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1 Introduction

In this document, we collect the proofs of the main properties of the SCIFF proof-procedure.
First, we give a short recap of the society formal model. We report the proof of Soundness (Part
I), that was proven in a document [3] annexed to D12. Then, we give the proof of Termination
(Part II), extending the proof of termination of the IFF proof-procedure [10].

2 Society formal model: Recap

We provide here, for the sake of readability, the main parts of the declarative and operational
semantics of the society. These parts are meant to make this report more self-contained, and
are a synthesis of corresponding parts taken from Deliverable D8 [4].

The new work consists of the proofs of Theorems 3 and 4, which are given in Section 6.5.

2.1 The Syntax of the Society

The society knowledge consists of the following 4-tuple [8]:

〈SOKB,SEKB, ICS ,G〉

where:

• SOKB is the Social Organization Knowledge Base,

• SEKB is the Social Environment Knowledge Base,

• ICS is the set of Social Integrity Constraints (ICS), and

• G is the set of Goals of the society.

Social Environment Knowledge Base. The SEKB dynamically evolves and is composed
of:

• Happened events: atoms indicated with functor H;

• Expectations on the future: events that should (but might not) happen in the future
(atoms indicated with functor E), and events that should not (but might indeed) happen
in the future (atoms indicated with functor NE).

The happened events are represented as ground atoms

H(Event [,Time]).

The expectations can be
E(Event [,Time])

NE(Event [,Time])

and can contain variables, with the following scope rules and quantifications:

• variables in E atoms are always existentially quantified with scope the entire set of ex-
pectations
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• the other variables, that occur only in NE atoms are universally quantified (the scope
of universally quantified variables is not important, as ∀X.p(X) ∧ q(X) is equivalent to
∀X.p(X) ∧ ∀Y.q(Y )).

Social Organization Knowledge Base. The SOKB is a logic program, consisting of clauses

Clause ::= Atom←Body
Body ::= ExtLiteral [ ∧ ExtLiteral ]⋆

ExtLiteral ::= Literal | Expectation | Constraint
Expectation ::= [¬]E(Event [, T ]) | [¬]NE(Event [, T ])

(1)

In a clause, the variables are quantified as follows:

• Universally, if they occur only in literals with functor NE (and possibly constraints), with
scope the body;

• Otherwise universally, with scope the entire Clause.

We call definite the predicates for which there exists a definition; i.e., a predicate that occurs
in at least the head of a clause.

Goal. The goal G of the society has the same syntax as the Body of a clause in the SOKB.
Notice that the variables occurring in G are considered free by the IFF proof procedure. In
the devised proof procedure for the society infrastructure (named SCIFF in the following),
for ease of presentation and without loss of generality, they will be considered as existentially
(or where appropriate as universally) quantified variables. Coherently with the SOKB, the
variables occurring in G are quantified

• existentially if they occur in a definite literal, or literals with functor E;

• universally if they occur only in literals with functor NE.

Any variable in G must occur in at least a literal E or NE.

Social Integrity Constraints are in the form of implications. We report here, for better
readability, the characterizing part of their syntax (the full syntax is given in document D5):

ic ::= χ→ φ
χ ::= (HEvent|Expectation) [∧BodyLiteral]⋆

BodyLiteral ::= HEvent|Expectation|Literal|Constraint
φ ::= HeadDisjunct [ ∨HeadDisjunct ]⋆|⊥

HeadDisjunct ::= Expectation [ ∧ (Expectation|Constraint)]⋆

Expectation ::= [¬]E(Event [, T ]) | [¬]NE(Event [, T ])
HEvent ::= [¬]H(Event [, T ])

(2)

Given a icS χ → φ, χ is called the body (or the condition) and φ is called the head (or the
conclusion).

The rules of scope and quantification are as follows:

1. Any variable in an icS must occur in at least an Event or in an Expectation.
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2. The variables that occur both in the body and in the head are quantified universally with
scope the entire icS .

3. The variables that occur only in the head must occur in at least one Expectation, and

(a) if they occur in literals E or ¬E are quantified existentially and have as scope the
disjunct they belong to;

(b) otherwise they are quantified universally.

4. The variables that occur only in the body are quantified inside the body as follows:

(a) if they occur only in conjunctions of ¬H, NE, ¬NE or Constraints are quantified
universally;

(b) otherwise are quantified existentially.

5. Of course, the order of the quantifiers is, in general, significant. In our syntax, the
quantifier ∀ cannot be followed by ∃.

2.2 Allowedness Conditions

We report here, for the sake of completeness, the allowedness conditions introduced in deliver-
able D8 [4].

We extend the IFF proof procedure allowedness condition, as follows.

Definition 1. A clause Head←Body is allowed if every variable that occurs in a negative
literal of a definite predicate

• occurs in at least a positive literal or in the head (as in the IFF)

• or it occurs in atoms E or ¬E.

A Goal is Allowed if every variable that occurs in a negative literal of a definite predicate

• occurs in at least a positive literal (as in the IFF)

• or it occurs in atoms E or ¬E

The aim of these definitions is to ensure that the quantification of variables in negative
literals in the resolvent cannot be universal.

The IFF also imposes a condition on the integrity constraints:

An integrity constraint is allowed if (and only if) every variable in the conclusion
occurs in the condition.

We do not need this condition, because we can always convert a non allowed integrity constraint
by adding a new predicate. E.g., the integrity constraint:

E(p(X))→ E(q(Y ))

can be converted into
E(p(X))→ r.

r←E(q(Y )).

Moreover, a variable cannot occur in a Social Integrity Constraint only in negative, definite
literals, but it must always appear in literals with predicates H, E, NE.
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Definition 2. A Social Integrity Constraint is Quantifier Allowed if any variable occurring in
the head in literals of type E, ¬E, or (in the body) in a negative, defined literal

• either does not occur in the body

• or it occurs in the body in a literal of type H, E, ¬E.

The society knowledge is quantifier allowed if all the Social Integrity Constraints are quantifier
allowed.

Definition 3. A Social Integrity Constraint is Constraint Allowed if

• all the variables that are universally quantified with scope the body do not occur in quan-
tifier restrictions;

• the other variables (that occur only in the head, or both in the head and in the body) can
occur in quantifier restrictions. For each quantifier restriction c occurring in the Social
Integrity Constraint,

– either c only involves variables that also occur in E, ¬E, H atoms

– or it involves one variable that also occurs in at least one NE atom and possibly
other variables each of which occurs in H atoms.

Definition 4. A Clause is Constraint Allowed if the variables that are universally quantified
with scope the body do not occur in quantifier restrictions, and each variable that occurs in a
quantifier restriction also occurs in at least one atom E in the body.

Definition 5. A Society Knowledge is Constraint Allowed if all its social integrity constraints
and all its clauses in the SOKB are Constraint Allowed.

3 ALP Interpretation of the Society model and declara-

tive semantics

In the following, we recall the society model as Abductive Logic Program, presented in previous
deliverables [8, 4]. In particular, we introduce the notion of instance of a society as an Abductive
Logic Program in order to capture the dynamic aspects of a society.

The (static) model of a society, S, is represented as the following triple:

〈SOKB, E , ICS〉

where:

• SOKB is the Social Organization Knowledge Base,

• ICS is the set of Social Integrity Constraints, and

• E is the set of abductive predicates, where the abducible predicates correspond to E and
NE (and their explicit negation ¬).

Definition 6. An instance SHAP of a society S is represented as an ALP, i.e., a triple
〈P, E , ICS〉 where:
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• P is the SOKB together with the history of happened events HAP;

• E is the set of abducible predicates of S;

• ICS are the social integrity constraints of S.

In this way, our social framework (and its dynamic counterpart, as instance of a society)
has been smoothly given an abductive interpretation.

If the society is goal driven, then there exists a goal G at the society level (which is simply
true if the society is not goal driven).

Definition 7. Given two instances, SHAP and SHAP′ , of a society S, SHAP′ is a proper
extension of SHAP if and only if HAP ⊂ HAP′.

Definition 8. Given an instance, SHAP, of a society S, the instance is closed iff it has no
proper extensions. We denote a closed instance as S

HAP
.

In the following, we indicate a closed history by means of an overline: HAP. Notice that
in a closed instance, we assume that no further event might occur (i.e., the instance has no
further extensions and the history is closed under CWA).

3.1 Declarative semantics

In the following we give semantics to a society instance by identifying sets of expectations which,
together with the society’s knowledge base and the happened events, imply an instance of the
goal - if any - and satisfy the integrity constraints.

For notion of integrity constraint satisfaction we rely, in the following, upon a notion of
entailment in a three-valued logic, since more general and capable of dealing with both open
and closed society instances. Therefore, in the following, the symbol |= has to be interpreted
as the notion of entailment in a three-valued setting.

Furthermore, in this section, we consider negative literals of the kind ¬H() as new positive
literals that have no definition in each open society instance. For closed society instances, we
use Clark’s completion of the history, Comp(HAP), and negation is interpreted in the Closed
World Assumption (CWA).

Throughout this section, for the sake of simplicity, we always consider a ground version of
society’s knowledge base and integrity constraints, and do not consider CLP-like constraints.

We first recall the concept of ICS-consistent set of social expectations. Intuitively, given a
society instance, a ICS-consistent set of social expectations consists of a set of expectations
about social events that are compatible with P (i.e., the SOKB and the set HAP), and with
ICS .

Definition 9. (ICS-consistency) Given a (closed/open) society instance SHAP, an ICS-
consistent set of social expectations ∆ is a set of expectations such that:

SOKB ∪HAP ∪∆ |= ICS (3)

In definition 9 (and in the following definitions 12, 13, 14 and 15), for open instances we
refer to a three-valued completion where only the history of events has not been completed.
Therefore, for open instances,

SOKB ∪HAP ∪∆ |= ICS
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is a shorthand for:
Comp(SOKB ∪∆) ∪HAP ∪ CET |= ICS

where Comp() is three-valued completion [7] and CET Clark’s equational theory.
For closed instances, instead,

SOKB ∪HAP ∪∆ |= ICS

is a shorthand for:
Comp(SOKB ∪∆ ∪HAP) ∪ CET |= ICS

since also the history of events (closed) needs to be completed.
Among ICS-consistent sets of expectations, we are interested in those which are also con-

sistent with respect to E-consistency and ¬-consistency.

Definition 10. (E-consistency) A set of social expectations ∆ is E-consistent if and only if
for each (ground) term p:

{E(p),NE(p)} 6⊆ ∆

Definition 11. (¬-consistency) A set of social expectations ∆ is ¬-consistent if and only if
for each (ground) term p:

{E(p),¬E(p)} 6⊆ ∆

and
{NE(p),¬NE(p)} 6⊆ ∆

Given a closed (respectively, open) society instance, a set of expectations is called closed
(resp. open) admissible if it satisfies Definitions 9, 10 and 11, i.e. if it is ICS-, E- and ¬-
consistent.

Definition 12. (Fulfillment) Given a (closed/open) society instance SHAP, a set of social
expectations ∆ is fulfilled if and only if for each (ground) term p:

HAP ∪∆ ∪ {E(p)→ H(p)} ∪ {NE(p)→ ¬H(p)} 6� ⊥ (4)

Notice that Definition 12 above requires, for a closed instance of a society, that each positive
expectation in ∆ has a corresponding happened event in HAP, and each negative expectation
in ∆ has no corresponding happened event. This requirement is weaker for open instances,
where a set ∆ is not fulfilled only when a negative expectation occurs in the set, but the
corresponding event happened (i.e., the implication NE(p)→ ¬H(p) is false).

Symmetrically, we define a violation:

Definition 13. (Violation) Given a (closed/open) society instance SHAP, a set of social
expectations EXP is violated if and only if there exists a (ground) term p such that:

HAP ∪∆ ∪ {E(p)→ H(p)} ∪ {NE(p)→ ¬H(p)} � ⊥ (5)

Finally, we give, in the following, the notion of goal achievability and achievement.
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Definition 14. Goal achievability Given an open instance of a society, SHAP, and a ground
goal G, we say that G is achievable (and we write SHAP≈∆G) iff there exists an (open) ad-
missible and fulfilled set of social expectations ∆, such that:

SOKB ∪HAP ∪∆ � G (6)

(which, as explained earlier, is a shorthand for Comp(SOKB ∪∆) ∪HAP ∪ CET |= G).

Definition 15. Goal achievement Given a closed instance of a society, S
HAP

, and a ground
goal G, we say that G is achieved (and we write S

HAP
�∆ G) iff there exists a (closed)

admissible and fulfilled set of social expectations ∆, such that:

SOKB ∪HAP ∪∆ � G (7)

(i.e., Comp(SOKB ∪HAP ∪∆) ∪ CET |= G).

4 The society proof procedure

The proof procedure of the society, called SCIFF (Society C-IFF) has the following features:

• it accepts new events as they happen

• it produces sets of expectations

• it detects fulfillment of expectations

• it detects violations as soon as possible.

In this section we recall the basic concepts of the SCIFF proof procedure. The complete
description, with all the transitions, is given in Deliverable D8 [4].

4.1 Data Structures

The SCIFF proof procedure is based on a rewriting system transforming one node to another
(or to others). A node can be either the special node false, or defined by the following tuple

T ≡ 〈R,CS, PSIC,EXP,HAP,FULF,VIOL〉

where

• R is a conjunction (initially set to the goal G), the conjuncts can be atoms or disjunctions
(of conjunctions of atoms)

• CS is the constraint store

• PSIC is the set of partially solved integrity constraints

• EXP is the set of (pending) expectations

• HAP is the history of happened events

• FULF is a set of fulfilled expectations
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• VIOL is a set of violated expectations

If one of the elements of the tuple is false, then the whole tuple is the special node false,
which cannot have successors.

We have seen that a society instance can be open or closed, depending on whether more
events can happen or not, i.e., whether HAP is an open set or a closed set. We assume that
we can rely on a predicate closed/1, which holds true if its argument represents a closed set.

4.1.1 Initial Node and Success

A derivation D is a sequence of nodes

T0 → T1 → · · · → Tn−1 → Tn.

Given a goal G and a set of integrity constraints ICS , we build the first node in the following
way:

T0 ≡ 〈{G}, ∅, ICS , ∅, ∅, ∅, ∅〉

i.e., the conjunction R is initially the query (R0 = {G}) and the partially solved integrity
constraints PSIC is the set of integrity constraints (PSIC0 = ICS).

The other nodes Tj , j > 0, are obtained by applying the transitions that we will define in the
next section, until no further transition can be applied (we call this last condition quiescence).

Every arc in a derivation is labelled with the name of a transition.
Let us now give the definition of successful derivation, both in the case of an open society

instance (where new events may be added to the history) and of a closed society instance.

Definition 16. Starting with an open society instance SHAPi there exists an open successful
derivation for a goal G iff the proof tree with root node 〈{G}, ∅, ICS , ∅,HAPi, ∅, ∅〉 has at least
one leaf node

〈∅, CS, PSIC,EXP,HAPf ,FULF, ∅〉

where HAPf ⊇ HAPi and CS is consistent (i.e., there exists a ground variable assignment
such that all the constraints are satisfied). In that case, we write:

SHAPi∼HAP
f

EXP∪FULFG

Definition 17. Starting with a society instance SHAPi there exists a closed successful deriva-
tion for a goal G iff the proof tree with root node 〈{G}, ∅, ICS , ∅,HAPi, ∅, ∅〉 has at least one
leaf node

〈∅, CS, PSIC,EXP,HAPf ,FULF, ∅〉

where HAPf ⊇ HAPi, CS is consistent, and EXP contains only negative literals ¬E and
¬NE. In such a case, we write:

SHAPi ⊢HAPf

EXP∪FULF G.

From a non-failure leaf node N , answers can be extracted in a very similar way to the IFF
proof procedure. Answers of the SCIFF proof procedure are called expectation answers. To
compute an expectation answer, first, a substitution σ′ is computed such that

• σ′ replaces all variables in N that are not universally quantified by a ground term
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• σ′ satisfies all the constraints in the store CSN .

If the constraint solver is (theory) complete [6] (i.e., for each set of constraints c, the solver
always returns true or false, and never unknown), then there will always exist a substitution σ′

for each non-failure leaf node N . Otherwise, if the solver is incomplete, σ′ may not exist. The
non-existence of σ′ is discovered during the answer extraction phase. In such a case, the node
N will be marked as a failure node, and another leaf node can be selected (if it exists).

Definition 18. Let σ = σ′|vars(G) be the restriction of σ′ to the variables occurring in the
initial goal G. Let ∆ = (FULFN ∪ EXPN )σ′. The pair (∆, σ) is the expectation answer
obtained from the node N .

Part I

Soundness

5 Introduction

The soundness of the SCIFF proof-procedure was stated and proven in some limited cases
in Deliverable D8 [4]. The proof was then extended to more general cases in a document [3]
annexed to Deliverable D12.

6 Soundness Properties of SCIFF Proof Procedure

We state the desirable properties of soundness and completeness for the SCIFF proof proce-
dure (Section 4) with respect to the declarative semantics (Section 3.1) by considering, in the
following, a given society instance SHAP and a goal G for it. Depending on the openness or
closure of the society instance, we state in the following the desirable properties of correctness
for the proof procedure. For the sake of simplicity we do not consider CLP constraints in the
program, except for equality and disequality, that are dealt with the rules given in Deliverable
D8 [4].

The following theorem relates the operational notion of open successful derivation with the
corresponding declarative notion of goal achievability.

Theorem 1. Open Soundness. Given an open society instance SHAPi , if

SHAPi∼HAP
f

EXP∪FULFG

with expectation answer (Definition 18) (EXP ∪ FULF, σ) then

SHAPf≈(EXP∪FULF)σGσ

The theorem above states that if there exists an open successful derivation for a goal G
starting from an initial history HAPi and leading to the (open) society instance SHAPf with
abduced expectation set EXP∪FULF, and with expectation answer (EXP∪FULF, σ), then
Gσ is achievable in SHAPf (with the expectation set (EXP ∪ FULF)σ).
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In the closed case, the soundness property is stated as follows, relating the operational notion
of closed successful derivation with the corresponding declarative notion of goal achievement.

Theorem 2. Closed Soundness. Given a closed society instance S
HAPf , if

SHAPi ⊢HAPf

EXP∪FULF G

with expectation answer (EXP ∪ FULF, σ) then

S
HAPf |=(EXP∪FULF)σ Gσ

Soundness in the closed case states that if there exists a closed successful derivation for a
goal G starting from an initial history HAPi and leading to the (closed) society instance S

HAPf

with abduced expectation set EXP∪FULF, and with expectation answer (EXP∪FULF, σ),
then Gσ is achieved in S

HAPf (with the expectation set (EXP ∪ FULF)σ).
In Section 6.1, we introduce some lemmas useful to prove the property of open and closed

soundness. These Lemmas allow us to establish a corresponding SCIFF computation where all
the incoming events are considered at the beginning of the computation, instead of interleaving
Happening transitions with the other ones.

We first prove soundness property for the open case (Proposition 3) in Section 6.3, and for
the closed case (Proposition 4) in Section 6.4, both in the case in which the final node does not
contain universally quantified abducibles. Then we extend both proofs to the general case, i.e.,
the case in which the final node can contain universally quantified abducibles.

6.1 Lemmas

In this section, we prove some lemmas that will be useful in the following proofs. These Lemmas
allow us to establish a corresponding SCIFF computation where all the incoming events are
considered at the beginning of the computation, instead of interleaving Happening transitions
with the other ones. These results are represented by Lemma 7 for the open case and Lemma
8 for the closed case.

A further useful results proved in this section is Lemmas 4, that will prove that if in a
derivation we have a node containing an abduced atom with universally quantified variables,
then there will be a universally quantified variable in every non-failure successor node. Thanks
to this lemma, we will be able to use results from the IFF proof procedure (in which universally
quantified abducibles cannot occur in any node of a derivation) in SCIFF derivations that do
not terminate in a node with universally quantified abducibles.

We first give some intermediate results; first of all, we relate the treatment of disequality in
SCIFF and in IFF proof procedures.

Lemma 1. The SCIFF proof procedure deals with disequalities in the Constraint Store [4]. The
IFF proof procedure transforms a disequality A 6= B into an implication A = B → false.

For each of the rules for disequality in SCIFF that does not involve quantifier restrictions,
there is one or more rules in IFF that lead to the same node.

Proof. Let us consider a disequality A 6= B in both proof procedures. Let us assume that one
of the rules for disequality is used in SCIFF; we prove that there are one or more IFF rules
applicable that lead to the same result.

14



1. Replace f(t1, . . . , tj) 6= f(s1, . . . , sj) with t1 6= s1 ∨ · · · ∨ tj 6= sj .

In the IFF, we could

• rewrite f(t1, . . . , tj) 6= f(s1, . . . , sj) as f(t1, . . . , tj) = f(s1, . . . , sj)→ false.

• Apply the Rules for Equality obtaining t1 = s1 ∧ · · · ∧ tj = sj → false.

• Apply j times Case Analysis; in the first application we get t1 = s1 ∧ (t2 = s2 ∧ · · · ∧
tj = sj → false)∨t1 6= s1. By iteratively applying Case Analysis to the implications
we will get t1 6= s1 ∨ · · · ∨ tj 6= sj ∨ [t1 = s1 ∧ · · · ∧ tj = sj ∧ (true→ false)]

• by applying Logical Equivalences, we have t1 6= s1 ∨ · · · ∨ tj 6= sj .

2. Replace f(t1, . . . , tj) 6= g(s1, . . . , sl) with true whenever f and g are distinct or j 6= l.

In the IFF, we can

• Rewrite f(t1, . . . , tj) 6= g(s1, . . . , sl) as f(t1, . . . , tj) = g(s1, . . . , sl)→ false.

• Apply Rewriting Rules for Equality and get true→ false.

• Apply logical equivalence and get true.

The same reasoning can be applied for the other rules 3, 4, 5 and 6a of SCIFF proof procedure
[4]. Rules 6b and 6c involve quantifier restrictions.

Lemma 2. Applying the rules for disequality [4] cannot change the quantification of a uni-
versally quantified variable. Moreover, after applying rules for disequality, the disequality con-
straints are not imposed on universally quantified variables.

Proof. Trivial, considering the rules of disequality: either they fail, or they succeed without
creating new constraints, or they impose constraints only on existentially quantified variables.

Lemma 3. Let us suppose that the constraint solver only contains the rules for equality and
disequality [4] (otherwise, the behavior of the proof depends also on the type of constraint solver).
Let us suppose that the rules for equality and disequality are applied before the other transitions.

If an atom A is abduced containing a universally quantified variable X̂, and X̂ only occurs in
abduced atoms, if Propagation is not applied, then the atom A will remain in the set of abduced
atoms and variable X̂ will remain universally quantified in any success nodes.

Proof. Since variable X̂ only occurs in abduced atoms, its state can be changed only by tran-
sitions that affect abduced atoms. Let us consider the single transitions:

Unfolding does not affect an abduced atom; it may unify the variables appearing in a goal or
in the body of an implication with the head of a clause. However, since variable X̂ does
not occur in non abducible atoms, it will not be affected.

Abduction does not affect atoms already abduced.

Splitting does not affect abduced atoms.

Case Analysis affects the variables appearing in an implication. Since variable X̂ only occurs
in abduced atoms, it will not be affected by case analysis.
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Factoring is not applicable to universally quantified atoms.

Equivalence Rewriting rules apply only to equalities, thus they will not affect variables
that do not occur in an equality.

Logical Equivalence The only rule that can change a (positive) atom is A ∨ true ↔ true.
This rule can only be applied to a disjunction, but, since atom A has been abduced, it
cannot be argument of a disjunction (in fact, disjunctions cannot occur in EXP, FULF,
and VIOL, but only in the Constraint Store or in R).

Happening does not change abduced atoms.

non-Happening does not change abduced atoms.

Closure only changes the history and does not change abduced atoms.

Violation NE generates two nodes. One is a violation node. The other imposes a disequality
constraint. We know that a disequality constraint cannot bind a universally quantified
variable (Lemma 2). Since we chose a preferred order of application of transitions (namely,
we apply the rules for equality and disequality before the other transitions), we can ensure
that Violation NE will not bind any universally quantified variable in non failure nodes.

Fulfillment E, Violation E deal with E atoms, that cannot contain universally quantified
variables.

Fulfillment NE does not change atoms, only moves them from EXP to FULF.

Constraint Solving We do not deal with constraints (except for disequality, for which we
know that it does not bind universally quantified variables, and equality, already consid-
ered in Equivalence Rewriting rules).

Lemma 4. If, in a node N , an atom A is abduced containing a universally quantified variable
X̂, then in any node which is a descendant of N there will be such atom A in the set of abduced
atoms with universally quantified variable X̂ (unless the node is false).

Proof. We prove the lemma in the following steps:

1. whenever an atom is abduced with a new, universally quantified variable X̂, then X̂
cannot occur elsewhere except for abducible atoms.

2. Lemma 3 is applicable, thus the thesis holds if Propagation is not applied.

3. Applying Propagation creates new universally quantified variables, while the abduced
atoms are not touched.

We now elaborate on steps 1 and 3.
1. If the proof procedure abduces an atom with universally quantified variables, then the

universally quantified variables can occur only in abducibles.
In fact, the Abduction transition can be applied only to atoms in the set R. R may contain

a universally quantified atom because it was in the initial goal of the society. In this case, the
variable cannot occur in other atoms (except abducibles and constraints, see Section 2.1). We
will suppose that the goal does not contain equality constraints; this is not a limitation. A
universally quantified atom may be inserted in R by the following transitions:
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Unfolding. In this case the universally quantified atom was in the body of a clause; the syntax
[8] imposes that the universally quantified variable does not appear elsewhere (except for
constraints and other abducibles). Again, we suppose that the body does not contain
equality constraints (this is not a limitation).

Logical Equivalence: (true→ A)↔ A. In this case, the body of an implication has become
true. The implication was written with the syntax given in [8]. In particular, since
the universally quantified variable X̂ is new, then it occurred only in NE atoms and
constraints. We suppose that the conclusion of the implication does not contain equality
constraints (this is not restrictive); for disequality constraints we rely on Lemma 2.

3. We still have to show that adding the Propagation transition does not undermine the
thesis. The Propagation transition performs a copy of an atom and of an IC, then it operates
only on the copy of the two. The universally quantified variables are renamed by the copy,
thus any subsequent operation on the copied universally quantified variables will not affect the
universally quantified variables occurring in the abduced atom.

The IFF proof procedure deals with a static theory. SCIFF deals with a dynamic theory to
which new happened events may be added during a derivation. So to show a mapping between
SCIFF and IFF derivations, we need to address the following question:

Does the success nodes in SCIFF depend on the events arrival rate? An open
successful derivation may disappear, if a new event E happens. Would we have the
same success nodes if we had known event E in advance?

Lemmas 7 and 8 will try to answer these questions. We first need some intermediate results;
we are going to prove that if a transition Tr is applicable to some elements1 of a node Nk, and
leads to a node Nk+1, then it can be applied to the same elements of an identical node but
with a larger history, and will lead to a node identical to Nk+1 but with a larger history, as
informally suggested by the following scheme:

Nk
Tr
−→ Nk+1

⇓

Nk ∪ {H(E)}
Tr
−→ Nk+1 ∪ {H(E)}

Lemma 5. If a transition (except for Happening, Non-happening and Closure) is applicable to
some elements of a non-closed node (i.e., a node with an open history)

Nk ≡ 〈Rk, CSk, PSICk,EXPk,HAPk,FULFk,VIOLk〉

and it produces a new node

Nk+1 ≡ 〈Rk+1, CSk+1, PSICk+1,EXPk+1,HAPk+1,FULFk+1,VIOLk+1〉

then the same transition is also applicable to the same elements in the (non-closed) node

N ′
k ≡ 〈Rk, CSk, PSICk,EXPk,HAPk ∪ {H(E)},FULFk,VIOLk〉

1Recall that transitions are applicable to elements of the nodes; for example, the transition Violation NE is
applied to a happened event and an abduced NE atom in a node.
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where E is an event, and it produces a new node

N ′
k+1 ≡ 〈Rk+1, CSk+1, PSICk+1,EXPk+1,HAPk+1 ∪ {H(E)},FULFk+1,VIOLk+1〉.

Proof. Let us consider the single transitions.

Unfolding is applicable when a literal in R or in the body of an IC matches with the head of
one or more rules in the SOKB. It is not affected by the history.

Abduction is applicable when an abducible atom is in R. Its applicability does not directly
depend on the history, nor its results.

Propagation is applicable when an atom in the body of an IC matches an atom A (that can
either be in the history or in the abduced atoms). If the history is enlarged, the atom A
is still its member, thus Propagation can be applied in the same way.

Splitting does not depend on the history.

Case Analysis does not depend on the history.

Factoring is not affected.

Equivalence Rewriting rules the history cannot contain equalities.

Logical Equivalence The applicability of these rules depend only on the presence, in the
tuple, of implications, conjunctions, and disjunctions; not on the elements in the history.

Violation NE considers an atom H(A) ∈ HAPk and a NE(B) ∈ EXPk. Thus, if violation
NE is applicable in Nk, then ∃H(A) ∈ HAPk that has been used in the transition. But
H(A) ∈ HAPk ∪ {H(E)}. So the same violation NE transition is applicable in N ′

k and
the result will be the same.

Fulfillment E is true for the same reasons as transition Violation NE.

Violation E is true for the same reasons as transition Violation NE if we make the hypothesis
of full temporal knowledge [4], and is not applicable otherwise.

Fulfillment NE is not applicable if the history is open.

Consistency does not depend on the history.

Constraint Solving does not depend on the history.

In the previous lemma we excluded transitions Happening, Closure, and Non-happening. We
now extend the same result given in the previous lemma to the Happening transition.

Lemma 6. Consider two nodes Nk and N ′
k, which are identical except for the history: HAPk∪

{H(E1)} = HAP′
k. If transition Happening of an event E is applicable to the node Nk, leading

to a history HAPk+1, then

• either Happening of E is not applicable to N ′
k because E was already in its history (i.e.,

E = E1)

18



• or Happening of E is applicable to N ′
k but it fails (and in this case the history HAP′

k is
closed)

• or the transition Happening of the event E is applicable to the node N ′
k, and in the obtained

node HAP′
k+1 = HAP′

k ∪ {H(E1)}

Proof. Trivial, from the definition of transition Happening.

Now we know that, given a derivation containing a sequence of transitions

. . . −→ Nk
Tr
−→ Nk+1

Happening
−→ Nk+2 −→ . . .

where Tr is one of the transitions of the proof procedure, except for non-Happening and Closure,
we can safely exchange the two transitions:

. . . −→ Nk
Happening
−→ N ′

k+1
Tr
−→ Nk+2 −→ . . .

and obtain an analogous derivation (in fact, from node Nk+2 the two derivations are the same).

Lemma 7. Consider an open successful derivation D

N0 → N1 → · · · → Nn−1 → Nn

with HAPn the history in the node Nn and

N0 ≡ 〈{G}, ∅, ICS , ∅, ∅, ∅, ∅〉.

In this case, there exists an open successful derivation D′

N ′
0 → N1 → · · · → Nm−1 → Nm

with

N ′
0 ≡ 〈{G}, ∅, ICS , ∅,HAPn, ∅, ∅〉

in which the final node Nm ≡ Nn.

Proof. Let Nh be the first node in D to which transition happening was applied. Suppose that
happening inserts the event H(Eα) in the history. Since D is an open successful derivation, there
is no transition in D of type closure; moreover in all the nodes in D the history is open. Thus, we
can apply Lemma 5 to the transition Tr(Nh−1) (i.e., the transition that was applied to the node
Nh−1) and get an equivalent derivation D′ in which Tr and happening are exchanged. Again,
we can apply the same method to the node Nh−2 and so on, until the transition happening
becomes the first; call Dα the derivation obtained in this way. Of course, Dα terminates in the
same node as a derivation D′

α that starts from a history H1 = {H(Eα)}.
By repeatedly applying the same method for all the happening transitions in D, we obtain

an equivalent derivation that terminates in the same node. Since no transition was applicable
in the final node in D, no transition is applicable in the final node of D′.

We can prove a similar result for closed successful derivations:
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Lemma 8. Consider a closed successful derivation D

N0 → N1 → · · · → Nn−1 → Nn

with HAPn the history in the node Nn and

N0 ≡ 〈{G}, ∅, ICS , ∅, ∅, ∅, ∅〉.

In this case, there exists a closed successful derivation D′

N ′
0 → N1 → · · · → Nm−1 → Nm

with
N ′

0 ≡ 〈{G}, ∅, ICS , ∅,HAPn, ∅, ∅〉

in which the final node Nm ≡ Nn.

Proof. D is a closed successful derivation, thus there exists exactly one transition of type closure
in D; call Nc the first node with closed history (HAPc). Let us consider the derivation Do ⊂ D
that starts from the same initial node N0 up to the node Nc−1.

N0 −→ N1 −→ . . . −→ Nc−1
︸ ︷︷ ︸

Do

closure
−→ Nc −→ Nc+1 −→ . . . −→ Nn

︸ ︷︷ ︸

D

Derivation Do does not contain closed nodes, thus we can apply the same proof as in Lemma 7.
On the rest of the derivation, from Nc to Nn, the history is closed, thus transition happening

would give a failure. Since D is a successful closed derivation, there is no happening transition
from Nc to Nn. Thus the lemma holds for the whole derivation D.

6.2 IFF-like Rewritten Program

The proof of correctness (soundness, in particular) will be given by exploiting soundness results
of the IFF proof procedure with respect to three-valued completion semantics. To this end, here
we map SCIFF programs into IFF-like (rewritten) programs, and then prove (in Sections 6.3
and 6.4) that open/closed SCIFF successful derivations in which no literal is abduced with
universally quantified variables have a counterpart in IFF derivations.

We first define the rewritten program, which is a translation in IFF syntax of the society’s
knowledge base. Since we know that no literal is abduced with universally quantified variables,
we can replace universally quantified variables with constants.

The allowedness condition for integrity constraints of the IFF proof procedure requires that
every variable in the conclusion occurs in the condition. This cannot be the case in our social
integrity constraints. However, as discussed in Section 2.2, we can transform our ICS into a
new set of integrity constraints satisfying the allowedness condition. We give a simple example
in the following. An integrity constraint of kind

H(p(X))→ E(q(Z))

is not allowed since a new variable (Z) occurs in the conclusion. But, it can be transformed
into the (IFF-like) integrity constraint:

H(p(X))→ a
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and the definition:
a← E(q(Z))

which are both allowed.

Definition 19. Given an instance of a society knowledge base 〈SOKB ∪HAP, E , ICS〉, we
define the IFF rewritten program 〈SOKB∗ ∪HAP, E , IC∗S〉 as follows:

• For each icS ∈ ICS that does not satisfy the allowedness condition of the IFF proof
procedure, we rewrite it as explained earlier.

• For each icS ∈ ICS with a universally quantified variable X occurring in the head of a
social integrity constraint but not in the body, X is replaced in the corresponding ic∗S in
IC∗S with a constant symbol not occurring elsewhere.

• In the same way, for each clause in SOKB with a variable X which is universally quan-
tified in the Body of the clause, X is replaced in SOKB∗ with a new constant symbol.

• In the same way, for each atom in the goal G with a variable X which is universally
quantified, X is replaced in G∗ with a new constant symbol.

• All ¬H atoms are considered as a new predicate without definition (i.e., always false). H
events in the history are considered as a predicate in the SOKB∗.

• We complete the SOKB with the Clark’s completion to obtain SOKB∗.

Notice that, by construction, given a set of abduced atoms ∆ (not containing universally
quantified atoms), and an open history for the society, the set of atoms that are true in the
rewritten program and in the original society instance are the same.

Lemma 9. For every finite ground set ∆ ⊆ E (non containing universally quantified variables
and) non containing the new constant symbols introduced in SOKB∗,

SOKB∗ ∪HAP ∪∆ |= a⇔ SOKB ∪HAP ∪∆ |= a

and
SOKB∗ ∪HAP ∪∆ |= IC∗S ⇔ SOKB ∪HAP ∪∆ |= ICS

where the symbol |= stands for the three-valued completion semantics.

Proof. The syntax imposes that only abducible atoms can be universally quantified in the Body
of a clause. Thus, the body of a clause

a← [∀Xp(X)]

(where p is a predicate symbol, in our case, only NE and ¬NE), is true if and only if there exists
an atom ∀Y p(Y ) ∈ ∆, or if for every possible ground atom A with functor p, A ∈ ∆, which
is not, because ∆ is finite and ground. Thus, the body of any clause containing universally
quantified variables is false in SOKB.

The corresponding rewritten clause is

a← p(c)
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where c is a new constant symbol. The body of this clause can be true only if ∆ contains p(c)
or p(X) for some variable X, which is not.

The proof is similar for the universally quantified atoms occurring in the goal, or in the ICS .
Moreover, atoms ¬H are all false in the rewritten program. In the original society instance,

since it is open, atoms ¬H are new positive literals without definition (see Section 3.1), so they
are false as well.

6.3 Proof of open soundness: Case without universally quantified ab-

ducibles

We consider the case of a (possibly non-ground) goal, expectation sets without universally
quantified variables, and do not consider CLP constraints in the program.

By the following Lemma 10, we prove that for this class of programs, any SCIFF open
successful derivation has a counterpart in an IFF derivation computed on the IFF-like rewritten
program.

Lemma 10. Let SHAPi be 〈SOKB, E , ICS〉. Let (∆, σ) be the answer extracted from an open

successful derivation (SHAPi∼HAP
f

∆ G) for an initial goal G and an initial society instance
SHAPi evolving to a proper extension (see Definition 7) SHAPf such that ∆ does not contain
universally quantified variables.

Then (∆, σ) is an IFF computed answer for G for the program 〈SOKB∗ ∪HAPf , E , IC∗S〉.

Proof. We construct a successful IFF derivation from the given successful (open) SCIFF deriva-
tion, by mapping every step except non-happening, fulfillment, happening, closure, violation,
and propagation onto itself. Propagation is slightly different in the IFF and in the SCIFF proof
procedures: in the SCIFF it also performs a copy of the abducible. Let us consider the new
transitions, namely non-happening, fulfillment, happening, closure, violation, and propagation.

1. Non-happening transition cannot occur along an open successful derivation (by definition
of Non-happening);

2. Violation generates two nodes. The former leading to failure (and therefore not present
along a successful open derivation) the latter reproducing the parent node plus a new
inequality constraint. Therefore this transition possibly reduces the set of computed
substitutions in SCIFF compared to the IFF proof procedure.

3. Happening transition can be removed from the computation thanks to Lemma 7 by con-
sidering the equivalent open successful derivation in SCIFF starting from HAPf and
leading to the same final node.

4. Closure transition generates two nodes, the former identical to its parent, the latter iden-
tical to its parent except for the history which is closed. Therefore the latter node cannot
occur along an open successful derivation.

5. Fulfillment. Since the derivation is open, fulfillment can be applied only to positive
expectations and generates two nodes where EXP ∪ FULF is identical to the parent
node, plus, respectively, a new equality or inequality constraint. Therefore this transition
does not change the set of computed substitutions with respect to the IFF proof procedure.
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6. Propagation. The only difference between propagation in SCIFF and in C-IFF is the
copy: in the IFF proof procedure Propagation is applied to an atom and an implication.
In the SCIFF proof procedure, first a copy of the atom is performed. The only difference
stands in the case of universally quantified variables in abduced atoms (in fact, copy
does not perform anything significant if the atom does not contain universally quantified
variables). Since we assume that there are no universally quantified atoms in the final
∆, from Lemma 4 we know that no literal has been abduced with universally quantified
variables in the derivation. Therefore, copy has no effect on the derivation in this case.

We can now prove Open Soundness (stated in Proposition 3) in the case without universally
quantified abducibles

Proposition 6.1. Open Soundness: case without universally quantified abducibles.

Let SHAPi be an open society instance such that

SHAPi∼HAP
f

EXP∪FULFG.

Let (EXP∪FULF, σ) be the corresponding expectation answer (Definition 18) such that EXP
and FULF do not contain universally quantified variables. Then

SHAPf≈(EXP∪FULF)σGσ

i.e., given Definition 14, Comp(SOKB ∪∆σ) ∪HAPf ∪ CET |= Gσ.

Proof. Let us consider the proof for an atomic goal (the extension to other structures of the
formula G is trivial). Let us suppose that:

SHAPi∼HAP
f

EXP∪FULFG

with expectation answer (EXP ∪ FULF, σ), and prove that:

SHAPf≈(EXP∪FULF)σGσ

Proving this latter condition corresponds to proving the following ones, separately:

(i) SOKB ∪HAPf ∪ [FULF ∪EXP]σ |= Gσ;

(ii) SOKB ∪HAPf ∪ [FULF ∪EXP]σ |= ICS ;

(iii) {E(p),¬E(p)} 6⊆ [FULF ∪EXP]σ (¬-consistency for E atoms);

(iv) {NE(p),¬NE(p)} 6⊆ [FULF ∪EXP]σ (¬-consistency for NE atoms);

(v) {E(p),NE(p)} 6⊆ [FULF ∪EXP]σ (E-consistency);

(vi) HAPf ∪ [FULF ∪EXP]σ ∪ {E(p)→ H(p)} ∪ {NE(p)→ ¬H(p)} 6� ⊥ (fulfillment).
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For the case of an open society, we rely upon the three-valued completion [7] of SOKB and
expectation sets (i.e., the set HAP is not completed, since the society instance is open with
respect to the happening of events).

Thanks to Lemma 10, conditions (i) and (ii) hold on the basis of the soundness results of
IFF [2] for the rewritten program; i.e., SOKB∗∪FULF∪EXP |= G∗ and SOKB∗∪FULF∪
EXP |= IC∗S . Since the declarative reading of the rewritten program is the same, in this case,
as the society instance (Lemma 9), conditions (i) and (ii) hold.

Notice that soundness of IFF is given with respect to a (three-valued) completion semantics
of the theory adopted by the proof procedure. This is not the case in our SCIFF open derivation,
since history HAP has not been completed. But since negative literals of kind ¬H() are viewed
as new positive predicates, they are never propagated as in the IFF corresponding derivation.

Let us consider the other conditions.
Conditions (iii), (iv) and (v) hold thanks to the enforcing of E-consistency and ¬-

consistency, that generate at most two nodes. In particular, conditions (iii) and (iv) are
necessary because we deal with negation of abducible atoms differently from the IFF proof
procedure: recall that ¬E and ¬NE are considered as new positive atoms.

By contradiction, let us assume that E(p) and ¬E(p) belong to ∆ (i.e., ∆ is not ¬-consistent).
In this case however, the requirement of ¬-consistency would lead to failure (and therefore that
E(p) and ¬E(p) would not be present at the same time into a node along a successful open
derivation). Analogously for NE(p) and ¬NE(p), and E(p) and NE(p) (E-consistency).

Condition (vi) (fulfillment) holds thank to transitions Fulfillment and Violation. By con-
tradiction, let us assume that condition (vi) does not hold. In a three-valued setting this can
happen only if there exists an expectation NE(p) and the corresponding event H(p). In this
case however, transition violation NE would apply leading to a node not along a successful
open derivation.

6.4 Proof of closed soundness: case without universally quantified

abducibles

As in the open case, we consider the case of a (possibly non-ground) goal, expectation sets
without universally quantified variables, and do not consider CLP constraints in the program.

By the following Lemma 11, we prove that for this class of programs, any SCIFF closed
successful derivation has a counterpart in an IFF derivation computed on the IFF-like rewritten
program.

Lemma 11. Let SHAPi be 〈SOKB, E , ICS〉 where ICS does not contain ¬H literals. Let

(∆, σ) be the answer extracted from a closed successful derivation (SHAPi ⊢HAPf

∆ G) for an
initial goal G and an initial society instance SHAPi evolving to a proper extension S

HAPf such
that ∆ does not contain universally quantified variables.

Then (∆, σ) is an IFF computed answer for G for the program 〈SOKB∗ ∪HAPf , E , IC∗S〉.

Proof. We construct a successful IFF derivation from the given successful (closed) SCIFF
derivation, by mapping every step except non-happening, fulfillment, happening, closure, viola-
tion, and propagation onto itself. Propagation is slightly different in the IFF and in the SCIFF
proof procedures: in the SCIFF it also performs a copy of the abducible.

Let us consider the new transitions, namely violation, happening, closure, fulfillment, and
propagation.
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1. Violation generates two nodes. The former leading to failure (and therefore not present
along a successful open derivation) the latter reproducing the parent node plus a new
inequality constraint. Therefore this transition possibly reduces the set of computed
substitutions in SCIFF compared to the IFF proof procedure.

2. Happening and Closure transitions can be removed from the computation thanks to
Lemma 8 by considering the equivalent open successful derivation in SCIFF starting

from HAPf and leading to the same final node.

3. Fulfillment. In the closed case, fulfillment can be applied both to positive and negative
expectations. It generates two nodes where EXP∪FULF is identical to their parent node,
plus, respectively, a new equality or inequality constraint. Therefore this transition does
not change the set of computed substitutions with respect to the IFF proof procedure.

4. Propagation. Same discussion as for the open case (Lemma 10).

As in the open case, we first prove the closed soundness (stated as Proposition 4) in the
case without universally quantified abducibles:

Proposition 6.2. Closed Soundness: Case without universally quantified variables in abduced
atoms.

Given a closed society instance S
HAPf , if

SHAPi ⊢HAPf

EXP∪FULF G

with expectation answer (EXP ∪ FULF, σ), where EXP and FULF do not contain variables
universally quantified, then

S
HAPf |=(EXP∪FULF)σ Gσ

Proof. For the case of a closed society instance, we rely upon the 3-valued completion [7] of
SOKB, expectation sets and the set HAP too, since the society instance is now closed with
respect to the happening of events.

Let us consider the proof for an atomic goal (the extension to other structures of the formula
G is trivial). Let us suppose that:

SHAPi ⊢HAP
f

EXP∪FULF G

with expectation answer (EXP ∪ FULF, σ), and prove that:

S
HAPf |=(EXP∪FULF)σ Gσ

Proving this latter condition correspond to prove the following ones, separately:

(i) SOKB ∪HAPf ∪ [FULF ∪EXP]σ |= Gσ;

(ii) SOKB ∪HAPf ∪ [FULF ∪EXP]σ |= ICS ;

(iii) {E(p),¬E(p)} 6⊆ [FULF ∪EXP]σ (¬-consistency for E atoms);
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(iv) {NE(p),¬NE(p)} 6⊆ [FULF ∪EXP]σ (¬-consistency for NE atoms);

(v) {E(p),NE(p)} 6⊆ [FULF ∪EXP]σ (E-consistency);

(vi) HAPf ∪ [FULF ∪EXP]σ ∪ {E(p)→ H(p)} ∪ {NE(p)→ ¬H(p)} 6� ⊥ (fulfillment).

Thanks to Lemma 11, conditions (i) and (ii) hold on the basis of the soundness results of IFF
[2], in particular condition (ii) holds when no ¬H() literal occurs in the body of social integrity
constraints in ICS . We have then proved that condition (ii) above holds even when literals of
kind ¬H() occur in the body of social integrity constraints. The IFF proof procedure handles
negation in the body of integrity constraints in a different manner: in particular, negated literals
are turned into positive ones, and moved to the head of the constraint as additional disjunct.
We apply, instead, constructive negation [9] to ¬H() literals (see transition Non-happening),
and therefore benefit of the soundness results of this procedure.

Conditions (iii), (iv), and (v) hold for the same reasons explained in the open case (Sec-
tion 6.3).

Condition (vi) (fulfillment) holds thank to transitions Fulfillment and Violation. By contra-
diction, let us suppose that condition (vi) does not hold. This can happen, as in the open case,
if there exists an expectation NE(p) and the corresponding event H(p). In this case however,
transition violation NE would apply leading to a node not along a successful closed derivation.

In the closed case, condition (vi) could fail to hold because there is an E(p) atom without
a matching H(p). In his case, however, transition Violation E would apply, again leading to a
node that cannot stand along a successful derivation.

6.5 Soundness with universally quantified abducibles

We are now able to introduce the proof of soundness in the general case, in which abduced
atoms can contain universally quantified variables. This is a novel result, achieved in year 3 of
the project.

We first provide a lemma (Lemma 12) that will be used as a backbone for the full proof of
soundness.

As will be clear soon, in the proof of Lemma 12, we use a slightly different rule for Unfolding
than the one used in the IFF and in the SCIFF proof procedures. Let us call this transition
Unfolding∗. Recall [4] that Unfolding is applicable to

1. an atom in a conjunct and a clause;

2. an atom in an implication and a set of clauses.

Transition Unfolding∗ coincides with Unfolding in the first case and is defined as follows in the
second:

Definition 20. If

PSICk = {Atom,BodyIC → HeadIC} ∪ PSIC ′,

and if the clauses H1←B1, . . . , Hn←Bn belong to the SOKB, and H1, . . . ,Hn unify with
Atom, Unfolding∗ selects a clause Hi←Bi (1 ≤ i ≤ n) and produces the following node:

PSICk+1 = {Atom,BodyIC → HeadIC,
Atom′ = Hi, Bi, BodyIC ′ → HeadIC ′} ∪ PSIC ′
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where Atom′, BodyIC ′ → HeadIC ′ is a copy of Atom,BodyIC → HeadIC.

The proof of soundness of the IFF proof procedure is based upon the following Proposition
(called Proposition 4.1, page 74 in [1])2:

Proposition 6.3. (Fung) Given an ALP ≡ 〈P,Ab, IC〉, a node N and a set of computable
immediate successors S of N , we have:

Comp(T, P −Ab) ∪ IC |= N ↔ the disjunction of the nodes in S

where P is the set of predicate symbols in the language of the program.

The proofs that follow such Proposition 4.1 in [1], up to the proof of soundness of the
whole IFF proof-procedure, do not consider the various transitions anymore, but only rely on
Proposition 4.1. Thus, by extending Proposition 6.3 also for Unfolding∗, we prove that the IFF
proof-procedure is sound also if enlarged with the further transition Unfolding∗.

Proposition 6.4. Given a node N and a set of computable immediate successors S of N
computed by transition Unfolding∗, we have:

Comp(T, P −Ab) ∪ IC |= N ↔ the disjunction of the nodes in S

where P is the set of predicate symbols in the language of the program.

Proof. Let us consider a node N with an implication Atom,BodyIC → HeadIC and a predicate
H defined by the clauses H1←B1, . . . , Hn←Bn.

Transition Unfolding∗ produces the node

Atom,BodyIC → HeadIC
∧

Atom′ = Hi, Bi, BodyIC ′ → HeadIC ′

that is obviously logically equivalent to node N .

Thus, the IFF proof procedure extended with transition Unfolding∗ is sound.
Again, since the proof of soundness of the SCIFF proof procedure without universally

quantified abducibles, call it SCIFF\∀ (Sections 6.3 and 6.4) was based on soundness of the
IFF proof procedure, also SCIFF with Unfolding∗ is sound. We can now base the proof of
soundness of SCIFF (with universally quantified abducibles) on the soundness of the SCIFF\∀

enlarged with transition Unfolding∗.

Lemma 12. Consider an (open/closed) successful derivation D

N0 → N1 → · · · → Nn−1 → Nn

with
N0 ≡ 〈{G}, ∅, ICS , ∅,HAP, ∅, ∅〉,

Nn ≡ 〈∅, CSn, PSICn,EXPn,HAP,FULFn, ∅〉

in which transition Happening is not applied. Let EXP∀
n ⊆ EXPn and FULF∀

n ⊆ FULFn be
the sets of (pending and fulfilled) abduced expectations of type [¬]NE. Let σ be the substitution

2In the conventions in [1], T is a theory (i.e., a logic program), Comp(T, A) is the Selective Completion of the
theory T to the predicates in A, i.e., the predicates whose heads do not belong to the set A are not completed.
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applied to EXPn∪FULFn by answer extraction on node Nn; by definition of answer extraction,
variables in [EXPn ∪ FULFn]σ are universally quantified.

Consider a society with

SOKB′ = SOKB ∪ [EXP∀
n ∪ FULF∀

n]σ (8)

(meaning that for each atom A ∈ [EXP∀
n ∪ FULF∀

n]σ there is a clause A← true in SOKB′)
in which the literals NE and ¬NE are considered as defined predicates3. In this case, there
exists an (open/closed) successful derivation D′ starting from the initial node

N ′
0 ≡ 〈{G}, ∅, ICS , ∅,HAP, ∅, ∅〉

terminating in a node N ′
m such that

R′
mσ = Rnσ [= ∅] (9)

CS′
m ⊆ CSn (10)

PSIC ′
mσ = PSICnσ (11)

EXP′
mσ =

[

EXPn \EXP∀
n

]

σ (12)

FULF′
mσ =

[

FULFn \ FULF∀
n

]

σ (13)

VIOL′
mσ = VIOLnσ [= ∅] (14)

and the assignment σ trivially satisfies the constraints CSn \ CS′
m.

Proof. Let θ be the substitution that binds each existentially quantified variable in each node
of the derivation D to its final value in Nn/σ (thus, σ ⊆ θ). Let ∆∀

n = [EXP∀
n ∪ FULF∀

n].
We build the derivation D′ from the derivation D; we show that for each node Ni ∈ D there

is a node N ′
j ∈ D′ such that Ni/θ = N ′

j/θ, except for the sets of abduced, for which

[EXP′
j ]θ = [EXPi \EXP∀

n]θ

[FULF′
j ]θ = [FULFi \ FULF∀

n]θ

By induction, we will assume that the thesis holds up to node Ni in D, and that there exists a
corresponding node N ′

j in D′, and we prove that the thesis holds for Ni+1 ∈ D, N ′
j+dj

∈ D′ for
some dj ≥ 0.

We show that, given the transition Tr from Ni to Ni+1, there is one (or more) transition
Tr′ in D′ applicable to the node N ′

j leading to a node N ′
j+dj

for which the thesis holds.
Transition Tr can be one of the following:

Unfolding. In this case, Tr′ is also unfolding, applied to the same atom and clause. Since the
thesis holds for Ni and N ′

j , it holds also for Ni+1 and N ′
j+1.

Abduction. If the literal selected for abduction, L, is of type [¬]NE, then Tr′ is Unfolding
applied to the same literal L and to the clause C defined as follows.

• If L contains universally quantified variables, we know from Lemma 4 that L will be
in all the descendant nodes, so it will be in ∆∀

n, and there will be a corresponding

3Recall that literals ¬NE are mapped into new positive literals.
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clause C in SOKB′. By definition of SOKB′ and θ, C is A← true, where A = L/θ.
The selected clause is C.

In fact, Abduction gives a node Ni+1 such that

Ni+1 ≡ 〈Ri \ {L}, CSi, PSICi,EXPi ∪ {L},HAP,FULFi, ∅〉

Unfolding gives a node N ′
j+1 such that

N ′
j+1 ≡ 〈R

′
j ∧ {true} \ {L}, CS′

j ∪ {L = A}, PSIC ′
j ,EXP′

j ,HAP,FULF′
j , ∅〉

We can apply the logical equivalence Q ∧ true ↔ Q to R′
j+1. We can then apply

constraint solving steps to deal with the constraint L = A; since A = L/θ, the con-
straint rewrites to true and gives the substitution η = θ|vars(L) to the (existentially
quantified) variables in L. We reach the node:

N ′
j+2 ≡ 〈R

′
j \ {L}, CS′

j , PSIC ′
j ,EXP′

j ,HAP,FULF′
j , ∅〉η

for which the thesis trivially holds (given that it holds for N ′
j).

• If L does not contain universally quantified variables, L/θ ∈ Nn/σ, so it will be in
∆∀

n, and there will be a corresponding clause C in SOKB′. The selected clause is
C, and the proof follows the scheme in the previous bullet.

If the selected literal L is not of type [¬]NE, then Tr′ is abduction.

Propagation. Propagation is applied to a literal L and an implication. If L is not of type
[¬]NE, transition Tr′ is Propagation applied to the same elements.

Otherwise, Propagation is applied in the node

Ni ≡ 〈Ri, CSi, PSICi,EXPi,HAP,FULFi, ∅〉

to an implication A,L1, . . . , Ln → Q ∈ PSICi and a literal L of type [¬]NE ∈ EXPi ∪
FULFi. Let us suppose that L ∈ EXPi, being the proof for the case L ∈ FULFi very
similar. The resulting node is

Ni+1 ≡ 〈Ri, CSi, PSICi ∪ {A = L,L1, . . . , Ln → Q},EXPi,HAP,FULFi, ∅〉.

Transition Tr′ is Unfolding∗, applied to the literal A occurring in the body of an im-
plication, and the clause C selected as follows. Since L ∈ EXPi in derivation D, then
L/θ ∈ Nn/σ, and there will be a corresponding clause C in SOKB′. By definition of
SOKB′ and θ, C is H ← true, where H = L/θ. The selected clause is C. Unfolding∗

generates a node

N ′
j+1 ≡ 〈R

′
j , CS′

j , PSIC ′
j ∪ {A = L, true, L1, . . . , Ln → Q},EXP′

j ,HAP,FULF′
j , ∅〉

to which the logical equivalence F ∧ true ↔ F is applicable, leading to node N ′
j+2 for

which the thesis holds.

Splitting. Tr′ is splitting, applied to the same disjunction.

Case Analysis. Tr′ is case analysis, applied to the same elements.
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Factoring. If applied to atoms different from [¬]NE, Tr′ is factoring applied to the same
abducibles. Otherwise, factoring generates two nodes; only one of the two children will
be in the derivation D.

In the first, factoring unifies two abducibles L1 and L2. If this first node is in D, by
definition of θ we know that L1/θ = L2/θ. Thus, in ∆∀

n they correspond to the same
clause C, so the thesis already holds for the nodes Ni+1 and N ′

j (i.e., we do not introduce
a transition in the derivation D′ at this step).

In the second node, factoring imposes that L1 6= L2. Thus, in ∆∀
n they correspond to

different clauses C, so, again, the thesis already holds for the nodes Ni+1 and N ′
j and we

do not introduce a transition in the derivation D′.

Equivalence Rewriting. Tr′ is the same equivalence rewriting rule, applied to the same
elements.

Happening. Is not considered.

non-Happening. Tr′ is non-Happening, applied to the same elements.

Closure. Tr′ is closure.

Violation NE. Applies to a node Ni in which NE(X) ∈ EXPi and H(Y ) ∈ HAPi such that
X and Y are unifiable. Violation NE generates two nodes: in the first, X is unified with
Y and a violation is raised (thus, this node cannot be in a successful derivation). In the
second, X 6= Y is imposed. Thus, X and Y will be bound to non unifiable terms by the
substitution θ.

Fulfillment NE. In this case, we do not apply any transition; the thesis already holds for the
pair of nodes Ni+1 and Nj , as well as for Ni and Nj . Intuitively, Fulfillment NE simply
moves an expectation from EXP to FULF. In the current lemma, this distinction is
blurred, as all expectations of the type [¬]NE are in the SOKB′, wether they were
fulfilled or pending.

Fulfillment E, Violation E. Tr′ is Fulfillment E (resp. Violation E), applied to the same
elements.

We still have to show that D′ is a successful derivation, i.e., N ′
m is a node of quiescence.

Concerning quiescence, we know that Nn is a node of quiescence for the society with SOKB. By
construction, we know that [EXP′

m]σ ⊆ [EXPn]σ (and [FULF′
m]σ ⊆ [FULFn]σ), while the

other elements of the tuple are the same. Thus, if a transition that only involves the elements
in the tuple is applicable to N ′

m, then it is also applicable in Nn. The only difference is the
SOKB; the only transition applied to clauses in SOKB is Unfolding.

Unfolding can be applied to an atom in a conjunct of R, or in the body of an implication.
But, since Nn is a final node, Rn = ∅, thus R′

m = ∅, so the first case cannot be. In the second
case, an atom of a predicate defined in the SOKB occurs in the body of an implication. Since
the only difference stands in [¬]NE atoms, and Rn is a node of quiescence, the only possibility
is that a literal L of type [¬]NE occurs in the body of a PSIC. But, in order to apply Unfolding,
there must be a clause C matching with L. In this case, by definition of SOKB′, we would
have a corresponding atom A ∈ EXPn ∪FULFn matching L, and this would make transition
Propagation applicable to node Nn, which is not. Thus, also the second case is impossible.
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We are now ready to prove the theorem of soundness, previously stated as Theorems 3 and
4.

Theorem 3. Open Soundness. Given an open society instance SHAPi , if

SHAPi∼HAP
f

EXP∪FULFG

with expectation answer (Definition 18) (EXP ∪ FULF, σ) then

SHAPf≈(EXP∪FULF)σGσ

i.e., given Definition 14, Comp(SOKB ∪∆σ) ∪HAPf ∪ CET |= Gσ.

Proof. By Lemma 12, we know that there exists a successful derivation D′ with the SOKB′

defined by equation 8. We have to prove (as we did for Proposition 6.1) that the following
conditions hold:

(i) SOKB ∪HAP ∪ [FULFn ∪EXPn]σ |= Gσ;

(ii) SOKB ∪HAP ∪ [FULFn ∪EXPn]σ |= ICS ;

(iii) {E(p),¬E(p)} 6⊆ [FULFn ∪EXPn]σ (¬-consistency for E atoms);

(iv) {NE(p),¬NE(p)} 6⊆ [FULFn ∪EXPn]σ (¬-consistency for NE atoms);

(v) {E(p),NE(p)} 6⊆ [FULFn ∪EXPn]σ (E-consistency);

(vi) HAP ∪ [FULFn ∪EXPn]σ ∪ {E(p)→ H(p)} ∪ {NE(p)→ ¬H(p)} 6� ⊥ (fulfillment).

Let us prove the conditions separately:

(i) D′ is a successful derivation; by Proposition 6.1, we know that it is sound, so, in particular,
condition (i) holds for derivation D′:

Comp(SOKB′ ∪ [EXP′
m ∪ FULF′

m]σ) ∪HAP ∪ CET |= Gσ.

Thus, by definition of SOKB′ (Eq. 8):

Comp(SOKB ∪ [EXP∀
n ∪ FULF∀

n]σ ∪ [EXP′
m ∪ FULF′

m]σ) ∪HAP ∪ CET |= Gσ;

Comp(SOKB ∪ [EXP∀
n ∪EXP′

m]σ ∪ [FULF∀
n ∪ FULF′

m]σ) ∪HAP ∪ CET |= Gσ.

By Equations 12 and 13 of Lemma 12,

Comp(SOKB ∪ [EXPn ∪ FULFn]σ) ∪HAP ∪ CET |= Gσ.

(ii) Again, by Proposition 6.1, we know that D′ is sound, so, in particular, condition (ii)
holds for derivation D′:

Comp(SOKB′ ∪ [FULF′
m ∪EXP′

m]σ) ∪HAP |= ICS .

By Equation 8 of Lemma 12,

Comp(SOKB ∪ [FULF∀
n ∪EXP∀

n]σ ∪ [FULF′
m ∪EXP′

m]σ) ∪HAP |= ICS ,

and, as before, by Eq. 12 and 13,

Comp(SOKB ∪ [FULFn ∪EXPn]σ) ∪HAP |= ICS .
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(iii) The condition holds for derivation D′, so

{E(p),NE(p)} 6⊆ [EXP′
m ∪ FULF′

m]σ.

By definition of EXP∀
n and FULF∀

n (Equations 12 and 13), there is no literal [¬]E ∈
(EXP∀

n ∪ FULF∀
n).

(iv) By definition of successful derivation, node N ′
m is a quiescence node (no transition is

applicable to it).

If there existed a term p such that both NE(p) and ¬NE(p) ∈ [FULFn ∪ EXPn]σ,
then NE(p),¬NE(p) ∈ [FULF∀

n ∪ EXP∀
n]σ. This would mean that Unfolding would be

applicable (twice) to the predicates defining NE and ¬NE in SOKB′ and the integrity
constraint:

NE(T ),¬NE(T )→ false,

and this contradicts the fact that N ′
m is a quiescence node.

(v) Analogous to (iv).

(vi) Since D′ is a successful derivation, the following condition holds:

HAP ∪ [FULF′
m ∪EXP′

m]σ ∪ {E(p)→ H(p)} ∪ {NE(p)→ ¬H(p)} 6|= false,

Thus, expectations of type E are fulfilled also in the final node Nn of the original derivation
D.

We still have to show that ∀p,

HAP ∪ [FULFn ∪EXPn]σ ∪ {NE(p)→ ¬H(p)} 6|= false.

By contradiction, let us suppose that ∃p such that NE(p) ∈ [FULFn ∪ EXPn]σ and
H(p) ∈ HAP. In this case, transition Violation NE would have been applicable, which
contradicts the fact that D is a successful derivation (Lemma 12).

Theorem 4. Closed Soundness. Given a closed society instance S
HAPf , if

SHAPi ⊢HAPf

EXP∪FULF G

with expectation answer (EXP ∪ FULF, σ) then

S
HAPf |=(EXP∪FULF)σ Gσ

Proof. Similar to the previous proof (Theorem 3).
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7 Discussion and planned future activity

In this report, we have extended the proof of soundness of the SCIFF proof procedure that
was given in Deliverable D8 [4]. In Deliverable D8, the proof was limited to instances in which
the final node does not contain abducibles with universally quantified variables. In the current
report, this limitation is removed, and we prove soundness for the general case.

In future work we have to prove also completeness of the SCIFF proof procedure.

Part II

Termination

8 Introduction

Xanthakos [10] proved the termination of the IFF proof procedure. In this document, we prove
the termination of the SCIFF proof procedure, by following the same path used by Xanthakos.
We follow, for this document, the same structure of [10].

The basic changes to the proof of termination given by Xanthakos stand on the following
facts:

Constraint Solving. In Constraint Logic Programming [5] constraint solving is intended as an
extension of unification. We have taken the same viewpoint in the operational semantics
of SCIFF [4], and inserted the rules for equality rewriting in the constraint solving group
of transitions. In the proof of termination of SCIFF, constraint solving takes the place
that was of equality rewriting in the proof of termination of the IFF.

Case Analysis. In the IFF, case analysis generates two branches, one of which simply inserts
a new disequality, in the form t = s → false. Such a disequality either is not used at
all, or it makes the derivation fail, so for the purpose of proving termination, it is very
easy. In SCIFF, disequalities are passed to the constraint solver, which will typically use
them for constraint propagation (including pruning in CLP(FD)), so we need to be more
careful.

Dynamic occurrence of events. We first prove termination of the SCIFF without consid-
ering dynamically incoming events. In other words, we rule out the transitions of dynam-
ically growing history [4], and prove the termination of a “static” SCIFF. We then extend
the proof of termination for the full SCIFF proof procedure in Section 13.

9 New restrictions on the SCIFF

We give here the equivalent of the restrictions proposed by Xanthakos. Some of them are already
stated in previous documents for the SCIFF. Moreover, we need to make some assumptions on
the behaviour of the Constraint Solver.

9.1 Splitting

Citing Xanthakos:
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The first new restriction we enforce is the (exhaustive) application of splitting on
any disjunctions in a node (i.e. whenever possible, splitting should be applied after
an unfolding, propagation, case analysis, or previous splitting step). Then, any
execution tree is an or-tree where any node is a conjunction of literals, implications
and at most one disjunction D1∨· · ·∨Dn, where each Di is a conjunction of literals
and implications.

9.2 Equality rewriting and logical simplification

The second restriction that we pose is that we give logical simplification and equality
rewrite rules the highest priority, i.e. they should be applied whenever possible. [10]

Note that the proof of soundness also relied on this assumption [3, Lemma 4.5].
Equality rewriting is substituted in the SCIFF proof-procedure by more general transition

rules, called Constraint Solving. We impose that Constraint Solving transitions are applied (to-
gether with logical simplification) before the other transitions (i.e., they have highest priority).

9.3 Case Analysis

Some equalities in the body of implications are not dealt with by equality rewrite
rules, but by case analysis. Our third restriction is that case analysis is given
the highest priority (after equality rewriting and logical simplification have been
performed) when an implication is selected. Similarly to equality rewriting, we
enforce that the left-most equality is selected first. This restriction simplifies the
implications in a node and may also reduce the computational cost [10]

We take the same restriction proposed by Xanthakos. Notice that in the SCIFF proof-
procedure, Case Analysis can also be applied to a constraint in the body of an implication.

We coherently extend the definition of Analysed for of an implication [10, Definition 4.1.3,
page 62] as follows:

Definition 21. Given an implication I, we define A(I), the analysed form of I, as the impli-
cation that is produced after exhaustively applying constraint solving and logical simplification
on I, having extended constraint solving rules to include:

• If c is a constraint occurring in the body of an implication, and all the variables occurring
in c are flagged, then delete c from the implication, and add it to the constraint store

If I = A(I), we say that I is in analysed form.

This definition extends the definition by Xanthakos for the case with constraints. Xan-
thakos uses the analysed form noticing that, concerning termination, Case Analysis can often
be simplified. In fact, one of the branches generated by Case Analysis cannot introduce new
atoms (except equality atoms). In our case, Case Analysis cannot introduce new atoms, except
constraint atoms. However, constraint atoms cannot introduce other atoms, except constraints,
so the same reasoning of Xanthakos can be applied also in this case.

In the following, we will use the name “atomic conjunct” as follows:

Definition 22. We will call an Atomic Conjunct any literal occurring in a node in R, EXP,
FULF, VIOL.

34



9.4 Assumptions on the Constraint Solver

As in Constraint Logic Programming [5], the Constraint Solving is not completely specified in
the SCIFF proof procedure. In order to prove termination, we need to make some assumption
on the Constraint Solver.

Definition 23. Assumptions on the Constraint Solver

• The constraint solving process always terminates

• The constraint solving process cannot generate an infinite constraint store

• If the constraint solving process generates a disjunction of constraints CS = (c1∨cj)∧CS′

then splitting can be applied. We require that the alternation of Constraint Solving and
splitting always terminates.

• The constraint solving process will not change the quantification of a variable (a variable
universally quantified will not become quantified existentially and vice-versa).

• The constraint solving process can change a literal L into L′, but the new version, L′ must
be an instance of the previous version, L.

Thanks to these assumptions, we can now state the following lemma:

Lemma 13. Constraint Solving steps cannot cause other transitions, except

• Case Analysis

• failing transitions.

Moreover, an infinite sequence of case analysis and constraint solving steps is impossible.

Proof. Constraint Solving steps can

• remove a constraint from the resolvent (transition Constrain)

• change the constraint solver (transitions Infer)

• possibly, fail (transition Consistent).

They do not change any element in the tuple except constraints and the variables that occur
in the Constraint Store [4, pag 166].

The following transitions do not depend on a variable being instantiated or constrained:

• unfolding

• abduction

• propagation

• splitting of a disjunction in R

• case analysis on an equality in an implication

• happening
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• non-happening

• closure

• fulfillment E, violation NE

The following transitions depend on the constraint store:

• splitting of a disjunction in the Constraint Store. However, in this case, the constraint
store is changed, so we can assume that Constraint Solving is applied again. From a
previous assumption (Definition 23), any sequence of Constraint Solving and Splitting
always terminates. Moreover, both these transitions only modify the constraint store, so
they can be considered as a unique transition for the purposes of proving termination.

• factoring depends on the quantification of variables of abducibles; however, we know that
the rules for equality and disequality cannot change the quantification of a variable in an
abducible [3, Lemma 4.5, pag 14]. It is consistent to assume that the constraint solver
will not change the quantification of a variable.

• case analysis on a constraint depends on a variable being flagged, and the flagging of
a variable can be changed by the constraint solver (Example ??). However, an infinite
sequence of constraint solving and case analysis is impossible, as constraint solving does
not create new implications with constraints in the body and the number of constraints
in the body of a node is finite.

• violation E (but gives a violation node, so the computation terminates)

• fulfillment NE (but the check can also be avoided, by using a given order of application
of transitions [4, pag 163])

10 Acyclicity for SCIFF programs

Definition 24. Given a SOKB, an atom L depends on a literal M wrt SOKB if

• an instance of a clause in SOKB is Lθ ← K,M , or

• an instance of a clause in P is Lθ ← K ∧N and N depends on M

where K is a conjunction of literals, possibly true, and Lθ is an instance of L.
Given a logic program P , an atom L weakly depends on a literal M wrt SOKB if

• L is M , or

• L depends on M wrt SOKB.

The following note by Xanthakos will be used in the proof of termination:

Applying equality rewriting, logical simplification and case analysis after unfold-
ing an atom L (occurring as an atomic conjunct or in the body of an implication)
guarantees that the introduced literals (occurring as atomic conjuncts or in an im-
plication) are such that L depends on them.
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We report here some definitions given by Xanthakos, adapted to our terminology.

Definition 25. Given a SOKB, two literals L, M are related wrt an atom N if an instance of
a clause in P is Nθ ← K,L′,M ′ (where K is a conjunction of literals, possibly true, and Nθ
is an instance of N) and L′ weakly depends on L and M ′ weakly depends on M .

Intuitively, two literals are related wrt a goal, if if a sequence of unfolding steps for the goal
can lead to the introduction of a node with both literals.

Definition 26. Given a SOKB, a level mapping || is a function that maps all ground atoms in
BSOKB (where BSOKB is the Herbrand base of the logic program SOKB) to N \ {0} and false
to 0. Also, || is extended to map a ground negative literal ¬A to |A|, where A ∈ BSOKB.

We can give now the definition of acyclic implication restated in our terminology:

Definition 27. (Acyclic implication). Given a society with SOKB acyclic wrt a level
mapping ||, a ground implication, say L1, . . . , Ln → H1∨ · · ·∨Hm, is called acyclic wrt SOKB
and ||, if for every non-constraint atom Li, i = 1, . . . , n, for every ground atom K which Li

weakly depends upon wrt SOKB,

• |K| > |Hr|, r = 1, . . . ,m and

• |K| > |N |, for every non constraint atom N such that some Lj, j = 1, . . . , i−1, i+1, . . . , n
depends upon the negative literal ¬N and

• |K| > |N |, for every non equality atom N such that K is related to ¬N wrt Li.

An implication is called acyclic wrt SOKB and || if every ground instance of it is acyclic wrt
||.

An implication is called acyclic wrt SOKB if it is acyclic wrt some level mapping.

The definition of Acyclic Implication considers CLP constraints as an extension of the
concept of unification (as is usual in CLP [5]). In other words, constraints are not assigned
a level; this is reasonable, because they do not depend upon definitions, nor upon integrity
constraints, but their semantics is defined only by the underlying constraint theory.

Notice that Definition 27 of acyclicity is independent from the presence of H literals in
Social Integrity Constraints:

Proposition 10.1. Consider an Abductive Logic Program ALP ≡ 〈SOKB, E , ICS〉. Consider
the Abductive Logic Program ALP 1 ≡ 〈SOKB, E , IC1S〉 in which every literal [¬]H in ICS is
replaced by true.

The two following conditions are equivalent:

(i) ALP is acyclic wrt some level mapping || and all the implications are bounded wrt ||

(ii) ALP 1 is acyclic wrt some level mapping ||1 and all the implications are bounded wrt ||1

Proof. (ii)⇒ (i). Since ||1 is bounded, let N be the maximum level of an atom in ALP 1. We
define || as follows:

• |L| = |L|1 for all literals L different from [¬]H;

• |L| = N + 1 if L is of type [¬]H
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By the syntax of Social Integrity Constraints (see Deliverable D8), literals [¬]H can only occur
in the body of an icS in ICS , so ALP is trivially acyclic and bounded wrt the level mapping ||.

(i)⇒ (ii). Viceversa, we define ||1 as the restriction of || to the literals with functor different
from H.

We now extend the notion of acyclicity to the society knowledge (which is the definition of
acyclic ALP [10, Def 4.2.5 pag 65] rewritten in our terminology)

Definition 28. • Given a logic program P that is acyclic wrt a level mapping ||, a negative
defined literal ¬N is called acyclic wrt P and || if the implication N → false is acyclic
wrt P and ||. A negative defined literal is called acyclic wrt P if it is acyclic wrt some
level mapping.

• A society S is acyclic w.r.t. a level mapping || if

1. SOKB is acyclic wrt ||

2. all negative defined literals in SOKB are acyclic w.r.t SOKB and ||

3. every implication in ICS is acyclic wrt SOKB and ||.

A society S is called acyclic if it is acyclic w.r.t. some level mapping.

• A query G to a society S where the S is acyclic wrt some level mapping ||, is called acyclic
w.r.t. S and || if every negative defined literal in G is acyclic w.r.t. SOKB and ||. S and
G are then called acyclic w.r.t. ||. A society S and a query G are called acyclic if they
are acyclic w.r.t. some level mapping.

Notice that the definition of acyclic negative literal is slightly different from the IFF, because
the SCIFF proof procedure does not rewrite all negative literals ¬N to N → false, but only
the negative defined literals, while abducibles have explicit negation [4], and constraints depend
on the solver (for example, ¬(A < B) is typically rewritten as A ≥ B). Thus, literals ¬E, ¬NE
and ¬c (where c is a constraint) are always acyclic.

11 Termination

In this section we give a result for the termination of the SCIFF proof-procedure. We report
the definitions given by Xanthakos, for the sake of understandability.

First, we extend the notion of bounded literals to implications.

Definition 29. (Xanthakos) Bounded implication. An implication I is called bounded with
respect to a level mapping ||, if all the literals in the body and head of I are bounded wrt ||.

We state the theorem of termination for a “static version of SCIFF proof-procedure, i.e.,
for a version of SCIFF that does not have Happening, non-Happening, and closure transitions.
In other words, we prove termination for a version of SCIFF provided with a static history. We
will then extend, in Section 13, the proof for the dynamic case.

Theorem 5. (Termination of static SCIFF) Let G be a query to a society S, where SOKB,
ICS and G are acyclic wrt some level mapping, and G and all implications in ICS bounded
wrt the level-mapping. Then, every SCIFF derivation for G, where transitions Happening,
non-happening, and closure are not applied, for each instance of S is finite.
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We report the definitions of causes and bounded node from [10]:

Definition 30. Causes (Xanthakos). Given two execution steps E and E′, E causes E′ if E
is applicable in a node N producing a node N ′, E′ is not applicable in N and E′ is applicable
in N ′.

Definition 31. Bounded node (Adapted from [10])

• A disjunction D1, . . . ,Dk, k > 0, where Di, 1 ≤ i ≤ k, is a conjunction of literals and
implications, is called bounded w.r.t. a level mapping || if all non-constraint conjuncts of
every Di are bounded w.r.t. ||.

• A node N in an execution tree is called bounded w.r.t. a level mapping || if all its non-
constraint conjuncts are bounded w.r.t. ||.

As done by Xanthakos, we consider nodes in canonical form, i.e., after applying two types of
transitions. Xanthakos considers equality rewriting and logical equivalence. As we extend the
language with constraints, we consider a node in canonical form after application of constraint
solving and logical simplification. Thus, we consider the executions steps to be augmented with
constraint solving and logical simplification. We need the following lemma to ensure that this
assumption is safe (extended from [10, Lemma 4.3.1]):

Lemma 14. Any sequence of Constraint Solving or logical simplification steps, performed on
a finite node, is finite.

Proof. The lemma holds for Equality Rewriting and Logical Simplification [10, Lemma 4.3.1,
pag 69]. By assumption (Definition 23), constraint solving always terminates. Since the node
is finite, the number of constraints in the node is finite, therefore any sequence of constraint
solving steps is finite. Also, any sequence of logical simplification steps in a finite node is finite
[10, Lemma 4.3.1]. Constraint Solving steps can cause logical simplification steps, but the
reverse does not hold. Since any sequence of Constraint Solving steps in a finite node is finite,
we conclude that any sequence of Constraint Solving or logical simplification steps is finite.

The proof of Theorem 5 follows the same proof given by Xanthakos for the IFF proof-
procedure. We first assume that transitions for dynamically growing history (i.e., happening,
non-happening and closure) will not be applied. Then, we extend the proof of termination to
the full proof-procedure in Section 13.

11.1 Non-introducing steps

In this section, we prove that any sequence of non-introducing steps is finite. By non-introducing
step, we take a slightly different definition w.r.t. Xanthakos [10].

Definition 32. An introducing step is a transition E that, after application of constraint
solving and logical equivalence steps, leads from a node N to N ′ such that a new literal is
introduced in R ∪EXP ∪ FULF ∪VIOL.

A non-introducing step is a transition E that, after application of constraint solving and
logical equivalence steps, leads from a node N to N ′ such that no new literal is introduced in
R ∪EXP ∪ FULF ∪VIOL.
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The definition has different consequences w.r.t. the definition by Xanthakos. For example,
adding a constraint c to the set R is a non-introducing step; in fact, after constraint solving,
c will be moved to the constraint store. Adding a literal ¬E is an introducing step. Adding
a literal ¬p, where p is a defined literal (there exists a definition for p in SOKB), is a non-
introducing step, because Logical Equivalence will remove ¬p from R and add p → false to
PSIC.

We prove the following lemma, that is the extension to the SCIFF, of Lemma 4.3.2 by
Xanthakos [10, Lemma 4.3.2]

Lemma 15. Consider a sequence N1, N2, . . . of nodes in T , where any Ni+1, i = 1, 2 . . . ,
is a successor of Ni produced by an execution step E. If no execution step E introduces a
non-constraint atomic conjunct in Ni+1, then the sequence is finite.

The sequence of successive nodes defines a sequence of execution steps, none of which in-
troduces a non-constraint atomic conjunct. We are interested in sequences of the following
execution steps:

1. Constraint Solving or logical simplification.

2. Case analysis that does not introduce a non-constraint atomic conjunct.

3. Factoring.

4. Splitting that does not introduce a non-constraint atomic conjunct.

5. Fulfillment and Violation.

6. Unfolding that does not introduce a non-constraint atomic conjunct.

7. Propagation that does not introduce a non-constraint atomic.

We will prove that any sequence of the five first types of steps is finite. To cater for the two
latter cases, we define the auxiliary level of an implication and the auxiliary level of a node.
These notions are only used in this section and are very similar to the corresponding definitions
given by Xanthakos. They are different from the level of implication and level of node defined
in later sections.

Definition 33. Consider a node N in the execution tree T , an implication I in N and an
atomic conjunct L in N . We define

• the auxiliary level of I, denoted as |I|a, as the multiset of the levels of the non-constraint
atoms in A(I), if the analysed form A(I) of I is neither true nor false.

• the propagation degree of I in N , denoted as P (I,N), as the number of propagation
steps involving I that are applicable in N .

• the auxiliary level of L, denoted as |L|a, as the multiset {|L|}.

• the extension of a node N , denoted as E(N), as the node that contains all conjuncts
of N , where all variables in E(N) are quantified as in N , plus P (I,N) copies of every
implication I in N .
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• the auxiliary level of a simple node N , denoted as |N |a, as the multiset of the auxiliary
levels of all non-constraint conjuncts of E(N), other than implications whose analysed
form is true or false.

• the auxiliary level of a node N = [(D1∨· · ·∨Dk)∧Rest], denoted as |N |a, where k ≥ 1 and
Di, Rest denote conjunctions of atoms and implications, as max(|N1|, . . . , |Nk|), where
Ni, 1 ≤ i ≤ k, is the simple node Ni = [Di ∧Rest].

Proof. of Lemma 15. Again, this proof follows the steps of the corresponding proof given by
Xanthakos [10, Lemma 4.3.2], extending it for constraint solving and Fulfillment-Violation. The
proof is organised in three parts. First, we prove that any sequence of steps of type (1), (2),
(3), (4) or (5) (as identified at the beginning of this subsection) is finite. Next we show that
for any node N ′ that is the successor of N , produced by the application of an execution step E
on N , where E is of type (1), (2), (3), (4) or (5), we have that |N |a = |N ′|a. Finally, we prove
that for any node N ′ that is the successor of N , produced by the application of an execution
step E on N , where E is of type (6) or (7), we have that |N |a > |N ′|a.

For the first part, consider a sequence of type (1), i.e. Constraint Solving or logical simpli-
fication steps. Any such sequence is finite (Lemma 14).

Consider a sequence of interleaving steps of type (1) or (2). Any sequence of steps of type
(2), i.e. case analysis, has to be finite because any node has a finite number of implications,
and any implication has a finite number of constraints in its body (reduced by one every time
a case analysis step in applied on it). Steps of type (2) can cause steps of type (1), but not vice
versa. Therefore, a sequence of interleaving steps of type (1) or (2) cannot be infinite, because
that would imply an infinite chain of steps of type (1).

Consider a sequence of interleaving steps of type (1), (2) or (3). Factoring produces two
nodes, where the first contains an equality, while the second contains a disequality. In the first
node the only new steps that may be performed are constraint solving and logical simplification
(which may be performed a finite number of times). In the second node, a disequality is
imposed. In the IFF proof-procedure, a disequality cannot propagate anything, and can only
fail. In the SCIFF, it can also start a constraint propagation; but in such a case, again the
new applicable steps are constraint solving and logical simplification. Therefore, a sequence
of interleaving steps of type (1) or (2) or (3) cannot be infinite, because that would imply an
infinite sequence of steps of type (1) or (2).

Consider a sequence of interleaving steps of type (1), (2), (3) or (4). Any sequence of splitting
steps on a disjunction is finite, as the number of disjunctions in a node is finite, reduced by
one after every splitting step. Splitting a disjunction can cause steps of type (1) and (3), but
not vice versa. Therefore, a sequence of interleaving steps of type (1), (2), (3) or (4) cannot be
infinite, because that would imply an infinite sequence of steps of type (1) or (3).

Any sequence of splitting steps on an implication is finite, because the number of disjunctions
in an implication and the number of implications in a node are finite and are reduced by one
after every splitting step. Splitting an implication I = [R → H ∨ L] in a node N = [I ∧ Rest]
produces two nodes N ′ = [J ∧Rest], where J = [R→ H], and N ′′ = [L ∧Rest′].

Consider N ′. Any step that is applicable on N ′ is also applicable on N , therefore no step is
caused in this case. Now, consider N ′′. If L is a non-constraint atom, then N ′′ cannot be part
of the sequence of nodes we consider. If L is a constraint, only steps of type (1) are caused.
Therefore, a sequence of interleaving steps of type (1), (2), (3) or (4) cannot be infinite, because
that would imply an infinite sequence of steps of type (1).

41



Consider a sequence of interleaving steps of type (1), (2), (3), (4) or (5). Fulfillment and
violation transitions have the following behaviours

• Fulfillment E, violation NE produce two nodes, one with an equality and one with a
disequality. We can apply the same reasoning used for factoring.

• Violation E, if applicable, leads to a violation node

• Fulfillment NE cannot cause other transitions

For the second part, it is easy to see that for any step of type (1), (2), (3) or (5) applied
on a node N and producing a node N ′, |N |a ≥ |N

′|a.4 Constraint solving steps may change
the arguments of a literal L in R, EXP, FULF, VIOL, however the changed literal L′ is
an instance of L (by assumption), therefore based on the definitions of the level mapping and
auxiliary level, |L|a ≥ |L

′|a.
In the sequel, when an execution step introduces an equality, equality rewriting may change

Rest to Rest′, R to R′ and H to H ′. Extending the reasoning of the previous paragraph, we
have that |Rest|a ≥ |Rest′|a, |R|a ≥ |R

′|a and |H|a ≥ |H
′|a.

Concerning type (4) (splitting), suppose an implication I = [R → H ∨ L] in a node N =
[I ∧ Rest], where L is an atom with only flagged variables, is split. Then, two nodes are
produced, namely N ′ = [J ∧Rest], where J = [R→ H] and N ′′ = [L ∧Rest′].

Consider node N ′. Clearly, |I|a = |J |a, therefore |N |a > |N ′|a.
Consider node N ′′. If L is a non-constraint atom, then it cannot be in the sequence of nodes

we consider. If it is a constraint, since constraints do not contribute to the level of a node,
|N |a ≥ |N

′′|a.
For the third part:

• Step of type (6) (unfolding)

unfolding a conjunct Suppose an atom L ∈ R in node N = 〈R,CS, PSIC,EXP,HAP,FULF,VIOL〉
is unfolded, introducing no literals in R′, EXP’, FULF’, and VIOL’. I.e. suppose
unfolding introduces only constraints in CS′ and negative literals rewritten as denials
in PSIC’; thus the produced node is CS′ = CS ∪ {c}, PSIC ′ = PSIC ∪ {[M1 →
false], . . . , [Mo → false]}. Since L depends on ¬Mj , j = 1, . . . , o, we have that
|L| > |¬Mj | = |Mj |. Moreover, L cannot be false (because it was unfolded), thus
|L| > 0 = |false|. Therefore, |L|a = {|L|} > {|Mj |, 0} = {|Mi|, |false|} = |Mj →
false|a. Thus, |N |a > |N ′|a.

unfolding an implication Suppose an atom L in an implication I = [L ∧ R → H] in node N = I ∧ Rest is
unfolded, introducing no non-constraint atomic conjuncts in the produced node N ′,
i.e. N ′ = J1 ∧ · · · ∧ Jo ∧Rest. Let A(Ji) = L1 ∧ · · · ∧Ln ∧R′ → H ′ ∨M1 ∨ · · · ∨Mk.
Since L depends on all L1, . . . , Ln,M1, . . . ,Mk, we have that |I|a > |Ji|a. Thus,
|N |a > |N ′|a.

4In fact

1. Constraint Solving can transform literals/implications by making them more specific (the new version is
an instance of the previous), Logical Equivalence (that does not introduce a literal) ...

2. Case Analysis either removes an implication, or it adds it without a constraint (and constraints do not
have a level)

3. Factoring adds a constraint (which does not have a level)

4. Fulfillment and Violation can only add constraints (that do not have a level).
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• Step of type (7) (propagation) Suppose an atom p(t) ∈ R ∪ ∆ and an implication I =
[p(s)∧R→ H] in a node N = p(t)∧I∧Rest are selected for a propagation step, producing
the node N ′ = [p(t) ∧ I ∧ J ∧Rest′], where A(J) = R′ → H ′.

Clearly, |I|a > |J |a. Also, P (I,N) > P (I,N ′), because the propagation step on N that
produced N ′ is not applicable in N ′. Thus, |N |a > |N ′|a.

We proved that any sequence of execution steps of type (1), (2), (3), (4) or (5) is finite.
Moreover, if the first node of such a sequence is N1 and the last one is Nk, then |N1|a ≥ |Nk|a.
We also proved that any execution step of type (6) or (7) on a node N produces a node N ′

such that |N |a > |N ′|a. Thus, an infinite sequence of non-introducing steps entails an infinite
decreasing sequence, which contradicts that the standard multiset ordering is well-founded.
Therefore, any sequence of non-introducing execution steps is finite.

11.2 Level of an implication

Definition 34. Given an acyclic S, for a bounded implication I where A(I) is neither true
nor false, we define

• PA(I), the potential atoms of I, as the multiset {H1, . . . ,Hm,M1, . . . ,Mk}, where
H1, . . . ,Hm are the non-constraint atoms in the head of A(I) and Mj, j = 1, . . . , k is
any non-constraint atom such that some atom in the body of A(I) depends on some de-
fined literal ¬L, and L depends on Mj w.r.t. SOKB;

• |I|, the level of I, as max(|E1|, ..., |En|), where Ei ∈ PA(I), i = 1, . . . , n.

With respect to Xanthakos’s definition [10, def 4.3.5], we had to add the literal ¬L. In fact,
the SCIFF proof procedure does not move to the head literals representing expectations, but
it moves defined literals. See the following example:

Example 1. Consider a society with the following integrity constraints:

p ∧ q → r

and the following SOKB:

q ← ¬E(a(X))
p ← ¬s
s ← E(a(Y ))

Unfolding q does not move E(a(X)) to the head:

p ∧ ¬E(a(X))→ r

while unfolding p moves s to the head; so, unfolding s, we obtain:

¬E(a(X))→ r ∨E(a(Y ))

Notice the different behaviour for defined literals and expectations.
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11.3 Level of a node

Citing Xanthakos:

Our aim is to define the level of a node N so that if a non-introducing step is
performed on N , producing N ′, the level of N should be greater or equal to the
level of N ′. To achieve this, we compute a priori all the conjuncts that may be
introduced by any sequence of non-introducing steps, i.e. execution steps involving
an implication J (in N or a subsequent node) and possibly an atomic conjunct L
of N (but not atomic conjuncts introduced in subsequent nodes). These conjuncts
may be introduced by unfolding an atom in the body of J , by propagating J and
L, by splitting J , or any combination of the three. To define these conjuncts, we
introduce the notion of family of an implication in a node. Note that the analysed
form of an atomic conjunct is the atomic conjunct itself.

We propose an equivalent notion of family of an implication. Intuitively, the family of an
implication contains the atoms that can be inserted by the implication by using only the atomic
conjuncts that are already in the node N . It is not the full SCIFF proof-procedure, because it
does not recursively consider the atoms that are not in N (but only in subsequent nodes):

Definition 35. Given a node N of the execution tree T and an implication I in N , we define
F (I,N), the Family of I in N as the multiset of the analysed forms A(J) of the implications J
(such that A(J) is neither true nor false), where J is

• I or

• produced by unfolding of an atom in the body of an implication in F (I,N) or

• produced by the propagation of an implication in F (I,N) and an atomic conjunct in N
or

• produced by splitting the head of an implication in F (I,N).

We refer to a conjunct C that is not in a node N but is in the family of an implication I in
a node N as a potential conjunct of N . Note that for any conjunct C, C ∈ F (I,N), we have
that |I| ≥ |C|, based on the definition of the level of an implication.

Xanthakos also proved that the family of an implication is finite [10, Lemma 4.3.3]. The
proof also holds (with minimal adjustments) also for the SCIFF proof-procedure. We report it
here for the sake of completeness:

Lemma 16. Given a node N of the execution tree T and an implication I in N , F (I,N) is
finite.

Proof. The computation of F (I,N) corresponds to an execution tree T ′ with root node the node
N , where the only execution steps performed are the ones given in the definition of F (I,N).
To prove that F (I,N) is finite, it is enough to prove that T ′ is finite. Since the maximum
branching degree of T ′ (and indeed of any execution tree) is 2, it is enough to prove that T ′

has no infinite branches.
Consider an arbitrary branch B of T ′. B defines a sequence S of execution steps.
Suppose all execution steps in S are non-introducing steps (i.e. do not introduce any non-

constraint atomic conjuncts). Based on Lemma 15, we have that S is finite.
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Suppose that all execution steps in S are introducing steps. Suppose the introducing step E
is performed on N , producing the node N1, where the non-constraint conjunct L was introduced
in N1. Suppose also that the introducing step E1 was performed on N1, producing the node
N2, where the non-constraint conjunct L′ was introduced in N2.

T ′ : N
E
−→ N1

E1−→ N2

Since the execution steps allowed in T ′ cannot involve L, the execution step E1 is applicable
on N . This argument holds for any introducing execution step Ei in S, i.e. Ei is applicable on
N . It is easy to see that the number of execution steps that are applicable on a finite node is
finite. Thus, the number of introducing execution steps in S is finite, i.e. S is finite.

With similar reasoning, we see that any subsequence S′ of execution steps in S consisting
of non-introducing steps only (we refer to this type of sequences as type 1) or introducing steps
only (we refer to this type of sequences as type 2) is finite.

Suppose S is infinite. Then, there must be an infinite number of finite subsequences of
type 1 and type 2 that are interleaved in S. Note that no introducing step permitted in T ′

causes a non-introducing step permitted in T ′ . Therefore, an infinite sequence of type 1 can be
constructed from S by removing all subsequences of type 2 in S. This contradicts Lemma 15.

Therefore, S is finite, i.e. the arbitrary branch B of T ′ is finite. Therefore, T ′ is finite
because the maximum branching degree of T ′ is two. We conclude that F (I,N) is finite and
can be computed in a finite number of steps.

The contribution of an atomic conjunct A to the level of a node N is not simply the level
of the atom A itself, but also includes the level of the atoms that may be inserted in successive
nodes because of the presence of A in N . To cater for this, Xanthakos proposed to include two
occurrences of all levels of implications and potential conjuncts in he level of a node. Intuitively,
this will be useful when comparing the level of two nodes: given an implication a→ b in a node
N , we count twice the level of b, so, if, later on, b is actually introduced in a node, the level of
such a node will be less than the level of N .

We rewrite the definition of level of a node in our syntax:

Definition 36. Consider a bounded simple node N =
〈R,CS, PSIC,EXP,HAP,FULF,VIOL〉, with PSIC = {I1, . . . Im}, and L1, . . . , Ln ∈
R ∪EXP ∪HAP ∪ FULF. We define:

1. Pt(N), the potential of N , as the multiset F (I1, N)⊎· · ·⊎F (Im, N) (where ⊎ is multiset
union, i.e., multiple occurrences are preserved).

2. |N |, the level of N , as the multiset |N | = {|L1|, . . . , |Ln|, |E1|, |E1|, . . . , |Er|, |Er|), where
E1, . . . , Er are all implications in Pt(N) whose analysed form is neither true nor false.

The level of a (possibly not simple) node N is the maximum of the levels of the simple nodes
that can be derived by N by splitting.

Definition 37. Consider a bounded node N = 〈R,CS, PSIC,EXP,HAP,FULF,VIOL〉,
where R = D1 ∨ · · · ∨Dk. We define |N |, the level of N , as max(|N1|, . . . , |Nk|), where Ni is
the simple node with 〈Di, CS, PSIC,EXP,HAP,FULF,VIOL〉.

Remember that SCIFF also applies splitting to disjunctions in the constraint store. However,
the constraint store can only contain constraints, that do not have a level.
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11.4 Acyclicity and propagation

The following lemma, adapted from [10, Lemma 4.3.4], proves that propagation steps will
preserve acyclicity and, moreover, that any propagation step involving a PSIC and an atom A
will only introduce atoms with level less than |A|.

Lemma 17. Let L be a happened event or an expectation, and I a PSIC in a node N in the
execution tree T , for the query Q wrt an acyclic society knowledge base. Then we have:

(1) A(I) is acyclic wrt SOKB and ||.

(2) for any J ∈ F (I,N), J is acyclic

(3) |L| > |E|, where |E| is any conjunct5 produced by propagating |L| and some J ∈ F (I,N).

Proof. We prove part (1) by induction on the nodes of the execution tree. In the initial node,
all the implications are acyclic by hypothesis.

Suppose that the analysed forms of all implications in node Nk are acyclic. We need to
prove that whatever inference rule is applied on Nk, the analysed forms of all implications in
the resulting node Nk+1 are also acyclic. Obviously, we only need to consider execution steps
that introduce new implications (and do not introduce false).

We consider the following execution steps.

1. Unfolding

(a) Unfolding an atom L = p(T ) in the body of a PSIC I = p(T ) ∧ R → H in a
node Nk = [I ∧ Rest] we get the node Nk+1 = [I1 ∧ · · · ∧ Ir ∧ Rest]. Consider
one of the new implications Ij , where A(Ij) = [p1(s1) ∧ · · · ∧ pn(sn) ∧ R → H ∧
m1(r1) ∧ · · · ∧mq(rq)]. As we discussed in Section 10 (page 36), p(T ) depends on
(p1(s1), . . . , pn(sn),¬m1(r1), . . . ,¬mq(rq)).

To prove that A(Ij) is acyclic, we need to prove that all its ground instances are
acyclic. Consider a ground instance I ′j of A(Ij) that we get after applying a
substitution θ of ground terms. Suppose I ′j = [p′1∧· · ·∧p′n∧R′ → H ′∨m′

1∨· · ·∨m′
q].

Let p′ the ground instance p(t)θ. p′ depends upon p′i (i = 1 . . . n) and m′
o (o = 1 . . . q).

Also, p′i and ¬m′
o are related wrt p′.

Assume K and ¬M are two (ground) literals conjoined in R′ and Hi is a non-
constraint atom in H ′. Also, assume S is an atom that p′i weakly depends upon
- therefore S and ¬m′

o are related wrt p′. Finally, assume T is an atom that K
weakly depends upon and ¬N is a negative literal that K depends upon. The
following schema summarises the names of the literals in I ′j (where ⇓ should be read

as ”(weakly) depends upon”):6

p′1 ∧ · · · ∧ p′i ∧ · · · ∧ p′n ∧ K ∧ ¬M → Hi ∨m′
1 ∨ · · · ∨ m′

o . . . m′
q

⇓ ⇓
S T,¬N

Since I is acyclic, we have that

• |S| > |Hi|, |S| > |M |, (because p′i weakly depends on S),

5note that E is an implication.
6The schema is oversimplified. In fact, H may also contains other literals (and in the schema only contains

Hi), and R may contain other literals (not only K and ¬M).

46



• |S| > |m′
o| (because S is related to ¬M wrt p′),

• |T | > |Hi|, |T | > |M | (because K weakly depends on T ),

• |T | > |m′
o| (because K weakly depends on T and p′i depends on ¬m′

o),

• |S| > |N | (because p′i weakly depends upon S and K depends on ¬N).

Given that the implication R → H is acyclic, the above formulas show that the
arbitrary I ′j is acyclic. Therefore, A(Ij) is acyclic.

(b) Unfolding an atomic conjunct L′ ∈ Rk in a node Nk may introduce a negative literal
¬L. If L is a constraint or an expectation, it cannot change the acyclicity. If L is a
defined literal, we get (after logical simplification) the implication I = [L → false]
in the node Nk+1, which is already in analysed form (A(I) = I). ¬L is in the body
of some clause in the SOKB, thus, based on the definition of acyclicity (item 2 of
Definition 28), A(I) is acyclic.

Furthermore, the unfolding of L may introduce in node Nk+1 a constraint. By
applying constraint solving, some implication E in PSICk may be changed to Eθ,
where θ is a substitution. If A(E) is acyclic, then all its ground instances are acyclic.
It is easy to see that the set of ground instances of A(Eθ) is a subset of the set of
ground instances of A(E), therefore A(Eθ) is also acyclic.

2. Executing a propagation step using an atom L = p(t) and an implication I = [p(s)∧R→
H] in a node Nk = [L ∧ I ∧ Rest] produces the node Nk+1 = [L ∧ I ∧ I ′ ∧ Rest], where
I ′ = [t = s ∧ R → H]. Since case analysis has higher priority than propagation, we have
that I = A(I). Since I is acyclic, R → H is also acyclic, therefore every instance of it is
acyclic. A(I ′) is an instance of R→ H, therefore it is acyclic.

3. Splitting the head of an implication I = [R→ H ∨A] in a node Nk results in two nodes,
none of which contains I. One of the two nodes contains the atomic conjunct A and the
other contains the implication I ′ = [R→ H]. Since case analysis has higher priority than
splitting the head of an implication, we have that I = A(I). It is therefore easy to see
that I ′ = A(I ′). Obviously, since I is acyclic, A(I ′) is also acyclic.

If A is a constraint, some implication E may change to Eθ. As we have already discussed
in (1b), as A(E) is acyclic, A(Eθ) is also acyclic.

4. Applying case analysis on an equality in the body of an implication I = [c ∧ R → H] in
node N = [I ∧Rest] results in two nodes, none of which contains I. One of the two nodes
contains the denial ¬c (which is trivially acyclic), and the other contains the implication
I ′ = R′ → H ′, where R′, H ′ are R, H possibly after the application of the substitution θ
for the generated by propagating the constraint c.7. It is easy to see that A(I) = A(Iθ),
therefore since A(I) is acyclic, A(Iθ) is also acyclic.

The substitution θ may change some implication E in PSIC to Eθ, but since A(E) is
acyclic, A(Eθ) is also acyclic as argued earlier in (1b).

5. Applying factoring in node Nk = [p(t)∧ p(s)∧Rest] does not introduce new implications
in SCIFF (differently from the IFF), but only new constraints.

7In case c is an equality t = s, θ corresponds to equality rewrite rule (g) for the newly introduced equality
t = s
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Constraint propagation may affect an implication E in Rest, but, as argued earlier in
(1b), the implications produced after constraint propagation are also acyclic.

The same holds also for fulfillment and violation transitions.

6. Executing non-happening on an implication I = [¬H(t) ∧ R → H] in a node Nk with
PSICk = {I} ∪ PSIC ′ produces the node Nk+1 with PSICk+1 = {I ′} ∪ PSIC ′, where
I ′ = [t = s ∧ R → H]. Since case analysis has higher priority than non-happening, we
have that I = A(I). Since I is acyclic, R→ H is also acyclic, therefore every instance of
it is acyclic. A(I ′) is an instance of R→ H, therefore it is acyclic.

For part (2), by the definition of F (I,N), J is in analysed form, i.e. J = A(J). Also, it
is easy to see that J may be introduced in some later node, after a number of unfolding and
propagation steps (otherwise J would not be in F (I,N)). Using part (1), part (2) follows.

For part (3), let L = p(t). Assume E = [EQ ∧ R → H]. Then, J must have the form
J = [p(s) ∧ R → H]. Note that since J is in F (I,N), J is in analysed form (by the definition
of family of implications) and is also acyclic (based on part (2)).

A(E) has the form A(E) = [Rθ → Hθ], where θ is such that p(t)θ = p(s)θ. From the
definition of the level mapping on predicates, we have |p(t)| ≥ |p(t)θ|, therefore |p(t)| ≥ |p(s)θ|.

Since J is acyclic, every instance of it is acyclic, therefore Jθ is acyclic. Therefore, |p(s)θ|
is greater than anything that can be propagated from Jθ, i.e. |p(s)θ| > |Jθ|. It is easy to see
that |Jθ| ≥ |A(E)|. By definition, |E| = |A(E)|, therefore |Jθ| ≥ |E|.

We conclude that |p(t)| ≥ |p(s)θ| > |Jθ| ≥ |E|, i.e., |L| > |E|.

11.5 Comparing levels of successive nodes

We compare now the level of two successive nodes. We prove the following lemma (adapted
from [10, Lemma 4.3.5])

Lemma 18. Consider a node |Nk| in the execution tree T and an execution step E performed
on Nk that produces the node |N |k+1. If E is a non-introducing step, then |Nk| ≥ |Nk+1|. Else,
if E is an introducing step, then |Nk| > |Nk+1|.

Proof. We consider all possible execution steps:

1. Unfolding.

(a) Unfolding an atomic conjunct L ∈ Rk in a node Nk = [L∧Rest] we get the (possibly
not simple) node N ′. Suppose that the maximum level of the simple nodes that can
be derived from N ′ is given by the simple node Nk+1 (|Nk+1| = |N ′|), which has
the form Nk+1 = CS ∧ L1 ∧ · · · ∧ Ln ∧ [M1 → false] ∧ · · · ∧ [Mk → false] ∧ Rest′

(n ≥ 0, k ≥ 0). L depends (w.r.t. SOKB) on L1, . . . , Ln,¬M1, . . . ,¬Mk. As SOKB
is acyclic, |L| > |Li|, i = 1, . . . , n and |L| > |Mo|, o = 1, . . . , k.

|Nk| contains |L|, while |Nk+1| does not. However, |Nk+1| may contain some new
elements (other than |Li|). We prove that |L| dominates all new elements.

In the level of a node, we have the families of the implications wrt the atoms in
the node itself. Since R changes, the families change as well. The introduction of
the atom Li may cause the introduction of the level of a conjunct E′ to |Nk+1|,
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where E′ ∈ F (E,Nk+1) and E is the implication produced by a propagation step
involving Li and an implication (existing or potential) of Nk+1. Based on Lemma 17,
|Li| > |E| and |E| ≥ |E′|, we have |L| > |E′|.

Consider the implication I = [Mo → false]. Mo depends wrt SOKB on every
element A ∈ PA(I), therefore, as SOKB is acyclic, |Mo| > |A|, i.e., |Mo| > |I|. Also,
|I| ≥ |J | for any J ∈ F (I,Nk+1). Since |L| > |Mo| and |I| ≥ |J |, we have |L| > |J |.

The rest of the node Nk+1, Rest′, is the conjunction of literals Rest after applying
constraint solving on the constraints in CS. As we observer earlier, Rest′ is Rest
with a substitution. Consider an atom p(u) ∈ Rest. Then, there is an atom p(v) ∈
Rest′ where v = uθ. Based on the definition of the level mapping on predicates,
|p(u)| ≥ |p(v)|. This argument holds for all atomic conjuncts and all atoms in all
implications in Rest. Therefore, for any conjunct C ′ in Rest′, there exists a conjunct
C in Rest such that |C| > |C ′| (the same holds for potential conjuncts).

We conclude that |Nk| > |Nk+1| if a non-constraint literal is introduced, else |Nk| ≥
|Nk+1|.

(b) Unfolding an atom L in the body of an implication I = [L ∧ R → H] in a node
Nk = [I ∧Rest] we get the node Nk+1 = [I1 ∧ · · · ∧ Ir ∧Rest, r > 0.

It is easy to see that [F (I1, Nk+1)⊎ · · · ⊎ F (Ir, Nk+1)] ⊂ F (I,Nk) (I does not occur
in Nk+1).

After constraint solving and logical simplification, one of the introduced implications,
e.g. Ii, 1 ≤ i ≤ r, may be rewritten as an atomic conjunct.

Suppose the introduced atom is not a constraint. Then, |Nk| contains two occur-
rences of |Ii| while |Nk+1| contains only one. The second occurrence of |Ii| in |Nk|
dominates all elements introduced in |Nk+1| because of the presence of |Ii| in Nk+1,
therefore |Nk| > |Nk+1|.

If all introduced atomic conjuncts are constraints, then |Nk| ≥ |Nk+1|, as argued in
(1a).

If all atomic conjuncts in Nk+1 are also in Nk, then we have that Pt(Nk+1) ⊂ Pt(Nk).
Therefore, |Nk| ≥ |Nk+1|.

2. Propagation

(a) Propagation that introduces implication

Executing a propagation step using an atom L = p(t) and an implication I = [p(s)∧
R→ H] in a node Nk = [p(t)∧I∧Rest] produces the node Nk+1 = [p(t)∧I∧J∧Rest],
where J = [EQ ∧R→ H].

It is easy to see that (F (I,Nk)⊎F (J,Nk+1)) ⊆ F (I,Nk). Since all atomic conjuncts
in Nk+1 are also in Nk and implications in Rest are not affected, we have that
Pt(Nk+1) ⊆ Pt(Nk). Therefore |Nk| ≥ |Nk+1|.

(b) Propagation that introduces an atomic conjunct.

Executing a propagation step using an atom L = p(t) and an implication I =
[p(s)→ H1 ∨ · · · ∨Hm] in a node Nk = [p(t) ∧ I ∧Rest] produces the node Nk+1 =
[p(t) ∧ I ∧ J ∧ Rest], where J = [t = s → H1 ∨ · · · ∨ Hm], and (after constraint
solving and logical simplification) we get the (possibly) non simple node Nk+1 =
[p(t)∧I∧(H ′

1∨· · ·∨H ′
m)∧Rest]. Suppose that the maximum level of the simple nodes
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that can be derived from Nk+1 is given by the simple node N ′ (i.e., |Nk+1| = |N
′|),

which has the form N ′ = [p(t′) ∧ I ′ ∧H ′
i ∧Rest′], 1 ≤ i ≤ m.

In the special case that all new atomic conjuncts in H ′
i are constraints, N ′ has the

form N ′ = [p(t)θ ∧ Iθ ∧H ′
i ∧Rest′]. There are no new potential implications caused

by H ′
i and for any conjunct C in N ′ there is a conjunct in Nk that has a level that is

at least equal to |C| - as explained in (1a) (the same holds for potential conjuncts).

We conclude that |Nk| ≥ |Nk+1|.

Suppose that some H ′
i is not an equality. It is easy to see that F (I,Nk+1) ⊂ F (I,Nk).

In more detail, F (I,Nk) contains A(J), while F (I,Nk+1) does not, because the same
propagation step cannot be performed again. Therefore |Nk| has two occurrences
of |J | that |Nk+1| does not. By the definition of the level of an implication, we
have that |J | ≥ |H ′

i|. |Nk+1| has however some elements that |Nk| does not have.
|Nk+1| has one occurrence of |H ′

i|, as well as the levels of the conjuncts E′, where
E′ ∈ F (E,Nk+1) and E is the result of propagating H ′

i and any (existing or potential)
implication in Nk+1. As argued in (1a), |H ′

i| > |E
′|. Therefore, the second occurrence

of |J | in |Nk| dominates all the elements in |Nk+1| that are not in |Nk|.

We conclude that |Nk| > |Nk+1|.

3. Splitting a disjunction. By definition of level of a non simple node.

4. Case analysis.

Consider the implication I = [C ∧ R → H] containing the constraint C in a node Nk =
[I ∧Rest]. Case analysis produces two nodes; N1

k+1 = [¬C ∧Rest′] and N2
k+1 = [C ∧ J ∧

Rest′′], where J = [R′ → H ′] (R′ and H ′ are R, H after constraint solving and logical
simplification have taken place). Obviously, |Nk| ≥ |N

1
k+1|.

Consider N2
k+1. We distinguish two cases:

• if R′ is not empty (true), then no atom is introduced in N2
k+1. (A(I) = A(J),

therefore) F (I,Nk) = F (J,Nk+1). Therefore, |Nk| = |N
2
k+1|

• if R′ is empty (true), then J is an atomic conjunct of N2
k+1.

If J is a constraint, then |Nk| ≥ |N
2
k+1|, as argued earlier in (1a).

If J is not a constraint, then |Nk| contains two occurrences of |I|, while |N2
k+1|

contains only one occurrence of |H ′| and the levels of the new potential implications
E caused by H ′. Since |I| ≥ |H ′| and |H ′| > |E| (by Lemma 17), we have that
|Nk| > |N

2
k+1|.

5. Factoring.

Consider a node Nk = [p(t) ∧ p(s) ∧ Rest], where p is abducible (i.e., either E or NE).
Then, by factoring we get the two nodes N1

k+1 = [p(t)∧ p(s)∧ t 6= s∧Rest′] and N1
k+1 =

[p(t) ∧ t = s ∧Rest′′].

As we have seen, for example, in (1a), adding a constraint cannot increase the level of a
node, thus |Nk| ≥ |Nk+1+|. Also, |Nk| > |Nk+1| because an atom was ’lost’ (and, again,
the introduction of a constraint can only reduce the level of a node).

6. Fulfillment and Violation.
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All these transitions are non-introducing steps. We can apply the same considerations
done for Factoring also for Fulfillment E and Violation NE. Violation E leads to a failure
node. Fulfillment NE does not change the level of the node, so |Nk| = |Nk+1|.

12 Static-SCIFF Proof of termination

Relying on the previous lemmas, we are now able to prove Theorem 5 of termination of the
static SCIFF, which is identical to the proof of the corresponding theorem by Xanthakos.

Proof. In Lemma 18, we have proved that any execution step that introduces a non-constraint
atom strictly reduces the level of the node that the step was performed on, and that all other
steps cannot increase that level. Thus, based on Lemma 15, we conclude that any node N in
an infinite chain of execution steps must be followed (after a finite number of steps) by a node
N ′ such that |N | > |N ′|.

Having started from a bounded node and remembering that the multiset ordering we use
is well-founded, we conclude that there cannot be an infinite sequence of execution steps, i.e.
any branch in the execution tree is finite. Therefore, as the maximum branching degree of any
execution tree is finite (namely 2) we conclude that the execution tree is finite.

13 Extension for dynamically growing history

We are now able to prove the complete termination theorem for SCIFF. We will make two
further assumptions. The first states that the new events will arrive only when the SCIFF is
in a stable state (i.e., new events are considered only if no other transition is applicable).

Definition 38. A SCIFF derivation has a slow happening rate if happening transitions apply
only if no other transition is applicable.

Non happening transitions are applicable only after closure of the history [4]. We will assume
that after closure of the history, non happening is applied as soon as possible (this can be seen
as a preprocessing):

Definition 39. A SCIFF derivation has non happening high priority if, whenever non hap-
pening is applicable, it is indeed applied.

We can now state and prove our termination theorem for SCIFF.

Theorem 6. (Termination of SCIFF) Let G be a query to a society S, where SOKB, ICS

and G are acyclic wrt some level mapping, and G and all implications in ICS bounded wrt the
level-mapping.

Then, every SCIFF derivation with high priority for non happening and with slow happening
rate for G, starting from an initial history HAPi ending in a (possibly closed) finite final history
HAPf is finite.

Proof. We now add the transitions that were removed in the previous proof of Theorem 5,
namely Happening, non-happening, and closure.
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We divide the whole derivation in two phases: the open and the closed phases. The closed
phase is the sub-derivation starting from the first node with a closed history. From the definition
of closure transition, there can be only one closure transition that ends in a closed history.

In the open phase, happening can be applied. Since the derivation has slow happening
rate, the static SCIFF is applied between any two happening transitions. Since the final
history HAPf is finite, happening can be applied finitely many times. No transition can cause
happening. Between two happening transitions, static SCIFF is applied, and by theorem 5 it
terminates. When the static SCIFF terminates, closure transition becomes applicable, and it
is applicable only once (before another happening transition), so closure will be applied finitely
many times.

Non-happening can be applied only to implications with ¬H, and it removes the ¬H literal.
So, since implications are finitely many, and have finite number of literals, non-happening is
applied finitely many times. No transition can cause happening. Between one happening and
the other, SCIFF is applied, and it terminates. After application of non-happening transitions,
static SCIFFis applicable, and by previous theorem, it terminates.
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