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1 Introduction

In this report, we set the ground and provide some initial definitions and results for properties
of individual computees which are defined in terms of the individual welfare of computees. We
consider two notions of individual welfare:

1. a notion of happiness, referring solely to the achieved and unachievable top-level goals of
computees;

2. a notion of progress, referring to the whole state of computees, including their planned
actions and the recorded observations in their knowledge bases.

These notions may depend upon quantitative measures (e.g. the number of achieved goals),
but are fundamentally qualitative (e.g. in that they rely upon declarative notions of goal
achievement). In particular, if the agent is equipped with a single top-level goal, individual
welfare via happiness corresponds to success in achieving the goal.

In general, the notion of individual welfare might be subjective, referring to the beliefs of the
computee (even though these may be assessed from the outside, i.e. not by the computee itself)
or objective, referring to the perception of the welfare of the computee by an outsider, that
can measure, e.g., how many goals the computee has achieved in reality, with respect to the
actual environment in which it is situated. In this report we basically take a subjective view of
individual welfare: goals are achieved if they can be proven subjectively by the computee via
its Temporal Reasoning capability. However, it is an external observer that establishes when to
make use of this capability, from the outside, by looking at the state-sequence and the current
time.

In this report, we set the ground for specifying and proving properties of computees in terms
of their individual welfare. In particular, we define five welfare-based orderings amongst com-
putees’states, a notion of improvement over the life-cycle of computees, parametric wrt any
ordering, and instantiate the general notion of improvement wrt the various orderings. We
prove that computees can be shown always to improve according to one given ordering (defined
in terms of happiness as the number of achieved top-level goals), never to improve according to
another given ordering (defined in terms of unhappiness as the number of unachievable top-level
goals).

2 Recap of some notions underlying the KGP model

Internal state. This is a tuple 〈KB,Goals, P lan, TCS〉, where:

• KB is the knowledge base of the computee, and describes what the computee knows
(or believes) of itself and the environment. KB consists of modules supporting different
reasoning capabilities:

– KBplan, for Planning,

– KBpre, for the Identification of Preconditions of actions,

– KBTR, for Temporal Reasoning,

– KBGD, for Goal Decision,
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– KBreact, for Reactivity, and

– KB0, for holding the (dynamic) knowledge of the computee about the external world
in which it is situated (including past communications).

Syntactically, KBplan,KBreact and KBTR are abductive logic programs with constraint
predicates KBpre is a logic program, KBGD is a logic program with priorities and KB0 is
a set of facts in logic programming, and it is (implicitly) included in all the other modules.

• Goals is the set of properties that the computee wants to achieve, each one explicitly
time-stamped by a time variable. Syntactically, each goal is a pair of the form 〈l[t], G′〉
where

– l[t] is the fluent literal of the goal, referring to the time t;

– G′ is the parent of G.

• Plan is a set of actions scheduled in order to satisfy goals. Each is explicitly time-stamped.
Syntactically, each action is a triple of the form 〈a[t], G,C〉 where

– a[t] is the operator of the action, referring to the execution time t;

– G the parent goal, towards which the action contributes (i.e., the action belongs to
a plan for the goal G). G may be a post-condition for A (but there may be other
such post-conditions).

– C are the preconditions which should hold in order for the action to take place
successfully; syntactically, C is a conjunction of (timed) fluent literals.

• TCS is a set of constraint atoms (referred to as temporal constraints) in some given
underlying constraint language with respect to some structure < equipped with a notion of
constraint satisfaction |=<. In the sequel, given a set C of sentences built from constraint
atoms, |=< C will stand for C is <-satisfiable, and 6|=< C will stand for C is <-unsatisfiable.

Temporal constraints bound the time variables of goals and actions, thus implicitly defin-
ing when goals are expected to hold and when actions should be executed. Also, via the
temporal constraints, actions are partially ordered.

Goals and actions are uniquely identified by their associated time, which is implicitly existen-
tially quantified within the overall state. To aid revision and partial planning, Goals and Plan
form two trees, whose roots are represented by ⊥nr and ⊥r, and indicated respectively as the
non-reactive tree, containing non-reactive goals and actions, and the reactive tree, containing
reactive goals and actions. All the top-level non-reactive goals are either assigned to the com-
putee by its designer at birth, or they are determined by the Goal Decision capability. All
the top-level reactive goals and actions are determined by the Reactivity capability. When
clear from the context, we will refer to the state as a single tree with root ⊥. The tree is
given implicitly by associating with each goal and action its parent (the second element in the
corresponding tuple). Top-level goals and actions are children of the root of the tree, ⊥.

Valuation of temporal constraints. Given a state S = 〈KB,Goals, P lan, TCS〉, we de-
note by Σ(S) (or simply Σ, when S is clear from the context) the valuation:

Σ(S) = {t = τ | executed(a[t], τ) ∈ KB0} ∪ {t = τ | observed(l[t], τ) ∈ KB0}
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Intuitively, Σ(S) extracts from KB0 in S the instantiation of the (existentially quantified) time
variables in Plan and Goals in S, derived from having executed (some of the) actions in Plan
and having observed that (some of the) fluents in Goals hold (or do not hold). KB0 in S
provides a “virtual” representation of Σ(S).

Transitions. The state of a computee evolves by applying transition rules, which employ
capabilities and the constraint satisfaction |=<. The transitions are:

• Goal Introduction (GI), changing the top-level Goals, and using Goal Decision.

• Plan Introduction (PI), changing Goals and Plan, and using Planning and Introduction
of Preconditions.

• Reactivity (RE), changing Goals and Plan, and using the Reactivity capability.

• Sensing Introduction (SI), changing Plan by introducing new sensing actions for checking
the preconditions of actions already in Plan, and using Sensing.

• Passive Observation Introduction (POI), changing KB0 of KB by introducing unsolicited
information coming from the environment, and using Sensing.

• Active Observation Introduction (AOI), changing KB0 of KB, by introducing the out-
come of (actively sought) sensing actions, and using Sensing.

• Action Execution (AE), executing all types of actions, and thus changing KB0 of KB.

• State Revision (SR), revising Goals and Plan, and using Temporal Reasoning and Con-
straint Satisfaction.

SR merges the revision transitions of the original KGP model as given in [4, 7, 6], i.e. GR and
PR. This avoids having to repeatedly applying the GR and PR to get chained revisions. The
specification of the new transition is given in the main deliverable D13.

Cycle theory. Formally, a cycle theory Tcycle consists of the following parts.

• An initial part Tinitial, that determines the possible transitions that the agent could
perform when it starts to operate (initial cycle step). More concretely, Tinitial consists of
rules of the form

∗T (S0, X)← C(S0, τ,X), now(τ)

sanctioning that, if the conditions C are satisfied in the initial state S0 at the current time
τ , then the initial transition should be T , applied to state S0 and input X, if required.
Note that C(S0, τ,X) may be empty, and Tinitial might simply indicate a fixed initial
transition T1.

The notation ∗T (S,X) in the head of these rules, meaning that the transition T can be
potentially chosen as the next transition, is used in order to avoid confusion with the
notation T (S,X, S′, τ) that we have introduced earlier to represent the actual application
of the transition T .
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• A basic part Tbasic that determines the possible transitions (cycle steps) following other
transitions, and consists of rules of the form

∗T ′(S′, X ′)← T (S,X, S′, τ), EC(S′, τ ′, X ′), now(τ ′)

which we refer to via the “name” RT |T ′(S′, X ′). These rules sanction that, after the
transition T has been executed, starting at time τ in the state S and ending at the
current time τ ′ in the resulting state S′, and the conditions EC evaluated in S′ at τ ′

are satisfied, then transition T ′ could be the next transition to be applied in the state S′

with the (possibly empty) input X ′, if required. The conditions EC are called enabling
conditions as they determine when a cycle-step from the transition T to the transition T ′

can be applied. In addition, they determine the input X ′ of the next transition T ′. Such
inputs are determined by calls to the appropriate selection functions.

• A behaviour part Tbehaviour that contains rules describing dynamic priorities amongst
rules in Tbasic and Tinitial. Rules in Tbehaviour are of the form

RT |T ′(S,X ′) �RT |T ′′(S,X ′′)←BC(S,X ′, X ′′, τ), now(τ)

with T ′ 6= T ′′, which we will refer to via the “name” PTT ′�T ′′ . Recall that RT |T ′(·) and
RT |T ′′(·) are (names of) rules in Tbasic ∪ Tinitial. Note that, with an abuse of notation,
T could be 0 in the case that one such rule is used to specify a priority over the first
transition to take place, in other words, when the priority is over rules in Tinitial. These
rules in Tbehaviour sanction that, at the current time τ , after transition T , if the conditions
BC hold, then we prefer the next transition to be T ′ over T ′′, namely doing T ′ has higher
priority than doing T ′′, after T . The conditions BC are called behaviour conditions and
give the behavioural profile of the agent. These conditions depend on the state of the agent
after T and on the parameters chosen in the two cycle steps represented by RT |T ′(S,X ′)
and RT |T ′′(S,X ′′). Behaviour conditions are heuristic conditions, which may be defined
in terms of heuristic selection functions (see [4] for details). For example, the heuristic
action selection function may choose those actions in the agent’s plan whose time is close
to running out amongst those whose time has not run out.

• An auxiliary part including definitions for any predicates occurring in the enabling and
behaviour conditions, and in particular for selection functions (including the heuristic
ones, if needed).

• An incompatibility part, including rules stating that all different transitions are incom-
patible with each other and that different calls to the same transition but with different
input items are incompatible with each other. These rules are facts of the form

incompatible(∗T (S,X), ∗T ′(S,X ′))
for all T, T ′ such that T 6= T ′, and of the form

incompatible(∗T (S,X), ∗T (S,X ′)) ← X 6= X ′ expressing the fact that only one tran-
sition can be chosen at a time.

Hence, Tcycle is a logic program with priorities (P,H,A, I) where:

(i) P = Tinitial ∪ Tbasic,

(ii) H = Tbehaviour,

(iii) A is the auxiliary part of Tcycle, and
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(iv) I is the incompatibility part of Tcycle.

In the sequel, we will indicate with T 0
cycle the sub-cycle theory Tcycle \Tbasic and with T scycle the

sub-cycle theory Tcycle \ Tinitial. We will also assume a notion of preferential entailment |=pr,
which the underlying formalism of logic programming with priorities is equipped with. Finally,
unless otherwise specified, we will assume that all cycle theories include rules that make the
computee interruptible, as specified in [5].

Operational trace. A cycle theory Tcycle induces an operational trace, namely a (typically
infinite) sequence of transitions

T1(S0, X1, S1, τ1), . . . , Ti(Si−1, Xi, Si, τi), Ti+1(Si, Xi+1, Si+1, τi+1), . . .
(where each of the Xi may be empty), such that

• S0 is the given initial state;

• for each i ≥ 1, τi is given by the clock of the system, with the property that τi < τi+i;

• (Initial Step) T 0
cycle ∧ now(τ1) |=pr ∗T1(S0, X1);

• (Cycle Step) for each i ≥ 1

T scycle ∧ Ti(Si−1, Xi, Si, τi) ∧ now(τi+1) |=pr ∗Ti+1(Si, Xi+1)

namely each (non-final) transition in a sequence is followed by the most preferred tran-
sition, as specified by T scycle. If the most preferred transition determined by |=pr is not
unique, we choose arbitrarily one.

We will refer to a state Si in an operational trace as 〈KBi, Goalsi, P lani, TCSi〉. Note that,
concerning the KBi component of states Si in an operational trace, only KB0 may vary in it
in the different states. We will rely upon this observation later on.

3 Improving individual welfare: basic definitions

In the sequel, given a (possibly infinite) operational trace for a computee:

T1(S0, X1, S1, τ1), . . . , Tj(Sj−1, Xj , Sj , τj), . . . , Tl(Sl−1, Xl, Sl, τl), . . .

with 0 ≤ j < l, we refer to the (possibly infinite) sequence of states

S0, S1, . . . , Sj−1, Sj , . . . , Sl−1, Sl, . . .

as the state-sequence (of the trace), and to any (possibly infinite) sub-sequence

Sj−1, Sj , . . . , Sl−1, Sl, . . .

of a state-sequence as a portion (of the state-sequence). We also refer to Σ simply as the union
of all Σs corresponding to all states in the sequence or portion (note that this is equivalent to
the Σ corresponding to the last state in the sequence, if this is finite).

Below, we will rely upon the informal concept of environment-run, namely a specific set of
events (including actions by other computees) happened in the environment at given times,
alongside state-sequences. We will also assume that computees have a perfect sensing capability
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which is capable of observing everything that happens in the environment within the specific
environment run.

The following definition defines the criterium according to which we judge a state-sequence
or portion as providing successive improvements over states. It is parametric wrt a notion of
preference � between states, for which sections 4 and 5 provide various alternative definitions
in terms of various concepts of individual welfare. Note that this definition is somewhat naive,
as, for example, it does not take into account changes of top-level goals (by the GI transition).
The notion of improvement given here will be refined in section 6.

Definition 3.1 Let� be any notion of preference between states. Then, we say that an infinite
state-sequence or portion S0, S1, . . . , Sn, . . . improves individual welfare wrt� iff for each j ≥ 0,
there exists l > j such that Sj � Sl. We also say that a finite state-sequence or portion
S0, S1, . . . , Sn improves individual welfare wrt � iff for each j ≥ 0, j < n, there exists l > j,
l ≤ n such that Sj � Sl.

Note that this definition does not impose any condition on intermediate states between Sj and
Sl, and in particular any such state might actually bring the computee in a worse state than
Sj , wrt �. Stronger notions could be adopted, for example that for each j ≥ 0, for each l > j,
Sj � Sl. However, we believe that such stronger notions would be too limiting in practice, as
they would prevent computees by temporarily worsening their situation, before improving it
again.

Definition 3.2 Let� be any notion of preference between states. Then, we say that a computee
is �-improving wrt some initial state and environment-run iff the state-sequence corresponding
to any operational trace induced by its cycle theory, from the given initial state and wrt the
given environment-run, improves individual welfare wrt �, as in definition 3.1. We also say
that a computee is �-improving (unconditionally) iff it is �-improving wrt any initial state
and environment-run.

Note that we could define a much weaker notion of (unconditional) �-improvement for a
computee, requiring only for it to be �-improving wrt some given class of initial states and
environment-runs.

4 Individual welfare in terms of top-level goals

In this section, we introduce various notions of preference � between states of a computee,
based upon different notions of individual welfare. All notions of individual welfare refer to the
number of (top-level) goals achieved or to the number of (top-level) unachievable goals when the
computee has reached a given state at a given time. In the remainder of this section we assume
that all goals in any states are non-reactive, namely KBreact is always empty. We will see in
section 6 how to extend the ideas presented here to deal with reactive goals as well. Note that
the notions introduced in this section are somewhat naive, and will be refined in section 6.

We define the individual welfare of a computee in a given (finite) state-sequence
SS = S0, S1, . . . , Sn (n ≥ 0) at a time τ in terms of the number of (top-level) achieved
goals, referred to as h+(SS, τ), and the number of (top-level) unachievable goals, referred to as
h−(SS, τ). 1 These quantities (h+ and h−) can be formally defined in terms of the Temporal

1Here, h+ stands for happiness and h− stands for unhappiness, as we will see later on.
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Reasoning capability of the computee. For example, given a (portion of a) finite state-sequence
SS = S0, S1, . . . , Sn and Si = 〈KBi, Goalsi, P lani, TCSi〉, let

achieved(SS, τ) = {〈l[t],⊥〉 ∈
⋃

0≤i≤nGoals
i |KBTR |=TR holds at(l, t)∧⋃

0≤i≤n TCS
i ∧ Σ ∧ t ≤ τ}

unachievable(SS, τ) = {〈l[t],⊥〉 ∈
⋃

0≤i≤nGoals
i | 〈l[t],⊥〉 6∈ achieved(SS, τ) and
6|=<

⋃
0≤i≤n TCS

i ∧ Σ ∧ t > τ}.

Then

h+(SS, τ) = #achieved(SS, τ)
h−(SS, τ) = #unachievable(SS, τ)

Note that we could adopt a different notion of unachievable goals, e.g. unachieved goals that
are either timed-out or for which no plan exists.
Note also that we assume that top-level goals are all equally preferred, and that preferences
amongst them are all taken care of by the Goal Decision capability.
Finally, note that we basically take a subjective view of individual welfare: goals are achieved if
they can be proven subjectively by the computee via its Temporal Reasoning capability; how-
ever, it is an objective observer that establishes when to make use of this capability, from the
outside, by looking at the state-sequence and the current time. So, it could happen that a com-
putee is actually holding a goal g in Sn in SS at τ , whereas g already belongs to achieved(SS, τ)
(see g1 after T2 in example 1). Similarly for unachievable goals. Alternatively, we could adopt
a fully subjective view, whereby only at State Revision (SR) time the computee can ”count” its
welfare, or a fully objective view, whereby the observer evaluates whether goals are achievable
or not via its own “temporal reasoning capability” with respect to its full knowledge of the
environment.
The following example illustrates h+ and h−. Here and in the remainder of this report, if no
confusion arises, we will write h+(Sn) in place of h+(SS, τn), where SS = S0, . . . , Sn and τi is
the time at which Si is generated.

Example 1 Assume that a given computee is equipped with an initial pool of timed fluent
literals with temporal constraints {g1, g2, g3, g4, g5}, where gi = li[ti]∧ TCi, i, j = 1, . . . , 5. Any
(new variant of any) such gi may be part of a top-level goal in any state in any operational
trace of the computee (with the corresponding variant of the temporal constraint being part of
the TCS component in the state).
The following is a possible (finite portion of a) state-sequence for a given computee, starting
with S0 with KB0 = Goals = Plan = {}, with the associated values of h+ and h−. The time
τi is the time at which transition Ti in the trace has generated state Si from state Si−1 in the
state-sequence corresponding to the trace.

S0 = 〈{}, {}, {}, {}〉 h+(S0) = 0
h−(S0) = 0

T1 is GI and:
S1 = 〈{}, {〈l1[t1],⊥〉, 〈l2[t2],⊥〉}, {}, {TC1, TC2}〉 h+(S1) = 0

h−(S1) = 0
T2 is POI, changing KB0 and leading to g1 holding:
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S2 = 〈 , {〈l1[t1],⊥〉, 〈l2[t2],⊥〉}, {}, {TC1, TC2}〉 h+(S2) = 1
h−(S2) = 0

T3 is PI, changing Plan (omitted as irrelevant):
S3 = 〈 , {〈l1[t1],⊥〉, 〈l2[t2],⊥〉}, , {TC1, TC2}〉 h+(S3) = 1

h−(S3) = 0
T4 is SR, changing Goals (eliminating g1 as satisfied and g2 as timed-out) and Plan:
S4 = 〈 , {}, {}, {TC1, TC2}〉 h+(S4) = 1

h−(S4) = 1
T5 is GI, adding g4:
S5 = 〈{}, {〈l4[t4],⊥〉}, {}, {TC1, TC2, TC4}〉 h+(S5) = 1

h−(S5) = 1

We give below various definitions of preference between states, in terms of h+ and h−.

Definition 4.1 Given states S and S′ in a (portion of a) trace of a computee, such that S
comes before S′ in the trace:

• S �1 S
′ iff h+(S) ≤ h+(S′);

• S �2 S
′ iff h+(S) < h+(S′);

• S �3 S
′ iff h−(S) > h−(S′);

• S �4 S
′ iff h+(S) < h+(S′) or h+(S) = h+(S′) and h−(S) > h−(S′).

Intuitively, (the designer of) a computee adopting�1 believes that its welfare can be improved
by never decreasing the number of top-level achieved goals, whereas a computee adopting �2

wants to strictly increase the number of such goals. According to �3, the computee wants
to decrease the number of unachievable goals. Finally, according to �4, a computee wants to
strictly increase the number of achieved goals or, if this number is unchanged, at least decrease
the number of unachievable goals. �4 is a lexicographic order over pairs (h+(SS, τ), h−(SS, τ)).
The following example illustrates the various notions of preferences, wrt the trace in example 1.

Example 2

• Every state Si in the trace in example 1 is better that any earlier state wrt �1, namely,
for each Si, i = 1, . . . , 5, for each Sj, 0 ≤ j < i, Sj �1 Si.

• S0 �2 S2, but S0 6�2 S1.

• For every Si, i = 1, . . . , 5, for each Sj, 0 ≤ j < i, Sj 6�3 Si.

• S1 �4 S2.

Note that the needs of concrete applications for which computees are meant to be deployed
might also need to be taken into account when specifying the notions of individual welfare and
preferences over states. Such needs might be coded up into the goals of the corresponding
computees in many cases (and thus our approach focussing upon goals is not overly restrictive).
As an example, when designing a computee to be deployed as a book-buyer we might want for
the computee to buy as many books as possible amongst those specified by the user, at the
cheapest possible prices, and definitely by remaining within budget. In this setting, we might
privilege states with lower numbers of books still remaining to be purchased and with higher
amounts of money available.
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5 Individual welfare in terms of the whole state

Up until now we have compared computees’ states by looking solely at their top-level goals,
and in particular at how many such goals are achieved or have become unachievable. This
approach implicitly equates the computees’ happiness to states with a high number of achieved
goals and a low number of unachievable goals. This notion of happiness is rather coarse, in that
it ignores the progress made by computees towards maximising the number of achieved goals
and minimising the number of unachievable goals. This progress can be expressed in terms
of all elements of Goals (including non-top-level goals, belonging to partial plans for top-level
goals), all elements of Plan (the actions in partial plans for top-level goals) and the dynamically
changing part of KB, KB0 (the recorded changes in the environment that need to be taken into
account when planning to achieve top-level goals). For example, if a goal becomes unachievable
because of some event occurred in the environment, then the computee should not be deemed
as non-improving, and could actually be much more effective in achieving its goals than another
computee situated in a more friendly environment.

In this section we consider an alternative, finer-grained way of comparison amongst states,
based upon looking at the overall computees states and the progress they make. We will refer
to this comparison notion as ≺, to distinguish it from the various notions of happiness given
in section 4 (�1, . . . ,�4). However, note that ≺ is another concrete instance of the generic
concept of improvement � given in section 3.

In this report, for simplicity we will define the notion of progress first with respect to a simplified
scenario, where the computee is non-reactive and there are no critical deadlines for the execution
of top-level actions or for the achievement of top-level goals of the computee. This scenario .....

Intuitively, absence of critical deadlines means absence of temporal constraints such as t < 10,
t < t′ + 5 in TCS, where t, t′ is the temporal variable of some top level goal or reactive top-
level action. Such constraints are however allowed when t is the time of non-top-level goals or
(non-top-level reactive) actions. We will adopt the following definition for absence of critical
deadlines:

Definition 5.1 (Absence of critical deadlines) A state 〈KB,Goals, P lan, TCS〉 has no
critical deadline iff TCS contains no constraint Tc with occurrences of a temporal variable
t and a time constant, where t is the temporal variable of a top-level goal in Goals or of a
reactive top-level action in Plan.
A computee has no critical deadline iff every state in every operational trace induced by its
cycle theory has no critical deadline.

Note that, if a computee has no critical deadline, then h−(S) = {} for every state S in every
operational trace induced by the cycle theory of the computee. Namely, no top-level goal of
the computee can ever become unachievable.

No-reactivity for a computee means that the computee will never hold reactive goals or actions.
This can be guaranteed by imposing conditions on the environment and/or the sensing capabil-
ity of the computee, or otherwise by imposing that the computee holds no reactive knowledge.
We will follow this last option, namely:

Definition 5.2 (No reactivity) A computee is non-reactive iff KBreact={}.
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In the remainder of this section, we will define the notion of progress ≺ for the simplified
scenario with no critical deadlines and no reactivity. Future work is required to deal with the
more general case.

Definition 5.3 Given states

S = 〈KB,Goals, P lan, TCS〉

and
S′ = 〈KB′, Goals′, P lan′, TCS′〉

in a (portion of a) trace of a computee such that S comes before S′ in the trace, at times τ and
τ ′, respectively, S′ shows more progress than S, denoted S ≺ S′, iff at least one of (a)-(d) below
holds:

(a) KB = KB′, Goals ⊆ Goals′, P lan ⊆ Plan′, TCS ⊆ TCS′,
and either Goals 6= Goals′ or Plan 6= Plan′ (or both);

(b) Goals = Goals′, Plan = Plan′, TCS = TCS′, and KB ⊂ KB′.

(c) KB = KB′, Goals ⊃ Goals′, and Plan ⊇ Plan′
and for every goal G ∈ Goals − Goals′ it holds that KB |=τ ′

TR G′, where G′ is G or an
ancestor of G,
and for every action 〈A,G, 〉 ∈ Plan − Plan′ it holds that KB |=τ ′

TR G′, where G′ is G
or an ancestor of G;

(d) there exists a state S∗ such that S ≺ S∗ and S∗ ≺ S′.

In case (a), since we are assuming that the computee is non-reactive, the conditions

Goals ⊆ Goals′, Goals 6= Goals′

amount to the following: there exists G = 〈l[t], G′〉 ∈ Goals′ such that G′ was a leaf node in
Goals. Similarly, the conditions

Plan ⊆ Plan′, P lan 6= Plan′

amount to the following: there exists A = 〈l[t], G′, 〉 ∈ Plan′ − Plan such that G′ was a leaf
node in Goals.

In case (b), the condition KB ⊂ KB′ amounts to KB0 ⊂ KB′0. This would be true, for
example, if the computee has executed more actions (and thus recorded their executions in S′)
since state S, or if it has recorded more observations in S′, through POI or AOI, since state S.
Note that no information is ever deleted from the KB0 component over an operational trace.
More formally, KB0 ⊂ KB′0 amounts to one of more of the following:

• there exists executed(A[T ′], T ) ∈ KB′0 −KB0,

• there exists observed(G[T ′], T ) ∈ KB′0 −KB0,

• there exists observed(C,A[T ′], T ) ∈ KB′0 −KB0.

Note that an alternative, stronger definition for (b) could be obtained by imposing that
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• Goals = Goals′, Plan = Plan′, and TCS = TCS′, and

• there exists G = 〈l[t], G′〉 ∈ Goals′ and a total valuation σ′ for the variables in S′ such
that KB′ |=TR l[t]σ′ and σ′ |=< TCS′ but
there exists no total valuation σ for the variables in S such that KB |=TR l[t]σ and
σ |=< TCS.

We will refer to this stronger condition as (b′).

Case (c) occurs when between states S and S′ SR has taken place. Note that the absence of
critical deadlines implies that if SR has taken place then the goals of the state have necessarily
changed, whereas actions may be the same. One of the advantages of state S′ compared with
S is that the selection functions have fewer actions/goals to consider. Note that, since we are
assuming that deadlines are non-critical, goals and actions are deleted by SR if they (or some
of their ancestors) are achieved.

Condition (d) is added to guarantee that ≺ is transitive. Indeed, conditions (a)-(c) alone do
not guarantee ≺ to be transitive, as the following example shows.

Example 3 Consider the following portion of a state-sequence:

S0 = 〈{ }, {〈g1,⊥〉}, {}, { }〉
S1 = 〈{ }, {〈g1,⊥〉}, {observed(g1, τ1)}, { }〉 (after POI)
S2 = 〈{ }, {}, {observed(g1, τ1)}, { }〉 (after SR)

Without condition (d), S0 ≺ S1 (by (b)) and S1 ≺ S2 (by (c)) but S0 6≺ S2. However, intuitively,
S2 shows more progress than S0, as it results from the observation of a relevant and useful
property of the environment.

6 Improving individual welfare: refinements

In section 3 we have assumed that any state in a state-sequence or portion of it should be
taken into account to determine improvement of individual welfare. This is inappropriate when
the Goal Introduction transition modifies the top-level goals in a state, as illustrated by the
following example.

Example 4 Assume to have the following (portion of a) state-sequence (with associated h+):

S0 = 〈{ }, {g1}, { }, { }〉 h+(S0) = 0 (g1 not achieved yet)
S1 = 〈{ }, {g1}, { }, { }〉 h+(S1) = 0 (g1 not achieved yet)
S2 = 〈{ }, {g3, g4}, { }, { }〉 h+(S2) = 0 (g1 dropped as non-preferred,

g3, g4 introduced and not achieved yet)
S3 = 〈{ }, {g3, g4}, { }, { }〉 h+(S3) = 1 (g1 achieved)

According to definition 3.1, S0, . . . , S3 is �2-improving, which is counter-intuitive, since the
computee should not be better off at achieving goals that it has dropped in favour of other, more
preferred goals. Achieving g1 might actually render g3 unachievable, and thus should be avoided.
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The notion of �-improvement should then be refined by looking at portions related to the
same top-level goals. For � seen as happiness, this can be achieved by modifying the notion
of achieved and unachievable goals, as follows. Given a (portion of a) state-sequence SS =
S0, S1, . . . , Sn, . . ., let GI(Si, SS), 0 ≤ i, be defined as follows:

• GI(Si, SS) = Sk, 0 ≤ k ≤ n, such that

– either a step of Goal Introduction has occurred in the trace that has generated the
state sequence, and the latest such step before Si has occurred in state Sk−1,

– or Sk = S0, otherwise.

Namely, GI(S, SS) is the latest state in the sequence where new goals have been introduced.
Below, we will refer to the top-level goals in GI(S, SS) as the most recent goals in state S in
the (portion of the) state-sequence SS, represented as MRG(S, SS).

We can now re-define the notions of achieved and unachievable goals:

achieved(SS, τ) = {〈l[t],⊥〉 ∈
⋃
k≤i≤nGoals

i |KBTR |=TR holds at(l, t)∧⋃
0≤i≤n TCS

i ∧ Σ ∧ t ≤ τ,
GI(Sn, SS) = Sk}

= {〈l[t],⊥〉 ∈
⋃

0≤i≤nGoals
i ∩MRG(Sn, SS) |KBTR |=TR holds at(l, t)∧⋃

0≤i≤n TCS
i∧

Σ ∧ t ≤ τ}

unachievable(SS, τ) = {〈l[t],⊥〉 ∈
⋃
k≤i≤nGoals

i | 〈l[t],⊥〉 6∈ achieved(SS, τ) and
6|=<

⋃
k≤i≤n TCS

i ∧ Σ ∧ t > τ,

GI(Sn, SS) = Sk}
= {〈l[t],⊥〉 ∈

⋃
0≤i≤nGoals

i ∩MRG(Sn, SS) |
〈l[t],⊥〉 6∈ achieved(SS, τ) and
6|=<

⋃
k≤i≤n TCS

i ∧ Σ ∧ t > τ}.

Then, h+ and h−can be defined via the new notions of achieved and unachievable.
Wrt these new notions, in example 4, the trace S0, . . . , S3 is not �2-improving.

Similarly, ≺ should be re-defined by looking solely at states S, S′ in portions related to the
same top-level goals. We omit the formal definition for simplicity.

Note that other improvements of the original notions would have been possible, e.g. by con-
sidering the ratio between achieved and unachievable goals and most recent goals (and taking
care of the cases in which there are no most recent goals appropriately). We might explore this
improvement in the future.

Even with this refined notion of improvement, problems might still occur, due to the fact that,
after all most recent goals have been dealt with, there is no possible further improvement and
there should be none, as illustrated by the following example.

Example 5 Assume to have the following (portion of a) state-sequence (with associated h+):
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S0 = 〈{ }, {g1}, { }, { }〉 h+(S0) = 0 (g1 not achieved yet)
S1 = 〈{ }, {g1}, { }, { }〉 h+(S1) = 0 (g1 not achieved yet)
S2 = 〈{ }, {}, { }, { }〉 h+(S2) = 1 (g1 achieved and dropped)
S3 = 〈{ }, {}, { }, { }〉 h+(S3) = 1
. . .
S9 = 〈{ }, {g3}, { }, { }〉 h+(S9) = 0 (g3 introduced and not achieved yet)

According to the refined notions, S0, . . . , S3 is not �2-improving, which si counter-intuitive,
since the computee has achieved all its top-level goals within the sequence, and is simply idle
(and will remain so until new goals are introduced, in state S9).

We can further refine the notion of �-improvement, as follows. Here, we do so for happiness-
oriented notions of �. First, let us define the notion of idle state S in a (portion of a) state-
sequence SS, ending with S:

• idle(S;SS) holds iff for each goal G ∈MRG(S, SS):

– either G ∈ achieved(SS, τ)

– or G ∈ unachievable(SS, τ)

where τ is the time at which S is generated in SS.

Intuitively, an idle state is a state in which nothing can be done actively, as there is no pending
goal. Then, we can re-define the notion of improvement, as follows.

Definition 6.1 Let � be any notion of preference between states. Then, we say that an in-
finite state-sequence or portion S0, S1, . . . , Sn, . . . improves individual welfare wrt � iff, for
each j ≥ 0, if it is not the case that idle(Sj ;S0, S1, . . . , Sj), namely Sj is not idle, then
there exists l > j such that Sj � Sl. We also say that a finite state-sequence or portion
S0, S1, . . . , Sn improves individual welfare wrt � iff for each j ≥ 0, j < n, if it is not the case
that idle(Sj ;S0, S1, . . . , Sj), then, there exists l > j, l ≤ n such that Sj � Sl.

With this new notion, the portion in example 5 is �2-improving.

Below, when referring to the notion of improvement, we will consider solely the refined notions
presented in this section.

Finally, note that one additional refinement of the earlier notions would amount to taking into
account reactive goals, if present, when measuring the individual welfare of computees. This
would amount to including reactive goals into MRG(S, SS).

7 Some cycle-independent properties

In this section, we make some initial considerations about proving that computees are �-
improving (either wrt some initial state or in general), for various notions of� given earlier. In
particular, we separate out properties for the various notions of happiness-related welfare given
in section 4 and the various scenaria and notions of progress-related welfare given in section 5.
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7.1 Happiness

Trivially:

Theorem 7.1 Any computee is �1-improving.

This result holds trivially because of the features of the KGP model, according to which goals,
once achieved, can never become ”unachieved”. This is due to the fact that goals are existen-
tially quantified in the KGP model.

The analogous result for �2 does not hold as illustrated by any example where before Action
Execution takes place, to execute actions that render a goal achieved, other transitions need to
take place, thus rendering the actions and the corresponding goal timed-out, and thus the goal
unachievable.

Again trivially, we can prove that:

Theorem 7.2 No computee is �3-improving.

Theorem 7.3 A computee is �4-improving iff it is �2-improving.

Indeed, by definition, the number of unachievable goals in a state-sequence can never decrease
(theorem 7.2). and thus �2 and �4 always coincide (theorem 7.3). If we adopted a different
notion of unachievable goals, e.g. unachieved goals that are either timed-out or for which no
plan exists, then �2 and �4 would differ, and �3 would make sense.

We are currently attempting to identify concrete cycle theories which can be proven to be
�2-improving, or �-improving for some other notion of �, different from the ones considered
earlier on. A trivial result for �2 is that a cycle theory that introduces no goal, either because
of its Goal decision capability or because it never calls the Goal Introduction transition, would
be �2-improving.

7.2 Progress

The following property links the notion of progress ≺ to the notion of happiness according to
�1 (in the restricted scenario we are considering), by stating that the maximal element of the
≺ ordering corresponds to the maximal element of the �1 ordering, in that in a state that is
maximally good according to ≺ as many top-level goals as possible are achieved. The same
property should hold for the ordering �2.

Conjecture 1 If there exists a state sequence S0, . . . , Sl, . . . Sm . . . such that, for every m > l,
Sl 6≺ Sm, then for every m > l, h+(Sl) = h+(Sm).

We are also considering additional properties, defined in the case of fair cycle theories, namely
cycle theories where all transitions occur at some stage in every operational trace. Then, given
any state S in an operational trace induced by a fair cycle theory, in finite time we will reach
a better state, according to ≺, if one exists, i.e. there is no infinite sequence of equally good
states according to ≺ in any operational trace induced by a fair cycle theory. Therefore starting
in any state S, we will eventually reach an optimal state—provided ≺ is transitive and provided
the following additional conditions hold:
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(i) KBplan generates a finite plan for each goal.

(ii) There are no exogenous actions in the environment.

We hope to prove that there can never be an infinitely improving sequence of states given a fair
cycle and conditions (i)–(ii) above.

8 Some cycle-dependent properties

This section describes some possible future work making use of the definitions given earlier in
the report.

8.1 Fixed versus flexible cycles

We have made some preliminary investigations on proving that flexible cycles (induced by cycle
theories) are better than given fixed cycle.
Consider a fixed cycle 2

POI, SR,GI(0), P I,AE

and a flexible cycle 3

POI, SR,GI(0), (PI ↑, AE ↑) ↑

where PI is to be repeated till there are goals to be planned for, and AE is to be repeated till
there are actions that can be executed. We aim at proving that the flexible cycle is “better”
than the fixed cycle at improving welfare, e.g. according to �2.

8.2 Interruptible versus non-interruptible cycles

We could consider proving that the interruptible variant of any cycle [5] is “better” than the
original non-interruptible cycle at improving welfare, e.g. according to�2 or some other notion
of �, e.g. taking into account events happened in the environment of the computee.

8.3 Profiles of behaviour

We aim at proving that some profiles of behaviour, given in a separate annex to D13. are better
than others at improving welfare, according to some �, either amongst the ones given earlier
or novel. For example, we believe and aim at proving that the Actively Cautious computee will
do as well as the Cautious computee (but could take longer time) whereas the reverse is not
true.

2With T (0) we indicate that T is the initial transition.
3With T ↑, for some transition T , we indicate that T is to be repeated, if some (omitted) conditions hold,

and with R ↑ we indicate that the routine (sequence of transitions) R is to be repeated.
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9 Some Informal Notes on Welfare

9.1 Individual agent welfare

There is no universally accepted definition for the notion of individual welfare but we can
informally think of it as the state of doing well, especially in respect to good fortune, happiness,
well-being, security or prosperity. In this informal view the “state of doing well” implies a mental
state and/or an external environment containing other agents and objects that ground agent’s
interactions, and in particular the notion that an agent is doing well (or bad for that matter).

9.2 Objective vs Subjective Welfare

Broadly speaking, in seeking to understand the notion of welfare we find two theories as the
main contenders: utilitarianism and freedom philosophy. In the utilitarian view, welfare resides
in how well people live. This is for each person a matter of his or her own experience of how
well he or she lives. Resources, goods and so on are of different utility to different persons
depending on their preferences and tastes. The balance of utility and disutility in a person’s
situation is pulled together by him or her in an experience of happiness. Things are good or
bad for persons depending on their consequences for their happiness.

In the philosophy of freedom, welfare resides in people’s freedom to pursue their own life strate-
gies as they see them. Resources, goods and so on are instruments of choice. People live well
if the life they may wish to live is available to them. What needs to be established is what
opportunities people have for living as they might wish, rather than how they in fact live or
choose to live. Things are good for people to the degree that they make them free and bad to
the degree that freedom is restricted.

There are strong similarities between these two philosophies. Both are compatible with a
rationalist view of human nature, that persons have good sense and competence to understand
and pursue their own good. Both are non-dictatorial; each person is his or her own best judge
of their best interest. Both are individualistic; welfare resides in persons and social welfare
is some aggregate of individual welfares (not to be confused with the notion of social services
to disadvantaged groups or communities). The main difference is that the utilitarian view is
a theory of subjective welfare - people live well if they feel well - while the freedom view is a
theory of objective welfare - people live well if they are free.

9.3 A Taxonomy of Welfare Theories

There are different ways in which we may classify theories of welfare, for one thing, the classifi-
cation in subjective vs objective may not do the job for us. We give below a more fine-grained
classification than that of the previous section with the aim to include what we want to do in
our approach.

• Mental State Views vs. Non-Mental-State Views:

– Mental state views: Assume some mental state that is intrinsically desirable, i.e.,
pleasure, happiness, or contemplation;

– Non-Mental-State Views: One’s welfare depends on more than just one’s mental
states, i.e., achievements, goods, or health.
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• Formal vs. Substantive:

– Substantive: A substantive theory says what things are intrinsically good for people
and give reasons for preferring one state of affairs to another.

– Formal: Formal theories specify how one finds out what things are intrinsically good
for people, but they do not say what those things are (e.g. welfare as preference
satisfaction).

The economics and social science literature on this is quite huge.

10 Parameters based on Agents and MAS

We are interested in identifying the important parameters that may affect individual welfare.

10.1 Agent’s personalities

We have defined in [4] a set of different personalities based on different patterns of behaviours.
How do these affect the welfare of the agent is an important issue. For example, an agent
that is not focused may delay the achievement of its goals, which may in turn impact on
the agent’s individual welfare. However, to what extend existing theories of personality from
psychology can be translated in our KGP model of agency, is an open issue that deserves
further investigation. Moreover, to what extend is the notion of personality an adequate level
of abstraction or whether addition refinements are required, such as those of thinking styles [3],
is also an open issue.

10.2 Classification of agents

The informal definition of individual welfare provided earlier, suggests that we might find useful
to classify agents into different classes whose properties are based on the notions of good fortune,
happiness, well-being, or prosperity. We may call an agent as being:

• fortunate - if events that happen in the environment help the agent achieve its goals and
more (e.g. consider an agent that buys a book on Amazon and that the transaction wins
the agent a free coupon which allows the agent to exchange it with more books for free).

• happy - according to some definition of happiness, for example, achievement of set goals.

• healthy - if all its sensors, effectors, mind and body function properly (or according to
their specifications).

• prosperous - if the agent is successful, especially economically (i.e. how many resources
can access/has control over/owns including currency).

• well-being - if the agent is happy and/or healthy and/or prosperous.
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10.3 The role of the Environment

The role of the environment is important in that it might affect the welfare of an agent. As
different agent personalities will give rise to different cognitive states for agents, we would
probably need to classify environments, in order to prove properties for specific agents assuming
being situated in different kinds of environments.

10.3.1 An existing environment classification

Russell and Norvig in [8] provide a classification for agent environments, as follows:

• accessible vs inaccessible;

• deterministic vs non-detrministic;

• episodic vs non-episodic;

• static vs dynamic;

• discrete vs continuous;

Although this classification can be quite useful, other dimensions in the literature exist that may
be related. For example, a number of articles in the literature [9, 1, 2] suggest that accessibility
of an environment might be further be divided in those environment that are accessible because
they are fully observable and those that are partially observable. Also, a distinction between an
environment where there is a single-agent only versus environments where there are multiple
agents may make a difference.

10.3.2 Social Environment classification

Russel’s and Norvig’s classification of agent environments does not take into consideration social
notions. A more social-centric classification could give rise to social environments classification:

• private vs public (open vs closed);

• hierarchical vs flat;

• cooperative vs competitive (hostile vs amicable);

• liberal vs autocratic;

• ordered vs anarchic.

Other classifications maybe useful.

11 Conclusions

This report summarises some initial progress on the specification of properties of computees,
based upon notions of individual welfare. It provides a number of definitions of individual
welfare and its improvements, for (some restrictions of) the full KGP model. It also discusses
a number of alternative such notions throughout.
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We have made some initial attempts at formally defining various notions of individual welfare,
that support the definition of operational trace improving welfare of computees, and to state
and prove (or disprove) properties, e.g. whether certain computees manage to improve their
welfare.

Future work includes the further specification and formal verification of such properties, as well
as studying the impact of different computee profiles (cycle theories) on their welfare.

References

[1] R. Ashri, M. Luck, and M. d’Inverno. On identifying and managing relationships in multi-
agent systems. In Proceedings of the 18th International Conference of Artificial Intelligence
(IJCAI-03), pages 743–748, 2003.

[2] A. Bracciali, P. Mancarella, K. Stathis, and F. Toni. On declarative semantics of multi-agent
systems. In Proceedings of DALT’04 Workshop, New York, 2004.

[3] A. F. Harrison and R. M. Bramson. The Art of Thinking. Berkley, 1982.

[4] A. Kakas, P. Mancarella, F. Sadri, K. Stathis, and F. Toni. A logic-based approach to model
computees. Technical report, SOCS Consortium, 2003. Deliverable D4.

[5] A. Kakas, P. Mancarella, F. Sadri, K. Stathis, and F. Toni. Declarative agent control. In
Proc CLIMAV, 2004.

[6] A. Kakas, P. Mancarella, F. Sadri, K. Stathis, and F. Toni. The KGP model of agency. In
Proc. ECAI2004, 2004. To appear.

[7] A. C. Kakas, E. Lamma, P. Mancarella, P. Mello, K. Stathis, and F. Toni. Computational
model for computees and societies of computees. Technical report, SOCS Consortium, 2003.
Deliverable D8.

[8] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Pearson Education,
1995.

[9] M. Wooldridge and A. Lomuscio. A logic of visibility, perception, and knowledge: complete-
ness and correspondence results. Journal of the IGPL, 9(2), March 2001.

22


