an individual computee to be aware of
other computees that could potentially help it to achieve some of its goals.

104

HETEROGENEITY – The model should support a variety of different types of hetero-
geneous computees in order to be able to address in a decentralised and distributed
way the various requirements of GC.

Second Group of General Model Properties

MODULARITY of the representation of knowledge and structure of computees. Clear
identification of independent components and parameters of the model of computees.
Provision for the modular placement of a computee in and out of a society.

COMPUTATIONAL VIABILITY of the model. Each component of the model must
have a clear computational counterpart that is viable within the current state of the
art or well specified extensions of this. The overall model should be amenable to an
abstract design and a well defined abstract architecture.

FORMALITY of the model. It should be possible to identify formal notions of alter-
native behaviour of a computee and link these formally to the internal structure and
operation of the computee.

RELATED WORK – Investigate thoroughly related work in the field of modelling
agents in multi-agent systems, with particular emphasis on models which are based
upon logic in general and computational logic in particular.

Let us examine how the KGP model fairs under these (general) evaluation criteria examining
each one of these separately. For each such criterion we will describe which elements of the
model address it and to what extent they do so. We will also indicate which of the specific
criteria, in terms of which each one of these general criteria is analysed in the self assessment
deliverable D3 [LMM+03], are addressed fully or partially by the KGP model. Specific criteria
which are not addressed at all by the current computee model will be mentioned explicitly.

ADAPTABILITY – The model builds in explicitly features of autonomy and adaptability.
The capability of Goal Decision allows the computee to decide its own goals and the model
is built assuming that the computee has its own control on the goals that it will try to
satisfy. The particular CL framework used in the model with its high-order preferences in
the policy for goal decision accommodates directly the possibility to adapt these decisions
to new circumstances. Similarly, the cycle theory policy which is given in the same
framework allows for changes in the operation of a computee under different external and
internal circumstances. In addition, the KGP model contains the capability of Reactivity
which addresses directly the issue of being able to adapt to new information. This allows
the computee to adapt its current plans and goals as a reaction to new input not available
at the time of planning.

Also the Plan and Goal Revision transitions of a computee enable this to abandon goals
and plans that have become un-achievable or that are already achieved, thus again adapt-
ing to a changing environment.

Hence the combination of the Goal Decision and Reactivity capabilities with their re-
spective transitions and the Plan and Goal Revision transitions ensure that the specific
criteria of Reactivity, Adjustment/Abandonment, Suspension/Introduction, as described
in the evaluation deliverable D3, are fully met.

With respect to the problem of adapting to the societies that the computee belongs to as
it moves from one to the other, the modular specification of the KGP model allows the

105

computee to reason with the policies of the relevant society as indicated in the knowledge
base (e.g in KBreact) of the computee. This provides a transparent adaptation of the
computee to the environment of the new society as required by the specific criterion of
Adoption of social goals.

The specific criteria Evolution and Discovery/Learning have not been addressed in the
current form of the computee model although as alluded to in section 11 these issues can
be accommodated for by extensions of the model.

DEALING WITH PARTIAL INFORMATION – One of the main underlying reasoning
ability of the computees in the KGP model is that of hypothetical reasoning (abduction)
formalised within Abductive Logic Programming. Abductive reasoning is particularly
suited for handling partial or incomplete information. Hence the Planning capability of
the KGP model which is based on abduction allows the generation of plans in the absence
of complete information. Abductive reasoning is also integrated within the Temporal
Reasoning capability so that the computee is able to draw conclusions even in the face of
incomplete information. Hence their conclusions are conditional on hypotheses about the
unknown part of the computee’s environment. This then addresses directly the specific
criterion of Conditional Decisions as described in the deliverable D3.

In all these cases the abductive hypotheses on which the plan or the conclusions rest
need to be linked to the operation of the computee. For this reason the KGP model
contains transitions, such as Sensing Introduction and Active Observation Introduction,
that are specifically designed to enable the computee to execute its plans and monitor
their results in the face of incomplete information. In particular, using such information
gathered from its environment the Temporal Reasoning capability of the computee allows
it to recognise when actions that have been executed have failed to produce their desired
effects. Thus this combination of hypothetical reasoning and sensing the environment
enables the computee to operate in a partially unknown setting and to adjust its decisions
and operation as more information is made available. This covers the specific evaluation
criteria of Adjustment and Correction and partially the criterion of Explanation.

In addition, the flexibility and modularity of the cycle theory allows the specification of
computees that a re better suited to environments where information is more or less easily
available. For example, in an environment with less available information, computees can
attempt to execute their actions despite lack of information regarding the preconditions
of these actions.

OPENNESS – The KGP model can deal with computees joining and leaving a society, as
discussed in section 10.3. As mentioned above under Adaptability the model allows the
modular use of relevant policies in the computee’s knowledge as the computee changes
society. This can affect transparently any new decisions of the computee and ensure con-
formance within the new societies. Existing decisions of goals and plans by the computee
need to be re-evaluated with the aim to adjust these to the new societies rather than
replace them entirely with new ones. Currently, the KGP model facilitates this to some
extent via the Reactivity capability and transition.

In particular, each society will specify different relative roles between its member com-
putees which need to be taken into account when the computee joins this society. The
underlying reasoning with logic programming rules and priorities for Goal Decision and

106

the Planning capability provide a way to formalise roles and context within the KGP
model.

Similarly, when a computee joins a new society it becomes aware of specific (current)
expectations (WP2 in D5 has developed in detail a specific theory for these expectations
for societies of computees) of this society. This would then affect the Goal Decision
and Planning of the computee as the expectations introduce new potential goals for the
computee and impose new constraints on its actions. The precise mechanisms for this
need to be developed alongside with the further development of the society organisation
in WP2.

The model thus addresses the criteria of Conformance and Exploitation and partially the
criterion of Adjustment.

The model does not contain a specific mechanism for the computee to adopt a different
cycle of operation with a new overall strategy of operation as it changes society. How-
ever, the resulting operation induced by a cycle theory can change implicitly in the new
environment of a different society simply because the nature of cycle theories is such that
these are sensitive to changing external information. This addresses in a limited way the
criterion Cycle Adjustment.

DISTRIBUTION – The KGP model provides for the exchange of information between com-
putees through sensing communication acts. Each computee would include in its Knowl-
edge Base information pertaining to the expertise of the other computees in the envi-
ronment. This information allows its Planning capability to generate plans that exploit
the other computees in a collaborative way. The computee may also contain a preference
policy to help it choose amongst several possibilities an appropriate computee with which
to cooperate. In this way the achievement of a goal by a computee is distributed to a
set of computees within its society. The model thus addresses the specific criterion of
Decentralisation and partially that of Emergence.

The Planning capability needs to be refined further to distinguish which goals can be
achieved favourably by the different members of the society (including the computee
who is doing the planning reasoning) and to evaluate the suitability of the alternative
computees. This refinement would again need to be developed alongside the further
developments of the societies in WP2 and will address further the Emergence criterion.

The specific criterion of Collectiveness is not addressed directly by the current form of
the model.

HETEROGENEITY – The KGP model allows for a high degree of heterogeneity in the
different types of computees that can be defined within it. The highly modular structure
of the model means that each computee could have its own subset of the set of capabilities
and transitions, and the way these are used and combined together by each computee can
give different characteristics to different computees. Cycle theories in the KGP model
allow for this variety of synthesis of computees. The structure of cycle theories has been
separated into parts where one component, the behaviour part, is designed for specifying
explicitly high-level characteristics that we require from the operational behaviour of the
computee. Modular changes in this part can result in a diverse spectrum of behaviour by
the different computees. The model thus addresses fully the specific criterion of Overall
Behaviour.

107

The internal knowledge base of each computee contains several independent modules with
(preference) policies (e.g. goal decision policy or cooperation policy with other computees,
etc). This gives another source of heterogeneity in the construction of a computee. A
modular change in these parts of its knowledge base will result in different decisions of
the computee and in turn in different operation. In particular, a computee can be given
an individual personality by including in its knowledge base for goal decision specific type
of personality policies with no extra mechanism required for this. Personality policies can
be different amongst computees resulting in individual characteristics in the behaviour of
the various computees. The model thus also covers well the specific criteria of Expertise
and Personality.

It is important to stress that the high degree of heterogeneity of computees does not mean
that the operation of a computee within a society is necessarily made more complex. The
high level of autonomy that each computee has ensures that the effect of heterogeneity
on the complexity of operation is not significant.

The second group of evaluation criteria permeate through the whole project. Hence they
have been strong guiding principles in our development of the formal details of the KGP models.

MODULARITY – Modularity is one of the strongest general features of the KGP model.
This stems from the high level specification framework that the use of computational logic
provides and the well separated component structure of the model into knowledge bases,
capabilities, transitions and cycle theory. The frameworks of Abductive Logic Program-
ming and Logic Programming with Priorities enable us to represent the knowledge of the
computee with high-level declarative statements that are independent of the way that
they are used. This coupled with the declarative reasoning of abduction and preference
(and the modular separation of the temporal constraint solving) on which all decisions and
capabilities of the computee are based, means that the knowledge base of the computee
can be changed independently of any other consideration.

Also as mentioned above in several places, the high-level specification of the societies and
their properties together with the high degree of autonomy of the computees facilitates
the modular placement of computees in and out of societies.

The clear separation of the various components of a computee also means that we can eas-
ily parameterise our computees. Components can be extended and altered independently
from each other. In particular, we have shown how we can change in a highly modular
way the cycle theory of a computee to obtain different behaviour characteristics and thus
parameterise the overall behaviour of the computee.

COMPUTATIONAL VIABILITY – The components of the KGP model at different lev-
els are all based on well understood computational logic frameworks using and extending
these for the purposes of the model. We can then realize these components using the com-
putational methods that these frameworks provide. Several extensions are required but
these will not require fundamental new methods of computation. The main effort rather
comes from the need to integrate together the computation of abduction, argumentation
(for reasoning with rules and priorities) and constraint solving as required by the different
components.

The modular structure of the KGP lends itself easily to an abstract design and architec-
ture for the implementation of computees. Such an architecture can be drawn directly

108

from the model - a computee architecture - with three layers corresponding to capabili-
ties, transitions and cycle theories (see figure 1 in section 2). At the bottom layers the
capabilities exist as separate entities linked to the knowledge and external environment
of the computee. The synthesis of these capabilities is designed at the middle layer of the
transitions. At the top level of the architecture cycle theories control the synthesis of the
transitions at the middle layer.

FORMALITY – The KGP model has a formal definition based on the underlying logic-based
frameworks of abduction, argumentation (for preference reasoning) and constraint solving.
The internal knowledge of a computee, its behaviour properties and the properties of the
societies in which it operates are all given in terms of high-level declarative specifications in
these logical frameworks. This facilitates the formal analysis and verification of properties
of the computees. For example, we have already investigated [EMST03b] within these
logical frameworks properties of conformance to society protocols showing the potential
of this formal approach. Other formal properties of the behaviour of computees can also
be captured declaratively within the KGP model, either by its decision making policies
in its knowledge base or in its cycle theory policy and similar methods of their formal
analysis could be applied.

RELATED WORK – Section 12 of this document gives a thorough comparison with the
wide literature on logic-based and other multi-agent systems.

Summary of evaluation

Summarising the evaluation we see that the KGP model meets fully the following high-level
Global Computing objectives, as derived by the SOCS project in its self-assessment document
D3:

• computees should exhibit an autonomous and adaptable behaviour in the open and chang-
ing GC environment;

• the model should support different behaviours of computees, and the presence of be-
haviourally heterogeneous computees within societies;

• the model should allow for the interaction of computees within societies.

The KGP model defines computees as autonomous entities with diverse functionalities and
operational behaviour. Its main novelty of approach stems from the attempt to synthesise
together several advanced and powerful computational logic frameworks and techniques that
until now have been examined mostly in isolation for particular problems of multi-agent sys-
tems. Its main strengths are the high degree of modularity that it gives to the structure of
a computee and its formal declarative foundations. These together with the use of computa-
tional logic frameworks known to be easily realizable, will facilitate the construction of versatile
computationally viable computees with verifiable properties of operation.

14 Conclusion

In this document we have proposed a model, called KGP , for autonomous computational enti-
ties that are to operate within societies (defined in the associated document of deliverable D5)

109

of such entities. This model shares its philosophy with earlier works on agents and multi-agent
systems, notably that of BDI. It is though based on Computational Logic (CL), hence the name
computees for these entities, and attempts to ensure that the model will be computationally
realisable within the current state of the state-of-the-art technology for CL together with some
specific extensions of this technology, and that properties of the model can be easily specified
and verified formally.

Indeed, the main novelty of approach in our KGP model stems from this attempt to syn-
thesise together several advanced and powerful CL frameworks and techniques that until now
have been examined mostly in isolation for particular problems of multi-agent systems. These
techniques include abduction and incremental planning, argumentation and decision making,
temporal reasoning and updating of observational knowledge together with techniques of (time)
constraint solving applied within these. Each one of these techniques has reached a level of ma-
turity that it is now possible to integrate them together in an enhancing way to meet the
complex requirements of the Global Computing setting that our computees need to satisfy. In
addition, the use of CL as a basis for the KGP model gives this a sound theoretical underpin-
ning which facilitates the formal analysis and verification of properties of computees defined
within the model.

One of the main strengths of the KGP model is the high degree of modularity that it gives to
the structure of a computee. Again the use of CL has been instrumental in providing this. The
high-level declarative specification, afforded by the use of CL, of the knowledge and operation
of the computee has allowed us to have a clear separation of concerns in the model in terms of
underlying types of reasoning, capabilities, transitions and cycle theories. The environment and
social context of the computee is also modularly separated from the computee. This modular
structure and separation of concerns (into capabilities, internal transitions and cycle control
theory) in the KGP model will facilitate the design and development of versatile and formally
verifiable architectures for individual computees operating within their societies.

With the development of the KGP model as given by this document the project is now well
poised for its next two phases. In particular, a clear architecture for computees emerges directly
out of the KGP model which can form the basis of the computational model for computees
and their principled construction in Phase 2 (WP3 and WP4 in year 2) of the project.

Acknowledgements

We would like to thank the project reviewers, Thomas Eiter, Yves Demazeau and David Pearce,
for useful comments and suggestions on an earlier version of this document, and in particular
for their indication of relevant related work. We would also like to thank the internal reviewers,
Evelina Lamma, Paola Mello and Paolo Torroni, for their comments and suggestions that we
believe have helped us to greatly improve this document. Further, we would like to thank Nicolas
Maudet, Pavlos Moraitis and Andrea Bracciali, for help in collecting and understanding related
work. Finally, we would like to thank the whole SOCS consortium for helpful discussions.

References

[ABW78] K.R. Apt, H. Blair, and A. Walker. Towards a theory of declarative knowledge,
chapter Logic and Databases. Plenum Press, New York, 1978.

110

[AEK+99] K. Arisha, T. Eiter, S. Kraus, F. Ozcan, R. Ross, and V. S. Subrahmanian.
IMPACT: Interactive maryland platform for agents collaborating together.
IEEE Intelligent Systems, 14(2):64–72, 1999.

[AGM85] C. E. Alchourron, P. Gardenfors, and D. Makinson. On the logic of theory
change: Partial meet functions for contraction and revision. Journal of Sym-
bolic Logic, 50:510–530, 1985.

[AKGP01] A. Artikis, L. Kamara, F. Guerin, and J. Pitt. Animation of open agent
societies. In Proceedings of the Information Agents in E-Commerce symposium,
AISB convention, York, UK, pages 99–109, 2001.

[AKM00] A. Michael A.C. Kakas and C. Mourlas. Aclp: Abductive constraint logic
programming. Journal of Logic Programming (special issue on Abductive Logic
Programming), 44(1-3):129–177, 2000.

[All84] J. Allen. Towards a general theory of action and time. Artificial Intelligence,
23(2):123–144, 1984.

[ALP+00] J.J. Alferes, J.A. Leite, L.M. Pereira, H. Przymusinska, and T. Przymusin-
ski. Dynamic updates of non-monotonic knowledge bases. Journal of Logic
programming, 45(1-3):43–70, 2000.

[AP92] J. J. Alferes and L. M. Pereira. On logic program semantics with two kinds of
negation. In Apt, editor, Proceedings of the Joint International Conference and
Symposium on Logic Programming, pages 574–588, Washington, USA, 1992.
The MIT Press.

[APPP99] J.J. Alferes, L. M. Pereira, H. Przymusinka, and T. Przymusinki. Lups: a
language for updating logic programs. In Proceedings of LPNMR-99, volume
1730 of LNAI. Springer, 1999.

[Apt90] K. R. Apt. Logic programming. In Handbook of Theoretical Computer Science,
volume B, pages 493–574. Elsevier Science Publisher, 1990.

[BaJHHvdT01] J. Broersen, M. Dastani abd J. Hulstijn, Z. Huang, and L. van der Torre.
The boid architecture: conficts between beliefs, obligations, intentions and de-
sires. In Proceedings of Fifth International Conference on Autonomous Agents
(Agents2001), pages 9–16. ACM Press, Montreal, Canada, 2001.

[BBJ+02] R.H. Bordini, A. L. C. Bazzan, R. O. Jannone, D. M. Basso, R. M. Vicari,
and V. R. Lesser. Agentspeak(xl): Efficient intention selection in bdi agents
via decision-theoretic task scheduling. In First International Joint Conference
on Autonomous Agents and Multi-Agent Systems, Bologna, Italy, 15-19 July,
2002.

[BDKJT97] F. M. T. Brazier, B. M. Dunin-Keplicz, N. R. Jennings, and J. Treur. DE-
SIRE: Modelling multi-agent systems in a compositional formal framework.
Int Journal of Cooperative Information Systems, 6(1):67–94, 1997.

111

[BDKT97] A. Bondarenko, P. M. Dung, R.A. Kowalski, and F. Toni. An abstract,
argumentation-theoretic approach to default reasoning. Artificial Intelligence,
93:63–101, 1997.

[BDKTV97] F. M. T. Brazier, B. Dunin-Keplicz, J. Treur, and R. Verbrugge. Modelling
internal dynamic behaviour of BDI agents. In ModelAge Workshop, pages
36–56, 1997.

[BIP88] M.E. Bratman, D.J. Israel, and M.E. Pollack. Plans and resource-bounded
practical reasoning. Computational Intelligence, 4, 1988.

[BK82] K. A. Bowen and R. A. Kowalski. Amalgamating language and metalanguage
in logic programming. In K. L. Clark and S.-A. Tarnlund, editors, Logic pro-
gramming, vol 16 of APIC studies in data processing, pages 153–172. Academic
Press, 1982.

[BKJT95] F. Brazier, B. D. Keplicz, N. R. Jennings, and J. Treur. Formal specification
of multi-agent systems: a real-world case. In First International Conference
on Multi-Agent Systems (ICMAS’95), pages 25–32, San Francisco, CA, USA,
1995. AAAI Press.

[Bra87] M.E. Bratman. Intensions, plans and practical reason. Harvard University
Press, 1987.

[BTWW95] F. M. T. Brazier, J. Treur, N. J. E Wijngaards, and M. Willems. Temporal
semantics of complex reasoning tasks. In Proc. of the 10th Banff Knowledge
Acquisition for Knowledge-Based Systems Workshop, KAW’95, pages 15/1–
15/17. Calgary:SRDG Publications, 1995.

[Cla78] K. L. Clark. Negation as failure. In Logic and Databases. Plenum Press, 1978.

[Dav01] P. Davidsson. Categories of artificial societies. In A. Omicini, P. Petta, and
R. Tolksdorf, editors, Engineering Societies in the Agents World II, volume
2203 of LNAI, pages 1–9. Springer-Verlag, December 2001. 2nd International
Workshop (ESAW’01), Prague, Czech Republic, 7 July 2001, Revised Papers.

[DdBD+02] M. Dastani, F. S. de Boer, F. Dignum, W. van der Hoek, M. Kroese, and
J. Ch. Meyer. Programming the deliberation cycle of cognitive robots. In Proc.
of 3rd International Cognitive Robotics Workshop (CogRob2002), Edmonton,
Alberta, Canada, 2002.

[Den87] D.C. Dennet. The Intensional Stance. The MIT Press, 1987.

[DK95] Y. Dimopoulos and A. C. Kakas. Logic programming without negation as
failure. In Proc. ILPS’95, pp. 369-384, 1995.

[DK03] N. Demetriou and A. C. Kakas. Argumentation with abduction. In Proceedings
of the fourth Panhellenic Symposium on Logic, 2003.

[dKLW98] M. dÍnverno, D. Kinny, M. Luck, and M. Wooldridge. A formal specification
of dmars. In M. Singh, A. Rao, and M. Wooldridge, editors, Intelligent Agents
IV: Proceedings of the Fourth International Workshop on Agent Theories, Ar-
chitectures, and Languages, pages 155–176. Springer-Verlag LNAI 1365, 1998.

112

[DKS01] J. Dix, S. Kraus, and V.S. Subrahmanian. Temporal agent programs. Artificial
Intelligence, 127(1):87–135, 2001.

[DKT95] B.M. Dunin-Keplicz and J. Treur. Compositional formal specification of multi-
agent systems. In Proc. of the ECAI’94 Workshop on Agent Theories, Ar-
chitectures and Languages, Lecture Notes in AI, volume 890, pages 102–117.
Springer-Verlang, 1995.

[DST98] P. Dell’Acqua, F. Sadri, and F. Toni. Combining introspection and communi-
cation with rationality and reactivity in agents. In U. Furbach and L. Farinas
del Cerro, editors, Proc. JELIA’98, 6th European Workshop on Logics in Ar-
tificial Intelligence, volume Springer Verlag LNAI 1489, pages 17–32, 1998.

[DST99] P. Dell’Acqua, F. Sadri, and F. Toni. Communicating agents. In Proceedings
ICLP Workshop on Multi-Agent Systems, Las Cruces, NM, 1999.

[Dun91] P. M. Dung. Negation as hypothesis: An abductive foundation for logic pro-
gramming. In K. Furukawa, editor, Proceedings of the 8th International Con-
ference on Logic Programming, pages 3–17. MIT Press, 1991.

[Dun95] P. M. Dung. On the acceptability of arguments and its fundamental role in
nonmonotonic reasoning, logic programming and n-person games. Artificial
Intelligence, 77:321–357, 1995.

[DvdHD02] M. Dastani, J. van der Ham, and F. Dignum. Communication for goal di-
rected agents. In Proceedings of the Agent Communication Languages and
Conversation Policies Workshop (AAMAS’02), Bologna, Italy, 2002.

[EK89] K. Eshgi and R. A. Kowalski. Abduction compared with negation by fail-
ure. In G. Levi and M. Martelli, editors, Proceedings of the 6th International
Conference on Logic Programming, pages 234–255. MIT Press, 1989.

[EMST02] U. Endriss, N. Maudet, F. Sadri, and F. Toni. Communication protocols for
logic-based agents. In UK Multi-Agent Systems (UKMAS) Annual Conference,
Liverpool, Poster, December 2002.

[EMST03a] U. Endriss, N. Maudet, F. Sadri, and F. Toni. Aspects of Protocol Confor-
mance in InterAgent Dialogue. In Proceedings of the 2nd International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS-2003),
Poster, 2003.

[EMST03b] U. Endriss, N. Maudet, F. Sadri, and F. Toni. Protocol conformance for logic-
based agents. In Proceedings IJCAI 2003 - To appear, 2003.

[ES98] T. Eiter and V. S. Subrahmanian. Deontic action programs. In Workshop
on Foundations of Models and Languages for Data and Objects, pages 37–54,
1998.

[ES99] T. Eiter and V. S. Subrahmanian. Heterogeneous active agents, II: Algorithms
and complexity. Artificial Intelligence, 108(1–2):257–307, 1999.

113

[ESP99] T. Eiter, V. Subrahmanian, and G. Pick. Heterogeneous active agents i: Se-
mantics. Articial Intelligence, 108(1–2):179–255, 1999.

[ESR00] T. Eiter, V. S. Subrahmanian, and T. J. Rodgers. Heterogeneous active agents,
III: Polynomially implementable agents. Artificial Intelligence, 117(1):107–
167, 2000.

[GI89a] M. P. Georgeff and F. F. Ingrand. Decision-making in an embedded reason-
ing system. In Proceedings of the Eleventh International Joint Conference on
Artificial Intelligence (IJCAI-89), pages 972–978, 1989.

[GI89b] M. P. Georgeff and F. F. Ingrand. Monitoring and control of spacecraft systems
using procedural reasoning. In Workshop of the Space Operations-Automation
and Robotics, Houston, Texas, July 1989.

[GL86] M. P. Georgeff and A. L. Lansky. Procedural knowledge. In Proceedings of
the IEEE Special Issue on Knowledge Representation, volume 74, pages 1383–
1398, 1986.

[GL87] M. P. Georgeff and A. L. Lansky. Reactive reasoning and planning. In Pro-
ceedings of the Sixth National Conference on Artificial Intelligence (AAAI-87),
pages 677–682, Seattle, WA, USA, July 1987. Morgan Kaufmann publishers
Inc.: San Mateo, CA, USA.

[GL88] M. Gelfond and V. Lifschitz. The stable model semantics for logic program-
ming. In R. Kowalski and K. A. Bowen, editors, Proceedings of the 5th Int.
Conf. on Logic Programming, pages 1070–1080. MIT Press, 1988.

[GLL00] G. De Giacomo, Y. Lesperance, and H. J. Levesque. Congolog, a concurrent
programming language based on the situation calculus. Artificial Intelligence,
121(1-2):109–169, 2000.

[GLS01] G. De Giacomo, H. J. Levesque, and S. Sardia. Incremental execution
of guarded theories. ACM Transactions on Computational Logic (TOCL),
2(4):495–525, October 2001.

[GRS88] A. Van Gelder, K. A. Ross, and J. S. Schlipf. Unfounded sets and the
well-founded semantics for general logic programs. In Proc. ACM SIGMOD-
SIGACT Symposium on Principles of Database Systems, 1988.

[HdBvdHM98] K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J. Ch. Meyer. Formal
semantics for an abstract agent programming language. Intelligent Agents IV
(LNAI 1365), pages 215–229, 1998.

[HdBvdHM99a] K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J. Ch. Meyer. Agent
programming in 3apl. Autonomous Agents and Multi-Agent Systems, 2(4):357–
401, 1999.

[HdBvdHM99b] K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J. Ch. Meyer. Semantics
of communicating agents based on deduction and abduction. In In IJCAI’99
Workshop on Agent Communication Languages, 1999.

114

[HdL00] K. V. Hindriks, M. d’Inverno, and M. Luck. An formal architecture for 3APL.
ZB 2000, pages 168–187, 2000.

[Hew91] C. Hewitt. Open information systems semantics for distributed artificial intel-
ligence. Artificial Intelligence, 47(1-3):79–106, 1991.

[HM02] R. H.Bordini and . F. Moreira. Proving the asymmetry thesis principles for a
bdi agent-oriented programming language. In Proceedings of the Third Inter-
national Workshop on Computational Logic in Multi-Agent Systems (CLIMA-
02), 1st August 2002.

[IGR92] F. Ingrand, M. P. Georgeff, and A. S. Rao. An architecture for real-time
reasoning and system control. IEEE Expert, 7(6):34–44, 1992.

[Jia94] Y. Jiang. Ambivalent logic as the semantic basis fo metalogic programming.
In P. Van Hentenrycki, editor, Proceedings of the International Conference on
Logic Programming, pages 387–401. MIT Press, June 1994.

[JM94] J. Jaffar and M.J. Maher. Constraint logic programming: a survey. Journal
of Logic Programming, 19-20:503–582, 1994.

[K.87] Kunen K. Negation in logic programming. In JOurnal of Logic Programming,
volume 4, pages 289–308, 1987.

[KD02] A. C. Kakas and M. Denecker. Abduction in logic programming. In A. C.
Kakas and F. Sadri, editors, Computational Logic: Logic Programming and
Beyond. Part I, number 2407 in LNAI, pages 402–436. Springer Verlag, 2002.

[KKT93] A. C. Kakas, R. A. Kowalski, and F. Toni. Abductive Logic Programming.
Journal of Logic and Computation, 2(6):719–770, 1993.

[KKT98] A. C. Kakas, R. A. Kowalski, and F. Toni. The role of abduction in logic
programming. Handbook of Logic in AI and Logic Programming, 5:235–324,
1998.

[KM90a] A. C. Kakas and P. Mancarella. Abductive logic programming. In V. Wik-
tor Marek, Anil Nerode, Dino Pedreschi, and V. S. Subrahmanian, editors,
Proceedings of the Workshop Logic Programming and Non-Monotonic Logic,
pages 49–61, Austin, TX, nov 1990.

[KM90b] A. C. Kakas and P. Mancarella. Generalized stable models: a semantics for
abduction. In Proceedings 9th European Conference on Artificial Intelligence.
Pitman Pub., 1990.

[KM91] A. C. Kakas and P. Mancarella. Preferred extensions are partial stable models.
In Proc. International Logic Programming Symposium ILPS91, pages 85–102,
1991.

[KM95] A. Kakas and A. Michael. Integrating abductive and constraint logic program-
ming. In International Conference on Logic Programming, ICLP95, 1995.

115

[KM97a] A.C. Kakas and R. Miller. Reasoning about actions, narratives and ramifica-
tions. Electronic Transactions on Artificial Intelligence, 1(4), 1997.

[KM97b] A.C. Kakas and R. Miller. A simple declarative language for describing nar-
ratives with ations. Logic Programming, 31, 1997.

[KM02] Antonis C. Kakas and Pavlos Moraitis. Argumentative agent deliberation, roles
and context. In Jürgen Dix, João Alexandre Leite, and Ken Satoh, editors,
Computational Logic in Multi-Agent Systems: 3rd International Workshop,
CLIMA’02, Copenhagen, Denmark, August 1, 2002, Proceedings, number 93
in Datalogiske Skrifter (Writings on Computer Science), pages 35–48. Roskilde
University, Denmark, 2002.

[KM03a] A. Kakas and L. Michael. On the qualification problem and elaboration toler-
ance. In AAAI Spring Symposium on Logical Formalization of Commonsense
Reasoning, 2003.

[KM03b] A.C. Kakas and P. Moraitis. Argumentation based decision making for au-
tonomous agents. In Proc. of AAMAS’03, July 14–18, 2003, Melbourne, Aus-
tralia., 2003.

[KMD94a] A. C. Kakas, P. Mancarella, and P. M. Dung. The acceptability semantics for
logic programs. In Proceedings of the 11th International Conference on Logic
Programming, 1994.

[KMD94b] A. C. Kakas, P. Mancarella, and P.M. Dung. The acceptability semantics for
logic programs. In ICLP94, pages 504–519, 1994.

[KMM00] A. C. Kakas, A. Michael, and C. Mourlas. ACLP: Abductive Constraint Logic
Programming. Journal of Logic Programming, 44(1-3):129–177, Jul 2000.

[Kow79] R. A. Kowalski. Logic for Problem Solving. North-Hollandg, 1979.

[Kow90] R. A. Kowalski. Problems and promises of computational logic. In Proceedings
Symposium on Computational Logic, pages 1–36. Springer-Verlag, November
1990.

[KS86] R. A. Kowalski and M. Sergot. A logic-based calculus of events. New Gener-
ation Computing, 4:67–95, 1986.

[KS96a] R. Kowalski and F. Sadri. Towards a unified agent architecture that combines
rationality with reactivity. In Proc. International Workshop on Logic with
Databases, pages 137–149. Springer Verlang, 1996.

[KS96b] R. A. Kowalski and F. Sadri. Towards a unified agent architecture that com-
bines rationality with reactivity. In Proc. International Workshop on Logic in
Databases, San Miniato, Italy, volume 1154 of LNCS. Springer-Verlag, 1996.

[KS99] R. A. Kowalski and F. Sadri. From logic programming towards multi-agent
systems. Annals of Mathematics and Artificial Intelligence, 25(3/4):391–419,
1999.

116

[KS02] A.C. Kakas and F. Sadri. Computational Logic: Logic Programming and Be-
yond. Lecture Notes in Artificial Intelligence, Vol. 2407 and 2408, Springer
Verlag, 2002.

[KST98] R. A. Kowalski, F. Sadri, and F. Toni. An agent architecture that combines
backward and forward reasoning. In B. Gramlich and F. Pfenning, editors,
Proc. CADE-15 Workshop on Strategies in Automated Deduction, pages 49–
56, November 1998.

[KT99] A.C. Kakas and F. Toni. Computing argumentation in logic programming.
Journal of Logic and Computation, 9:515–562, 1999.

[KTW98] R.A. Kowalski, F. Toni, and G. Wetzel. Executing suspended logic pro-
grams. Fundamenta Informaticae, 3(34):203–224, 1998. http://www-
lp.doc.ic.ac.uk/UserPages/staff/ft/PAPERS/slp.ps.Z.

[KvD01] A.C. Kakas, B. van Nuffelen, and M. Denecker. A-System: Problem solving
through abduction. In Bernhard Nebel, editor, Proceedings of the Seventeenth
International Joint Conference on Artificial Intelligence, IJCAI 2001, pages
591–596, Seattle, Washington, USA, August 2001. Morgan Kaufmann.

[LAP01a] J. A. Leite, J. J. Alferes, and L. M. Pereira. On the use of multi-dimensional
synamic logic programming to represent societal agents’ viewpoints. In
P. Brazdil and A. Jorge, editors, Progress in Artificial Intelligence, 10th Por-
tuguese International Conference on Artificial Intelligence (EPIA-01), vol.
2259 LNAI. Springer, 2001.

[LAP01b] J. A. Leite, J.J. Alferes, and L.M. Pereira. Minerva — a dynamic logic pro-
gramming agent architecture. In John-Jules Meyer and Milind Tambe, editors,
Pre-proceedings of the Eighth International Workshop on Agent Theories , Ar-
chitectures, and Languages (ATAL-2001), pages 133–145, 2001.

[LAP01c] J.A. Leite, J.J. Alferes, and L. M. Pereira. Minerva - combining societal agents
knowledge. Technical report, Dept. Informática, Universidade Nova de Lisboa,
2001.

[LAPQ00] J.A. Leite, J.J. Alferes, L. M. Pereira, and P. Quaresma. Planning as ab-
ductive updating. In Proceedings of AISB’00 Symposium on AI Planning and
Intelligent Agent s, 2000.

[Lei02] J. A. Leite. Evolving Knowledge Bases - Specification and Semantics. PhD
thesis, Universidade Nova de Lisboa, July 2002.

[Llo87] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 2nd ex-
tended edition, 1987.

[LMM+03] E. Lamma, P. Mello, P. Mancarella, A. Kakas, K. Stathis, and F. Toni. Self-
assessment: parameters and criteria. Technical report, SOCS Consortium,
2003. Deliverable D3. Distribution restricted to the GC programme.

117

[LRL+97] H. J. Levesque, R. Reiter, Y. Lesperance, F. Lin, and R. B. Scherl. GOLOG:
A logic programming language for dynamic domains. Journal of Logic Pro-
gramming, 31(1-3):59–83, 1997.

[MH69] J. McCarthy and P. J. Hayes. Some Philosophical Problems from the Stand-
point of Artificial Intelligence. Machine Intelligence, 4:463–502, 1969.

[PL90] P.R.Cohen and H.J. Levesque. Intention is choice with commitment. Artificial
Intelligence, 42(3), 1990.

[Prz91] T. Przymusinsky. Semantics of disjunctive logic programs and deductive
databases. In Proceedings of the 2nd International Conference on Deduc-
tive and Object-Oriented Databases, LNCS 566 Springer Verlag, pages 85–107,
1991.

[Rao96] A. S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable
language. In Rudy van Hoe, editor, Seventh European Workshop on Modelling
Autonomous Agents in a Multi-Agent World, Eindhoven, The Netherlands,
1996.

[RG91] A. S. Rao and M. P. Georgeff. Asymmetry thesis and side-effect problems
in linear-time and branching-time intention logics. In John Myopoulos and
Ray Reiter, editors, Proceedings of the 12th International Joint Conference
on Artificial Intelligence (IJCAI-91), pages 498–505, Sydney, Australia, 1991.
Morgan Kaufmann publishers Inc.: San Mateo, CA, USA.

[RG92] A. S. Rao and M. P. Georgeff. An abstract architecture for rational agents.
In C. Rich, W. Swartout, and B. Nebel, editors, Proceedings of Knowledge
Representation and Reasoning (KR&R-92), pages 439–449, 1992.

[RG95] A. S. Rao and M. P. Georgeff. BDI agents: from theory to practice. In Victor
Lesser, editor, Proceedings of the First International Conference on Multi-
Agent Systems (ICMAS’95), pages 312–319, San Francisco, CA, USA, 1995.
MIT Press.

[RG97] A. S. Rao and M. P. Georgeff. Modeling rational agents within a BDI-
architecture. In Michael N. Huhns and Munindar P. Singh, editors, Readings
in Agents, pages 317–328. Morgan Kaufmann, San Francisco, CA, USA, 1997.

[Sat92] T. Sato. Meta-programming through a truth predicate. In K. Apt, editor, Proc.
of the Joint International Conference and Symposium on Logic Programming,
pages 526–540. MIT Press, 1992.

[SBD+00] V.S. Subrahmanian, P. Bonatti, J. Dix, T. Eiter, S. Kraus, F. Özcan, and
R. Ross. Heterogenous Active Agents. MIT-Press, 2000.

[Sha89] M.P. Shanahan. Prediction is deduction but explanation is abduction. In
Proceedings IJCAI 89, pages 1055–1060, 1989.

[Sho93] Y. Shoham. Agent-oriented programming. Artificial Intelligence, 60(1), 1993.

118

[ST99] F. Sadri and F. Toni. Computational logic and multi-agent systems: a
roadmap. Compulog Newsletters, 7, December 1999. Electronic version, URL:
http://www.cs.ucy.ac.cy/compulog/.

[ST00] F. Sadri and F. Toni. Abduction with negation as failure for active and reactive
rules. In E. Lamma and P. Mello, editors, Proceedings AI*IA 99, 6th Congress
of the Italian Association for Artifhcial Intelligence, number 1792 in LNAI,
pages 49–60. Springer Verlag, 2000.

[STT01] F. Sadri, F. Toni, and P. Torroni. Logic agents, dialogues and negotiation: an
abductive approach. In Proceedings AISB’01 Convention, York, UK, March
2001.

[STT02a] F. Sadri, F. Toni, and P. Torroni. An abductive logic programming architecture
for negotiating agents. In S. Greco and N. Leone, editors, Proceedings of the
8th European Conference on Logics in Artificial Intelligence (JELIA), volume
2424 of LNCS, pages 419–431. Springer Verlag, September 2002.

[STT02b] F. Sadri, F. Toni, and P. Torroni. Dialogues for negotiation: agent varieties and
dialogue sequences. In Intelligent Agents VIII, 8th International Workshop,
ATAL 2001 Seattle, WA, USA, August 1-3, 2001 Revised Papers, volume 2333
of LNAI, pages 405–421. Springer Verlag, 2002.

[SW00] M. Schroeder and G. Wagner. Vivid agents: Theory, architecture, and appli-
cation. International Journal for Applied Artificial Intelligence, 14(7):645–76,
August 2000.

[SZ90] D. Saccá and C. Zaniolo. Stable model semantics and non-determinism for logic
programs with negation. In Proceedings of the 9th ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, ACM Press, pages
205–217, 1990.

[Tho95] S. R. Thomas. The PLACA agent programming language. In M. J. Wooldridge
and N. R. Jennings, editors, Intelligent Agents, Berlin, 1995. Springer Verlang.

[TK95] F. Toni and R.A. Kowalski. Reduction of abductive logic programs to normal
logic programs. In In proceedings of ICLP95, 1995.

[TS02] F. Toni and K. Stathis. Access-as-you-need: a computational logic frame-
work for flexible resource access in artificial societies. In Proceedings of the
Third International Workshop on Engineering Societies in the Agents World
(ESAW’02), LNAI. Springer Verlag, 2002.

[WJ95] M. Wooldridge and N.R. Jennings. Intelligent agents: Theory and practice.
Knowledge Engeneering Review, 1995.

[WRR95] D. Weerasooriya, A. Rao, and K. Ramamohanarao. Design of a concurrent
agent-oriented language. In M. Wooldridge and N. R. Jennings, editors, In-
telligent Agents: Theories, Architectures, and Languages (LNAI Volume 890),
pages 386–402. Springer-Verlag: Heidelberg, Germany, 1995.

119

