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ABSTRACT
In this deliverable, we report on our work within WP6, which is devoted to testing the proposed
SOCS models for individual computees and societies of computees, and their implementation.
To this purpose, work-package WP6 aims at testing the models defined in WP1, WP2 and
WP3, by exploiting PROSOCS, the outcome of WP4. As a by-product, this work is also a test
of PROSOCS.

This task has been addressed by animating PROSOCS (and its components, namely SOCS-
iC and SOCS-SI) with computees and their societies, and experimenting with existing scenarios
identified in the first two phases of the project.

A demo will be given at the next review meeting, on April 4th. Examples to be demon-
strated are available at the Web site http://www.lia.deis.unibo.it/Research/Projects/
SOCS/partners/experimentation/.
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Part I

WP6: aims, methodology, task
allocation

1 Introduction

The purpose of this deliverable is to provide a report of work done on workpackage WP6 of
SOCS project, focussing on experimentation. Together with work-package WP5, WP6 aims at
achieving Milestone 3 of the project:

Milestone 3: Verifiable properties of (societies of) computees;
Experimentation.

The two approaches followed in WP5 and WP6 are complementary: during the last year of
the project, these workpackages are dedicated to the formal verification of properties and to
the observation of characteristics of (societies of) computees, as implemented in the PROSOCS
system, respectively.

We distinguish between (formal) properties and (empirically observable) characteristics of
(societies of) computees. Formal properties are those that can be proved (or disproved) by
means of formal verification; characteristics refer to properties which can only be observed
empirically. WP5 concentrates on properties of the first class, whereas WP6 addresses charac-
teristics emerging from the animation of (societies of) computees.

Concretely, work-package WP6 seeks to:

• evaluate and validate the framework (computee and society models, PROSOCS platform
and its two main components, SOCS-iC and SOCS-SI) developed by the SOCS project
through a series of controlled experiments;

• experiment with the models and their implementation in the chosen scenarios, in order
to test their potential and limitations in a Global Computing setting;

• possibly confirm/disprove the properties of computees and their societies investigated
within WP5, and identify (emerging) novel characteristics of the SOCS models.

Deliverable overview. This deliverable is structured as follows. In this part (Part I), after
introducing the aims of WP6, we briefly recall the architecture of PROSOCS, the prototype
developed along the third year of the project in the context of workpackage WP4, and its exten-
sions. We, then, identify the classes of experiments conducted, and provide the task allocation
amongst the partners for the work carried out along the third year. In Part II, we report about
experiments done, pertaining to the PROSOCS platform itself, its application to chosen con-
crete scenarios and its application to confirm or disconfirm specific properties respectively. Part
III summarizes achieved results, and it is structured into three parts. It presents a catalogue of
protocols available on the Web, is devoted to evaluation and self-assessment, and summarizes
publications and given demos contributing to the aims of WP6. We then conclude in Part IV.
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Annexed documents. The following documents, which discuss, in more detail, various as-
pects of work done in the context of WP6 are annexed to this deliverable and they are also
listed, with abstracts, in Appendix A:

• Experiments on Combinatorial Auctions [6];

• Computee Profiles in PROSOCS [1];

At the next review meeting, we will show a demo pertaining the Combinatorial
Auction scenario and experiments with different behaviour profiles. Examples to be
demonstrated are available at http://www.lia.deis.unibo.it/Research/Projects/SOCS/
partners/experimentation/.

Furthermore, most relevant papers to work done in the context of WP6 are collected
at the Web page: http://www-lia.deis.unibo.it/Research/Projects/SOCS/guests/
publications/D14.html. Some of them are also common to work done in the context of
WP5 (see Deliverable D13).

As concerns comparisons, two issues are relevant to experimentation. The first concerns the
kind of platform we are experimenting upon. The second is more concerned with the experi-
ments performed and the proposed approach for automatically proving/disproving properties,
developed in the context of Workpackage WP5, and experimented within Workpackage WP6.

An exhaustive survey of related platforms is already presented in deliverable D9 [4], and we
refer to Section 7.3 of that deliverable for this issue.

Comparisons with other related techniques are reported in the various sections, for each of
the experiments, when needed. Comparisons with model checking techniques [18], adopted to
automatically prove or disprove properties, are reported as well at the end of the appropriate
experiments.

In the following, we briefly summarize the PROSOCS architecture, its main components
and extensions provided along the third year of the project. Then, we identify our classes of
experiments, and present the WP6 task allocation as defined along the third year of the project.

2 Recap of PROSOCS

In this section, we provide a brief recap of the PROSOCS platform (for a complete de-
scription, the reader can refer to the project deliverables D4 [40], D5 [50], D8 [34] con-
cerning SOCS individual computee and society models, and underlying operational frame-
works, respectively, and D9 [4] concerning their implementation in PROSOCS). The up-
dated version of PROSOCS can be downloaded at the same site devoted to experimentation:
http://www.lia.deis.unibo.it/Research/Projects/SOCS/partners/experimentation/.

2.1 The Original PROSOCS Prototype

In the development of PROSOCS described in [4] we focused mainly on integrating the two
components of the PROSOCS platform, viz. SOCS-iC and SOCS-SI. These components have
been the subjects of experimentation done till now, including their internal modules.

The conceptual organization of PROSOCS presented in [4] is depicted in Figure 1. The figure
shows a Computee, an agent equipped with reasoning capabilities allowing it to interact with its
Environment, which is composed of all the other computees, a Social Infrastructure to provide
verification of compliance to social rules of the computee interaction, and a Medium to support
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Figure 1: The conceptual organization of PROSOCS

inter-computee communication. Both individual computees and the social infrastructure are
equipped with a Graphical User Interface (GUI).

Figure 2: Implementation architecture of a PROSOCS computee (SOCS-iC)

SOCS-iC (see Figure 2) implements the KGP (Knowledge, Goals, Plan) model (described
in deliverable D4 [40]). As shown in Figure 2,

• a computee is based on a set of reasoning capabilities, which allow the computee to perform
planning, temporal reasoning, identification of preconditions, reactivity and goal decision;

• capabilities are supported by the proof procedures CIFF (abductive) and Gorgias (based
on LPwNF, see deliverable D8 [34]).

• a cycle theory is used to regulate how transitions (basically employing previous capabil-
ities) are sequenced for the computee to behave in a particular way. The cycle theory
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is implemented in Gorgias as well, and it can implement one of the identified profiles of
behaviour (see Section 2.3);

• a computee is equipped with an internal state on which its various capabilities operate.
The internal state is composed of a KB (representing the computee’s knowledge about
itself and of the environment, and consisting of separate modules each one concerning the
different reasoning capabilities ), a set of Goals (properties that the computee has decided
that it wants to achieve, possibly constrained by temporal constraints), and a set of Plans
(partially ordered sets of concrete actions, by means of which the computee intends to
achieve its goals).

Both the underlying proof procedures, CIFF and Gorgias, are implemented in SICStus
Prolog [63]; the SOCS-iC GUI is implemented in Java.

Figure 3: Overview of the Society Infrastructure architecture (SOCS-SI)

As shown in Figure 3, SOCS-SI implements the Society Infrastructure (see Deliverable D8
[34] and D9 [4]) of PROSOCS, and it is committed to the verification of compliance to protocols
of the computees’ interactions.

The verification is performed by means of the SCIFF abductive proof procedure (see deliv-
erable D8 [34]).

As defined in deliverable D5 [50], the knowledge about the interaction protocols in the society
is represented by an abductive logic program (composed of a logic program called knowledge
base, a set of Social Integrity Constraints and a set of abducibles), while the knowledge about
the computee interaction is represented as a history of events. Given a (partial) history of the
computee interaction, SCIFF generates a set of abducibles (expectations) which represent a
course of action that would satisfy the interaction protocols; checking the expectations against
the events, the society module is able to give an answer of fulfillment (the interaction protocols
have been respected) or violation (the interaction protocols have not been respected).

The SCIFF proof procedure is implemented in SICStus Prolog [63]; the SOCS-SI GUI is
implemented in Java.
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2.2 Extending PROSOCS with Objects

The first implementation of the PROSOCS platform integrated SOCS-iC and SOCS-SI using
a specific reference model which was presented in two companion papers, [10] and [66]. For
the purposes of this experimentation, however, the original model has been extended in order
to allow the interaction of computees with objects, i.e., entities other than computees which
differentiate themselves from computees and the society in that they do not require a reasoning
component [46].

Figure 4 shows the new/extended PROSOCS reference model, as presented in [46]. This new
model keeps from the original PROSOCS model a discovery component, which enables parts
of a computee, such as its sensors, to discover other computees and objects, when these are
created for an application. The functionality of SOCS-iC is provided via the computee template,
which allows us to create instances of computees with a mind and body as discussed in [66],
including how these components interact and communicate with the environment via sensors
and effectors. Similarly, the functionality of SOCS-SI is provided via a social infrastructure,
which provides us with mechanisms that check for conformance of the interactions according
to well-defined “social rules”.

Figure 4: The PROSOCS Reference Model.

A new component, which we call the object template, is introduced to allow instances of
PROSOCS objects to be created, so that computees can interact with objects, or objects
can interact between them. To accommodate this, we have rationalized the communication
component in the old version of the reference model (see [66] and deliverable D9 [4]) with
what we call the interaction component in the new version. This component is essentially a
component that allows us to enable interaction between computees and objects (or between
objects), and communicative interactions in terms of exchanges of different types of messages.
Finally, we have rationalized the computee management component in the old version, with an
environment component in the new version, which keeps a record of the existence of computees
and objects, and allows a computee to perform physical actions on objects or other computees.

We show in later sections how the implementation of the new reference model of PROSOCS
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will allow the platform to deploy a set of computees and a set of object in an artificial world
and, when necessary, a society that will allow the experimentation process to check interactions
between computees and objects for an application.

2.3 A Library of Behaviour Profiles

Along the third year, PROSOCS was also equipped with a library of behaviour profiles. As
presented in Deliverable D12 [5], we identified a collection of profiles of behaviour. They are:

• Cautious - A cautious computee does not (or prefer not to) execute actions which have
preconditions that it cannot currently show to be true.

• Focussed - A focussed computee remains committed to the same goal amongst its top-level
goals until it has either successfully achieved this goal or this goal has become infeasible
to complete or is not preferred by the Goal Decision capability before it moves on to other
goals.

• Punctual - A punctual computee is committed to execute actions and plan for goals when
they become urgent, in the sense that they are close to their deadlines.

• Actively Cautious - An actively cautious computee behaves like a cautious computee but
if it does not know whether a precondition is true of false, the computee will also actively
observe its environment to find out the truth value of these preconditions.

• Careful - A careful computee will revise its current commitments frequently so that any
new information obtained can be taken into account at a timely fashion.

• Objective - An objective computee always attempt to check immediately after the execu-
tion of an action if its desired effect has been achieved.

• Impatient - An impatient computee will abandon an action when it realises that its exe-
cution did not produce the desired effect, e.g., failed. It will only try the action again if
there is no other action to be planned, and the original action has not timed out.

When a computee employs a profile, the operational pattern of the computee will exhibit
certain desired characteristic. For example, a punctual computee will try the best to complete a
goal before the deadline; while a cautious computee will make sure the pre-condition of an action
is satisfied before attempting execution, hence saving valuable time and resources. Each profile
is a specialized cycle theory. A profile may specialize in any or all of following components:

• τBasic

• τBehaviour

• Selection Functions

The aim of the profile library is to make these profiles available as standard modules that can
be selected and utilized to create computees with predefined operational behaviour. In order to
achieve this, we have to extend the implementation of the PROSOCS platform with supporting
mechanism for profiles. Please refer to the annexed document titled Computee Profiles in
PROSOCS [1] for the implementation methodology and technical details. At this moment, we
have implemented most of the profiles, please refer to Section 7 for the experimental results of
some of these profiles.
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3 Classes of Experiments

For the purposes of WP6, we have identified the following three classes of experiments:

1 Testing the PROSOCS platform (and its components, also independently);

2 Experiment models and their implementation in chosen concrete scenarios;

3 Investigating properties.

We have planned WP6 activity in order to concentrate on the following steps (among them,
(i) and (ii) are related with 1 and 2 above; (iii) with 3 above):

(i) Parameter identification. In WP6 we have started to investigate parameters of the frame-
work developed within WP1-WP3 and implemented in PROSOCS within WP4, such as:
reasoning capabilities of the individual computees, behavior profile of computees, mode
of communication and interaction (society protocols), scale of density of computees in
a society, degree of heterogeneity of the composition of societies, frequency of revision
of computees’ knowledge, goal and plans as new circumstances occur. Some of them
are specific to experiments for testing PROSOCS and its components (and they are
named PPROSOCS , for short). Others relate more to scenarios (and they are named
PSCENARIOS , for short).

(ii) Develop and evaluate specific experiments. Specific experiments on (societies of) com-
putees and scenarios have been identified in order to test and control how the identified
parameters impact on the overall system. For each of the experiments set out above, the
behavior of the system is then examined.

Further experimentation in WP6 is linked to WP5 in the following way:

(iii) Develop specific experiments for properties. Experimental verification of formally proved
properties is necessary because the theoretical framework must make assumptions which
may not be satisfied in real world applications. For some of the identified (and formally
proved) properties, partners have been asked to identify specific experiments (as simple
as possible) on societies of computees and scenarios set out in order to experimentally
test the property. Evaluation of experiments for properties has been conducted with the
aim to confirm or disprove that the system exhibits the desired features, and possibly for
discovering novel, relevant characteristics. We have also experimented a proof theoretic
approach to automatically prove or disprove properties.

Along the second and third year of the project, we have already identified two notable scenarios
to be considered for experimentation along the project, namely the case of Combinatorial Auc-
tions scenario (see the internal document entitled Combinatorial Auctions [49], produced along
the first year of the project, and document entitled Experiments on Combinatorial Auctions
[6] annexed to this deliverable) and the Music for Beer scenario (see document entitled Further
Examples for the functioning of computees [23], which was annexed to Deliverable D9).

Furthermore, partners were involved in experimenting specific properties of either single
computees or societies of computees, and automatically proving protocol properties.
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Parameters ICSTM DIPISA CITY UCY UNIBO DIFER.

PPROSOCS , PSCENARIOS com-
putee side

X X X X

PPROSOCS , PSCENARIOS soci-
ety side

X X

Testing PROSOCS

Computee side X X X X
Society side X X
Medium X X
Overall platform X X X X X X
Scenarios

Combinatorial Auctions X X X X
Music for Beer X X
Properties

See WP5 task allocation X X X X X X

Table 1: WP6 Task Allocation

4 WP6 Task Allocation

The task allocation for WP6 is the following. Table 1 shows which partners contributed to
identify parameters for experiments and to set and run experiments for the classes identified
earlier.

With respect to task allocation, since the beginning of year three, unfortunately UCY was
in a difficult position since it has lost its RA, and therefore one of the two scenarios, the Music
for Beer, was only partially experimented.

It was also agreed that the WP4 team, involving one person per site, was engaged as support
for any tuning of PROSOCS and its main components that the experimentation required.
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Part II

Experimentation

5 Testing PROSOCS

In this section, we report on experiments testing the PROSOCS platform. They are aiming
to (i) tune the components of individual computees (e.g., computee’s capabilities), (ii) tune
the society infrastructure components and underlying proof procedures, and/or also for (iii)
evaluate overall performance.

The various experiments, when increasing in size, have helped to assess the scalability of the
PROSOCS platform resulting from WP4, and extended as discussed in previous Section 2.2.

We first summarize the identified parameters, and then present the various experiments for
testing PROSOCS components. Further tests for the whole integrated PROSOCS platform are
reported in Section 6, pertaining to the chosen scenarios.

5.1 PPROSOCS: Identified parameters for testing PROSOCS

We first present the main identified parameters of variation of both individual computees and
societies of computees. As mentioned above, they may concern the PROSOCS platform (and
its components, SOCS-iC and SOCS-SI) and/or scenarios.

As for testing PROSOCS, one of the aims of the experimentation was to evaluate the
computational cost of the various reasoning capabilities for the individual computees and the
computational cost of the compliance verification for societies of computees. For both cases, as
usual when evaluating the performance of a piece of software, output parameters to be observed
as computational cost are the time and space trade-off.

PPROSOCS computee side. The experimentation of SOCS-iC, the component supporting
the KGP model and implementing it on top of the CIFF and Gorgias proof procedures, is
mainly aimed at evaluating its computational cost.

For the experimentation phase, we have chosen to vary some of the KGP single reasoning
capabilities, (e.g., Temporal Reasoning, Reactivity, as we will see below) by varying the under-
lying supports for them (e.g., by considering a simpler abductive proof procedure for TR, and
a different version of CIFF), in order to evaluate what improvements can be achieved in terms
of performance and effectiveness of capabilities by using different underlying proof procedures
for Abductive Logic Programming (ALP). This also allows us to experiment and evaluate the
modularity of the platform, when some (of the underlying) components are replaced.

Further details about parameters varied in CIFF are reported in the devoted section (5.2).

PPROSOCS society side. Similarly, the experimentation of SOCS-SI, the SOCS compliance
verifier, is mainly aimed at evaluating the computational cost of the compliance verification
addressed by the SCIFF proof procedure in terms of the time and space trade-off.

SOCS-SI (and its underlying proof procedure SCIFF, in particular) was designed to be
used for on-the-fly compliance check, as well as for static a-posteriori check of the interactions.
Although the computation time is not a direct issue for the a-posteriori compliance verification,
time becomes a critical issue in the case of on-the-fly verification. In the latter case, SOCS-SI
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should behave like a real-time tool, that acts as quickly as possible whenever the interaction
between computees evolves.

Each SCIFF computation produces a search tree whose depth and breadth determine the
total number of nodes, and thus influence the time needed to explore the (whole) tree. We have
considered two different versions of SCIFF (f-non-deterministic or f-deterministic) in order
to improve performance. Details about parameters varied in the two versions of SCIFF are
reported in the devoted section (5.5).

Memory requirements are also important in order to determine the (maximum) dimension
of societies (in terms of participants and/or interactions) that the actual implementation of
SOCS-SI (and SCIFF) can support.

Input parameters that were taken into account as influencing the computational cost of a
SOCS-SI computation, and varied in the experiments, are:

• the length of the interaction (which is in turn determined by the number of interacting
computees, the length of a compliant interaction and the number of interactions between
given computees);

• the interaction protocols (in particular, the number of social integrity constraints com-
posing the protocols and the number of disjuncts in their heads);

• the version of SCIFF proof procedure (f-non-deterministic or f-deterministic).

5.2 Improving the CIFF proof procedure (ICSTM-DIPISA)

Aim. The aim of this class of experiments has been to support us in our efforts to improve the
efficiency of the CIFF proof procedure for ALP with constraints, as well as its implementation.
We have presented CIFF 2.0 at JELIA-2004 [25] and the new version of the system has been
publicly available since September 2004.1

Parameters considered and varied. We have considered different variants of the CIFF
procedure by introducing the following parameters into its specification (these parameters can
be considered in addition to PPROSOCS ; we list them here since they are specific to CIFF):

(i) Switching factoring on and off. As shown in [26], the factoring rule proposed in [33] for
the original IFF proof procedure is not required to ensure soundness (but neither does it
jeopardize soundness). The first parameter is therefore whether or not to include factoring
into the setup of CIFF.

(ii) Guided propagation. The propagation rule of CIFF allows for an atomic formula to be
resolved with any matching atom in the antecedent of an implication. This rule can be
refined by allowing propagation only with respect to the leftmost atom (that is neither an
equality nor a constraint atom) in the antecedent of an implication. This refinement does
not affect soundness, and can reduce the number of residues of integrity constraints to
be considered in a proof.2 The second parameter is therefore whether to use the original
propagation rule or its refinement when running CIFF.

1The URL of the CIFF Web site is http://www.doc.ic.ac.uk/∼ue/ciff/.
2As an example, consider a node including the implication p∧ q → r and the atoms p and q. For the original

version of the procedure, both p → r and q → r would be generated, while the refined version only generates
the latter. The fact that r is derivable from the node is not affected by this refinement.
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(iii) Integrating unary disjunction rewriting. The implementation of CIFF has to include
certain proof rules that humans would apply implicitly, such as rewriting a disjunction
consisting of only a single disjunct as that very disjunct. Our original heuristic has been
to give high preference to these very simple rules, while our new approach is not to waste
computing time on constantly testing for their applicability, but rather to integrate them
into the more complex rules. For instance, as we have observed that rewriting unary
disjunctions is often applied directly after an unfolding step, we have combined these two
rules.

(iv) Ordering of proof rules. An important parameter in the configuration of CIFF is the order
in which we attempt proof rules during a derivation. We have experimented with different
ways of ordering proof rules to identify the configuration most suitable for typical queries
in PROSOCS. Amongst the main rules, our new heuristics give highest priority to the
constraint rules and lowest priority to the unfolding rule for implications, to case analysis
for equalities, and to factoring. Minor proof rules, such as rewriting according to logical
equivalences are also given lower priority than before.

(v) Early equality-constraint rewriting. The equality-constraint rewriting rule translates
equalities such as T=7 into explicit constraint predicates (in this case T#=7), whenever
an equality includes a variable that also occurs elsewhere inside a temporal constraint
(see [27] for a precise statement of the rule). In the original implementation, we have only
performed this kind of rewrite step at the very end of any given branch in the proof tree;
our new policy is to apply this step immediately on encountering a new equality.

(vi) Triggering. In the context of knowledge bases based on the abductive event calculus,
we have experimented with a variant of CIFF where unfolding of the holds at predicate
inside an integrity constraint is not allowed (but the propagation rule should be used
instead). This approach can both improve performance and avoid problems with non-
allowed abductive programs. We call this variant of the procedure CIFF with triggering
(because the use of the integrity constraints in question needs to be “triggered” by match-
ing atomic goals). Besides studying its theoretical properties [34], we have also included
triggering as a parameter in our experiments.

Knowledge bases. We have further experimented with a variety of the knowledge bases
for CIFF-based capabilities of computees (namely planning, reactivity and temporal reasoning)
described in the Examples Document annexed to D9 [3] and some variants thereof. For planning
in particular, we have also experimented with knowledge bases taken from the blocks-world
domain (see also the experiment reported in Section 5.4).

Runs executed. We have timed different calls to these capabilities for different settings
of CIFF: either with or without factoring, with the standard propagation rule or with its
refinement, and following different heuristics with respect to items (iii)-(v). In the case of
temporal reasoning, we have also studied the behavior of CIFF with and without triggering in
detail. Further details are available in Sections 5.3 (experiments with temporal reasoning) and
5.4 (experiments with planning).

Evaluation. Our experiments have led to significant improvements of CIFF over a wide range
of examples, for all three of the CIFF-based reasoning capabilities available in PROSOCS
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(planning, reactivity and temporal reasoning). In particular, our experiments strongly suggest
that our new heuristics for ordering and combining proof rules in the implementation of CIFF
are superior to the previous version (as confirmed by all the runs executed). For planning in
particular (see Section 5.4), following the early equality-constraint rewriting has resulted in
noticeable improvements. In experiments based on a blocks-world scenario, the new version of
CIFF can solve problems efficiently that previously led to loops, by cutting down the search
space more effectively.

As concerns factoring, we have not been able to identify examples for which CIFF performs
either significantly better or significantly worse by dropping the factoring rule. In the case of
the refined propagation rule, we have also not been able to measure noticeable improvements
in performance for any of our application examples. However, the new rule is clearly superior
to the standard rule, as may easily be checked using theoretical arguments (rather than exper-
imentation). It is not difficult to design examples that require fewer proof steps using the new
rule rather than the old one.

While the use of triggering can result in very strong performance improvements for temporal
reasoning, our experiments have also identified cases for which this variant of CIFF is in fact
not sound (see Section 5.3).3

Related work. Implemented abductive proof procedures that are related to CIFF include the
A-system [42] and the SCIFF procedure developed within SOCS. However, given the improve-
ments discussed here are very specific to both CIFF itself and to our concrete implementation
of CIFF, there is no closely related work as such that we could compare our work with.

5.3 Temporal Reasoning: further development (UCY-DIPISA)

Aim. As part of the further development of the PROSOCS platform, we have run experi-
ments aimed to test and possibly improve the computational efficiency of the implementation
of the Temporal Reasoning (TR) component. More specifically we have tried to improve the
computational support provided by the adopted proof procedure which TR relies on. A new
proof procedure, different from CIFF, has been considered to be used as computational support
for TR. This has the aim of

1. studying how the effectiveness of the capability can be improved by using a different
underlying proof procedure for Abductive Logic Programming (ALP), and

2. experimenting and evaluating the modularity of the platform, when some components are
substituted or others are plugged in.

The experiment has been conducted by re-engineering the core of the TR implementation on
top of the ASLD(N,IC) system, and comparing the performance of the new component with
the performance of the TR running on top of a new release of the CIFF proof procedure, which
has been in the meantime developed by the SOCS Consortium.

Future extensions of the experiment may consist in varying the expressiveness allowed in
the KBTR of the computee with respect to the different proof procedure used as computational
support.

3Note that this configuration of the temporal reasoning capability has only been considered experimentally,
but not theoretically.
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Parameters considered and varied: the experiment The experimentation regards
mainly PPROSOCS parameters relative to the platform. The ASLD(N,IC) system (see
http://www.cs.ucy.ac.cy/aclp and http://www.doc.ic.ac.uk/∼or/) has been used in or-
der to provide the computational support for TR. This proof procedure extends the earlier ALP
proof procedure of Kakas and Mancarella [41], with more sophisticated selection and pruning
mechanisms.

Currently, we have worked on the capability in isolation by re-engineering the core of TR
on top of the new procedure. This has required some adaptation to the different syntax of the
ALP language accepted by the proof procedure, to the different API interface the procedure
exposes, and to the different model of computation the procedure uses (informally speaking,
while CIFF works by applying rewriting rules to a list representing the ALP theory, differently
ASLD(N,IC) allows the theory to be imported in the current interpreted program). We expect
that a possible integration of TR+ASLD(N,IC) in the PROSOCS platform should be facilitated
by the fact that both the CIFF and the ASLD(N,IC) proof procedures are written in SICStus
Prolog, which is already integrated in the engineered architecture.

The knowledge bases pertaining to the Temporal Reasoning capability needed small adjust-
ments in order to be adapted to the new proof procedure, but this does not affect the overall
interface of the capability with the rest of the architecture, and, basically, consists of minor
syntactical adaptations.

In the following we illustrate and discuss the performance of CIFF and ASLD(N,IC) as
supporting proof procedure for TR. In particular, we have compared the CIFF 2.0 with the
switch triggering on (see Section 5.2), CIFF 2.0 with the switch triggering off, and ASLD(N,IC).

Knowledge bases. The experiment has been run for the case of ground knowledge bases and
ground queries. Indeed, the SICStus Constraint Solver would need to be integrated either into
TR or into ASLD(N,IC), in order to support more fully temporal constraints. However, for
the purpose of comparing and studying TR performances relying on different proof procedures,
this is not a limitation for the experiments (about the difficulties of the modular integration
of different proof procedure in the overall PPROSOCS architecture, we again expect that the
Constraint Solver supported by SICStus would make the integration easy, in this respect).

The comparison has been done for a given example, consisting of the following domain
dependent knowledge base and narration:

% FLUENTS: go, parked, fuel

% EVENTS: drive, park, refill

initiates(drive, _, go).

terminates(drive, _, parked).

initiates(park, _, parked).

terminates(park, _, go).

precondition(drive, fuel).

initiates(refill, _, fuel).

% NARRATION:

%

observed(neg(fuel),0).

executed(refill,5).

executed(drive,10).

executed(park,20).
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Runs executed. Results, in terms of execution time and answers, are reported in Table 2.
Even if the two implementations of TR have a very similar representation of the object theory
(Abductive Event Calculus), they present some differences:

• ASLD(N,IC) is not provided with a (temporal) constraint solver and it is able to deal
with ground(ed) theories only,

• CIFF has a syntactical representation of the object theory (a list of terms) and operates
by means of rewriting steps,

• ASLD(N,IC) asserts the object theory (and integrity constraints are, currently, hard-wired
in the implementation and not “user-definable”).

Each run relative to a different proof procedure has been executed by restarting the Pro-
log interpreter and setting-up the object theory, then all the queries have been asked in the
same session. The test has been run on a 1Gb 1.8Mhz Pentium III machine. Both the imple-
mentations of TR have some extra code for debugging (basically some “print message”) and
time measurements. The overhead should be comparable for both the implementations. No
implementation presents not expected multiple-solutions.

Evaluation. CIFF with triggering on performs (much) faster (about 20 times) than
ASLD(N,IC), and also faster than CIFF with triggering off. Unfortunately, it seems that trig-
gering on does not guarantee soundness, when the procedure is used with an abductive theory
with integrity constraints like the ones in TR. Indeed, it computes a wrong negative answer
for the query neg(fuel) 3 (see Table 2), clearly not consistently with the initial observation
neg(fuel) (this “inconsistency” with the narration seems to underline the fact that integrity
constraints are not properly dealt with — the triggering option does actually affect them). Dif-
ferently, the triggering off CIFF computes the correct answer (the two cases differ only because
of triggering), but requiring a significantly longer execution time (although it must be reminded
that the previous version of CIFF 1.0 was often not terminating or returning an out of memory
error, in several similar cases). In conclusion, amongst the correct implementations for ALP
the ASLD(N,IC) system is significantly more effective.

We must also notice that the current implementation of ASLD(N,IC) does not have a tem-
poral constraint solver and hence it supports only ground queries. This limitation can be easily
overcame, following the theory developed in Deliverable D8. We would then be able to set up
a new set of experiments to compare the systems on non-ground theories.

5.4 Planning: further development (ICSTM-DIPISA)

Aim. The aim of this experiment has been to explore a variant of the KGP model to allow
an improved planning behavior of computees. We are not competing with state of the art
planners, but making the KGP model applicable to planning problems. The variant of KGP
uses a different tree representation of Goals and Plan in the state of the computee, whereby
actions admit children (their preconditions). The variant also combines the Plan Revision (PR)
and Goal Revision (GR) transitions within a single State Revision (SR) transition, as given in
D13. Furthermore, the variant uses a simplified cycle theory. Finally, the variant relies upon a
specified order amongst the proof rules of CIFF.

Formally, the variant of the KGP model described here has been given in [48].
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Parameters considered and varied. The parameters considered for the new variant of the
planning capability are as follows:

State Representation, Plan Introduction Transition and Action Selection Function
We have considered a variant of the computee state, whereby actions may admit children (and
descendants). The children are goals, and they are the preconditions of the actions, generated
by the |=pre capability, and descendants are the sub-goals of a goal. The new tree structure
is enforced by the Plan Introduction (PI) transition, which is modified The modification of PI
amounts to the new definition of Subg(Gi) in part (i.2), which becomes:

(i.2) or Gis 6= ⊥,Ais 6= ⊥ and

Subg(Gi) = {〈l[t], Gi, T 〉|(l[t], T ) ∈ Gis}∪
{〈l[t′], Ai, {t = t′}〉|KB, a[t] |=pre C ∧ l[t] ∈ C}, and

Pplan(Gi) = {〈a[t], Gi, C, T 〉|(a[t], T ) ∈ Ais ∧KB, a[t] |=pre C}.

Recall that in the original KGP model, preconditions are either inserted into the tree as siblings
of actions, if |=τ

plan does not already plan for them, or they do not appear at all in the tree
resulting from planning, if |=τ

plan has already planned for them, in which case any plan for
the precondition will be added to the tree via siblings of the action. Our modification of
the KGP model allows a finer control over the selection of actions to be executed within the
Action Execution (AE) transition, in that actions whose preconditions have not been planned
for and have not been observed to hold cannot be executed. This prevents executing actions
prematurely. The action selection function cAS has been modified accordingly, by adding an
extra condition.

In addition to this modification, we have considered, in our experiments, a simplified version
of the computee state. In particular, no reactive goals have been taken into account (since the
Reactivity transition is not considered).

Revision Transitions
We have merged the revision transitions of the KGP model, i.e., GR and PR, into a new single
revision transition SR, as documented in D13.

Cycle Theory
We have considered a simplified cycle theory, by limiting attention to the transitions:

Passive Observation Introduction (POI)
State Revision (SR)
Plan Introduction (PI)
Action Execution (AE)

Basically, preferential reasoning with the new cycle theory would amount to the follow-
ing imperative control: first apply POI, then apply SR, then, if there exists some goals to plan
for, apply PI, otherwise, if there exist some actions to execute, apply AE, otherwise, restart by
applying POI.

Order of CIFF rules

We have found the following order amongst CIFF proof rules most effective for the planning
experiments:
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1. Constraint Checking and Case Analysis for Constraints

2. Splitting

3. Unfolding (for Atoms)

4. Propagation

5. Unfolding (within Implications)

Knowledge bases. We have experimented with a variant of KBplan, without the integrity
constraint

happens(A, T ) ∧ precondition(A,P ) ⇒ holds at(P, T )

We have incorporated checking and enforcing this integrity constraint into the PI transition (see
the addition in condition (i.2)). By removing it from KBplan, we have forced partial planning
for goals, in the sense of not planning for preconditions of actions in the same planning phase
leading to the introduction of these actions.

Our main experimentation domain has been the well-known, standard blocks-world domain for
planning, where actions mv table and mv have associated rules:

initiates(mv table(X), T, on table(X))
initiates(mv table(X), T, clear(Y )) ← holds at(on(X, Y ), T )
terminates(mv table(X), T, on(X,Z)) ← holds at(on(X, Z), T )
initiates(mv(X, Y ), T, on(X,Y ))
initiates(mv(X, Y ), T, clear(Z)) ← holds at(on(X, Z), T ), Y 6= Z
terminates(mv(X, Y ), T, clear(Y ))
terminates(mv(X, Y ), T, on table(X))
terminates(mv(X, Y ), T, on(X,Z)) ← holds at(on(X, Z), T ), Y 6= Z

precondition(mv table(X), clear(X))
precondition(mv table(X),¬on table(X))
precondition(mv(X,Y ), clear(X))
precondition(mv(X,Y ), clear(Y ))

Runs executed. We have run a series of experiments with CIFF for implementing |=τ
plan,

given a number of instances of the blocks-world domain, including the Sussman anomaly. The
experiments suggested the previously given ordering of CIFF proof rules as the most effective.

We have revised and simplified the SOCS-iC part of the PROSOCS platform to implement the
new transitions SR and PI and the simplified cycle theory described earlier. We are experi-
menting with this implementation.

Evaluation. We have tested the overall implementation with very simple examples. These
experiments aimed at evaluating the scalability of our planning technique. For this, we have
targeted the task of building a tower composed of a growing number of blocks in the well-known
blocks-world domain. The initial situation is that all the blocks are on the table. E.g. , for the
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test with 3 blocks a, b, c we have as initial situation

holds initially(on(a, table))
holds initially(on(b, table))
holds initially(on(c, table))

and as goal that of building a tower with a on top of b and b on top of c:

holds(on(b, c), 12) holds(on(a, b), 12).

For the experiments, we have adopted as the time in our goals 4 ∗N , where N is the number
of blocks involved. In the simple case above we have three blocks and so the goal time is 12.
Indeed, our planning cycle takes 4 time-units to complete itself, and considering that each
cycle plans only for a goal and it executes only one action, 4 ∗N is a good approximation for
the number of time-units needed by the planner to achieve the goals.

Being this only a scalability test we do not consider observations or any action by other
computees. The initial KB0 is thus empty.

The experiments were run on a Mobile Intel Pentium IV - 1.7 Ghz, 256Mb DDR SDRAM, and
had the following outcomes:

# of Blocks Goal Time Execution Time (msec.)
3 12 1833
5 20 9564
8 32 62300
8 40 100494
10 40 158839
15 60 836954
20 80 3066217
40 160 > 1 day

In order to fully evaluate the implementation, and the overall approach to planning, we aim
at considering further examples (both in the blocks-world setting and in other settings) in a
dynamic settings (where KB0 changes over time due to exogenous actions and observations.
We also aim at comparing our planning technique with other planning systems (see below).

Related work. We are studying relationships between the planning system described in this
section and other existing planning systems, notably planning with the A-system of [42]. We
hope to have some comparative evaluation soon.

5.5 Improving the SCIFF proof procedure (DIFERRARA)

Each SCIFF computation produces a search tree whose depth and breadth determine the total
number of nodes, and thus the time needed to explore the (whole) tree. Since the proof tree is
explored by SCIFF in a depth-first fashion, the depth of the tree and the size of a single node
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define space requirements. For both time and space, the worst case is when each branch leads
to violation, since in this case the whole tree is explored.

Input parameters have been identified among those which influence the three factors above,
namely, depth, breadth of the search tree, and size of nodes.

Intuitively, the depth of the search tree depends on the total number of messages exchanged
within a society. This parameter can be varied, and incremented in particular, either by (i)
having the same computees repeat more times the same interaction; or (ii) increasing the
number of computees participating a society; or (iii) having “longer” interactions, where each
compliant run is made up of different messages, increasing in number.

The breadth of the search tree, instead, is influenced by both the number of disjuncts in
the head of social integrity constraints, and the alternative branches arising in several of the
SCIFF rewriting steps (see Deliverable D8 [34]).

For instance, in the Fulfillment E transition, the fulfillment of an E expectation leaves a
choice open for non-unification between the expectation and the event that would fulfill it. In
some cases, avoiding this branching does not change the behavior of SCIFF with respect to
fulfillment and violation: for instance, when a positive expectation can be fulfilled by only one
event, the non-unification branch cannot be one of success. In such cases, cutting the non-
unification branch is safe, and saves a considerable amount of computation space and time.
We call such a SCIFF behaviour f-deterministic meaning that it behaves deterministically on
Fulfillment.

We let the user decide for which expectations SCIFF should adopt the f-deterministic be-
haviour (or, in other words, which expectations will be f-deterministic), by means of one or more
fdet/1 directives, whose argument is a term T : all expectations that are instances of T will
be treated as f-deterministic. Of course, it is possible to make all expectations f-deterministic
by a directive such as fdet(e(X,T)). For simplicity, we will refer to SCIFF version with this
directive as the f-deterministic version of SCIFF; the f-non-deterministic version of SCIFF will
adopt, instead, no fdet/1 directive.

Aim. The aim of this class of experiments is to support us in our efforts to improve the
efficiency of SCIFF, the proof procedure of the society infrastructure for compliance verification,
and evaluate performance.

Parameters considered and varied. In this experiment, we consider the variation of the
following parameters:

1. SCIFF version (f-non-deterministic vs. f-deterministic, as defined above);

2. interaction protocol (one version with a disjunction in the head of a social integrity con-
straint vs. one version with no disjunctions, with alternative expressed by means of
variables with domain);

3. number of messages exchanged.

In particular, we measure the computation time for sequences of interactions exemplified by
auctions with different numbers of bidders in the two following implementations of the protocols:

1. f-non-deterministic SCIFF, protocol with disjunction (which we call the first setup of
SCIFF and protocol);
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2. f-deterministic SCIFF, protocol with no disjunction (which we call the second setup of
SCIFF and protocol).

Knowledge bases. In both cases, the goal is true, and the SOKB is reported in the document
entitled Experiments on Combinatorial Auctions [6], annexed to this deliverable.

In the first case, we have replaced the fourth social integrity constraint reported in [6], by
the constraint:

H(tell(B,A,bid(ItemList,P),Anumber),Tbid) /\
H(tell(A,B,openauction(Items,Tend,Tdeadline),Anumber),Topen)
--->
E(tell(A,B,answer(win,B,Itemlist,P),Anumber),Tanswer) /\ Tanswer >
Tend /\ Tanswer < Tdeadline \/
E(tell(A,B,answer(lose,B,Itemlist,P),Anumber),Tanswer) /\ Tanswer
> Tend /\ Tanswer < Tdeadline.

In the second case, the social integrity constraints are exactly those reported in [6]. In
particular, the fourth ICS is the following one:

H(tell(B,A,bid(ItemList,P),Anumber),Tbid) /\
H(tell(A,B,openauction(Items,Tend,Tdeadline),Anumber),Topen)
--->
E(tell(A,B,answer(Answer,B,Itemlist,P),Anumber),Tanswer) /\
Tanswer > Tend /\ Tanswer < Tdeadline /\ Answer::[win,lose].

where the alternative is expressed by the Answer CLP variable having the domain [win,lose],
rather than by a disjunction in the head of the integrity constraint, as in the first case.

Runs executed. The protocols have been run by varying the number n of bidders, in two
different cases.

• In each run of the first case:

1. the auctioneer sends an openauction message to each of the n bidders;

2. each of the n bidders places a bid;

3. the auctioneer issues a closeauction message to each of the n bidders;

4. the auctioneer notifies each of the n bidders with either a win or a lose message,

thus resulting in 4n total messages exchanged.

• In each run of the second case, the last notification is missing, thus resulting in a violation
of the protocol and 4n − 1 total messages (the auctioneer replies to all bidders, except
one).

The experiments have been run on a PC with a 2 GHz Pentium IV CPU, 512 MB of RAM,
Linux 2.4.18, glibc 2.2.5 and SICStus Prolog 3.10.1. Reported times are in seconds.

In case of fulfillment (see Table 3), the first setup of SCIFF and protocol seems to scale
well with the number of bidders and, in fact, it achieves better execution timing than the
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f-non-deterministic,disjunction f-deterministic,domain
Bidders Time(sec.) Bidders Time(sec.)

5 1 5 1
10 1 10 1
15 2 15 2
20 3 20 6
25 4 25 8
30 6 30 10
35 9 35 15
40 10 40 18
45 12 45 23
50 21 50 30

Table 3: Combinatorial Auction case 1: Fulfillment

f-non-deterministic,disjunction f-deterministic,domain
Bidders Time(sec.) Bidders Time(sec.)

3 7 3 0
4 55 4 0
5 - 5 0
10 - 10 1
15 - 15 3
20 - 20 4
25 - 25 7
30 - 30 10
35 - 35 14
40 - 40 17
45 - 45 22
50 - 50 26

Table 4: Combinatorial Auction case 2: Violation

second. This is basically due to the fact that the chosen setup of interactions directly leads to
a successful SCIFF derivation, and only one branch of tree is explored.

In the case of violation (see Table 4), however, the first setup of SCIFF and protocol
explodes for a very small number of bidders. The run with 5 bidders was suspended since this
did not reach the answer of violation after several minutes of computing time; no further run
was performed with a higher number of computees, which would have made things even worse.
The symbol −, therefore, represents time explosion. The second setup, instead, scales very well
also in case of violation. In this case, a CLP(FD) solver, written in CHR [31], directly manages
the two alternative values for variable Answer.

Evaluation. The difference between the two setups of SCIFF and protocol becomes apparent
in the worst case (i.e., the case of violation) when the whole search tree is explored. With the
first setup, the choice points left open in case of fulfillment and the disjunctions in the head
of the integrity constraint make the number of nodes in the proof tree explode even for small
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number of bidders. With the second setup, instead, the tree has only one branch, and is thus
explored in a reasonable time when the number of bidders increases.

5.6 Correlation between events and compliance checking (UNIBO)

Aim. The aim of this experiment is to investigate the correlation between the total amount
of events in a computee interaction and the time needed by SCIFF to check the compliance of
the interaction to the protocols. The test aims in particular to establish both the time needed
to find a solution, as well as to determine the computational limit using a particular hardware
configuration, taken as reference for all the tests.

Parameters considered and varied. We have varied only the number of messages, taking
as output the time spent by SCIFF to produce an answer. The test has been conducted using
the “no GUI” version of SOCS-SI: the overhead introduced by the Java GUI will be discussed
in a further test. Also only the f-non-deterministic version of the SCIFF has been used: a
comparison between the two versions of SCIFF was shown in previous test.

Knowledge bases. We decided to abstract from any “real” scenario or use-case, in order to
obtain results, as much as possible, independent of particular cases.

In particular, we decided to perform this test by simulating an increasing number of com-
putees, each one uttering only one message. Since the SCIFF computing time depends also on
the complexity of the protocol, we adopted a very simple one, made up by only one IC:

H(tell( A, B, aPerformative( aContent), D), T) --->
E(tell( C, B, aPerformative( aContent), D), T1)
/\ T1 > T.

Such a protocol minimizes the computational cost given by the complexity of the protocol
itself, since it generates only one expectation for each event; moreover, this expectation is
fulfilled by the following event, hence the expectation set is always kept at a minimum size.

Computees interaction have been simulated using event histories like the following one,
where N has been increased in the different runs:

tell([s0], d, agent1, receiver, aPerformative, [aContent], 1).
tell([s0], d, agent2, receiver, aPerformative, [aContent], 2).
...
tell([s0], d, agentN, receiver, aPerformative, [aContent], N).

Runs executed. All the runs have been executed 100 times, and their average value is
reported in the following table. Table 5 and the companion chart show the variation of the
computing time with respect to the number of events. Reported times are in seconds.

The PC used for the tests has a Pentium IV 2.8GHz CPU, 512MB of RAM and Windows
XP.
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Number of Average Time (sec.)
events

1 0,41
10 0,41
100 0,57
1000 2,23
10000 30,71
40000 527,45

Table 5: Time spent elaborating histories of various
length

Evaluation. It is immediately clear that performances of SOCS-SI get worse with a higher
number of messages. In fact, the time requirements for elaborating messages do not increase
linearly; rather, they tend to increase following a square factor, since each positive expectation
is compared with each of the happened events.

The time needed to process a single event is not constant, but it grows along with the
growth of the history itself. This behavior can be explained by the fact that SOCS-SI, in the
actual implementation, keeps track (in central memory) of all the events happened, as well as
of all expectations (fulfilled, violated or pending) and of Partially Solved Integrity Constraints
(named PSIC, for short, in Deliverable D8 and D9). This leads to an increment of the memory
needed, and of course to an increase of time cost, to access a bigger amount of data. Then,
each new event must be “checked” against a bigger set of PSIC.

6 Testing with scenarios

6.1 PSCENARIOS: Identified parameters for testing with scenarios

We have identified some notable parameters to be considered in the experiments with the
chosen scenarios, in addition to those concerning PROSOCS, for both individual computees
and societies of computees.

PSCENARIOS computee side. The main parameter of variation of individual computees for
experiments on scenarios is the behavior profile of the computees, as this is given to them by
their cycle theories. This links to the formal properties of Identification of Profiles of Behavior
that we are examining (see devoted section in Deliverable D13). Another, somewhat related
parameter, for individual computees is their social attitude or personality as captured in Goal
Decision policies and components of this such as their private negotiation policies.

Further parameters to be varied are represented by the various KBs for the single capabil-
ities of the individual computees, e.g., planning, reactivity, goal decision, etc.

The main output parameter of evaluation or comparison (from the viewpoint of individ-
ual computees) of different experiments is the degree of individual welfare achieved as this is
formalized and studied in WP5 (see devoted section in Deliverable D13). In particular, differ-
ent notions of welfare relating to the computees individual preferences (e.g., its goal decision
preferences) and to the society protocol can be examined (separately or combined together).
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PSCENARIOS society side. Beside PPROSOCS parameters, in the experimentation pertaining
scenarios we have varied the kind of society itself, by changing the knowledge of the society, its
goals and its interaction protocols.

6.2 Combinatorial Auction scenario

In the vision of computational infrastructures available globally and able to provide services
of different kinds (e.g., for communication, co-operation and mobility, resource usage, security
policies and mechanisms, etc.,), a central issue is that of resource and task allocation. To
this end, particularly suited tools are market-based negotiation protocols and theories, such
as those related to auctions and the increasingly popular combinatorial auction mechanism.
Combinatorial auctions [22] are a good candidate to address issues of service programmability,
resource distribution and management, scalability, and distribution transparency, all central
topics in the global computing perspective.

We therefore propose to test the SOCS infrastructure on a real world e-commerce problem,
such that of Combinatorial Auctions. Combinatorial Auctions represent a form of auction where
bidders can bid on a combination of items (or services).

This scenario is also chosen, besides its relation Global Computing features mentioned above,
because:

• it exhibits all the SOCS required features (i.e., the need for programming KBs of single
computees and rule their interactions by social constraints);

• it integrates all the PROSOCS components (e.g., reactivity, goal decision, Social Integrity
Constraints) and represents a suitable scenario for their test;

• it needs to also incorporate additional components (i.e., an external solver, see below) by
using PROSOCS objects.

This kind of auction has not found in the past many applications because, although it is
a very powerful and expressive way of buying and selling goods, the task of determining the
winning bids is NP-hard.

Recently, sophisticated solvers and algorithms have been developed (see for example [61])
to efficiently solve the winner determination problem. Therefore, combinatorial auctions are
becoming a standard application in e-commerce, and they are a significant scenario to be
experimented upon with PROSOCS.

We consider in this experiment the single unit reverse auction where each item is distin-
guishable (and therefore named single unit), and the auctioneer wants to buy a set of goods
while bidders sell items (and therefore named reverse). Intuitively, the auctioneer proposes a
set of items M that she/he wants to buy and each bidder proposes a bid composed of a set of
items (a subset of M) and a price she/he is willing to pay if her/his bid is considered as win-
ning. After the auction is closed, the auctioneer is supposed to solve the Winner Determination
Problem by choosing a set of winning bids covering all items at the minimum cost.

For this problem we have implemented an Auction Solver, described in detail in [36], em-
bedding a portfolio of algorithms for solving the problem. In addition, the Auction Solver is
enhanced with an automatic selection of the most efficient algorithm in the portfolio given the
auction instance to be solved. The selection mechanism is described in [37]. A more detailed
description of the scenario can be found in [6], annexed to this deliverable.
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In the following, we report about the experiments we performed in this scenario. We per-
formed experiments on single computees, on the society alone and an integrated experiment
where computees and the society are tested together, exploiting the Medium.

As far as computees are concerned, the main experiments carried out aimed at testing
whether computees are flexible enough to cope with external objects providing services to the
computees themselves, and to exploit the different profiles of behaviour available, and the
reactive capability, in particular, among others.

Concerning the society alone, we performed experiments on the efficiency and the scalability
of the proof procedure by using files containing conforming histories. In addition, we performed
other tests using the e-mail system as the communication layer, instead of the Medium. A new
component has been implemented, for the purpose of letting SOCS-SI to easily interface with
the email where human agents exchange messages through properly formatted email messages.
We are currently conducting two different groups of experiment: in the first group computees
are simple reactive programs using email accounts; in the second group human users are par-
ticipating to a combinatorial auction, while SOCS-SI checks for compliance to the protocol of
this human agents. Experiments using the email are not intended to test scalability, but the
flexibility of the SCIFF proof procedure to deal with delays due to the communication layer
used.

Experiments on the society alone are currently carried on different scenarios where combi-
natorial auction come into play. In particular, we experimented:

• single auction: this scenario models a traditional auction where a set of bidders post their
bids on combinations of items and the auctioneer decides which bids win.

• an auction plus the buying/selling step: this experiment involves an auction and the next
step where items that are promised in the auction are indeed sold and bought at the
corresponding price. We used the NetBill protocol for this step.

• double auction: the third experiment implements two auctions. Indeed, when an auction
is opened and the bidders have access to the list of items the auctioneers posts, some
of them can decide of opening a second auction to collect more items and perform more
appealing bids.

Finally, we run an integrated experiment which concerns only the single auction, and we
put together the society and the computees using the Medium as communication layer. The
integrated example will be shown during the demo to be given at the next review meeting.

6.2.1 Modelling Computees for Combinatorial Auctions (ICSTM-CITY)

Aim. The aim of our experiments on modelling both an auctioneer and bidders using the
PROSOCS platform has been to verify that our framework can support the basic communi-
cation processes required to run a combinatorial auction. The main capability that needs to
be programmed in this scenario is reactivity (and, to a lesser degree, also planning). These
experiments have also been a first application of the extension of PROSOCS with the concept
of an external object to carry out specific tasks for a computee (in this case, determining the
winners in a combinatorial auction and collecting a set of bids using a simple object that can
act as a “notepad”). That is, these experiments were also aimed at testing the functionality of
external objects within PROSOCS.
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Parameters considered and varied. As concerns PPROSOCS , in theory, we could have
chosen between either mapping certain tasks to external objects or writing appropriate planning
or reactivity knowledge bases for carrying out these tasks. In the combinatorial auction scenario,
we have opted for using two external objects: the ILOG auction solver and the “notepad” [46, 6].
In the case of the auction solver it seems unreasonable to attempt to implement a sophisticated
optimization tool in terms of the abductive event calculus (so, in fact, in practice this is not
really a parameter that could be varied). In the case of the “notepad”, we have found this a very
convenient means of programming the auctioneer, but other solutions may be possible as well.
As concerns PSCENARIOS , parameters to be varied concern the types of bidding computees
used (characterized by the choice of knowledge base for reactivity), the number of computees
participating in an auction, and the number of items on auction. We have experimented with
a small number of different types of bidders. We have also tested the platform for different
numbers of bidders and different numbers of bids per bidder.

Knowledge bases. We have designed generic knowledge bases for both the planning and
the reactivity capability of a computee acting as an auctioneer. A computee equipped with
these knowledge bases can open an auction (assuming it has a goal to do so) by sending out an
appropriate message, it can check incoming bids for validity (by verifying that the bidder has
in fact been invited to bid, that the set of items is a subset of those on auction, and that the
specified deadline has not yet passed), and it can collect bids deemed valid for processing after
the end of the auction. Collecting bids is achieved by “writing” valid bids to an instance of the
“notepad” object described in [46]. Finally, the reactivity knowledge base includes rules that
allow the computee to retrieve the list of collected bids, to forward it to another external object
implementing a combinatorial auction solver, and to disseminate the result received from that
solver amongst the bidders. The knowledge bases are generic in that they can support different
types of auctions (normal or reverse combinatorial auctions; with or without time windows).
The knowledge bases are described in detail in [6], annexed to this deliverable. To date, we have
also written a number of simple reactivity knowledge bases for computees acting as bidders in
a combinatorial auction. These encode either hard-wired bids that will be sent out as soon as
an auction is opened, or very simplistic strategies (such as bidding in any auction that offers
or asks for a particular item, with a fixed price) [6]. Implementing more sophisticated bidding
strategies is possible in principle, but would require substantial further work on choosing an
appropriate knowledge representation.

Runs executed. To test the scalability of the system, we have run experiments with different
numbers of bidders and different numbers of bids per bidder. As the main computational
burden lies with the auctioneer, these runs test, in particular, the scalability of the computee
implementing the auctioneer. The overall runtime for 9 different settings (with 2–4 bidders
and 2–4 bids per bidder concerning 6 items on auction) are reported in [6], annexed to this
deliverable..

Evaluation. Our experiments show that PROSOCS (and its integration with SOCS-SI) is
a suitable platform to deal with the communication requirements for running a combinato-
rial auction. In particular, our experiments have demonstrated the feasibility of the external
objects approach, both for a very simple object (the “notepad”) and for a complex and sophis-
ticated piece of third-party software (the ILOG solver implementing the winner determination
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algorithm [6]). While these results are very encouraging, we have also encountered problems
with the scalability of PROSOCS for this type of application. This is not surprising given the
prototypical character of the platform and the generality of our approach.

6.2.2 Experimenting the Auction Solver (UNIBO)

Aim. In the Combinatorial Auction scenario we have to cope with a complex combinatorial
optimization problem: the Winner Determination Problem. Having an efficient, scalable and
flexible tool that solves this problem is crucial for the efficiency of the overall system.

In this experiment, we exploit an Auction Solver implemented in ILOG solver [38] suitably
wrapped in to Java. The Auction Solver is so efficient that it gives the possibility of scaling the
auction dimension, and test the performances of the SOCS social infrastructure.

Parameters considered and varied. We describe here the experiments done on the Auction
Solvers. The complexity of the problem to be addressed depends on the number of bidders
attending the auction. If the number of bidders grows, the task of determining the winning
bids becomes more and more time consuming, being NP-hard.

Knowledge bases. In this case, since we are experimenting an external object, the society
knowledge base is empty, being the Winner Determination Problem solved by the auction solver.
The solver is described in detail in [36].

Runs executed. The Auction Solver has been extensively experimented and results are ex-
tremely encouraging. We run tests on the Auction Solver for an increasing numbers of bids.
Qualitative results are reported in [6].

Evaluation. The Auction Solver implemented in ILOG is extremely efficient since it scales
up to 1000 bids within 2 seconds. We will see in the next section that slower performances are
achieved by the conformance checking of the society protocol (around 30 seconds for checking
messages exchanged in auctions with 50 bidders). However, even if the components have dif-
ferent performances, from the testing, we can conclude that both components can be used in a
real combinatorial auction scenario since the time limits required for answering are much larger
than the sum of the answer times of the components.

6.2.3 Modelling Societies for Combinatorial Auctions (UNIBO-DIFERRARA)

Aim. The motivation for performing tests on the society alone includes the need to show that
the social infrastructure (and its implementation, SOCS-SI) can successfully deal not only with
toy problems, but also with real applications.

We also show that, beside computees, we can also introduce external objects providing a
service to the society or to a single computee (as shown in the example discussed in Section
6.2.1 above).

Parameters considered and varied. We describe here the experiments done on the con-
formance checking to the society protocol and on the Auction Solvers. Also in this case, the
complexity of the problem to be addressed depends on the number of bidders. If the number
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of bidders grows, as the number of messages exchanged proportional to the number of bidders,
then the computational cost of the compliance verification increases.

In addition, we varied also the protocol to be tested. In particular we defined three variants
of the scenario so as to test the flexibility of the proof and the expressivity of the language.

The three protocols implemented are the following:

• Protocol 1 single auction: this protocol models the interactions between the auctioneer
and the single bidders during a traditional auction. The protocol checks the messages
exchanged between the open auction and the communication of the auctioneer to all the
bidders if they win or lose.

• Protocol 2 an auction plus the buying/selling step: this protocol goes one step further
with respect to the previous one. In fact, it models interactions ending when all items
belonging to the winning bids are indeed sold and bought at the price decided in the
auction. For this purpose, we used a part of the NetBill protocol [20].

• Protocol 3 double auction: this third protocol models, beside a traditional auction the
possibility of having a bidder opening a second auction for collecting items to be proposed
in its own bid. Therefore, we have two auctions going on, the second ending before the
end of the first.

The integrity constraints representing these protocols are reported in the annexed document
[6].

Knowledge bases. The society knowledge base for these experiments and the auction pro-
tocol as ICS are reported in [6], annexed to this deliverable.

Runs executed. To test the scalability of the society alone, we performed tests using files
containing conforming histories. In this way, we can test the efficiency of the proof without the
delays introduced by exchanged messages.

The first experiments on which we already have results is the one on a single auction. Results
show the time spent to check the conformance of exchanged messages to the society protocol in
the presence of an increasing number of messages, which in turn is proportional to the number
of existing bidders. The version of SCIFF used is the f–deterministic one, which scales better
with an increasing number of messages. Results are reported in [6].

In order to test the society in a realistic, but human environment, we also implemented an
e-mail system as communication layer, in alternative to the Medium. In this setting, human
users exchange messages through properly formatted emails. In this way we can make both
computees and human users bid together in an auction, while SOCS-SI checks for compliance
to the protocol of utterances made by these agents. This does not affect the underlying SOCS
model, but of course extends the applicability of PROSOCS to human agents.

Evaluation. The scalability of the f–deterministic version of the proof is quite good, even
if far from the Auction Solver performances. Although there is room for improvement in the
implementation of the proof, for the moment it is efficient enough for performing our tests.

From the experiments we did using the email system, we can say that although there are
delays introduced by the email system, the proof smoothly deals with them and works properly.
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6.2.4 Integrated example (ICSTM-UCY-CITY-UNIBO-DIFERRARA)

Aim. After testing the single components separately, we have also tested the scalability of
the overall system by putting together computees exchanging messages with the society in-
frastructure checking for computees communication conformance. The experiments have been
done on the traditional combinatorial auction since the aim of this test is to check the real
integrability of the components and their interactions. We have encountered and solved some
problems related to the integration of different components and problems related to deadlines.
We ended up with a stable system, but experimentation is still ongoing. One integrated sample
demo will be shown at the next review meeting in Edinburgh on April 4th.

Parameters considered and varied. In the integrated experiment we have done and plan
to develop further, we have changed the number of bidders and the number of bids per bidder.

Knowledge bases. The knowledge bases of the society and of the computees are reported in
[6]. It is important to notice that the computees exploit in this experiment only their reactive
capability. In the future, testing the planning capability for defining more sophisticated bidding
strategies will be considered.

Runs executed. We have run a set of experiments with 2, 3 and 4 bidders with 2, 3 and 4
bids per bidder.

Evaluation. Results show that the components integrated well. Up to now, only small ex-
amples (with few bidders) have been solved. To really test the scalability of the platform and
its performance for the integrated case, further experimentation is needed, indeed, and it as
been planned already as work in progress.

6.2.5 Related Work

Combinatorial Auctions are increasingly studied since they have the advantage that bidders can
bid on combinations of items. This leads to more efficient allocation than traditional auctions
where the bidders valuations are only additive. The drawback is that evaluating bids and
determining the winning bids is a NP-hard problem. However, there are different systems and
methods to solve a combinatorial auction in an efficient way. The methods used to solve the
problem exploit dynamic programming techniques [56], approximate methods that look for a
reasonably good allocation of bids [32, 60], integer programming techniques [19, 53], search
algorithms [62].

An aspect which plays an important role in auctions in general is negotiation. Negotiation
is one of the main research areas in distributed systems. The area of negotiation is broad and
applies to different scenarios, such as for instance multi-agent systems [39, 55]. In most cases
agents need to negotiate because they operate in environments with limited resource availability.
For example, one-to-many negotiation is used for auctions, where auctioneers and bidders reach
an agreement on the cost of the items on sale.

An interesting example of system similar to ours is ISLANDER [64], a tool to specify
protocols in a system ruled by electronic institutions that has been applied to a Dutch auction
(and other scenarios). Their formalism is multi-levelled: agents have roles, agents playing a
role are constrained to follow protocols when they belong to a scene; agents can move from a
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scene to another by means of transitions. As in various works, protocols are defined by means
of transition graphs, in a finite state machine. Our definition of protocols is wider than finite
state machines, and leaves more freedom degrees to the agents.

More related work pertaining learning applied to (combinatorial) auctions is mentioned in
[6].

Relevance to Global Computing. With the GC vision in mind, we found it important
to demonstrate experimentally that the models and tools developed in WP1-WP4 are flexible
enough to address aspects such as heterogeneity, resource achievement, and scalability, often
present in open environment. This was one of our main criteria when we had to choose exper-
imental settings and scenarios. Combinatorial auctions are an example. They can be used to
facilitate resource achievement, and can be tested by varying a number of parameters significant
in the GC vision, like profiles and number of computees involved in the resource exchange pro-
cess. Besides, the auction mechanism can itself be considered as a service, and the possibility
to define different protocols for resource exchange is a demonstration of programmability of
services. We have considered a set of protocols for various auction mechanisms (like English
auction, combinatorial auction and others). The intuitive and easily readable specifications of
such protocols demonstrates the flexibility of a fully declaratively programmable tool. This,
together with the guaranteed verifiability of interaction in all our test cases, demonstrates that
exporting the SOCS models into a larger scale is something feasible. The diversity of tested pro-
tocols in the case of combinatorial auctions demonstrates the SOCS model’s ability to help the
integration of an open and global computing reality, where entities can live with pre-existing
interaction mechanisms and a new associated social semantics. Incrementally, diverse (and
possibly incompatible) implementations can in this way move towards integration and global
communication.

6.3 Experimenting with the Music for Beer scenario

This scenario was first proposed by Küngas and Matskin [43], to show agent cooperative problem
solving achieved by use of linear logic and partial deduction. It is fully described with several
variations in the document Further Examples for the functioning of computees [23], annexed to
Deliverable D9). That document contains also the detailed knowledge bases and cycle theories
of the computees and the society protocols used in variations.

Experimentation for this scenario was partially done, along the first sixth months of third
year. With respect to task allocation, unfortunately UCY was in a difficult position since it has
lost its RA and despite efforts it was difficult to find a replacement. Therefore, this scenario
was only partially tackled. However, we report here, the work done along the first six months
of the third year of the project.

6.3.1 Collaborative Achievement of Individual Goals and Resource Allocation
(UCY-UNIBO)

Aim. The experiments concern the investigation of collaborative (operated jointly) problem
solving by computees to achieve their individual goals. It aims to compare the performance of
computees by examining different designs of the computees and different external circumstances.
In particular, variations that link the computees with their societies will be examined.
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Apart from testing the SOCS models themselves, we also aim at showing how this differs and
extends existing approaches, e.g., [43], in several aspects, including autonomy, as the amount
of information shared by computees is tuned by the policies, and computees are not necessarily
cooperative, planning capabilities, modularity of knowledge representation, and finally the ability
to reason on dynamic and contextual information.

Parameters considered and varied. The main parameters to be varied are of two types
(i) different resource allocation and collaborative achievement problems and (ii) different types
of computees operating. More specifically these parameters are:

• external circumstances of time and communication;

• social expectations of the society;

• behavior profile of the computees;

• social attitude and negotiation policies of the computees

• number of computees and tasks involved.

Evaluation criteria. The main evaluation criteria for these experiments will be: (i) the dis-
tribution of the individual welfare (linking to the properties, see deliverable D13 [2]) achieved in
each case and comparisons of these, (ii) conformance or not to social expectations for variations
of the experiments that consider these and (iii) efficiency of operation of computees as we scale
up their numbers.

Runs executed. We have implemented (using an earlier version of the PROSOCS platform)
the standard scenario of Music for Beer and tested its appropriate behavior. Also a variation
of the scenario where we simulate social expectations is tested showing the effect of these on
the behavior of the computees.

Evaluation. Our initial limited experiments already point out the flexibility that the SOCS
framework has in addressing such problems. But proper systematic experimentation was not
carried on, due to lack oh human resources at UCY. This prevented us from carrying on all the
planned experiments.

6.3.2 Related Work

There are several logic-based frameworks for agent negotiation which are related to our work
on this experiment. As we have mentioned above the experiment has been inspired by the
work of Küngas and Matskin’s [43] who have studied how cooperative problem solving could
be achieved with the use of linear logic and partial deduction. Our experiments show firstly
the relative comparative ease with which such complex requirements can be implemented in
PROSOCS and secondly to carry out a first evaluation of the difficulties in implementing further
more reasoning and acting modules of the agent. In addition, our work differs from other work
such as Küngas and Matskin’s [43] in several aspects, including autonomy, as the amount of
information shared by agents is tuned by the policies, and agents are not necessarily cooperative,
planning capabilities, modularity of knowledge representation, and finally the ability to reason
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on dynamic and contextual information. All these additional aspects have been implemented
in the demonstration example of Music for Beer.

Other related work includes [15] and [59] where the authors focus on the ability of agents
to produce dialogues, on protocol compliance, and on the ability to solve resource reallocation
problems. However, their architecture, focussing on the reasoning needed to produce dialogues,
is independent of other agent capabilities, such as planning. Moreover, differently from [59],
our use of preference reasoning allows for a modular agent programming, which allows for
combination of individual reasoning with social expectations.

Relevance to Global Computing. The Music for Beer experiment was designed to check
how our KGP model of agency could accommodate several variations and extensions of agent
distributed problem solving required by Global Computing. These include problems where the
agents are heterogeneous, e.g., where some agents are cooperative and some are not. Similarly,
we can accommodate issues that relate to adopting social expectations and adapting the nego-
tiation between agents to different circumstances, e.g., the type of request or the relative roles
of the agents involved, by exploiting the added flexibility of the private agent policies.

The main Global Computing characteristics that are illustrate through our experiments are
the autonomy of computees to make their own decision in an open and changing environment,
the heterogeneity of computees (cooperative or non co-operative), their ability to distribute
their tasks and to adapt their decisions and behaviour in the face of new information e.g. as
provided by the other computees. In particular the following criteria have been addressed by
the experiment:

Adaptability: Adjustment where the computee decides to respond differently to requests
depending on the needs it can currently satisfy and/or on the needs that it currently has
for itself.

Partial Information: Conditional decisions where computees develop plans conditional
on the assumption that a request for a need within the plan will be accepted and thus
provided.

Distribution: Decentralization where a computee decides to achieve a goal with a plan
which also involves other computees. The computee has thus distributed its task.

Heterogeneity: Overall Behaviour where the cycle theory and goal decision preference
policies of a computee regulate its cooperative or not behaviour and the relative im-
portance that a computee gives to requests from other computees.

Heterogeneity: Personality where the personality policy of the computee within its goal
decision policy affects its decisions as to whether to accept or not a request to provide a
need.

The relatively complex scenario of the experiment illustrates how the different capabilities
of the computee are composed together in order to produce the enhanced functionality required
by the global computing setting. They show the synthesis of the isolated components of the
model together with the cycle theory and how it is possible to exploit different parts of the
knowledge of the computee specified modularly in different components of the model.
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7 Experimentation for properties

Our classification of verifiable properties of societies of computees is based on the catalogue of
properties put forward in deliverable D13 [2], consisting of four parts: (i) properties of proof
procedures; (ii) properties of individual computees; (iii) properties of the social infrastructure;
and (iv) properties specifically related to protocol conformance.

It is important to distinguish between (formal) properties and (observable) characteristics
of (societies of) computees. Formal properties are invariants which have been formally proven
within WP5. Characteristics refer to properties which can only be observed dynamically, thus
they can be also considered as “emerging” properties. Therefore, we consider as emerging a
characteristic which can be dynamically observed.

Experimentation is not a suitable way to prove formal properties, but it can be used to
observe characteristics of the behavior of an animated society and of individuals within the
society which may be candidates for a formal proof. Also, experimentation can be used to
disprove that formal properties hold. The idea goes back to D. Hume, and his work entitled
An Enquiry Concerning Human Understanding, dated 1748.

To the purpose of experimentation, we have tried out some of the properties identified and
verified in WP5 (see deliverable D13 [2]) to make predictions that can be tested by designed
experiments.

For properties of individual computees, we have identified in deliverable D13 interesting
profiles of behavior and characterized them first in terms of properties of the states of com-
putees and then design cycle theories that will induce traces whose states have these properties.
Experiments were done to confirm that such profiles are advantageous given specific conditions.
In particular, we have identified a triple of individual computees to be experimented upon, the
focussed profile of behavior (see Section 7.1.1), the cautious profile of behavior (see Section
7.1.2), and the punctual profile (see Section 7.1.3) among others.

As concerns properties specifically related to protocol conformance, in the following we
report about experiments for on-the-fly conformance. According to the D13 classification, on-
the-fly conformance is a property of an interaction (between two or more computees) with
respect to a given society protocol. It assesses, at runtime, whether or not the interaction is
legal according to the protocol. The experiments concerns the application of the SCIFF proof
procedure for this purpose to the Needham-Schroeder security protocol [52], see Section 7.2.
We choose this protocol since it was used for several years, and later proved flawy by applying
model checking techniques [18, 51]. On this same protocol, we have also experimented a proof
theoretic approach for proving its flawyness.

In fact, a further issue has been investigated and experimented upon along this year of the
project, in particular for properties of the social infrastructure. As described in D13, a proof
theoretic approach for the automatic verification of properties of protocols has been proposed,
and experiments have been done. To this purpose, we extend the SCIFF proof procedure and
show how it can be used to verify whether a property, expressed as an existentially or universally
quantified formula, is a logical consequence of the Social Integrity Constraints of a given society.
This approach has been applied to prove the good atomicity of the NetBill protocol, and to
show the flawyness of the Needham-Schroeder protocol.
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7.1 Experiments on Profile of Behavior

In deliverable D13 [2], we have identified interesting profiles of behavior and characterized them
first in terms of properties of the states of computees, and then design cycle theories that will
induce traces whose states have these properties.

In the following, we report on three experiments performed for confirming the expected
behavior as determined by the engineered profile. Some of these profiles will be demonstrated
at the next review meeting in Edinburgh on April 4th.

7.1.1 The Focussed Profile of Behaviour (ICSTM-UCY-CITY)

Aim. The aim of this experiment is to provide empirical evidence for the advantages of the
focussed profile of behaviour discussed in D13 [2]. Recall that a focussed computee would be
expected to be more successful than a computee that is not focussed in situations where both
computees have (at least) two top-level goals that are mutually exclusive in the sense that
executing a plan for the first goal will make any potential plan for the other goals infeasible.

Parameters considered and varied. We compare the behaviour of two computees: com-
putee 1 is focussed, while computee 2 uses the normal cycle theory. In a nutshell, a computee is
focussed iff any basic rule in its cycle theory that enables the PI transition has got an enabling
condition that only allows for the selection of (i) a top-level goal if no other top-level goals have
children and (ii) a non-top-level goal G if the top-level goal G′ that is the ancestor of G is the
only top-level goal with children.

Knowledge bases. We consider a scenario where both computees aim at achieving the two
goals g1 and g2. However, the plans for these two goals are not compatible. The domain-
dependent part of KBplan is as follows:

initiates(a1,_,g1). precondition(a1,p). initiates(a3,_,p).
initiates(a2,_,g2). precondition(a2,q). initiates(a4,_,q).
[happens(a1,T1),happens(a4,T2)] implies [false].
[happens(a2,T1),happens(a3,T2)] implies [false]. executable(_).

The domain-dependent part of KBTR is defined accordingly. KBreact is empty.

Runs executed. We have run both computees, initializing them with the two goals g1 and
g2, to be achieved before time 20. Both computees start by planning for g1, generating the
action a1 and the subgoal p. Then computee 2 is free to plan either for g2 or for p, while the
focussed computee 1 is forced to plan for p during the next PI transition. Only planning for
p will lead to a feasible plan for g1, while planning for g2 causes the integrity constraints in
KBplan to fire during future calls to planning (resulting in a failure).

We should stress that computee 2 could also plan for p and proceed in the same way as
computee 1. However, in the concrete implementation, the top-level goal g2 will be selected
before p when the standard action selection function is used. Using the focussed profile, the
right choice of goals to plan for is guaranteed, independently from such low-level features of a
concrete implementation.
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Evaluation. The experiment is intended to demonstrate a situation in which a focussed
computee is more successful than other computees. This would suggest that in certain domains,
where computees have to choose amongst a number of mutually incompatible goals, the focussed
profile of behaviour can aid computees to achieve at least a minimum number of goals in good
time. In our experiments, the two computees do indeed exhibit the expected difference in
behaviour. However, these experiments have also revealed a problem (with both the formal
model and the implementation), which causes the focussed computee to execute actions a1 and
a3 in the wrong order. This issue is currently under investigation.

Related work. We refer to deliverable D13 for related work on behaviour profiles.

7.1.2 The Cautious Profile of Behaviour (UCY-ICSTM)

Aim. The aim of this experiment is to provide experimental result to verify the desired
behaviour of the cautious profile as discussed in D13 [2]. A cautious computee will check
the precondition of an action is satisfied before it plans for the action to be executed.

Parameters considered and varied. We compare the behaviour of two computees: com-
putee 1 is cautious and computee 2 uses normal cycle theory. The main difference is that in
the cautious profile, the enabling condition of the AE transition will only allow selection of an
action iff its precondition can be proved to be satisfied.

Knowledge bases. We consider the following scenario: because of bad transactions in the
past, from now on all bidders are required to physically possess the goods for sale before they
can place their initial bid.

For KBreact, this experiment will use the same KB as other Combinatorial Auction bidders.

For KBplan, it includes an overall precondition for the action tell:

precondition(tell(evelina,_,bid(_,_),_), have_product).

To enforce the condition that before a bid can be placed, the bidder must be able to check
that it already have the product.

For KBTR it has a single causal effect to allow the computee to sense the arrival of the
goods hence the fulfilment of the precondition:

initiates(tell(warehouse,evelina,order_arrived,_,_),_,have_product).

Runs executed. The bidders are assumed not to have the goods for the auction at the
beginning. When the two computees receive an open auction message from the auctioneer, the
normal computee will start placing bids straight away, which is in violation of the protocol. The
cautious computee instead will check the precondition of the bid action, i.e., it really possesses
the product, before placing a bid.
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Evaluation. The experiment shows that the cautious computee does indeed check for the
precondition before planning for an action. Notes that if the precondition of the bid action
cannot be verified in time, it is possible that the cautious bidder may miss the bidding dead
line. However, this profile is beneficial in certain domain where it is paramount to follow a
pre-defined protocol. For example, if there is a penalty for violation of the protocol then the
cautious computee can ensure it will not be penalized.

Related work. Formal proof of the profile of behaviour is presented in D13 [2].

7.1.3 The Punctual Profile of Behaviour (ICSTM-DIPISA-UCY)

Aim. The aim of this experiment is to provide empirical evidence of the features of the
punctual profile of behaviour discussed in D13 [2]. As illustrated in D13, the punctual profile is
able to sequence action execution according to the ordering induced by the temporal constraints
of actions. Moreover, the punctual computee is committed to execute actions and plan for goals
when they become urgent, in the sense that they are “dangerously” close to their deadlines.
The measure of danger is given by a parameter that indicates how much close they must be in
order to be considered urgent. The tuning of the parameter may depend on specific application
domains.

Parameters considered and varied. We compare the normal profile, which uses the normal
cycle theory, with an implementation of the punctual profile, which uses a cycle theory where
i) the basic rules enabling AE and PI transitions restrict the set of selected input actions and
goals to those that are closer than the others to deadlines, and ii) the behaviour rules give
higher priority to AE or PI whenever there are actions or goals that are urgent. Here urgent
means closer than 5 instants to deadlines.

Knowledge bases. We consider a scenario where both computees aim at achieving the goal of
going to work before time 20. Their plan is to get the bus, with having a ticket as precondition.
The plan for having a ticket is simply to buy one. The domain dependent part of KBplan is as
follows:

initiates(get_bus, _, go_to_work).
precondition(get_bus, have_ticket).
initiates(buy_ticket,_,have_ticket).

executable(_).

The domain-dependent part of KBTR is defined accordingly. KBreact is empty.

Run executed. We have run both computees, initialized with the goal go to work to be
achieved before 20. In this oversimplified scenario, the normal computee selects actions and
goals independently of their temporal deadlines. It first plans for the top goal and generates
the action get bus and the sub-goal have ticket. Then, it first (attempts to) gets the bus,
and then, after having devised a plan for the sub-goal, to buy the ticket. Actually, it fails to
achieve its goal that can not be proved to hold according to the final KB0 (indeed, the action
get bus has been executed at time 2, when the precondition have ticket was not enforced by
the action buy ticket, which has been executed at 6).
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Differently, the punctual computee, in this implemented version that executes actions when
they become (very) urgent, is able to fully develop its plan. Then, when the execution of actions
can not be further delayed, it executes the planned actions, just in time before they, and the
goals they have been planned for, become timed out. The computee succeeds in achieving its
goal, that is now entailed by the final KB0, where buy ticket has been executed at 14 and
get bus at 15, just 5 instants before their deadlines. It is also interesting to note how in steps
14 and 15 two consecutive AE, which are not usually admitted in a normal profile, have been
forced due to the presence of very urgent items.

Even if the normal computee could have also preferred to fully devise its plan before exe-
cuting actions, since the normal cycle theory presents non-deterministic choices, the punctual
computee does guarantee both the proper ordering and the timeliness of action execution.

Evaluation. The experiment is intended to demonstrate a situation in which a punctual
computee is more successful than other computees. This would suggest that in certain domains,
where the ordering of actions and their timeliness is relevant, the computees adopting a punctual
profile of behaviour can exhibit a more effective behaviour as far as temporal constraints (and
hence goal achievement) are concerned. In our experiments, the two computees do indeed
exhibit the expected difference in behaviour, since the punctual one does execute actions in
the correct ordering and before they are timed out. Although this might have happened for
the normal profile, a correct tuning of the characteristic parameters of the punctual profile
guarantee this behaviour. The evaluation of how to properly tune such parameters is scope for
future investigation.

Related work. We refer to deliverable D13 for related work on behaviour profiles.

7.2 On the fly conformance checking (UNIBO-DIFERRARA)

A number of experiments have been performed in order to verify and demonstrate that SOCS-SI
can be used for on-the-fly (as defined by Guerin and Pitt [35]) conformance checking, so achiev-
ing one of the main practical applications of the SOCS social framework defined in deliverables
D5 [50] and D8 [34].

Another aim of these experiments is to evaluate the applicability of the SOCS-SI approach
to on-the-fly conformance checking to real-life cases, as concerns performance and scalability.

In the following, as an example, we report on experiments in the Needham-Schroeder (Sect.
7.2.1) scenario, a well-known security protocol. Quantitative performance tests were obtained
for the auction scenario (see [49]).

7.2.1 On the fly conformance checking for the Needham-Schroeder protocol

The Needham-Schroeder protocol (NS, for short) has been presented in [52], where the authors
discuss a way for ensuring the mutual exchange of a secret (a pair of numbers, called nonces)
between two peers over an insecure network connection. The purpose of the protocol is to
ensure mutual authentication while maintaining secrecy. In other words, once agents A and B
have successfully completed a run of the protocol, A should believe his partner to be B if and
only if B believes his partner to be A.

In support of the authentication procedure, agents rely on the well-known public key encryp-
tion technology. By following the protocol, the two agents involved in a communication session
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(1) A → B : 〈NA, A〉pub key(B)

(2) B → A : 〈NA, NB〉pub key(A)

(3) A → B : 〈NB〉pub key(B)

Figure 5: The Needham-Schroeder protocol (simplified version)

(conversation) challenge each other to make sure that each one’s partner in the conversation is
actually the holder of the private key associated with his public key.

The protocol consists of seven steps, but – like other authors [24] – we focus on a simplified
version of it, consisting of only three steps, which are the kernel of the protocol. The simplifica-
tion means that we assume that all the agents know the public key of the other agents. Hence
the interaction can be represented as in Figure 5, where 〈M〉PK means that M is encrypted
with public key PK.

By message (1), A challenges B to decrypt his nonce NA encrypted using B’s public key.
By message (2), B responds to A’s challenge, by attaching to NA a new nonce NB , which
he generated himself, and encrypting the whole set of two nonces using A’s public key, thus
challenging A to decrypt NB and prove to be the holder of A’s private key. At this point
of interaction, A believes that he is speaking with B, since the latter proved to be able to
decrypt the message (1) and answering back the NA. Of course, this is reasonable under the
assumption that it is extremely improbable that an agent could guess the nonce NA, hence
considering it impossible. By message (3), A responds to B’s challenge, giving a proof (the NB

sent in message (2)) of being A. In similar way to what happens after messages (1) and (2), B
believes his fellow is A upon receiving message (3).

Aside the insecure connection conditions, we make assumptions about the agents’ abilities.
In doing that, we refer to the Dolev-Yao model [21], which relies on the perfect cryptography
assumption (nothing can be learned on a plain text from its encrypted version, without knowing
the decryption key). In particular, if we want to define the perfect cryptography assumption
in terms of exchanged messages, we say that an agent can:

• decrypt messages encrypted with his own public key;

• generate messages with nonces that (i) have never been generated by other agents, or (ii)
that he received in a message encrypted with his own public key;

• forward messages.

Eighteen years after the publication of the NS protocol, Lowe [45] proved it to be prone
to security attack, by showing a breach. Lowe’s attack on the protocol is presented in Figure
6, where a third agent I (standing for intruder) manages to successfully authenticate himself
as agent A with a third agent B. Although the protocol is correctly followed, B believes he
is communicating with A, while instead he is communicating with I. Therefore, the messages
composing the attack belong to two different dialogues, A with I and I with B. Each dialogue
follows the protocol, but I exploits the information of the first dialogue to deceive B in the
second dialogue.
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(1) A → I : 〈NA, A〉pub key(I)

(2) I(A) → B : 〈NA, A〉pub key(B)

(3) B → I(A) : 〈NA, NB〉pub key(A)

(4) I → A : 〈NA, NB〉pub key(A)

(5) A → I : 〈NB〉pub key(I)

(6) I(A) → B : 〈NB〉pub key(B)

Figure 6: Lowe’s attack on the Needham-Schroeder protocol

H( send( X, B, content( key( KB), agent( A), nonce( NA))), T1)

--->

E( send( B, X, content( key( KA), nonce( NA), nonce( NB))), T2)

/\ isPublicKey( A, KA) /\ isNonce( NB) /\ NA!=NB

/\ isMaxTime( TMax) /\ T2 > T1 /\ T2 < TMax.

H( send( X, B, content( key( KB), agent( A), nonce( NA))), T1)

/\ H( send( B, X, content( key( KA), nonce( NA), nonce( NB))), T2)

/\ T2 > T1

--->

E( send( X, B, content( key( KB), nonce( NB), empty( 0))), T3)

/\ isMaxTime( TMax) /\ T3 > T2 /\ T3 < TMax.

Figure 7: Social Integrity Constraints defining the Needham-Schroeder protocol

Aim. The aim of this experiment is to verify that the SOCS social framework is expressive
enough to represent the well-known NS protocol, and that the implementation of the SCIFF
proof procedure can correctly check on the fly conformance to the protocol, in case of Lowe’s
attack.

Parameters considered and varied. The executed runs only differ for the considered his-
tories (see below).

Knowledge bases. Events that represent the messages are the following:

• H(send(A,B, content(key(K), agent(A), nonce(NA))), T )

(agent A has sent to agent B its own identifier and a nonce, encrypted with a key K, at
time T )

• H(send(A,B, content(key(K), nonce(NA), nonce(NB))), T )

(agent A has sent to agent B two nonces, encrypted with a key K, at time T )

• H(send(A,B, content(key(K), nonce(NA), empty(0))), T )

(agent A has sent to agent B a nonce, encrypted with a key K, at time T )

The ICS used for defining the protocol are of two types:
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isPublicKey( PK) :-

isPublicKey( _, PK).

isPublicKey( i, ki).

isPublicKey( b, kb).

isPublicKey( a, ka).

isMaxTime( 7).

isAgent( i).

isAgent( a).

isAgent( b).

isNonce( N) :-

isNonce( _, N).

isNonce( A, N) :-

checkIfNonce( A, N).

notIsNonce( A, NB) :-

\+( checkIfNonce( A, NB)).

checkIfNonce( b, nb).

checkIfNonce( a, na).

Figure 8: Social Organization Knowledge Base – SOKB

h(send( a, b, content( key( kb), agent( a), nonce( na))), 1).

h(send( b, a, content( key( ka), nonce( na), nonce( nb))), 2).

h(send( a, b, content( key( kb), nonce( nb), empty( 0))), 3).

Figure 9: A compliant history.

• A first group of ICS , depicted in Figure 7, defines the (simplified version of the) protocol
itself.

• A second group of ICS is needed in order to impose the condition that an agent is not
able to guess another agent’s nonce, neither a private key that he does not own. These
constraints can be found in [11], available at the Web page: http://www-lia.deis.
unibo.it/Research/Projects/SOCS/guests/publications/D14.html.

The SOKB of this experiment is in Figure 8.

Runs executed. On the fly conformance has been checked for four hand-written histories,
which represent typical interactions in the NS protocol.

• Figure 9 shows an example of compliant history.

• Figure 10 is an example of an history that is not compliant because the protocol has not
been completed. In fact, the two events in the history propagate the second integrity
constraints of Figure 7 and impose an expectation

e(send( a, b, content( key( kb), nonce( nb), empty( 0))), T3)

(with the CLP constraint T3>2), which is not fulfilled by any event in the history.

• The history in Figure 11, instead, while containing a complete protocol run, is found by
SCIFF to violate the integrity constraints because agent a has used a nonce (nc) that it
cannot know, because is not one of a’s nonces and a has not received it in any previous
message. In terms of integrity constraints, the history satisfies those in Figure 7, but it
violates one Ic of the second group.

• Figure 12 depicts Lowe’s attack, which SCIFF finds compliant to the protocol as defined
by the integrity constraints.
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h(send( a, b, content( key( kb), agent( a), nonce( na))), 1).

h(send( b, a, content( key( ka), nonce( na), nonce( nb))), 2).

Figure 10: A non-compliant history (the third message is missing).

h(send( a, b, content( key( kb), agent( a), nonce( nc))), 1).

h(send( b, a, content( key( ka), nonce( nc), nonce( nb))), 2).

h(send( a, b, content( key( kb), nonce( nb), empty( 0))), 3).

Figure 11: A non-compliant history (agent a has used a nonce that it cannot hold).

Evaluation. This experiment shows that the SOCS social framework can express the
Needham-Schroeder protocol and that the implementation of the SCIFF proof procedure can
verify correctly on the fly compliance for typical interactions. These results are important, given
the relevance of the Needham-Schroeder protocol in the literature on the automatic proof of
properties of security protocols. In particular, we have tested that Lowe’s attack, when mapped
into a proper history of events, is processed by SCIFF as compliant to the protocol, therefore
testing the flawyness of the protocol itself. Furthermore, in Section 7.3.2, we will exploit a
variant of SCIFF in order to generate a compliant history representing Lowe’s attack for this
protocol.

7.3 Automatic proof of properties (UNIBO-DIFERRARA)

In this section, we report on experiments performed as support to the proposed approach for
automatically proving protocol properties, as documented in deliverable D13 and in the papers
[12, 11] (they both are available at the mentioned site containing papers relevant to D14).

Agent interaction verification is one aspect which has been intensively studied under many
perspectives in the area of open computational systems. As stated in D13, the capability of the
SOCS social model to automatically prove or refute significant protocol properties is a demon-
stration of the expressiveness of the formal model and of the effectiveness of its operational
counterpart; more generally, it shows the applicability of Computational Logic to problems
that, so far, have been tackled mainly by Model Checking techniques [51].

Several other frameworks in the literature aim at verifying properties about the behavior of
social agents at design time. Often, such frameworks define structured hierarchies, roles, and
deontic concepts such as norms and obligations as first class entities (see deliverable D5 [50],
too). Notably, among them, ISLANDER [28] is a tool for the specification and verification of
interaction in complex social infrastructures, such as electronic institutions. ISLANDER allows
to analyze situations, called scenes, and visualize liveness or safeness properties in some specific
settings. The kind of verification involved is static and is used to help designing institutions.

Among related approaches, model checking [18, 51] is a well-known and widely used approach
for automatic analysis of reactive systems. The inputs to a model checker are usually a finite
state description of the system to be analyzed, and a number of properties, often expressed as
formulas of temporal logic that are expected to hold of the system. The model checker either
confirms that the properties hold or reports that they are violated. In the latter case, it provides
a counterexample: a run that violates the property. Such a run can provide valuable feedback
and points to design errors. Model checking has been extensively applied to prove properties of
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h(send( a, i, content( key( ki), agent( a), nonce( na))), 1).

h(send( i, b, content( key( kb), agent( a), nonce( na))), 2).

h(send( b, i, content( key( ka), nonce( na), nonce( nb))), 3).

h(send( i, a, content( key( ka), nonce( na), nonce( nb))), 4).

h(send( a, i, content( key( ki), nonce( nb), empty( 0))), 5).

h(send( i, b, content( key( kb), nonce( nb), empty( 0))), 6).

Figure 12: Lowe’s attack, recognized as a compliant history.

reactive and distributed systems, and it has been also applied to prove properties of security,
communication and electronic commerce protocols (see, for instance, [29, 51]).

An alternative approach for proving properties is the proof theoretic one. Suppose we have a
logic-based specification φP of a system P , (for example, P can be a communication protocol),
and we want to know whether it satisfies some property φ, which we assume can be expressed
in logic too. One way to do this is to check whether φP ⇒ φ is valid (i.e., φ is true in all
the models of φP ). Model checking represents P by a Kripke structure MP : the states in MP

represent the possible global states of P . Checking whether P satisfies φ amounts at checking
whether φ is true in the initial state in MP . In the proof theoretic approach, instead, we can
rely on the syntactic structure of φP and φ. Usually, the proof is given by contradiction. The
drawback of this approach is due to undecidability of first order logic, and its (exponential)
complexity.

Our approach aims at proving or refuting properties automatically, by following the proof
theoretic approach, and grounding on Computational Logic. For this purpose, we have extended
the SCIFF proof procedure, used for on-the-fly conformance checking, with a capability to
generate histories that are compliant to a given protocol and to a SCIFF goal (see paper
[12], available at the Web page: http://www-lia.deis.unibo.it/Research/Projects/SOCS/
guests/publications/D14.html).

The extended proof procedure, named g-SCIFF, where the g stands for generative, changes
the SCIFF Fulfillment E transition into a new one, and always turns expected behaviour (and
positive expectations, in particular) into events, possibly containing variables (see [12], for
details). Therefore, the result of a successful g-SCIFF computation for a goal G is an output
history representing one history of events (possibly with variables) supporting the achievement
of G. A partial history can be also specified as input to the g-SCIFF computation.

This approach has been applied to both existential and universal properties, defined as in
deliverable D13. Informally:

• existential properties are formulae that hold for at least one history compliant to the
protocol;

• universal properties are formulae that hold for all the histories compliant to a protocol.

Up to now, soundness of SCIFF has been proved (see Deliverable D13). Thanks to its
soundness (proved in [12]), operatively, g-SCIFF can be exploited to verify existential properties
and disprove universal ones, as follows. If an existential property f can be expressed as a SCIFF
goal, and by running g-SCIFF we get a success with an output history, then we conclude that
f is an existential property of the considered protocol, and the output history (or better, one
of its grounding) is a witness, compliant history that satisfies f .
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A universal property f can be disproved, instead, by expressing (the existential property) ¬f
as a SCIFF goal, and running g-SCIFF. If g-SCIFF returns success with an output history, then
we conclude that ¬f is proved and therefore f is not a universal property of the considered
protocol. The output history (or better, one of its grounding) is a counterexample for the
universal property f , i.e., it represents a compliant history for which f does not hold (since ¬f
holds in it, instead).

This approach has been experimented in order to confirm and disconfirm properties of
two well-known interaction protocols, one in the context of electronic commerce (the NetBill
protocol, Sect. 7.3.1) and one in the context of security (the Needham-Schroeder protocol,
Sect. 7.3.2). In these Sections, we also mention a related proof theoretic approach based on
abduction for proving properties. Literature on properties of the two considered protocols is
surveyed in the mentioned papers [12, 11].

7.3.1 Good atomicity in the NetBill protocol (DIFERRARA)

NetBill (see [20]) is a security and transaction protocol optimized for the selling and delivery of
low-priced information goods, like software or journal articles. The protocol rules interactions
between two agents: merchant and customer. A NetBill server is used to deal with financial
issues such as those related to credit card accounts of customer and merchant.

In the following, we focus on the type of the NetBill protocol designed for non zero-priced
goods, and do not consider the variants that deal with zero-priced goods.

A typical protocol run is composed of three phases:

1. price negotiation. The customer requests a quote for a good identified by an identifier
PrId (priceRequest(PrId)), and the merchant replies with (priceQuote(PrId,Quote)).

2. good delivery. The customer requests the good (goodRequest(PrId,Quote)) and the
merchant delivers it in an encrypted format (deliver(crypt(PrId,Key),Quote)).

3. payment. The customer issues an Electronic Payment Order (EPO) to the merchant, for
the amount agreed for the good (payment(epo(C,crypt(PrId,K),Quote))); the mer-
chant appends the decryption key for the good to the EPO, signs the pair and forwards
it to the NetBill server (endorsedEPO(epo(C,crypt(PrId,K),Quote),M)); the NetBill
server deals with the actual money transfer and returns the result to the merchant
(signedResult(C,PrID,Price,K)), who will, in turn, send a receipt for the good and
the decryption key to the customer (receipt(PrId,Price,K)).

The customer can withdraw from the transaction until he has issued the EPO message; the
merchant until he has issued the endorsedEPO message.

Aim. This experiment considers a universal [2] good atomicity property of the protocol: i.e.,
the merchant receives the payment for a good G iff the customer receives the good G.

Since SCIFF deals with (communicative) events and not with the states of the agents, we
need to express the properties in terms of happened events. To this purpose, we can assume
that merchant has received the payment once the NetBill server has issued the signedResult
message, and that the customer has received the good if he has received the encrypted good
(with a deliver message) and the encryption key (with a receipt message).

Thus, the universal property can be expressed as
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H(tell(netbill, M, signedResult(C, PrId, Quote,K), Id), T sign)
⇐⇒ H(tell(M, C, goodDelivery(crypt(PrId, K), Quote), Id), T )

∧H(tell(M, C, receipt(PrId, Quote,K), Id), T s)
(1)

whose negation is expressed as the following SCIFF goal:

g ←EN(tell(netbill, M, signedResult(C, PrId, Quote,K), Id), T sign),
E(tell(M, C, goodDelivery(crypt(PrId, K), Quote), Id), T ),
E(tell(M, C, receipt(PrId, Quote, K), Id), T s)).

g ←E(tell(netbill, M, signedResult(C, PrId, Quote,K), Id), T sign),
EN(tell(M, C, goodDelivery(crypt(PrId, K), Quote), Id), T ).

g ←E(tell(netbill, M, signedResult(C, PrId, Quote,K), Id), T sign),
EN(tell(M, C, goodDelivery(crypt(PrId, K), Quote), Id), T ))

(2)

By running g-SCIFF, any compliant history achieving such a goal is a counterexample of
the original, universal property, thanks to g-SCIFF soundness.

Knowledge bases. KBs and ICS used in the experiment are contained in [12]. ICS are
divided into two sets, the former containing only backward constraints (i.e., relating happened
events to expectations on past events), the latter only one forward constraint (i.e., relating
happened events to expectations on future events).

Runs executed. Two runs were executed:

1. For the first run, we have used a complete representation of the protocol, (all the ICS

backward and forward);

2. for the second run, we have removed the forward constraint, in order to verify that such
constraint is not redundant with respect to the property that we want to check.

The results of the two runs are the following:

1. g-SCIFF reports failure, i.e., it is not able to generate a history that satisfies the goal;

2. g-SCIFF reports success, and the following history is generated:

h(tell(_E,_F,priceRequest(_D),_C),_M),

h(tell(_F,_E,priceQuote(_D,_B),_C),_L),

h(tell(_E,_F,goodRequest(_D,_B),_C),_K),

h(tell(_F,_E,goodDelivery(crypt(_D,_A),_B),_C),_J),

h(tell(_E,_F,payment(_E,crypt(_D,_A),_B),_C),_I),

h(tell(_F,netbill,endorsedEPO(epo(_E,_D,_B),_A,_F),_C),_H),

h(tell(netbill,_F,signedResult(_E,_D,_B,_A),_C),_G),

_I<_H, _H<_G,

_L>_M, _K>_L, _I>_J, _J>_K,

The receipt event is missing, which would violate the integrity constraint that has been
removed.
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Evaluation. The result of the first run is a failure. This suggests that there is no history
that entails the negation of the good atomicity property while respecting the protocol, i.e., the
property is likely to hold if the protocol is respected. However, yet no guarantee can be given
unless g-SCIFF is proven complete.

The result of the second run is a success. Thanks to g-SCIFF soundness, this run therefore
shows that the good atomicity property does not hold for the second version of the protocol. In
this way, a protocol designer can make sure that an integrity constraint is not redundant with
respect to a desired, universal property of the protocol.

Related work. In [57] the authors discuss the application of abductive reasoning for the
analysis of safety properties of declarative specifications expressed in the Event Calculus. In
their abductive approach, the problem of proving that, for some invariant I, a domain descrip-
tion D entails I (D |= I), is translated into an equivalent problem of showing that it is not
possible to consistently extend D with assertions that particular events have actually occurred
(i.e., with a set of abductive hypotheses ∆), in such a way that the extended description entails
¬I. In other words, there is no set ∆ such that D ∪∆ |= ¬I. They solve this latter problem
by a complete abductive decision procedure, thus exploiting abduction in a refutation mode.
Whenever the procedure finds a ∆ then the assertions in ∆ act as a counterexample for the
invariant.

Our approach is similar to the one described in [57], when g-SCIFF is able to refute a given
(universal) property by finding a counterexample for its negation. This has been exploited in
this experiment to disprove good atomicity for the NetBill protocol. Nonetheless, completeness
is a requirement for proving, instead, a universal property.

Further related work about logic-based approaches for security protocols is reported in [12].

7.3.2 Generating Lowe’s attack for the Needham-Schroeder protocol (UNIBO-
DIFERRARA)

Aim. In the idea of the Needham-Schroeder protocol, an agent trusts the identity of the agent
with whom he is communicating by associating his name with his public key and receiving back
a nonce that he forged, encrypted in his own public key. If we had to define the idea of an
agent B ‘trusting’ that he is communicating with A, we could do it by using a combination of
messages in which an agents responds to a challenge posed by another agent and successfully
decrypts a nonce.

Definition 7.1. We say that B trusts that the agent X he is communicating with is A,4 and
we write trustB(X, A) once two messages have been exchanged at times T1 and T2, T1 < T2,
having the following sender, recipient, and content:

(T1) B → X : {NB , . . . }pub key(A)

(T2) X → B : {NB , . . . }pub key(B)

where NB is a nonce generated by B.

4We restrict ourselves to only one communication session, all the definitions will therefore have as a scope
the session.
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Note that B is unable to judge whether NA is a nonce actually generated by X or not,
therefore no condition is posed on the origin of such nonce.

Symmetrically, we can consider, from A’s viewpoint, messages (1) and (2) as those that
prove the identity of B. We therefore implement Def. 7.1 in Def. 7.2, where messages are
expressed using the notation of the SCIFF, namely as events which are part of some “history”
HAP. The content of messages will be composed of three parts, the first showing the public
key used to encrypt it, the second and third containing agent names or nonces or nothing (in
particular, the last part may be empty).

Definition 7.2. Let A, B and X be agents, KA and KB respectively A’s and B’s public key,
NB a nonce produced by B, and let HAP1 and HAP2 be two sets of events each composed of
two elements, namely:
HAP1 = {
H(send(B,X, content(key(KA), agent(B), nonce(NB))), T1),
H(send(X, B, content(key(KB), nonce(NB), nonce(...))), T2)
}, and
HAP2 = {
H(send(B,X, content(key(KA), nonce(...), nonce(NB))), T1),
H(send(X, B, content(key(KB), nonce(NB), empty(0))), T2)
}.

Then, trustB(X, A) holds iff HAP1 ⊆ HAP or HAP2 ⊆ HAP.

Knowledge bases. The protocol is represented by the same SOKB and ICS adopted in
Section 7.2.1, and reported extensively in [11].

Runs executed. The universal property that we want to disprove is Ptrust defined as

trustB(X, A) → X = A

i.e., if B trusts that he is communicating with A, then he is indeed communicating with A. We
obtain a problem which is symmetric in the variables A, B, and X. In order to check if we have
a solution we can ground Ptrust and define its negation ¬Ptrust as a goal, g3, where we choose
to assign to A, B, and X the values a, b and i:

g3 ← isNonce(NA), NA 6= nb,
E(send(b, i, content(key(ka), nonce(NA), nonce(nb))), 3),
E(send(i, b, content(key(kb), nonce(nb), empty(0))), 6).

Besides defining g3 for three specific agents, we also assign definite time points (3 and 6) in
order to improve the efficiency of the proof.

Running the g-SCIFF on g3 results in a compliant history:
HAPg3 = {
h(send(a, i, content(key(ki), agent(a), nonce(na))), 1),
h(send(i, b, content(key(kb), agent(a), nonce(na))), 2),
h(send(b, i, content(key(ka), nonce(na), nonce(nb))), 3),
h(send(i, a, content(key(ka), nonce(na), nonce(nb))), 4),
h(send(a, i, content(key(ki), nonce(nb), empty(0))), 5),
h(send(i, b, content(key(kb), nonce(nb), empty(0))), 6)
},
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which is indeed Lowe’s attack on the protocol. HAPg3 represents a counterexample of the
property Ptrust.

Evaluation. Thanks to the soundness of g-SCIFF, the generated history can be considered
a counterexample of the property that was being verified.

Related work. Various techniques have been adopted to the task of automatic verification
of properties to the case study of the Needham-Schroeder, or its evolution proposed by Lowe.
They are reported extensively in [11].
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Part III

Achieved results
In the following, we summarize achieved results of work-package WP6, and present an evaluation
of it in terms of the principle set out in deliverable D3 [44].

In particular, a catalogue of behaviour profiles was implemented, and added to PROSOCS
platform, as already discussed in Section 2.3.

Furthermore, besides the experiments reported in this document, it is worth to be mentioned
that one of the underlying PROSOCS proof procedure, Gorgias, has been adopted for the
development of real-life applications [?].

Here, we also describe a catalogue of interaction protocols, developed and experimented
in the context of work-package WP6, and available on line at the Web site http://www.lia.
deis.unibo.it/Research/Projects/SOCS/partners/societies/protocols.html.

After evaluation and self-assessment, we also mention further results, in terms of publications
and demos given, mainly pertaining WP6, among others work-packages.

8 A Catalogue of Protocols (UNIBO-DIFERRARA

In this Section, we provide a brief description of the catalogue of interaction protocols experi-
mented within WP6, and available on line at the Web site http://www.lia.deis.unibo.it/
Research/Projects/SOCS/partners/societies/protocols.html.

In particular, protocols are grouped into families, according to their application domain. The
Web site was conceived as a dynamically one: registered users may insert the specification of a
society in terms of triples, namely SOKB, Goal and ICS , and also provide different histories
used for specifications’ testing. Finally, each society instance (i.e., a specification of a society
equipped with a given history) can be associated with a run (and with both qualitative and
quantitative tests executed) by choosing the underlying proof procedure. Today, the following
protocols are available:

• NetBill Protocol NetBill [20] is a security and transaction protocol optimized for the
selling and delivery of low-priced information goods, like software or journal articles. The
protocol rules transactions between two agents: a merchant and a customer. A NetBill
server is used to deal with financial issues such as those related to credit card accounts of
customer and merchant. After a price negotiation phase, the merchant delivers the good
in an encrypted format; the customer replies with an Electronic Payment Order (EPO).
Then, the merchant appends the good’s decryption key to the EPO and forwards it to
the NetBill server. The latter executes the money transaction and return an answer to
the merchant, who should forward it to the customer.

• FIPA Query Interaction Protocol-simplified version In the FIPA Query Interaction
Protocol a receiving agent is requested to perform some kind of inform action. In our case,
a computee A requests some information to a computee B using a query− ref(info) per-
formative. Then, B is expected to answer inform(info, response), giving the requested
information referred in info, or refuse(info), but not both of them.

• Semi-Open Society A semi-open society is a society that can be joined by a computee
executing an entering protocol. We suppose that an agent, called gatekeeper, manages
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joining requests. The gatekeeper requires, for the computee to enter, some form to be
filled. The latter fills it, and sends it back; the gatekeeper should then decide (and
communicate the decision) to accept or reject the joining request. The accept message
can be used to testing the agent’s membership to society.

• FIPA Request Interaction Protocol The FIPA Request Interaction Protocol allows
one agent to request another to perform some actions. The latter may decide to refuse
or accept the request (with an agree performative). In case of agreement the agent must
communicate either a failure (if it cannot fill the request) or a inform−done/inform−
result (to indicate that he completed successfully the request and, eventually, to notify
the result).

• Needham-Schroeder The Needham-Schroeder authentication protocol [52] aims at es-
tablishing a connection between two agents, A and B, in which the agent A who initiates
the protocol is authenticated with B. In order to reach this goal, A and B rely on the
well-known public key encryption technology (an agent is associated to two keys: a public
one, available to other agents which use it to encrypt messages for its owner, and a private
one, known only by the owner and used for the “exclusive” decryption).

• Auctions [6] In an auction we have two families of participants: the auctioneer and
bidders. Depending on the kind of auction, the auctioneer either sells goods/services or
buys a set of goods/services. Bidders have the goal to obtain/sell their goods/services
under convenient conditions as far as price is concerned. The auctioneer has the goal
to sell/obtain a set of goods/services maximizing the profit (or minimizing the cost) at
the minimum risk. The auctioneer may delegate some operations to an external object
(i.e. a software component with an API). An example of such an object is an auction
solver object that allows an auctioneer to use the optimization techniques and constraint
capabilities of the ILOG solver for the winner’s determination.

Examples of auctions’ protocols:

– First Price Sealed Bid Auction The first price sealed bid auction is an auction
in which bidders simultaneously submit bids to the auctioneer without knowledge of
the amount bid by other participants. The highest bidder is declared the winner.
The protocol controls therefore that agents place bids only for valid auctions (i.e.,
opened auctions) and that all bidders receive an answer (win or loose).

– Single Combinatorial Auction In combinatorial auctions, bidders can bid on
combination of items. In this context, the auctioneer has the NP-hard problem to
find the set of winning bids at a minimum cost or maximum revenue (Winner Deter-
mination Problem). The single combinatorial auction is a traditional auction where
bidders post their bids on combinations of items and the auctioneer decides which
bid wins. The protocol says that a bidder cannot start placing bids if the auctioneer
has not opened an auction. When the auction’s deadline fires, the auctioneer should
answer to each bidder, saying if it wins or looses. Note that the protocol doesn’t deal
with the Winner Determination Problem, which is delegated to the auction solver.

– Double Combinatorial Auction In the double combinatorial auction, it
is crucial that the bids cover many items. Proposing appealing bids
makes the probability of winning higher. Therefore, in order to pro-
duce more appealing bids, one or more bidders can decide to propose
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a bid with the items he/she owns plus some other he buys on the mar-
ket. For buying these items, he/she opens a second auction looking for
missing items at the best price. This second auction has clearly some
constraints linking it to the first one. The most straightforward is
that the second auction should be closed before the first one is. In
this way, the bidder that opened the second auction buys all the miss-
ing items and proposes a bid (to the first auction) containing his/her
items plus the ones he/she boughs.

– Combinatorial Auction NetBill Delivery This protocol formalizes the combi-
natorial auction adding the payment at the end; when a bidder wins, it must deliver
the list of involving items. Then, the delivered list must be payed: here we use the
NetBill protocol.

– English Auction The English auction is a type of sequential auction in which
an auctioneer directs participants to beat the current, standing bid. New bids must
increase the current bid by a predefined increment. The protocol considers a deadline,
in terms of a time interval starting from the last bid: agents can place bids within
this deadline. After the close-auction event, the auctioneer must send an answer
to all the bidders. All the bidders, except the one that bids latest, must loose; the
last bidder wins only if its bid overcomes a predefined reservation price (otherwise,
it looses too).
Finally, the protocol forbids that an agent places a bid (or closes the auction) for an
auction that has not been opened.

• Borda Count [30] The Borda Count interaction protocol aims to find a consensus choice,
which gives a better representation of what people really want, in a group’s election. All
voters have to rank their preferences among a collection of N alternatives (except if the
Borda Count calculator decides otherwise): they allocate N points to the most preferred
strategy, N-1 to the next best, and so on. A central entity ranks the scores given to each
strategy and selects the most voted strategy as the winner.

• TCP/IP Opening Phase[54] The Transmission Control Protocol over IP is a famous
and well-established protocol used in the majority of the modern Internet services. It
allows bi-directional communication between peers using the Internet Protocol for routing
services; it is connection oriented and it supports limited de-synchronization between
sender and receiver through a dynamic adaptive sync window. The protocol here reported
represents the opening phase in the “three hand-shake” form, where three consecutive
messages are exchanged in order to establish a connection. Particular attention is given
to the timeout mechanism for re-transmitting the first “syn” message: the timeout interval
is specified as a parameter in the SOKB, and the protocol addresses the problem of early
re-transmission.

• Example of medical guideline This protocol formalizes a fragment of a microbiolog-
ical clinical guideline applied in hospitals for microbiological infections’ treatment. The
guideline may be structured in seven macro phases: patient’s arrival at the hospital emer-
gency room; patient’s examination at the emergency room; possible admission in a specific
hospital ward and first therapy prescription made by the ward’s physician; request of a
microbiological test (consisting of many sub-phases, involving both human and artificial
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actors); return of the microbiological test report to the ward physician, who has to decide
the final therapy; management of drugs by nurses; evaluation of patient’s health and, in
case of symptoms’ persistence, new prescription of microbiological test.

9 Evaluation and self-assessment

The evaluation of work-package WP6 is done in terms of the principle set out in deliverable
D3 [44], and follows the analogous evaluation already done for work-packages WP1-WP4 in
deliverable D3 [17].

Recall that the central aim of work-package WP6 is to experiment with individual computees
and societies of computees, through a series of controlled experiments by using the PROSOCS
platform developed by WP4, and also to test some of the desirable and undesirable properties
of both individual computees and societies of computees, as identified within WP5.

Work-packages WP5 and WP6 have been respectively dedicated to the formal verification
and to the observation of characteristics of (societies of) computees. WP5 concentrated on
properties for which our approach lends itself better to a formal verification, whereas WP6
concentrated on characteristics emerging from the animation of (societies of) computees in
order to capture possibly new insights for WP5, amongst other things. To this purpose, in
work-package WP6 we tested the models defined in WP1, WP2 and WP3, by exploiting their
implementation in PROSOCS, the outcome of WP4. Experimentation provided a feedback
to all work-packages, and a better tuning of the models and single components developed for
computees and societies of computees.

Work-package WP6 has evaluated and validated the framework developed by the SOCS
project through a series of controlled experiments, confirmed some of the properties of (societies
of) computees proven within WP5 and described in deliverable D3 [44], also experimented with
a proof theoretic approach for automatically prove or disprove protocol properties.

More specifically, as stated in Annex 1 and deliverable D3, WP6 was aimed at:

• testing the theoretical (computational-logic based) model for single computees and their
inner behavior, defined in WP1, by exploiting its implementation as resulting from WP3
and WP4;

• testing the theoretical (computational-logic based) model for societies of computees, de-
fined in WP2, by exploiting its implementation as resulting from WP3 and WP4;

• testing some of the desirable and undesirable properties of both computees and their
societies, in particular some among those identified in WP5;

• testing predictions, arising from the theoretical results of WP1-WP5, by experimenting
with the scenarios identified in the different phases of the project;

• possibly identifying novel characteristics of the system (as emerging properties which can
be observed dynamically, rather than formally proved).

Beside these issues, along work-package WP6, we have also experimented the g-SCIFF proof
procedure for:

• automatically proving or disproving protocol properties, by experimenting with well-
known protocols whose properties have been documented in the literature.

55



The evaluation in this Section is hence the evaluation of WP6 as it is at the end of the third
year.

9.1 Evaluation stages

The evaluation and self-assessment process for WP6 basically spans over the last year project,
and is tightly coupled with work-package WP5, in particular, and previous work done in the
project, more generally.

Experimentation in WP6 aims at (i) testing the formal models developed for the single com-
putees and societies of computees and their implementation, (ii) confirming or disconfirming
properties formally proved in WP5, and (iii) possibly identifying novel (emerging) characteris-
tics of the system.

We have therefore separated the evaluation of WP6 into a first stage that evaluates it
in relation with the theoretical models of computees and societies of computees (better with
work-packages WP1-WP4) (item (i) above), and a second stage that evaluates it in relation
with work-package WP5 (items (ii) and (iii) above).

The first stage of evaluation of WP6 has concentrated on the following steps:

Parameter identification: Along work-package WP4, some notable parameters have been
already identified, and shown in the prototype user interface. WP6 has given further
insights to WP4. The experiments have varied some notable parameters of the framework,
such as: reasoning capabilities of the individual computees, inner behavior of computees,
mode of communication and interaction (society protocols), scale of density of computees
in a society.

Develop specific experiments: For each evaluation criterion of the first group given for
work-packages WP1, WP2 and WP5, specific experiments on (societies of) computees and
scenarios have been identified in order to test and control how the identified parameters
impact on the overall system, i.e., the PROSOCS platform itself or on its components.

Evaluate experiments: For each of the experiments set out, the behavior of the system
has been then examined, with the aim to prove/disprove that the system exhibits the
desired/undesired features of the evaluation. Experiments have been also analyzed with
the aim of discovering novel, relevant characteristics and provide insights to other work-
packages, W3 and WP4 in particular.

The second stage of evaluation of the experimentation in WP6 is linked to WP5, and has
been structured into the following steps. WP5 aims at verifying formal properties of the models
define in WP1 and WP2, and their operational counterpart as defined in WP3. The project has
set out in the internal document “A list of verifiable properties”, a preliminary list of formal
properties of the behavior of the computees and societies of computees that are to be examined
within WP5, and updated it in deliverable D12 and D13 [5, 2].

Develop specific experiments for properties: Experimental verification of formally proved
properties is necessary because the theoretical framework must make assumptions which
may not be satisfied in real world applications. For some identified (and formally proved)
properties, specific experiments as societies of computees and scenarios have been set out
in order to experimentally confirm (or disconfirm) them. These experiments concerns
both properties of the model of computees (as set out in WP1, WP3 and WP5), and
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properties of the society model referring to interaction amongst computees (as set out
in WP2, WP3 and WP5). Furthermore, specific experiments have been set out in or-
der to test the proof theoretic approach proposed in WP5 for automatically proving or
disproving protocol properties.

Evaluate experiments for properties: For each of the experiments set out, the behavior of
the system have been then examined. Experiments have been also analyzed with the aim
of discovering novel, relevant characteristics. The discovery of novel characteristics have a
strong feedback on WP5, WP3, WP1 and WP2 (e.g., this lead to the need for improving
the various underlying proof procedures).

Test scalability of prototype: The various experiments, when increasing in size, has helped
to test the scalability of the platform resulting from WP4, and identify its limits.

9.2 Evaluation of WP6 and Methodology used

The evaluation criteria set out in deliverable D3 [44] were divided into success, extension
(marked by +) and future direction (marked by *).

For this work-package, the criteria considered are as follows. For each of them, we report
about evaluation of results achieved within WP6.

SYSTEM TESTING – After the settle of the underlying models, and the implementation
of their operational counterpart and prototype developed, we identified how to test such
a system. We have identified a number of system parameters of the SOCS framework and
PROSOCS platform, and three main classes of experiments, in order to test computees
and their societies.

Parameter identification – In order to test PROSOCS and experiment societies of
computees on concrete scenarios and well-known interaction protocols, we have iden-
tified parameters to be varied, sufficient to capture the main features of the single
computee model and society model, and the basic components in PROSOCS. For
instance, we have varied the reasoning capabilities of the individual computees, in
terms of underlying proof procedure implementation, the proof procedure for the
society infrastructure, the scale of density of computees (and interactions) in a soci-
ety, the behavior profile of individual computees, the kind of society protocol for the
same scenario.

Parameter relation with GC criteria/features – Some of the identified parame-
ters are related with the main features of the single computee model and society
model, in a GC vision. For instance, the adoption of different profiles of behaviour
and their experimentation (still ongoing work) is strictly related with heterogeneity
of members, even if they are based upon the KGP model. Openness of members is
also guaranteed, since we experimented with the society component as a verifier of
interactions, not affecting members inner policies. Nonetheless, the link of system
parameters to GC features is strictly related to the link between the KGP model and
GC features and the link between the society model and GC features. We therefore
refer to evaluation and self assessment of previous Workpackages (WP1 and WP2,
but also WP3 and WP4) for this.
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EFFICIENCY AND COMPUTATIONAL LIMITS – Experimentation concerning PROSOCS
has tested the performance, suitability and computational limits of different implemen-
tation of the underlying proof procedures. Also, further experiments for properties and
concrete scenarios has shown how to construct specific types of computees (e.g., the fo-
cussed behaviour profile computees) for specific types of societies. Nonetheless, a further
experimentation and tuning of PROSOCS is required to deliver the platform.

DETECTING EXPECTED/UNDESIRABLE/EMERGING BEHAVIOUR – As be-
haviors are predicted and confirmed/disconfirmed experimentally or observed as emerging,
we can establish a more general classification scheme according to the class of computees,
their societies, and the variation of their system parameters. During WP6, we have ex-
perimented only part of the features available in the KGP model and in the social model
developed within SOCS. Further activity is needed to have a complete test of all capabil-
ities, and different profiles, as well to test all the possible protocols and social knowledge
bases supported by the society model.

Disconfirm of properties – Given the catalogue of properties identified in WP5, we
experimented with three notable profiles for computees, and also with two well-
known protocols. For behavior profiling, we achieved the expected results. For the
considered protocols, we have re-obtained results found in the literature pertaining
their properties, but with a different approach.

Emergence of patterns+ – The focus is mainly on the experimental observation of
simple characteristics, originated by interaction patterns among agents. The identi-
fication of notable patterns of interest was not achieved.

Relation of emerged patterns to system parameters∗ – The observation of emerg-
ing notable patterns of interest, can be related to identified system parameters. The
identification of relations between emerged patterns and identified parameters was
not achieved.

MODULAR AND PARAMETRIC SYSTEM – The high-level models for computees and
societies are mapped into proof procedures and single components, then implemented in
PROSOCS. Testing done along WP6 had also the effect of better tuning the single compo-
nents (and their underlying proof procedures) of the PROSOCS platform. Furthermore,
an extension of the platform itself was required, by introducing distributed objects in it.
Modular profiles of computees were provided and added as library to the platform. Exper-
imentation has required to identify first-class parameters influencing the overall behavior,
which were tuned as work proceeded.

ANALYSIS AND REASONING OVER SYSTEM BEHAVIOR∗ – For the experimen-
tation on concrete scenarios (the Combinatorial Auction, in particular) we had the chance
of analyzing experimental results, and choose which architecture with specific parameters
(e.g., basically reactive computees and the improved version of underlying proof procedure
for the society infrastructure) was able to meet the required, and expected behavior.

RELATED WORK – We have compared (part of) the documented experiments with those
documented in related work, when available. For some of the experiments, the related
literature is mentioned as well, or references were given.
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10 Published Papers/Demos pertaining WP6

In this section, we provide a list of publications and demos, contributing to workpackage WP6
of the project. For each publication or demo paper we reproduce the abstract and briefly
comment on its contribution to the SOCS workpackage and WP6.

Most relevant papers to work done in the context of WP6 (mentioned in the documented
experiments) are collected at the Web page: http://www-lia.deis.unibo.it/Research/
Projects/SOCS/guests/publications/D14.html. Some of them are also common to work
done in the context of WP5 (see Deliverable D13).

10.1 A Logic-based Approach to Reasoning with Beliefs about Trust
(ICSTM)

[58] F, Sadri and F. Toni. “A Logic-based Approach to Reasoning with Beliefs about Trust”.
Proceedings of the IJCAR Workshop on Automated Reasoning for Security Protocols Analysis
(ARSPA-2004), 2004.

Abstract. We adopt the abductive logic programming framework used for the knowledge
representation and reasoning of SOCS computees to endow agents interacting within multi-
agent systems with the capability to build up beliefs about the trustworthiness of other agents
and to reason with these beliefs, e.g., to favor trustworthy agents when choosing who to negotiate
with regarding a task or a resource. We illustrate our approach by means of several examples.

Contribution to WP6. The knowledge representation techniques suggested in this paper
could be used to allow computees to reason about trustworthiness of other computees and thus
allow trust-based interaction to be modelled within SOCS. It could also be used to support
experiments, and to formalize properties related to trust. Thus, the work contributes to WP1,
WP2, and potentially to WP5 and WP6.

10.2 Abductive Logic Programming with CIFF: System Description
(ICSTM-DIPISA)

[25] U. Endriss, P. Mancarella, F. Sadri, G. Terreni, and F. Toni. “Abductive Logic Program-
ming with CIFF: System Description”. Proceedings of the 9th European Conference on Logic
in Artificial Intelligence (JELIA-2004), 2004.

Abstract. We describe a system implementing CIFF, a novel extension of the IFF proof
procedure for abductive logic programming, dealing with constraint predicates and with non-
allowed abductive logic programs. Application areas of CIFF include various reasoning tasks
underlying intelligent agents, including planning, reactivity, high-level communication, trust-
mediated interaction and (various forms of) negotiation.

Contribution to WP6. This paper is relevant to WP6 as it describes the latest version of
our implementation of CIFF, which has been guided by the results of our experiments with
different variants of the procedure.
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10.3 Compliance Verification of Agent Interaction: A Logic-based
Software Tool (UNIBO-DIFERRARA)

[47] M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello and P. Torroni. “Compliance
Verification of Agent Interaction: A Logic-based Software Tool”. Applied Artificial Intelligence,
Taylor Francis. To appear., 2005.

Abstract. In open societies of agents, where agents are autonomous and heterogeneous, it
is not realistic to assume that agents will always act so as to comply to interaction protocols.
Thus, the need arises for a formalism to specify constraints on agent interaction, and for a
tool able to observe and check for agent compliance to interaction protocols. In this paper we
present a JAVA-PROLOG software component built on logic programming technology, which
can be used to verify compliance of agent interaction to protocols, and that has been integrated
with the PROSOCS platform.

Contribution to WP6. The focus of the paper is on the implementation of the social in-
frastructure of the PROSOCS demonstrator, which has been improved and used to perform
experiments in WP6. A previous version of this work was presented at the Fourth International
Symposium “From Agent Theory to Agent Implementation” (AT2AI-2004), 2004.

10.4 Learning Techniques for Automatic Algorithm Portfolio Selec-
tion (UNIBO)

[37] A. Guerri and M. Milano. “Learning Techniques for Automatic Algorithm Portfolio Se-
lection”. Proceedings of the 16th European Conference on Artificial Intelligence (ECAI-2004),
2004.

Abstract. The purpose of this paper is to show that a well known machine learning technique
based on Decision Trees can be effectively used to select the best approach (in terms of efficiency)
in an algorithm portfolio for a particular case study: the Bid Evaluation Problem (BEP) in
Combinatorial Auctions. In particular, we are interested in deciding when to use a Constraint
Programming (CP) approach and when an Integer Programming (IP) approach, on the basis
of the structure of the instance considered. Different instances of the same problem present a
different structure, and one aspect (e.g. feasibility or optimality) can prevail on the other. We
have extracted from a set of BEP instances, a number of parameters representing the instance
structure. Some of them (few indeed) precisely identify the best strategy and its corresponding
tuning to be used to face that instance. We will show that this approach is very promising,
since it identifies the most efficient algorithm in 90% of the cases.

Contribution to WP6. This paper proposes the portfolio selection algorithm for the auction
solver used in the experiments on combinatorial auctions carried out within WP6. Given a
combinatorial auction instance to be solved, the portfolio selection algorithm is able to chose
the best approach to face the instance in 90% of the cases.
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10.5 A Demonstration of SOCS-SI (UNIBO-DIFERRARA)

[65] M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, P. Torroni. “A Demonstration
of SOCS-SI”. Demo Sessions of AAMAS-2004 and CILC-2004, 2004.

Abstract. The paper describes the demonstration of the SOCS-SI tool that has been given
in the demo session of AAMAS-2004 and CILC-2004. The demonstration shows the concrete
example of a “first price sealed bid” auction.

Contribution to WP6. The demonstration focuses on the SOCS-SI tool, which was devel-
oped as the verifier of compliance of computee interactions to interaction protocols, and has
been improved and used in WP6 for experimentation.

10.6 Crafting the Mind of a PROSOCS Agent (ICSTM-UCY-CITY-
DIPISA)

[16] A. Bracciali and N. Demetriou and U. Endriss and A. Kakas and W. Lu and K. Stathis.
“Crafting the Mind of a PROSOCS Agent”. Applied Artificial Intelligence, Taylor Francis. To
appear., 2005.

Abstract. PROSOCS agents are software agents that are built according to the KGP model
of agency. KGP is used as a model for the mind of the agent, so that the agent can act
autonomously using a collection of logic theories, providing the minds reasoning functionalities.
The behaviour of the agent is controlled by a cycle theory that specifies the agents preferred
patterns of operation. The implementation of the minds generic functionality in PROSOCS is
worked out in such a way so it can be instantiated by the platform for different agents across
applications. In this context, the development of a concrete example illustrates how an agent
developer might program the generic functionality of the mind for a simple application.

Contribution to WP6. The focus of the paper is on the implementation of the KGP model
in the PROSOCS demonstrator, which has been improved and used to perform experiments in
WP6. A previous version of this work was presented at the Fourth International Symposium
“From Agent Theory to Agent Implementation” (AT2AI-2004), 2004.

10.7 Ambient Intelligence using KGP Agents (ICSTM-UCY)

[67] F. Toni and K. Stathis. “Ambient Intelligence using KGP Agents”. Proceedings of the 2nd
European Symposium for Ambient Intelligence, LNCS, pages 351-362, Springer-Verlag., 2005.

Abstract. We investigate the application of a logical model of agency, known as the KGP
model, to develop agents for ambient intelligence applications. Using a concrete scenario, we
illustrate how the logical formalism employed by a KGP agent allows a person to access the
surrounding ambient through the agent in a transparent manner. We evaluate our claims by
implementing the resulting interactions in PROSOCS, a prototype multi-agent systems platform
that allows KGP agents to be deployed as components of ambient intelligence applications.
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Contribution to WP6. The focus of the paper is on application of the KGP model and
its implementation in PROSOCS demonstrator for the development of ambient intelligence
applications.

10.8 Planning Partially for Situated Agents (DIPISA-ICSTM)

[48] Paolo Mancarella and Fariba Sadri and Giacomo Terreni and Francesca Toni. “Planning
Partially for Situated Agents”. http://www.doc.ic.ac.uk/ ft/PAPERS/clima04-planning.pdf,
2004.

Abstract. In recent years, within the planning literature there has been a departure from
approaches computing total plans for given goals, in favor of approaches computing partial plans.
Total plans can be seen as (partially ordered) sets of actions which, if executed successfully,
would lead to the achievement of the goals. Partial plans, instead, can be seen as (partially
ordered) sets of actions which, if executed successfully, would contribute to the achievement of
the goals, subject to the achievement of further sub-goals. Planning partially (namely computing
partial plans for goals) is useful (or even necessary) for a number of reasons: (i) because the
planning agent is resource-bounded, (ii) because the agent has incomplete and possibly incorrect
knowledge of the environment in which it is situated, (iii) because this environment is highly
dynamic. In this paper, we propose a framework to design situated agents capable of planning
partially. The framework is based upon the specification of planning problems via an abductive
variant of the event calculus.

Contribution to WP6. This work provides a variant of the computational model of a plan-
ning computee. In particular it emphasizes the possibility of planning partially by means of a
different treatment of preconditions of actions with respect to the D8 model and it proposes
a new revision transition which, in practice, merges the Goal Revision and the Plan Revision
transitions leading to a new State Revision transition as seen in D14.

10.9 Specification and Verification of Agent Interactions using Social
Integrity Constraints (UNIBO-DIFERRARA)

[13] M. Alberti, M. Gavanelli, E. Lamma, P. Mello, P. Torroni. “Specification and Verifica-
tion of Agent Interactions using Social Integrity Constraints”. Electronic Notes in Theoretical
Computer Science, Vol. 85, n. 2. Elsevier Science., 2004.

Abstract. In this paper we propose a logic-based social approach to the specification and
verification of agent interaction. We firstly introduce integrity constraints about social acts
(called Social Integrity Constraints) as a formalism to express interaction protocols and to give
a social semantics to the behavior of agents, focusing on communicative acts. Then, we discuss
several possible kinds of verification of agent interaction, and we show how social integrity
constraints can be used to verify some properties in this respect. We focus our attention on
static verification of compliance of agent specifications to interaction protocols, and on run-time
verification, based on agents’ observable behavior. We adopt as a running example the NetBill
security transaction protocol for the selling and delivery of information goods.
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Contribution to WP6. The paper is relevant to WP6 in that it shows the application of an
early version of the SCIFF proof procedure to the on-the-fly verification of the NetBill security
protocol.

10.10 The CHR-based Implementation of a System for Generation
and Confirmation of Hypotheses (DIFERRARA-UNIBO)

[9] M. Alberti, F. Chesani, M. Gavanelli, E. Lamma. “The CHR-based Implementation of a
System for Generation and Confirmation of Hypotheses”. The 19th Workshop on (Constraint)
Logic Programming, 2005.

Abstract. Hypothetical reasoning makes it possible to reason with incomplete information in
a wide range of knowledge-based applications. It is usually necessary to constrain the generation
of hypotheses, so to avoid inconsistent sets or to infer new hypotheses from already made ones.
These requirements are met by several abductive frameworks. In order to tackle many practical
cases, however, it would also be desirable to support the dynamical acquisition of new facts,
which can confirm the hypotheses, or possibly disconfirm them, leading to the generation of
alternative sets of hypotheses.

In this paper, we present a system which supports the generation of hypotheses, as well
as their confirmation or disconfirmation. We also describe the implementation of an abduc-
tive proof procedure, used as a reasoning engine for the generation and (dis)confirmation of
hypotheses.

Contribution to WP6. The article is relevant to WP6 in that it describes the implementa-
tion of the SCIFF proof procedure used for the experimentation done in the context of WP6.

10.11 Expressing Interaction in Combinatorial Auction through So-
cial Integrity Constraints (DIFERRARA-UNIBO)

[7] Marco Alberti and Federico Chesani and Marco Gavanelli and Alessio Guerri and Evelina
Lamma and Paola Mello and Paolo Torroni. “Expressing Interaction in Combinatorial Auction
through Social Integrity Constraints”. Intelligenza Artificiale. To appear., 2005.

Abstract. Combinatorial Auctions are an attractive application of intelligent agents; their
applications are countless and are shown to provide good revenues. On the other hand, one
of the issues they raise is the computational complexity of the solving process (the Winner
Determination Problem, WDP), that delayed their practical use. Recently, efficient solvers
have been applied to the WDP, so the framework starts to be viable.

A second issue, common to many other agent systems, is trust: in order for an agent system
to be used, the users must trust both their representative and the other agents inhabiting the
society: malicious agents must be found, and their violations discovered. The SOCS project
addresses such issues, and provided a language, the social integrity constraints, for defining the
allowed interaction moves, together with a proof procedure able to detect violations.

In this paper we show how to write a protocol for the combinatorial auctions by using social
integrity constraints. In the devised protocol, the auctioneer interacts with an external solver
for the winner determination problem.
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Contribution to WP6. This work provides the implementation of a protocol for combina-
torial auctions in the SCIFF language. It discusses the protocol itself, and the integration of
an external object, namely the auction solver, in the compliance check activity. It discusses ex-
perimentation and gives timing results both for the compliance check and for the combinatorial
auction solving process.

10.12 A Computational Logic-based approach to security protocols
verification, and its application to the Needham-Schroeder Pub-
lic Key authentication protocol (UNIBO-DIFERRARA)

[11] M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, P. Torroni. “A Computational
Logic-based approach to security protocols verification, and its application to the Needham-
Schroeder Public Key authentication protocol”. Technical Report CS-2004-04, ENDIF, Uni-
versity of Ferrara. Available at http://www.ing.unife.it/informatica/tr/. Submitted.,
2004.

Abstract. In this work we present a proof-theoretic approach to the verification of secu-
rity protocols. Starting from the perspective of open multi-agent systems, where the internal
architecture of the individual system’s components may not be completely specified but it is
important to infer and prove properties about the overall system behavior, we propose a general
framework where several kinds of verification can be applied.

We take a formal approach based on Computational Logic, to tackle verification at two
orthogonal levels: ‘static’ verification of protocol properties, and ‘dynamic’ verification of com-
pliance of agent communication. The first one could investigate the possibility that while two
agents are correctly following a given protocol a malicious agent can learn secrets exchanged by
them. The second one could be about automatically checking that a group of agents interacting
with each other are indeed following a given protocol.

The main advantages of our approach are (1) from a formal perspective, in the declarative
protocol specification language, associated with a rigorous declarative and operational seman-
tics, and (2) from an engineering perspective, in the reduction of the gap between protocol
specification, verification and implementation. We study our approach in the domain of secu-
rity protocols by presenting its application to the well-known Needham-Schroeder Public Key
authentication protocol.

Contribution to WP6. The paper is relevant to WP6 as it describes experiments, performed
in the context of this workpackage, on-the-fly conformance and automatic verification of protocol
properties.

10.13 On the automatic verification of interaction protocols using g-
SCIFF (UNIBO-DIFERRARA)

[12] M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, P. Torroni. “On the automatic
verification of interaction protocols using g-SCIFF”. Technical Report LIA-04-2004, DEIS-LIA,
University of Bologna. Submitted., 2004.
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Abstract. Interaction protocol verification has been in recent years intensively investigated
within and outside multi-agent research. Many techniques and models have been proposed based
on a number of assumptions and choices, among which are the kind of knowledge available and
the kind of properties that are subject of verification.

We focus on interaction protocol verification in open multi-agent systems, where the inter-
nal architecture of the individual agents is not known a-priori. In such a setting, while it is
not possible to predict the behavior of individual agents, it is still possible to approach the
interaction verification problem either by assuming that agents will indeed comply to the pro-
tocols, thus focussing on the study of properties of the interaction protocols, or by assuming
that the agent behavior, if not predictable, is at least observable, and then focussing on the
run-time verification of compliant behavior of interacting agents by reasoning on the messages
they exchange with each other.

In this article, we build on previous work on logic-based specification and run-time verifi-
cation of protocol compliance, and we extend the SOCS social framework towards verification
of protocol properties. In doing so, we propose a unified formal and computational framework
based on abductive logic programming which can be used to (i) design and specify interaction
protocols that provably exhibit desirable properties and (ii) verify, at run-time, that agent
interaction actually complies to the specified interaction protocols.

Contribution to WP6. This paper is relevant to WP6 in that it shows a case study of the
automatic verification of protocol properties using the implementation of the g-SCIFF proof
procedure.

10.14 Expressing Interaction in Combinatorial Auction through So-
cial Integrity Constraints (DIFERRARA-UNIBO)

[8] Marco Alberti, Federico Chesani, Marco Gavanelli, Alessio Guerri, Evelina Lamma, Michela
Milano, and Paolo Torroni. “Expressing Interaction in Combinatorial Auction through Social
Integrity Constraints”. The 19th Workshop on (Constraint) Logic Programming, 2005.

Abstract. Combinatorial auctions are an interesting application of intelligent agents. They
let the user express complementarity relations among the items for sale, and let the seller obtain
higher revenues. On the other hand, the solving process, the so-called Winner Determination
Problem (WDP) is NP-hard. This restricted the practical use of the framework, because of the
fear to be, in some WDP instances, unable to meet reasonable deadlines. Recently, however,
efficient solvers have been proposed, so the framework starts to be viable.

A second issue, common to many agent systems, is trust: in order for an agent system to
be used, the users must trust both their representative and the other agents inhabiting the
society. The SOCS project addresses such issues, and provided a language, the social integrity
constraints, for defining the allowed interaction moves, and a proof-procedure able to detect
violations.

In this paper we show how to write a protocol for combinatorial auctions by using social
integrity constraints. In the devised protocol, the auctioneer interacts with an external solver
for the winner determination problem. We also suggest extensions of the scenario, with more
auctions in a same society, and suggest to verify whether two auctions interact. We also apply
the NetBill protocol for the payment and delivery scheme.
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Contribution to WP6. This paper presents experiments done in WP6 in the combinatorial
auction scenario. Besides formalizing the auction protocol in the SCIFF language, it gives
timing results for various classes of experiments: the basic combinatorial auction, the double
auction, and for the combinatorial auction with NetBill (where the actual delivery of goods is
also considered).
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Part IV

Conclusions
The integration of the single computee and society model in an engineered architecture grounded
on Computational Logic (as resulting from WP1-WP4) is a promising approach in order to both
encapsulate the heterogeneity of (societies of) computees and reason about their properties
(WP5). Work-package WP6 has given some insights about benefits arising from this engineered
approach, once system parameters have been identified and monitored, via a series of controlled
experiments.

The experimentation in WP6 has been designed to shed light on the fundamental issues of
research, validate the proposed models and their implementation, confirm or disconfirm their
properties as proved in WP5 and, possibly, discover emerging characteristics.

WP6 has given feedback to all earlier work-packages, and in particular to the implementation
of single components of PROSOCS platform, within WP4.

Further activity within WP6 for testing properties has been strictly linked with WP5 ac-
tivity. In particular, in WP6 we have experimented with some properties of both individual
computees, by varying their behaviour profile, and societies of computees by automatically
proving properties for society protocols.

With respect to the specification and verification of single computees, the experimentation of
the KGP model defined in WP1 and WP3 (see deliverable D4 and D8 [40, 34]), and implemented
in WP4 (see deliverable D9 [4]), performed in the context of Workpackage WP6, has shown
concretely the viability and usefulness of the proposed approach. The KGP model and its
implementation have been applied to face planning problems, and to implement computees for
the chosen scenarios. Different profiles of behaviour and capabilities (mainly, reactivity goal
decision and planning) have been experimented.

With respect to the specification and verification of societies of computees, the experimen-
tation of the society model defined in WP2 and WP3 (see deliverable D5 and D8 [50, 34]),
and implemented in WP4 (see deliverable D9 [4]), performed in the context of Workpackage
WP6, has confirmed the applicability and usefulness of a tool for on-the-fly verification of het-
erogenous and open systems, embedded into the SCIFF proof procedure, and also the concrete
applicability of a further tool, embedded into the g-SCIFF proof procedure, for the automatic
proof of properties of interaction protocols. Various society protocols have been considered
in the experimentation, and collected in a Web site, subject to be extended. Furthermore,
g-SCIFF was applied to well-known protocols, for proving/disproving their properties.

With the GC vision in mind, we found it important to demonstrate experimentally that the
models and tools developed in WP1-WP4 are flexible enough to address aspects such as hetero-
geneity, resource achievement, and scalability, often present in open environment. This was one
of our main criteria when we had to choose experimental settings and scenarios. Combinatorial
auctions are an example. They can be used to facilitate resource achievement, and can be tested
by varying a number of parameters significant in the GC vision, like profiles and number of
computees involved in the resource exchange process. Besides, the auction mechanism can itself
be considered as a service, and the possibility to define different protocols for resource exchange
is a demonstration of programmability of services. The library of behaviour profiles added to
PROSOCS and experimented in WP6 allows one to develop his own computees by adopting
one of them and taking advantage of these predefined, modular components. The rich library
of protocols that we designed includes various auction mechanisms (like English auction, com-
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binatorial auction and others) as well as various one-to-one resource exchange protocols (like
FIPA Request Information protocol). The intuitive and easily readable specifications of such
protocols demonstrates the flexibility of a fully declaratively programmable tool. This, together
with the guaranteed verifiability of interaction in all our test cases, demonstrates that exporting
the SOCS models into a universal scale is something feasible. The diversity of tested protocols
demonstrates the SOCS model’s ability to help the integration of an open and global computing
reality, where entities can live with pre-existing interaction mechanisms and a new associated
social semantics. Incrementally, diverse (and possibly incompatible) implementations can in
this way move towards integration and global communication.

Nonetheless, experimentation has also shed the light on problems pertaining the various
components of PROSOCS, and their integrated working in a single platform. As experimenta-
tion proceeded for testing scalability and performances, we have ameliorated the implementation
of the underlying proof procedures (CIFF and SCIFF). However, runs for integrated examples
are still limited in size, and further work is required before a real deliver of the platform.

As concerns the demo that will be given at the next review meeting, examples to be demon-
strated are available at the Web site http://www.lia.deis.unibo.it/Research/Projects/
SOCS/partners/experimentation/. We will demonstrate examples for the Combinatorial Auc-
tion scenario, and also show runs with different behaviour profiles.
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A Annexed documents

The following two documents are annexed to this deliverable.

A.1 Experiments on Combinatorial Auctions (UNIBO-DIFERRARA-
CITY-ICSTM)

[6] M. Alberti, M. Alberti, F. Chesani, U. Endriss, M. Gavanelli, A. Guerri, E. Lamma, W.
Lu, P. Mello, M. Milano, K. Stathis, F. Toni, P. Torroni. “Experiments on Combinatorial
Auctions”. D14 Annex, SOCS Consortium, 2005.

Abstract. This paper contains the description of experiments done so far in the combinato-
rial auction scenario. We describe the computee side and the society side. In this context we
introduce also external objects providing services to the computees themselves, and in particular
implementing a complex optimization algorithm. Experimental results are given for a tradi-
tional combinatorial auction and for two variants of it: a double auction and an auction plus
the successive payment with Netbill. Also, some experiments on non combinatorial auctions
will be provided in this document.

Contribution to WP6. The paper documents the experiments on several auction scenarios
that have been performed in WP6.

A.2 Computee Profiles in PROSOCS (CITY-UCY)

[1] A. Yip, A. Kakas and K. Stathis. “Computee Profiles in PROSOCS”. D14 Annex, SOCS
Consortium, 2005.

Abstract. This document describes the methodology used to develop profiles of behaviour,
and the enhancement to the PROSOCS platform in order to support the profiles. A profile
is simply a purpose built Cycle Theory incorporating a specific behaviour, differing from the
Normal Cycle. A full collection of implemented profiles is presented. Typically a behaviour
profile is defined as an extension to the Normal Cycle. The extension is then defined as a
collection of desired behaviour in logic.

Contribution to WP6. The paper documents the implementation of different profiles, ex-
perimented in WP6.

69



References

[1] A. K. A. Yip and K. Stathis. Computee profiles in prosocs. Discussion note, SOCS
Consortium, Feb. 2005. http://lia.deis.unibo.it/Research/Projects/SOCS/.

[2] M. Alberti, F. Athienitou, A. Bracciali, F. Chesani, U. Endriss, M. Gavanelli, A. Kakas,
E. Lamma, W. Lu, P. Mancarella, P. Mello, F. Sadri, K. Stathis, F. Toni, and P. Torroni.
Verifiable properties of societies of computees. Technical report, SOCS Consortium, 2005.
Deliverable D13.

[3] M. Alberti, A. Bracciali, F. Chesani, N. Demetriou, U. Endriss, W. Lu, F. Sadri, A. Kakas,
E. Lamma, P. Mello, M. Milano, K. Stathis, F. Toni, and P. Torroni. Examples of the
functioning of computees and their societies. Discussion Note IST3250/ICSTM//DN/I/a2,
SOCS Consortium, Dec. 2003. http://lia.deis.unibo.it/Research/Projects/SOCS/.

[4] M. Alberti, A. Bracciali, F. Chesani, U. Endriss, M. Gavanelli, W. Lu, K. Stathis, and
P. Torroni. SOCS prototype. Technical report, SOCS Consortium, 2003. Deliverable D9.

[5] M. Alberti, A. Bracciali, F. Chesani, U. E. M. Gavanelli, A. Guerri, A. Kakas, E. Lamma,
P. Mancarella, P. Mello, M. Milano, F. Riguzzi, F. Sadri, K. Stathis, G. Terreni, F. Toni,
and P. Torroni. Update report on wp1–wp6. Technical report, SOCS Consortium, 2004.
Deliverable D12.

[6] M. Alberti, F. Chesani, U. Endriss, M. Gavanelli, A. Guerri, E. Lamma, W. Lu, P. Mello,
M. Milano, K. Stathis, F. Toni, and P. Torroni. Experiments on (combinatorial) auctions.
Discussion Note IST32530/UNIBO/250/DN/I/a1, SOCS Consortium, Dec. 2005. http:
//lia.deis.unibo.it/Research/Projects/SOCS/.

[7] M. Alberti, F. Chesani, M. Gavanelli, A. Guerri, E. Lamma, P. Mello, and P. Torroni.
Expressing interaction in combinatorial auction through social integrity constraints. Intel-
ligenza Artificiale, 2005. To appear.

[8] M. Alberti, F. Chesani, M. Gavanelli, A. Guerri, E. Lamma, M. Milano, and P. Torroni.
Expressing interaction in combinatorial auction through social integrity constraints. In
Wolf et al. [69], pages 53–64.

[9] M. Alberti, F. Chesani, M. Gavanelli, and E. Lamma. The CHR-based Implementation
of a System for Generation and Confirmation of Hypotheses. In Wolf et al. [69], pages
111–122.

[10] M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni. Compliance
verification of agent interaction: a logic-based tool. In Trappl [68], pages 570–575. Extended
version to appear in a special issue of Applied Artificial Intelligence, Taylor & Francis, 2005.

[11] M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni. A Com-
putational Logic-based approach to security protocols verification, and its application
to the Needham-Schroeder Public Key authentication protocol. Technical Report CS-
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