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1 Introduction

In this report we study a number of profiles of behaviour for computees by giving formal
definitions and proving certain properties for each profile.

A profile is a pattern of behaviour characterized by operational traces and then realized
through suitable cycle theories. For each profile we define the properties that must be satisfied
by the operational traces and propose suitable cycle theories that induce such operational
traces. Two different approaches are taken regarding the definition of cycle theories. The
first approach defines (whenever possible) the cycle theory by setting some constraints and
conditions on the basic part of the theory. The second approach does not put any additional
constraints on the basic part of the theory and only expresses behavioural preferences by
setting some conditions and adding some rules to the behaviour part of the theory, in an
attempt to keep the basic level uniform for all computees.

For each cycle theory proposed, we prove that it induces operational traces which satisfy the
properties of the given profile. In addition, we propose and prove comparison properties for the
profiles in an attempt to exhibit their relative advantages and disadvantages. This study has
shown the need for formally defining properties of the environment, since comparison between
different profiles depends on what kind of environment the agents are situated in.

The profiles studied in this annex are the cautious, the actively cautious, the punctual, the
impatient, the careful, the focussed and the objective profile.

The report proceeds as follows. In section 2 we review some notions from the KGP model
and give some definitions from the LPwNF framework in which cycle theories are realized. In
sections 3 to 9 the study of the different profiles is presented. In section 10 we discuss related
work and finally in section 11 we summarize and evaluate the work presented. The normal
cycle theory is given in appendix A.

2 Background

2.1 Recap on some notions underlying the KGP model

In this section we present an overview of the basic notions of the KGP model which are defined
in detail in deliverables D4[4] and D8[3].

Internal state. This is a tuple 〈KB, Goals, P lan, TCS〉, where:

• KB is the knowledge base of the computee, and describes what the computee knows
(or believes) of itself and the environment. KB consists of modules supporting different
reasoning capabilities:

– KBplan, for Planning,

– KBpre, for the Identification of Preconditions of actions,

– KBTR, for Temporal Reasoning,

– KBGD, for Goal Decision,
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– KBreact, for Reactivity, and
– KB0, for holding the (dynamic) knowledge of the computee about the external world

in which it is situated (including past communications).

Syntactically, KBplan,KBreact and KBTR are abductive logic programs with constraint
predicates KBpre is a logic program, KBGD is a logic program with priorities and KB0 is
a set of facts in logic programming, and it is (implicitly) included in all the other modules.

• Goals is the set of properties that the computee wants to achieve, each one explicitly
time-stamped by a time variable. Syntactically, each goal is a pair of the form 〈l[t], G′〉
where

– l[t] is the fluent literal of the goal, referring to the time t;
– G′ is the parent of G.

• Plan is a set of actions scheduled in order to satisfy goals. Each is explicitly time-stamped.
Syntactically, each action is a triple of the form 〈a[t], G,C〉 where

– a[t] is the operator of the action, referring to the execution time t;
– G the parent goal, towards which the action contributes (i.e., the action belongs to

a plan for the goal G). G may be a post-condition for A (but there may be other
such post-conditions).

– C are the preconditions which should hold in order for the action to take place
successfully; syntactically, C is a conjunction of (timed) fluent literals.

• TCS is a set of constraint atoms (referred to as temporal constraints) in some given
underlying constraint language with respect to some structure < equipped with a notion
of constraint satisfaction |=<. Temporal constraints bound the time variables of goals and
actions, thus implicitly defining when goals are expected to hold and when actions should
be executed. Also, via the temporal constraints, actions are partially ordered.

Goals and actions are uniquely identified by their associated time, which is implicitly existen-
tially quantified within the overall state. To aid revision and partial planning, Goals and Plan
form a tree, whose root is represented by ⊥ 1. The tree is given implicitly by associating with
each goal and action its parent (the second element in the corresponding tuple). Top-level goals
and actions are children of the root of the tree, ⊥.

Valuation of temporal constraints. Given a state S = 〈KB, Goals, P lan, TCS〉, we de-
note by Σ(S) (or simply Σ, when S is clear from the context) the valuation:

Σ(S) = {t = τ | executed(a[t], τ) ∈ KB0} ∪ {t = τ | observed(l[t], τ) ∈ KB0}

Intuitively, Σ extracts from KB0 the instantiation of the (existentially quantified) time variables
in Plan and Goals, derived from having executed (some of the) actions in Plan and having
observed that (some of the) fluents in Goals hold (or do not hold).KB0 provides a “virtual”
representation of Σ.

1In the full model [3], we consider two trees, the first containing non-reactive goals and actions, whose root is
represented by ⊥nr, the second containing reactive goals and actions. whose root is represented by ⊥r. All the
top-level non-reactive goals are either assigned to the computee by its designer at birth, or they are determined
by the Goal Decision capability. All the top-level reactive goals and actions are determined by the Reactivity
capability.
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Transitions. The state of a computee evolves by applying transition rules, which employ
capabilities and the constraint satisfaction |=<. The transitions are:

• Goal Introduction (GI), changing the top-level Goals, and using Goal Decision.

• Plan Introduction (PI), changing Goals and Plan, and using Planning and Introduction
of Preconditions.

• Reactivity (RE), changing Goals and Plan, and using the Reactivity capability.

• Sensing Introduction (SI), changing Plan by introducing new sensing actions for checking
the preconditions of actions already in Plan, and using Sensing.

• Passive Observation Introduction (POI), changing KB0 of KB by introducing unsolicited
information coming from the environment, and using Sensing.

• Active Observation Introduction (AOI), changing KB0 of KB, by introducing the outcome
of (actively sought) sensing actions, and using Sensing.

• Action Execution (AE), executing all types of actions, and thus changing KB0 of KB.

• State Revision (SR) 2, revising Goals and Plan, and using Temporal Reasoning and Con-
straint Satisfaction.

Selection functions Some of the transitions given above take, in addition to a state, some
other input. Such additional inputs are selected by means of selection functions. These se-
lection functions will play an important role in the cycle theories of computees that control
its operational behaviour. The selection functions are goal selection, action selection, fluent
selection and precondition selection, and they are all defined as mappings of the form

m : States× TimeConstants→ Sets

from the set of all possible states of the computee and the set of all possible time-points to the
set of all possible sets of items of interest. Depending on the concrete selection function, these
items are

• actions in Plan,

• in Goals,

• fluents occurring anywhere in Goals,

• preconditions of actions in Plan.

We define two classes of selection functions. The first class, called core selection functions,
are fixed in the model, while the second class, of heuristic selection functions, are variable and
can be chosen differently for each computee. The core selection functions only select goals (for
goal selection) and actions (for action selection), preconditions (for precondition selection) and
fluents (for fluent selection) that still have a chance of “success” (that have not become invalid
in some way), for example, they have not yet timed out. On the other hand, the heuristic

2We assume here that the two transitions of Goal Revision and Plan Revision in the original KGP model
presented in [4, 3, 6] are combined into a single State Revision transition, whose definition is straightforward.
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selection functions are used to complement the core selection functions in order to capture
different behaviours for different computees. For example, if we want a computee which is
timely, then its heuristic selection functions will select goals/actions/ fluents according to their
urgency. Hence the core selection functions are used to indicate items that are viable selections,
whereas the heuristic selection functions are used to decide which of all candidate items (as
chosen by the core selection functions) are preferred and thus effectively selected. Items chosen
by the heuristic selection functions are items that are preferable, in being selected, over those
that are not.

The action selection function only selects actions that are not yet timed out, are not redun-
dant and are still “useful” to perform. The goal selection function only selects goals that are
not already satisfied or goals that have not yet timed out. The precondition selection function
selects all those preconditions not yet known to hold or not to hold of those actions in Plan
that would be selected by the action selection function.

Cycle theory. Formally, a cycle theory Tcycle consists of the following parts.

• An initial part Tinitial, that determines the possible transitions that the agent could
perform when it starts to operate (initial cycle step). More concretely, Tinitial consists of
rules of the form

∗T (S0, X)← C(S0, τ, X), now(τ)

sanctioning that, if the conditions C are satisfied in the initial state S0 at the current time
τ , then the initial transition should be T , applied to state S0 and input X, if required.
Note that C(S0, τ, X) may be empty, and Tinitial might simply indicate a fixed initial
transition T1.

The notation ∗T (S, X) in the head of these rules, meaning that the transition T can be
potentially chosen as the next transition, is used in order to avoid confusion with the
notation T (S, X, S′, τ) that we have introduced earlier to represent the actual application
of the transition T .

• A basic part Tbasic that determines the possible transitions (cycle steps) following other
transitions, and consists of rules of the form

∗T ′(S′, X ′)← T (S, X, S′, τ), EC(S′, τ ′, X ′), now(τ ′)

which we refer to via the “name” RT |T ′(S′, X ′). These rules sanction that, after the
transition T has been executed, starting at time τ in the state S and ending at the
current time τ ′ in the resulting state S′, and the conditions EC evaluated in S′ at τ ′

are satisfied, then transition T ′ could be the next transition to be applied in the state S′

with the (possibly empty) input X ′, if required. The conditions EC are called enabling
conditions as they determine when a cycle-step from the transition T to the transition T ′

can be applied. In addition, they determine the input X ′ of the next transition T ′. Such
inputs are determined by calls to the appropriate selection functions.

• A behaviour part Tbehaviour that contains rules describing dynamic priorities amongst
rules in Tbasic and Tinitial. Rules in Tbehaviour are of the form

RT |T ′(S, X ′) �RT |T ′′(S, X ′′)←BC(S, X ′, X ′′, τ), now(τ)

with T ′ 6= T ′′, which we will refer to via the “name” PT
T ′�T ′′ . Recall that RT |T ′(·) and

RT |T ′′(·) are (names of) rules in Tbasic ∪ Tinitial. Note that, with an abuse of notation,

8



T could be 0 in the case that one such rule is used to specify a priority over the first
transition to take place, in other words, when the priority is over rules in Tinitial. These
rules in Tbehaviour sanction that, at the current time τ , after transition T , if the conditions
BC hold, then we prefer the next transition to be T ′ over T ′′, namely doing T ′ has higher
priority than doing T ′′, after T . The conditions BC are called behaviour conditions and
give the behavioural profile of the agent. These conditions depend on the state of the agent
after T and on the parameters chosen in the two cycle steps represented by RT |T ′(S, X ′)
and RT |T ′′(S, X ′′). Behaviour conditions are heuristic conditions, which may be defined
in terms of heuristic selection functions (see [4] for details). For example, the heuristic
action selection function may choose those actions in the agent’s plan whose time is close
to running out amongst those whose time has not run out.

• An auxiliary part including definitions for any predicates occurring in the enabling and
behaviour conditions, and in particular for selection functions (including the heuristic
ones, if needed).

• An incompatibility part, including rules stating that all different transitions are incom-
patible with each other and that different calls to the same transition but with different
input items are incompatible with each other. These rules are facts of the form

incompatible(∗T (S, X), ∗T ′(S, X ′))

for all T, T ′ such that T 6= T ′, and of the form

incompatible(∗T (S, X), ∗T (S, X ′)) ← X 6= X ′ expressing the fact that only one tran-
sition can be chosen at a time.

Hence, Tcycle is a logic program with priorities (P,H, A, I) where:

(i) P = Tinitial ∪ Tbasic,

(ii) H = Tbehaviour,

(iii) A is the auxiliary part of Tcycle, and

(iv) I is the incompatibility part of Tcycle.

In the sequel, the generic condition now(τ) in the cycle theory rules will be omitted and left
implicit when this is not important for the specific rule. We will indicate with T 0

cycle the sub-cycle
theory Tcycle \ Tbasic and with T s

cycle the sub-cycle theory Tcycle \ Tinitial. We will also assume
a notion of preferential entailment |=pr, which the underlying formalism of logic programming
with priorities is equipped with. Finally, unless otherwise specified, we will assume that all
cycle theories include rules that make the computee interruptible, as specified in [5].

Operational trace. A cycle theory Tcycle induces an operational trace, namely a (typically
infinite) sequence of transitions

T1(S0, X1, S1, τ1), . . . , Ti(Si−1, Xi, Si, τi), Ti+1(Si, Xi+1, Si+1, τi+1), . . .
(where each of the Xi may be empty), such that

• S0 is the given initial state;

• for each i ≥ 1, τi is given by the clock of the system, with the property that τi < τi+i;
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• (Initial Step) T 0
cycle ∧ now(τ1) |=pr ∗T1(S0, X1);

• (Cycle Step) for each i ≥ 1

T s
cycle ∧ Ti(Si−1, Xi, Si, τi) ∧ now(τi+1) |=pr ∗Ti+1(Si, Xi+1)

namely each (non-final) transition in a sequence is followed by the most preferred tran-
sition, as specified by T s

cycle. If the most preferred transition determined by |=pr is not
unique, we choose arbitrarily one.

2.2 The LPwNF framework

In this section we give two definitions from the LPwNF framework (presented in deliverable
D8 [3]), which we will use later in order to prove certain properties.

• Let T be a theory and ∆ ⊆ T . Then ∆ is an admissible argument iff

(i) ∆ is consistent (i.e. conflict free)

(ii) for any ∆′ ⊆ T if ∆′ attacks ∆ then ∆ attacks ∆′.

• Let T be an LPwNF theory and ∆,∆′ ⊆ T . Then ∆′ attacks ∆ (or ∆′ is a counter
argument of ∆) iff there exists L, ∆1 ⊆ ∆′ and ∆2 ⊆ ∆ such that:

(i) ∆1 `min L and ∆2 `min L

(ii) (∃r′ ∈ ∆1, r ∈ ∆2 s.t. ∆2 |=H h p(r, r′)) ⇒ (∃r′ ∈ ∆1, r ∈ ∆2 s.t. ∆1 |=H

h p(r′, r)),

where L is any literal that conflicts L (e.g. L = ¬L or incompatible(L,L) holds).

3 Cautious profile

In this section we study the cautious profile of behaviour. The computees adopting this profile
are committed to execute actions only if they know that action preconditions hold. While the
standard AE transition executes actions whose preconditions are not known to be false, here
there is an attempt to avoid to pay the price of executing actions without any assurance about
their preconditions.

In section 3.1 we give the informal definition of a cautious computee whereas in section 3.2
we give the characteristic feature of the cautious profile. Based on these definitions we propose
two different ways of defining a cautious cycle theory. The cautious cycle theory presented in
section 3.3 is defined by modifying the basic part of the cycle theory. This method is simpler
and easier to implement. The cycle theories presented in section 3.4, on the other hand, set
some conditions on the behaviour part of the cycle theory and put no constraint on the basic
part, in an attempt to keep the basic level uniform for all computees.

Note that in this section we denote by selected actions(S, X) and selected goals(S, X), the
action and goal selection functions respectively where S is the state and X is the set of selected
actions or goals.
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3.1 Informal statement of the property

The computee before doing an action checks its KB to see if the preconditions for that action
hold, and hence performs only actions whose preconditions hold.

The above informal statement can be read either as execute only the actions whose precon-
ditions can be proved to hold, or before executing an action whose preconditions are not known
to hold, perform a sensing introduction transition (SI) in order to check the preconditions in the
environment, and wait for them to hold. The cautious profile implements the first approach,
while the actively cautious implements the second one.

3.2 Formal definition

State characteristics. The states of a cautious computee do not contain an AE transition
whose selected actions have a precondition that can not be proved to hold. Here, the notion of
not be proved to hold relies on the TR (temporal reasoning) capability in charge of skeptically
proving fluents against the computee current representation of its environment, i.e. its knowl-
edge base. (Skeptically represents certainty, in contrast to credulously as the possibility that
fluents might hold at some points in time.)

Given an operational trace

T0(S0, X0, S1, τ0), . . . Ti(Si, Xi, Si+1, τi), . . . ,

for all the i such that Ti = AE, and for all the actions 〈a[t], G, l1[t] ∧ · · · ∧ ln[t]〉 belonging to
Xi, the set of actions selected as input for the transition, it holds

KBTR |=τi

TR lj [t] j = 1, .., n.

Note that this characterisation only states that if an action is executed, then its preconditions
are known to hold, and not that if the preconditions are known to hold then the action will
surely be executed. The choice of not to have both the implications is justified by allowing for
the possibility that only a subset of the actions with preconditions satisfied is executed. This
may be useful when action execution costs are taken into account.

3.3 Cautious Cycle Theory based on the basic part

3.3.1 Cautious Cycle Theory

Cycle Theory characterisation. The informal definition of a cautious computee can be
easily implemented by means of the following basic rule of the cycle theory (whenever performing
AE, restrict the set of selected actions to those whose preconditions are known to hold):

CautiousT |AE(S′, Y ) : ∗AE(S′, Y )← T (S, X, S′, τ), selected actions(S′, X ′),
prec sat(X ′, Y, τ ′), now(τ ′), Y 6= ∅.

where selected actions/2 implements the core action selection function and prec sat/3 selects,
among the actions in X ′, those whose preconditions can be proved to hold at the current time
τ ′ (by calling the TR capability). Note that, the condition Y 6= ∅ prevents an AE transition to
occur with an empty input (note that this conforms to the normal cycle theory, which requires
that AE is executed on non-empty input sets of actions).
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Preconditions are
not accessible

Preconditions do
not change

Preconditions
may change

Goals do not
change

≈ (w.r.t. welfare)

CP worse
(objectively)

≈ CP better

Goals change ? ? ?

Figure 1: CP and UP comparison

Moreover, it is required that the only rules defining AE in the cycle theory of a cautious
computee are instances of the “schema” rule above. Reading the T variable in the rule as free
implies that any transition can be followed by AE. This can be restricted by replacing the rule
with a set of rules CautiousT1|AE(S′, Y ), . . . , CautiousTk|AE(S′, Y ), where each Ti is the label
of one of the k transitions that can be followed by AE. The body of these k rules is an instance
of the body of the above rule, where T has been suitably instantiated.

Compliance of the cycle theory with the state characteristic for a cautious com-
putee. Given an operational trace of a cautious computee

T0(S0, X0, S1, τ0), . . . Ti(Si, Xi, Si+1, τi), . . . ,

for all i such that Ti = AE and for all the actions 〈a[t], G, l1[t] ∧ · · · ∧ ln[t]〉 ∈ Xi, it holds

KBTR |=τi

TR lj [t] j = 1, .., n.

Proof. Trivial by observing that the above condition is implemented as a precondition in the
body of each basic rule of the cautious cycle theory enabling AE transitions.

3.3.2 Cautious profile features

In this section we analyse the distinguishing features of the cautious profile with respect to
features of the environment where it may operate.

The cautious profile has been defined by suitably restricting the actions that can be executed,
i.e. by refining the definition of the action selection function. Here, we compare the cautious
profile (CP) with a profile (UP) operating with the unrestricted action selection function and
the same cycle theory. We compare the two profiles against different classes of environments
that induce differences in the profiles behaviours.

We first discuss the case of a not fully accessible environment, where the truth values of
actions preconditions might not be known. Then we distinguish the cases of environments
where the truth values of goals and preconditions that impair action execution may or may not
vary independently of the computee actions (but are accessible). Clearly a different behaviour
between CP and UP can arise regarding the actions whose preconditions are not satisfied.
Figure 1 informally summarises the results.
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Precondition truth values could not be proved to hold, due to a not fully accessible
environment. Clearly, the CP profile will be stuck in the execution of all those actions whose
precondition can not be proved to hold. It is worth reminding that precondition truth values
must be skeptically proved, which, informally speaking, requires complete information about
the current state of the environment as far as the preconditions of interest are concerned. On
the other hand, the UP computee might achieve in the environment the desired effects of the
actions it executes, hence performing “objectively” better than UP, even it is not able to prove
that preconditions hold. However, in the lack of information about precondition truth values,
CP will not be able to improve its individual welfare, which relies on the capability to skeptically
prove achieved goals.3 In the case that goals values vary independently of computee behaviours,
the two profile can not be compared (see below).

Goal and precondition truth values are accessible and do not vary in the envi-
ronment independently of the computee actions. In this case, both the CP and PU
computee will not achieve the effects for enforcing which actions have been planned, for all the
actions whose preconditions can not be proved to hold. Hence, until a successive State Revision
(SR) transition, the behaviour of the two computees will be equivalent as far as these actions,
and their expected effects, will be concerned.

The UP computee is aware of any executed action, also with unsatisfied preconditions,
because of the executed(a, t) information in its KB0 (with t assigned to a ground time point).
All these actions can be pruned from the plans in the state of the computee by a successive
SR transition. This may happen as soon as one of the goals, whose satisfaction depends on the
(missing) effects of the actions,4 will become timed out.

The case of the CP computee is analogous, but for the fact that it has not executed actions,
their execution is not represented in KB0, and their time variable have not been instantiated.
However, as soon as they, or a goal depending on them, will become timed out they can be
pruned from the plans of the computee by a SR transition.

Hence the overall behaviour of the two computees can be considered substantially equiv-
alent, in the sense that both of them will not be able to prove (for instance by means of a
Sensing Introduction transition) the fluents expected as effects of the actions (under the above
hypothesis that the environment does not change, if not for the behaviour of the computee).

Example 1 A computee acting on the behalf of its owner wants to get a coffee from a coffee-
machine before time 20. It knows that coffee can be obtained by putting money in the machine,
provided that the machine is properly working. Initially it has money, and this will be spent
if used in the machine. This knowledge can be represented, for instance, in the TR knowledge
base as

holds_at(have_money,0).

initiates(put_money,T,coffee) :- holds_at(machine,T).
initiates(repair,_,machine).
terminates(put_money,_,have_money).

3It is worth reminding that the individual welfare notion is based on a subjective view, where a goal is
considered achieved when the computee is able to prove it against its representation of the world, see [?]

4Such a goal can be, for instance, any goal that is a predecessor of the action in the tree representing plans
in the state of the computee.
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precondition(put_money,have_money).

In order to achieve the goal G = 〈coffee[t],⊥〉, with the temporal constraint t <= 20, the action
〈put money[t1], G, {have money,machine}〉, with the temporal constraint t1 <= 10 has been
planned. Given this knowledge, the precondition that the machine is properly working, can not
be skeptically proved by the TR capability, hence, while UP executes the actions (and finishes its
money), CP does not. However, the goal can not be considered achieved by UP, since it cannot
be skeptically proved from the updated KB0 = {executed(put money, 10).} Note that UP has
no money anymore. CP analogously is not able to prove the goal (but it still has its money ...).

Goal truth values are accessible and do not vary in the environment independently
of the computee actions, precondition truth values may vary. This is the case in
which CP may exhibit a more effective behaviour than UP, as far as actions producing their
expected effects are concerned. Let us suppose that CP and UP are in the same state and UP
executes actions whose preconditions are not satisfied, via an Action Execution (AE) transition.
CP can choose the same transition AE, provided it is able to prove that preconditions holds for
a non-empty subset of the same actions selected by UP. If this subset is empty, CP will perform
a different transition. In any case, all the actions that will not be executed in this transition by
CP will remain executable and in the plan, until they will become timed out. Assuming that
in this interval action preconditions become true and CP performs another Action Execution
transition, the effects for which the actions were planned can be achieved by CP, while they
have not been achieved by UP when it has executed the same actions.

Example 2 In the situation of Example 1, it is observed that the machine has been repaired at
15 by someone, so that, for the CP computee, KB0 = {observed(x, executed(repair, 15), 15)},
(while for UP, KB0 = {executed(put money, 10), observed(x, executed(repair, 15), 15)}). Let
us suppose that at 17, CP executes another AE transition. Now both the preconditions for
put money hold, i.e. have money and machine, and hence the action can be executed and it
provides the desired effect. CP can achieve the effects of the action it performs, achieve in this
case its goal, and hence improve its individual welfare. Differently, UP cannot (nor it will in
the future since it has run out of money).

Goal truth values are accessible and may vary in the environment. This case
corresponds to the possibility that goals and action effects hold independently of the
computee behaviour, i.e. the computee runs within an environment “unreliably” dynamic
or influenced by the behaviour of other computees. Clearly, in this case it is not possible
to compare CP and UP, given that the environment can advantage or disadvantage any of them.

The above analysis allows us to conclude:

Proposition 3.1 Let CP be a cautious computee and UP a normal computee (in the above “un-
restricted” sense). Let UP execute an AE transition, where a is an action whose preconditions
can not be proved to hold. Then, provided that

• the action a belongs to the plan of CP, as well,

• the action a does not become timed out during an interval T ,

• the truth values of the preconditions of a become provable within the interval T ,
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• CP executes an AE transition within T ,

CP will achieve the effects of a, while UP has not.

3.3.3 Discussion

Intuitive advantages. The main advantage of a cautious computee is not to waste time in
doing actions whose preconditions are not guaranteed to hold. Other than saving the costs of
executing the action, this attitude should avoid the overhead of re-planning because of potential
action failures to yield the expected effects, while preserves the possibility of executing the
action later on, as shown in Example 2, where the cautious computee exhibits a more effective
behaviour than a computee ruled by an unrestricted profile. As shown, this advantage of the
cautious computee holds in all those cases in which the delay in action execution, due to the lack
of information about preconditions, might allow them to become true. The actively cautious
computee tries to actively collect such information as soon as it realises its lack.

As explained, the environment, especially if dynamic and where (pre-) conditions may change
rapidly, influences the effectiveness of the profile, so that it is possible to have examples where
the punctual computee increases its welfare function more than a computee with a different
behaviour profile, but also vice-versa. Moreover, a trade-off between “action-” and “time-
effectiveness” must be expected, according to the delays that may be introduced by deferring
action executions. Also, the environment accessibility influences the effectiveness of the profile.

Alternative definitions.

• Focused and cautious computee. Pursues a (top) goal at the time in a (actively) cautious
style: does not perform any action of the plan for the currently addressed goal, without
knowing (checking, if actively cautious) that preconditions hold (see the Actively Cautious
and Focused profiles).

• Extremely cautious computee. Checks that all the preconditions of the actions of a (par-
tial) plan for a (top) goal hold before committing to the execution of any of the actions.
It does not waste time in partially executing a plan, without being sure that the plan is
“globally executable”.

• Punctually cautious computee. Checks preconditions according to the urgency of the
actions to which they refer (see the Punctual profile).

3.4 Cautious Cycle Theory based on the behaviour part

In this section we try to create a cycle theory that implements the cautious profile of behaviour
by modifying the behaviour part of the cycle theory. We examine two approaches. The first
approach creates a cautious cycle theory by extending the normal cycle theory. The second
approach defines the cautious cycle theory as any cycle theory that satisfies certain conditions
on its behaviour part.

3.4.1 A Cautious Cycle Theory based on the Normal Cycle Theory

In this section we try to create a cycle theory that implements the cautious profile by
extending the normal cycle theory presented in D8 [3]. In order to do that we first identify
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the characteristic feature of the cautious profile and then extend the normal cycle theory in
order to create a cycle theory that induces an operational trace which has the required feature.
Finally we prove that the proposed cycle theory does induce such operational traces.

The cautious cycle theory is the normal cycle theory with the following two rules added to
the Tbehaviour part of the theory:

• Cautious PT
T1�AE : RT |T1(S, X) � RT |AE(S, As)← unknown pred(S, As),

for every T and T1, X such that either T1 6= AE or T1 = AE and X 6= As, where the
predicate unknown pred(S, As) is defined appropriately using the Temporal Reasoning
capability of the computee.

• Cautious MPT
T1�AE : Cautious PT

T1�AE � PT
AE�T1

for every T and T1, X such that T1 6= AE.

The purpose of the first rule is to give lower priority over any other transition to transitions
of Action Execution with input parameter a set of actions A which contains an action whose
preconditions are not believed to be satisfied at the current state and time. The purpose of the
second rule is to give the first rule higher priority than any other priority rule in the behaviour
part of the computee’s cycle theory.

Proposition 3.2 The cautious cycle theory induces an operational trace which has the char-
acteristic feature of the cautious profile.

This proposition says that a computee with the cautious cycle theory will not choose to execute
an action if it is not sure that all its preconditions hold at the current state.

Formally
Tcycle ∧ Ti(Si−1, Xi, Si) 2pr AE(Si, A)

for some action A = 〈a[t], , C〉, if ∃c ∈ C for which KBi 2TR c.
In other words an action execution is not an admissible conclusion of the Tcycle theory of

the cautious computee, if the preconditions of that action are not known to be true at the time
of the execution.

Summary of Proof In order to prove the proposition we will try to construct an admissible
set of rules which concludes the transition AE(Si, A), assuming that KBi 2TR c holds, where
A = 〈a[t], , C〉, c ∈ C. When we fail to do so, we will have proven that it is not an admissible
conclusion and therefore the cycle theory satisfies the required property.

To do this we consider all different rules in the Tbasic part of the cycle theory that enable
action execution as the next transition. For each one of these rules we consider all possible
extensions of it with priority rules and for each extension, we construct a set that attacks it and
cannot be attacked back. Since there exists such a set for each one of the possible extensions,
we conclude that none of them is admissible.

Since there does not exist an admissible set of rules which concludes the action execution
transition when its preconditions do not hold, the transition is not admissible and therefore the
proposition holds.

16



Proof According to the cautious cycle theory, the rules which decide when an action execution
transition should follow are:

- RAE|AE(S′, As′) : ∗AE(S′, As′)← AE(S, As, S′), As′ = cAS(S′, τ), As′ 6= {}

- RPI|AE(S′, As) : ∗AE(S′, As)← PI(S, Gs, S′), As = cAS(S′, τ), As 6= {}

- RSI|AE(S′, As) : ∗AE(S′, As)← SI(S, Ps, S′), As = cAS(S′, τ), As 6= {}

- RAOI|AE(S′, As) : ∗AE(S′, As)← AOI(S, Fs, S′), As = cAS(S′, τ), As 6= {}

We know that these four rules are incompatible with each other because of the rule
incompatible(T (S, X), T ′(S, X ′)) in Tcycle. Since an admissible set has to be consistent, we
cannot have more than one of these rules in an admissible set.

A case analysis follows during which we try (and fail) to construct an admissible set of rules,
using each one of the preceding rules.

Let’s try to construct an admissible set of rules using the first one of these rules
(RAE|AE(S′, As′)). Let’s first show that a set ∆ consisting of only this rule is not admissi-
ble. The set ∆ is obviously consistent. In order for it to be admissible it must also attack all its
attacks. Let’s consider the following set of rules: ∆′ = {RAE|PI(S′, Gs), Cautious PT

T1�AE ,
Cautious MPT

T1�AE} where:

• RAE|PI(S′, Gs) : ∗PI(S′, Gs)← AE(S, As, S′), Gs = cGS(S′, τ), Gs 6= {}

• Cautious PT
T1�AE : RT |T1(S, X) � RT |AE(S, As)← unknown pred(S, As)

• Cautious MPT
T1�AE : Cautious PT

T1�AE � PT
AE�T1

We first need to show that ∆′ attacks ∆. The two sets draw opposite conclusions since
∆ ` AE(S′, As′), ∆′ ` PI(S′, Gs) and incompatible(AE(S′, As′), P I(S′, Gs)) holds. Since
there is no rule in ∆ that has higher priority than any rule in ∆′, ∆′ attacks ∆.

In order for ∆ to be admissible, it has to attack ∆′. The rule RAE|PI(S′, Gs) in ∆′ has
higher priority than the rule RAE|AE(S′, As′) in ∆ according to the rule Cautious PT

T1�AE in
∆′. But ∆ does not have a rule with higher priority than any rule in ∆′. Therefore ∆ does not
attack ∆′, so the set of rules ∆ is not admissible.

Let’s now try to extend the set ∆ by adding to it the priority rule PAE
AE�T :RAE|AE(S, As) �

RAE|T (S, X). Now ∆ = {RAE|AE(S′, As′), PAE
AE�T }. The set ∆ is obviously consistent. In

order for it to be admissible it must also attack all its attacks. Consider the set ∆2 ⊆ ∆′ where
∆2 = {Cautious PT

T1�AE , Cautious MPT
T1�AE}.

We first need to show that ∆′ attacks ∆. The sets ∆ and ∆2 draw opposite conclusions
since ∆ ` RAE|AE(S, As) � RAE|T (S, X), ∆2 ` RAE|T (S, X) � RAE|AE(S, As). Since there
is no rule in ∆ that has higher priority than any rule in ∆2, ∆′ attacks ∆.

In order for ∆ to be admissible, it has to attack ∆′. The rule Cautious PT
T1�AE in ∆2 has

higher priority than the rule PAE
AE�T in ∆, according to the rule Cautious MPT

T1�AE in ∆2.
But ∆ does not have a rule with higher priority than any rule in ∆2. Therefore ∆ does not
attack ∆′, so the set of rules ∆ is not admissible.

Note that no other possible extension exists for the rule RAE|AE(S′, As′) since there are no
other priority rules that we could add that would create a consistent set.

Since we failed to construct an admissible set using the rule RAE|AE(S′, As′), let’s try to
construct an admissible set of rules that concludes AE(S′, As) using the rule RPI|AE(S′, As).
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Let’s first show that a set ∆ consisting of only this rule is not admissible. The set ∆ is obviously
consistent. In order for it to be admissible it must also attack all its attacks. Let’s consider the
following set of rules: ∆′ = {RPI|SI(S′, Ps), PPI

SI�T } where:

• RPI|SI(S′, Ps) : ∗SI(S′, Ps)← PI(S, Gs, S′), Ps = cPS(S′, τ), Ps 6= {}

• PPI
SI�T : RPI|SI(S, Ps) � RPI|T (S, As)← unreliable pre(As)

We first need to show that ∆′ attacks ∆. The two sets draw opposite conclusions since
∆ ` AE(S′, As), ∆′ ` SI(S′, Ps) and incompatible(AE(S′, As′), SI(S′, Ps)) holds. Since
there is no rule in ∆ that has higher priority than any rule in ∆′, ∆′ attacks ∆.

In order for ∆ to be admissible, it has to attack ∆′. The rule RPI|SI(S′, Ps) in ∆′ has
higher priority than the rule RPI|AE(S′, As) in ∆, according to the rule PPI

SI�T in ∆′. But ∆
does not have a rule with higher priority than any rule in ∆′. Therefore ∆ does not attack ∆′,
so the set of rules ∆ is not admissible.

Note that we cannot extend ∆ by adding the priority rule

PPI
AE�T : RPI|AE(S, As) � RPI|T (S, X)← not unreliable pre(As)

to it, since unreliable pre(As) holds. Note also that no possible extension exists for the rule
RAE|AE(S′, As′) since there are no other priority rules that we could add that would create a
consistent set.

Since we failed to construct an admissible set using the rule RPI|AE(S′, As), let’s try to
construct an admissible set of rules that concludes AE(S′, As) using the rule RSI|AE(S′, As).
Let’s first show that a set ∆ consisting of only this rule is not admissible. The set ∆ is obviously
consistent. In order for it to be admissible it must also attack all its attacks. Let’s consider the
following set of rules: ∆′ = {RSI|PR(S′), Cautious PT

T1�AE , Cautious MPT
T1�AE} where:

• RSI|PR(S′) : ∗PR(S′)← SI(S, Ps, S′)

• Cautious PT
T1�AE : RT |T1(S, X) � RT |AE(S, As)← unknown pred(S, As)

• Cautious MPT
T1�AE : Cautious PT

T1�AE � PT
AE�T1

We first need to show that ∆′ attacks ∆. The two sets draw opposite conclusions since
∆ ` AE(S′, As′), ∆′ ` PR(S′) and incompatible(AE(S′, As′), PR(S′)) holds. Since there is
no rule in ∆ that has higher priority than any rule in ∆′, ∆′ attacks ∆.

In order for ∆ to be admissible, it has to attack ∆′. The rule RSI|PR(S′) in ∆′ has higher
priority than the rule RSI|AE(S′, As) in ∆ according to the rule Cautious PT

T1�AE in ∆′. But
∆ does not have a rule with higher priority than any rule in ∆′. Therefore ∆ does not attack
∆′, so the set of rules ∆ is not admissible.

Let’s now try to extend the set ∆ by adding to it the priority rule PSI
AE�T : RSI|AE(S, As) �

RSI|T (S, X). Now ∆ = {RSI|AE(S′, As), PSI
AE�T }. The set ∆ is obviously consistent. In order

for it to be admissible it must also attack all its attacks. Consider the set ∆2 ⊆ ∆′ where
∆2 = {Cautious PT

T1�AE , Cautious MPT
T1�AE}.

We first need to show that ∆′ attacks ∆. The sets ∆ and ∆2 draw opposite conclusions
since ∆ ` RSI|AE(S, As) � RSI|T (S, X), ∆2 ` RSI|T (S, X) � RSI|AE(S, As). Since there is
no rule in ∆ that has higher priority than any rule in ∆2, ∆′ attacks ∆.

In order for ∆ to be admissible, it has to attack ∆′. The rule Cautious PT
T1�AE in ∆2 has

higher priority than the rule PSI
AE�T in ∆, according to the rule Cautious MPT

T1�AE in ∆2.

18



But ∆ does not have a rule with higher priority than any rule in ∆2. Therefore ∆ does not
attack ∆′, so the set of rules ∆ is not admissible.

Note that no other possible extension exists for the rule RSI|AE(S′, As) since there are no
other priority rules that we could add that would create a consistent set.

Since we failed to construct an admissible set using the rule RSI|AE(S′, As), let’s try to
construct an admissible set of rules that concludes AE(S′, As) using the rule RAOI|AE(S′, As).
Let’s first show that a set ∆ consisting of only this rule is not admissible. The set ∆ is obviously
consistent. In order for it to be admissible it must also attack all its attacks. Let’s consider the
following set of rules: ∆′ = {RAOI|GR(S′), Cautious PT

T1�AE} where:

• RAOI|GR(S′) : ∗GR(S′)← AOI(S, Fs, S′)

• Cautious PT
T1�AE : RT |T1(S, X) � RT |AE(S, As)← unknown pred(S, As)

We first need to show that ∆′ attacks ∆. The two sets draw opposite conclusions since
∆ ` AE(S′, As′), ∆′ ` GR(S′) and incompatible(AE(S′, As′), GR(S′)) holds. Since there is
no rule in ∆ that has higher priority than any rule in ∆′, ∆′ attacks ∆.

In order for ∆ to be admissible, it has to attack ∆′. The rule RAOI|GR(S′) in ∆′ has higher
priority than the rule RAOI|AE(S′, As) in ∆, according to the rule Cautious PT

T1�AE in ∆′.
But ∆ does not have a rule with higher priority than any rule in ∆′. Therefore ∆ does not
attack ∆′, so the set of rules ∆ is not admissible.

Note that no possible extension exists for the rule RAOI|AE(S′, As) since there are no other
priority rules that we could add that would create a consistent set.

Since we failed to create an admissible set of rules which concludes the transition action
execution, when there are preconditions which are not known to be true at the time of the
execution, we can conclude that this transition is not an admissible conclusion of the cautious
cycle theory. Therefore we have proven that a computee with the cautious cycle theory satisfies
the required property.

3.4.2 Cautious Cycle Theories

In the previous section we created a cycle theory that implements the cautious profile by
adding two priority rules to the Tbehaviour part of the normal cycle theory. In this section we
prove that we can achieve the cautious profile be adding the two priority rules to any cycle
theory. In order to do that we redefine the definition and characteristic feature of the cautious
profile for reasons explained bellow. We then give a definition for what a cautious cycle theory
is and prove that any such theory induces an operational trace which has the required feature.

Informal Definition. A cautious profile of behaviour requires a computee to execute actions
in its plan only if it believes that the preconditions of these actions are currently true or if the
only transitions currently enabled are action execution transitions for which the preconditions
are not known to hold.

Characteristic Feature of the Cautious Profile(2). Given any transition
Ti(Si−1, Xi, Si, τi) in the operational trace of the computee such that executed(a[t], τi) ∈ KBi

0

for some action A = 〈a[t], , C〉, where Si = 〈KBi, Goalsi, P lani, TCSi〉, then

• either KBi−1 �TR C ∧ Σ[Si−1] ∧ t = τi−1
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• or the only transitions possible from state Si−1 are of the form AE(Si−1, A), where A =
〈a[t], , C〉, and ∃c ∈ C such that KBi−1 2TR c.

In other words the computee does not execute an action if it does not know that its precon-
ditions hold, unless it has no other choice of transition. In the previous section we used rules
from the Tbasic part of the normal cycle theory which enabled other transitions whenever an
action execution transition was enabled, in order to prove that proposition 3.2 holds. Since now
we do not know if there are such rules in the cycle theory, we allow the computee to execute
actions with uncertain preconditions if there is no other transition enabled. Alternatively we
could leave the characteristic feature unchanged and change the cycle theory definition by
adding a condition that ensures that whenever an action execution whose preconditions do not
hold is enabled, another transition (which is either not an action execution, or it is an action
execution whose preconditions hold) is also enabled.

A cautious cycle theory is any cycle theory where

• The following two rules are part of the Tbehaviour part of the theory:

– Cautious PT
T1�AE : RT |T1(S, X) � RT |AE(S, As)← unknown pred(S, As),

for every T and T1, X such that either T1 6= AE or T1 = AE and X 6= As, where the
predicate unknown pred(S, As) is defined appropriately using the Temporal Reason-
ing capability of the computee.

– Cautious MPT
T1�AE : Cautious PT

T1�AE � PT
AE�T1,

for every T and T1, X such that T1 6= AE.

• There is no rule which could enable PT
AE�T1 � Cautious PT

T1�AE in the Tbehaviour part
of the cycle theory.

Proposition 3.3 A cautious cycle theory induces an operational trace which has the charac-
teristic feature of the cautious profile.

Proof In order to prove the proposition we will try to construct an admissible set of
rules which concludes the transition AE(Si, A), assuming that KBi 2TR c holds, where
A = 〈a[t], , C〉, c ∈ C and that there exists a possible transition T ′(Si, X), where either
T ′ 6= AE or T ′ = AE, X = 〈a′[t], , C ′〉 and KBi �TR C ′. When we fail to do so, we will
have proven that it is not an admissible conclusion and therefore the cycle theory satisfies the
required property.

The set must contain a base rule of the form RT |AE(S, X) that enables an action execution
as the next transition. Let’s assume that such a rule exists and is enabled at the current state.
Let’s first show that a set ∆ consisting of only this rule is not admissible. The set ∆ is obviously
consistent. In order for it to be admissible it must also attack all its attacks.

Let’s now try and construct a set ∆′ that attacks ∆. Based on our assumption, there
exists a possible transition T ′(Si, X

′), which means that there exists a rule RT |T ′(S, X)
which is currently enabled. Let’s add this rule to the set ∆′ along with the two rules
that were added to the cycle theory in order to achieve the cautious profile: ∆′ =
{RT |T ′(S, X ′), Cautious PT

T1�AE , Cautious MPT
T1�AE}.

We first need to show that ∆′ attacks ∆. The two sets draw opposite conclusions since ∆ `
AE(S, X), ∆′ ` T ′(S, X ′), where AE 6= T ′ or X 6= X ′, and incompatible(AE(S, X), T ′(S, X ′))
holds. Since there is no rule in ∆ that has higher priority than any rule in ∆′, ∆′ attacks ∆.
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In order for ∆ to be admissible, it has to attack ∆′. The rule RT |T ′(S, X ′)in ∆′ has higher
priority than the rule RT |AE(S, X) in ∆ according to the rule Cautious PT

T1�AE in ∆′. But ∆
does not have a rule with higher priority than any rule in ∆′. Therefore ∆ does not attack ∆′,
so the set of rules ∆ is not admissible.

In order to extend the set ∆ let’s assume that there exists a priority rule in the Tbehaviour

part of the cycle theory that gives higher priority to the rule RT |AE(S, X) over any other rule
that is currently enabled. The constructed set is ∆ = {RT |AE(S, X),PT

AE�T1}. The set ∆ is
obviously consistent. In order for it to be admissible it must also attack all its attacks. Consider
the set ∆2 ⊆ ∆′ where ∆2 = {Cautious PT

T1�AE , Cautious MPT
T1�AE}.

We first need to show that ∆′ attacks ∆. The two sets draw opposite conclusions since
∆ ` RT |AE(S, X) � RT |T1(S, X), ∆2 ` RT |T1(S, X) � RT |AE(S, X). Since there is no rule in
∆ that has higher priority than any rule in ∆2, ∆′ attacks ∆.

In order for ∆ to be admissible, it has to attack ∆′. The rule Cautious PT
T1�AE in ∆2 has

higher priority than the rule PT
AE�T1 in ∆, according to the rule Cautious MPT

T1�AE in ∆2.
But ∆ does not have a rule with higher priority than any rule in ∆2. Therefore ∆ does not
attack ∆′, so the set of rules ∆ is not admissible.

Note that there is no rule that we could add in the set ∆ that would make it admissible,
since according to the rule Cautious MPT

T1�AE the rule Cautious PT
T1�AE has higher priority

over any other priority rule and according to the cycle theory definition there is no rule in
Tbehaviour that gives higher priority to a priority rule over the rule Cautious PT

T1�AE .
Since we failed to create an admissible set of rules which concludes the transition action

execution, when there are preconditions which are not known to be true at the time of the
execution and when there are other transitions enabled, we can conclude that this transition
is not an admissible conclusion of the cautious cycle theory. Therefore we have proven that a
computee with a cautious cycle theory satisfies the required property.

4 Actively Cautious Profile

In this section we study the actively cautious profile of behaviour. In section 4.2 we identify the
characteristic feature of the actively cautious profile. In section 4.3 we define what an actively
cautious cycle theory is and prove that any such cycle theory induces an operational trace which
has the required feature. Finally in section 4.4 we define and prove comparison properties for
the actively cautious profile.

4.1 Informal Definition

An actively cautious profile of behaviour requires a computee to execute actions in its plan
only if it believes that the preconditions of these actions are currently true (as in the cautious
case). In addition, the actively cautious computee executes sensing actions in order to actively
obtain the value of unknown preconditions.

4.2 Formal Definition

Characteristic Feature of the Actively Cautious Profile. Given any tran-
sition Ti(Si−1, Xi, Si, τi) in the operational trace of the computee where Si =
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〈KBi, Goalsi, P lani, TCSi〉 and Ti is an action execution transition for a set of actions As,
then

• For every action Aj ∈ As where Aj = 〈aj [t], , Cj〉 the following condition holds:

KBi−1
TR �TR Cj ∧ Σ[Si−1] ∧ t = τi−1

• and, if there exists an action A′ ∈ cAS(Si, τi) where A′ = 〈a′[t], , C ′〉 and there exists a
maximal non-empty set of preconditions C ′′ ⊆ C ′ such that for each c ∈ C ′′:

– KBi−1
TR 2TR c ∧ Σ[Si−1] ∧ t = τi−1

– KBi−1
TR 2TR ¬c ∧ Σ[Si−1] ∧ t = τi−1

then all actions in the set As are necessarily sensing actions.

In other words, whenever a computee executes a set of actions, two conditions hold. Firstly, all
the preconditions of those actions are known to hold at the time of the execution. Secondly,
the actions executed are all sensing actions, if there exist actions in the set of selected actions
for the current state whose preconditions are unknown. Notice that this condition prevents
the computee from executing non-sensing actions whose preconditions are known to hold, when
there exist other actions in the set of selected actions with unknown preconditions. This does
not necessarily mean that the computee will execute sensing actions for all the unknown precon-
ditions of all the actions in its plan before it starts executing the actions. Its actual behaviour
depends on the precise definition of the selection function and the extend to which this selects
a maximal set of the actions in the current plan. For example, if the selection function takes
into account the time ordering of actions and does not select together actions which are totally
ordered at different times then if there exist two actions, A1 and A2, whose preconditions are
not known to hold, and action A1 must be executed before action A2, then the computee will
not sense for the preconditions of the action A2 until A1 is executed.

We study a special case where we assume that only one action is executed at a time5.
Note that this sets a constraint on the input parameters of the AE transition and not on the
selection function. The results and proofs that follow are based on this assumption.

4.3 Actively Cautious Cycle Theories

An actively cautious cycle theory is any cycle theory where

• The following rules are part of the Tbehaviour part of the theory:

– Actively Cautious PPI
SI�T : RPI|SI(S, Ps) � RPI|T (S, X)

for all transitions T 6= SI
This rule gives higher priority to a SI transition over any other transition, when the
last transition was PI.

5This might be too strong an assumption. Alternatively we could say that if a set of actions SAs is executed
by an AE transition, then either all the actions in SAs are sensing actions, or there is no sensing action in the
set SAs.
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– Actively Cautious MPPI
SI�T : Actively Cautious PPI

SI�T � PPI
T�SI ,

for every T such that T 6= SI.
This rule gives higher priority to the previous rule, over any priority rule that gives
priority to a transition that is not SI, when the last transition was PI.

– Actively Cautious PT
AE�AE : RT |AE(S, A) � RT |AE(S, X) ← A =

〈sense precondition(c[t]), , 〉,∃A′ ∈ cAS(S, τ), A′ = 〈a[t], , C〉, c ∈
C, unknown(c), now(τ).
for every T,X such that X is not a sensing action, where the predicate unknown(c)
is defined appropriately using the Temporal Reasoning capability of the computee.
This rule gives higher priority to an AE transition where the action is a sensing
action, over any other AE transition, when there exist actions in the set of selected
actions with unknown preconditions.

– Actively Cautious MPT
AE�AE : Actively Cautious PT

AE�AE � PT
AE�AE

for every T and P such that P 6= Actively Cautious P.
This rule gives higher priority to the previous rule over any rule that gives priority
to an AE transition, over some other AE transition.

– Cautious PT
T1�AE : RT |T1(S, X) � RT |AE(S, As)← unknown pred(S, As),

for every T and T1, X such that either T1 6= AE or T1 = AE and X 6= As, where the
predicate unknown pred(S, As) is defined appropriately using the Temporal Reason-
ing capability of the computee.
This rule gives lower priority, over any other transition, to AE transitions with input
parameter a set of actions which contains an action whose preconditions are not
known to hold at the current state and time.

– Cautious MPT
T1�AE : Cautious PT

T1�AE � PT
AE�T1,

for every T and T1, X such that T1 6= AE.
This rule gives higher priority to the previous rule over any other priority rule that
gives higher priority to an AE transition.

• The following rule is part of the Tbasic part of the theory

RPI|SI(S′, Ps) : ∗SI(S′, Ps)← PI(S, Gs, S′, τ), Ps = cPS(S′, τ ′), Ps 6= {}, now(τ ′)

This rule enables a SI transition to follow a PI transition. We assume that the set of
preconditions of each of the sensing actions added to the plan by this rule, is empty.

• There is no rule which could enable PPI
T�SI � Actively Cautious PPI

SI�T in the Tbehaviour

part of the cycle theory.

• There is no rule which could enable PT
AE�T1 � Cautious PT

T1�AE in the Tbehaviour part
of the cycle theory.

• There is no rule that could enable PT
AE�AE � Actively Cautious PT

AE�AE , where
P 6= Actively Cautious P.

Proposition 4.1 An actively cautious cycle theory induces an operational trace which has the
characteristic feature of the actively cautious profile.
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Summary of Proof We need to prove that for every action execution transition in the
operational trace of the computee, two conditions hold:

1. All the preconditions of the action are known to hold at the time of the execution.

2. If there exist actions in the set of selected actions whose preconditions are not known to
hold, then the action executed is a sensing action.

In order to prove that these conditions hold we will first prove two auxiliary propositions:

Proposition 4.2 Whenever a PI transition takes place in the operational trace induced by
an actively cautious cycle theory, if there exist actions in the plan whose preconditions are
unknown, then the next transition is always a SI transition.

Proposition 4.3 Whenever there exist actions in the set of selected actions, in the operational
trace induced by the actively cautious cycle theory, whose preconditions are not known to hold,
and the last transition was not a PI transition, then there exists at least one sensing action in
the set of selected actions.

After we prove that these propositions hold, we will prove the two conditions stated above.
In order to prove the first condition we will try to construct an admissible set of rules which
concludes an action execution transition, for some action whose preconditions are not known
to hold. When we fail to do so, we will have proved that the cycle theory satisfies the first
condition.

In order to prove the second condition we will prove that there does not exist an admissible
set of rules which concludes an action execution which is not a sensing action, when there exist
actions with unknown preconditions in the set of selected actions.

Proof

• Whenever a PI transition takes place, if there exist actions in the plan whose preconditions
are unknown, then the next transition is always a SI transition.

Proof. In order to prove this we will try to construct an admissible set of rules which
concludes a transition T following PI, where T 6= SI. When we fail to do so we will have
proven that SI is the only admissible conclusion and therefore SI is always executed after
PI when there exist actions with unknown preconditions.

The set must contain a base rule of the form RPI|T (S, X) where T 6= SI, that enables
a transition after transition PI that is not a sensing introduction transition. Let’s first
show that a set ∆ consisting of only this rule is not admissible. The set ∆ is obviously
consistent. In order for it to be admissible it must also attack all its attacks.

Let’s now try and construct a set ∆′ that attacks ∆. Based on the defini-
tion of an actively cautious cycle theory, there exists a rule RPI|SI(S, Ps) in the
basic part of the theory. Let’s add this rule to the set ∆′ along with two
of the priority rules from the definition of the actively cautious profile: ∆′ =
RPI|SI(S′, Ps), Actively Cautious PPI

SI�T , Actively Cautious MPPI
SI�T }.

We first need to show that ∆′ attacks ∆. The two sets draw opposite conclusions since
∆ ` T (S, X), ∆′ ` SI(S, Ps), where T 6= SI and incompatible(T (S, X), SI(S, Ps)) holds.
Since there is no rule in ∆ that has higher priority than any rule in ∆′, ∆′ attacks ∆.
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In order for ∆ to be admissible, it has to attack ∆′. The rule RPI|SI(S′, Ps)
in ∆′ has higher priority than the rule RPI|T (S, X) in ∆ according to the rule
Actively Cautious PPI

SI�T in ∆′. But ∆ does not have a rule with higher priority than
any rule in ∆′. Therefore ∆ does not attack ∆′, so the set of rules ∆ is not admissible.

In order to extend the set ∆ let’s assume that there exists a priority rule in the
Tbehaviour part of the cycle theory that gives higher priority to the rule RPI|T (S, X)
over any other rule that is currently enabled. The constructed set is ∆ =
{RPI|T (S, X),PPI

T�T1}. The set ∆ is obviously consistent. In order for it to be ad-
missible it must also attack all its attacks. Consider the set ∆2 ⊆ ∆′ where ∆2 =
{Actively Cautious PPI

SI�T , Actively Cautious MPPI
SI�T }.

We first need to show that ∆′ attacks ∆. The two sets draw opposite conclusions since
∆ ` RPI|T (S, X) � RPI|SI(S, Ps), ∆2 ` RPI|SI(S, Ps) > RPI|T (S, X). Since there is
no rule in ∆ that has higher priority than any rule in ∆2, ∆′ attacks ∆.

In order for ∆ to be admissible, it has to attack ∆′. The rule Actively Cautious PPI
SI�T

in ∆2 has higher priority than the rule PPI
T�T1 in ∆, according to the rule

Actively Cautious MPPI
SI�T in ∆2. But ∆ does not have a rule with higher priority

than any rule in ∆2. Therefore ∆ does not attack ∆′, so the set of rules ∆ is not admis-
sible.

Note that there is no rule that we could add in the set ∆ that would make
it admissible, since according to the rule Actively Cautious MPPI

SI�T the rule
Actively Cautious PPI

SI�T has higher priority over any other priority rule of the form
PPI

T�SI . Also, according to the cycle theory definition there is no rule in Tbehaviour that
gives higher priority to any priority rule PPI

T�SI over the rule Actively Cautious PPI
SI�T .

Since we failed to create an admissible set of rules which concludes that a transition T
which is not a sensing introduction transition follows a PI transition, we can conclude
that this transition is not an admissible conclusion of the actively cautious cycle theory.
Therefore we have proven that a computee with an actively cautious cycle theory, always
executes a SI transition after a PI, whenever actions with unknown precondition exist
in the current plan.

• Whenever there exist actions in the set of selected actions whose preconditions are not
known to hold, and the last transition was not a PI transition, then there exists at least
one sensing action in the set of selected actions.

Proof. Let’s assume that there exists an action A in the set of selected actions for the
current state whose preconditions are not known to hold, and that the previous transition
was not a PI transition. We will prove that there exists at least one sensing action in the
set of selected actions.

We have already proven that after a PI transition takes place, the next transition is SI,
which introduces sensing actions for all the unknown preconditions of all the actions in
the plan. Since action A is in the set of selected actions, it is also in the current plan.
We have assumed that the last transition was not PI, so we know that when PI was
executed for the current plan, SI added sensing actions in the current plan for all the
unknown preconditions of all the actions in the plan. Since the preconditions of action
A are still unknown, then the sensing action is still in the plan and in the set of selected

25



actions.

• For every action execution transition in the operational trace of the computee, all the
preconditions of the action are known to hold at the time of the execution.

The proof is the same as in the cautious profile.

• For every action execution transition in the operational trace of the computee, if there
exist actions in the set of selected actions whose preconditions are not known to hold,
then the action executed is a sensing action.

Proof. Let Ti be a transition in the operational trace of the computee where
Ti(Si−1, Xi, Si, τi), Si = 〈KBi, Goalsi, P lani, TCSi〉 and Ti is an action execution
transition for some action A = 〈a[t], , C〉. Let’s assume that there exists an action
A′ ∈ cAS(Si−1, τi−1) where A′ = 〈a′[t], , C ′〉 and there exists a maximal non-empty set
of preconditions C ′′ ⊆ C ′ such that for each c ∈ C ′′:

– KBi−1 2TR c ∧ Σ[Si−1] ∧ t = τi−1

– KBi−1 2TR ¬c ∧ Σ[Si−1] ∧ t = τi−1

In order to prove the proposition we will try to construct an admissible set of rules which
concludes that action A is not a sensing action. When we fail to do so, we will have
proven that it is not an admissible conclusion and therefore the cycle theory satisfies the
required property.

The set must contain a base rule of the formRT |AE(S, X) that enables an action execution
as the next transition, for some action X which is not a sensing action. Since we already
know that the transition Ti is an action execution transition, we know that such a rule
exists and is enabled at the current state. Let’s first show that a set ∆ consisting of
only this rule is not admissible. The set ∆ is obviously consistent. In order for it to be
admissible it must also attack all its attacks.

Let’s now try and construct a set ∆′ that attacks ∆. We have already proven that
whenever a PI transition takes place, if there exist actions in the plan whose preconditions
are unknown, then the next transition is always a SI transition. Since transition Ti is an
AE transition and there exists an action in the set of selected actions whose preconditions
are not known to hold, we know that transition Ti−1 was not a PI transition. We have
also proven that when the last transition is not a PI transition and there exist actions in
the set of selected actions whose preconditions are not known to hold, then there exists at
least one sensing action in the set of selected actions. Also, as stated above, we already
know that a rule RT |AE exists and is enabled at the current state and time. Therefore
we can assume that the sensing action that exists in the set of selected actions is enabled
by this rule. Let’s add this rule to the set ∆′ along with two of the rules that were added
to the behaviour part of the cycle theory in order to achieve the actively cautious profile:
∆′ = {RT |AE(S, X ′), Actively Cautious PT

AE�AE , Actively Cautious MPT
AE�AE}.

We first need to show that ∆′ attacks ∆. The two sets draw opposite conclusions since
∆ ` AE(S, X), ∆′ ` AE(S, X ′), where X 6= X ′, and incompatible(AE(S, X), AE(S, X ′))
holds. Since there is no rule in ∆ that has higher priority than any rule in ∆′, ∆′ attacks
∆.
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In order for ∆ to be admissible, it has to attack ∆′. The ruleRT |AE(S, X ′) in ∆′ has higher
priority than the ruleRT |AE(S, X) in ∆ according to the rule Actively Cautious PT

AE�AE

in ∆′. But ∆ does not have a rule with higher priority than any rule in ∆′. Therefore ∆
does not attack ∆′, so the set of rules ∆ is not admissible.

In order to extend the set ∆ let’s assume that there exists a priority rule in the
Tbehaviour part of the cycle theory that gives higher priority to the rule RT |AE(S, X)
over any other rule that is currently enabled. The constructed set is ∆ =
{RT |AE(S, X),PT

AE�T1}. The set ∆ is obviously consistent. In order for it to be
admissible it must also attack all its attacks. Consider the set ∆2 ⊆ ∆′ where
∆2 = {Actively Cautious PT

AE�AE , Actively Cautious MPT
AE�AE}.

We first need to show that ∆′ attacks ∆. The two sets draw opposite conclusions since
∆ ` RT |AE(S, X) � RT |AE(S, X ′), ∆2 ` RT |AE(S, X ′) � RT |AE(S, X) and X 6= X ′.
Since there is no rule in ∆ that has higher priority than any rule in ∆2, ∆′ attacks ∆.

In order for ∆ to be admissible, it has to attack ∆′. The rule Actively Cautious PT
AE�AE

in ∆2 has higher priority than the rule PT
AE�T1 in ∆, according to the rule

Actively Cautious MPT
AE�AE in ∆2. But ∆ does not have a rule with higher prior-

ity than any rule in ∆2. Therefore ∆ does not attack ∆′, so the set of rules ∆ is not
admissible.

Note that there is no rule that we could add in the set ∆ that would make
it admissible, since according to the rule Actively Cautious MPT

AE�AE the rule
Actively Cautious PT

AE�AE has higher priority over any other priority rule that gives
priority to an action execution transition over some other execution transition. Also,
according to the cycle theory definition there is no rule in Tbehaviour that gives higher
priority to any priority rule PT

AE�AE over the rule Actively Cautious PT
AE�AE .

Since we failed to create an admissible set of rules which concludes that action A is not a
sensing action, we can conclude that this transition is not an admissible conclusion of the
theory, whenever there exist actions in the set of selected actions whose preconditions
are unknown.

We have proven that both conditions hold for every computee with an actively cautious cycle
theory. Therefore we have proven that a computee with an actively cautious cycle theory
satisfies the required property.

4.4 Properties of the Actively Cautious Profile

We defined the actively cautious cycle theory as any cycle theory with certain rules added and
where certain conditions hold. In order to find the properties of the actively cautious profile
we will compare a computee with an actively cautious cycle theory with a computee with a
modified version of the same cycle theory where the extra rules which were added to achieve
the actively cautious behaviour are removed. We will call such a theory an underlying cycle
theory.

One first attempt to write a proposition regarding the properties of the actively cautious
computee compared to a computee with the underlying theory is:

A computee with an actively cautious cycle theory is as good as a computee with an un-
derlying cycle theory with the same knowledge base KB, in the sense that whenever the latter
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succeeds in achieving a goal, so does the former one, in environments where:

• sensing actions always succeed in finding out the values of all the preconditions that were
sensed for.

• during the delay in executing an action, due to sensing for its preconditions, there is no
change of the truth value of the preconditions via some unknown factor in the environment.

• time is not critical. That is, the delay in action execution due to sensing does not result
in timing-out of the action.

Before we prove the above proposition, we need to study the last condition regarding time
criticality. Since we don’t want to completely eliminate time as a factor, we should try and
calculate how much extra time the actively cautious agent needs because of sensing. According
to the definition of an actively cautious cycle theory, the actively cautious agent chooses to
execute a sensing action over any other action execution transition, whenever there exist actions
in the set of selected actions whose preconditions are not known to hold. In the worst case it will
have to sense for all the preconditions of all the actions in the current plan before it executes
the first one of these actions. Also in the worst case it will take one sensing transition for
each one of these preconditions. On top of that the actively cautious agent will also execute a
Sensing Introduction transition right after executing a Plan Introduction transition, whereas the
computee with the underlying cycle theory might not take this step. Therefore the maximum
extra transition steps that an actively cautious agent will need before executing a specific action,
compared to the computee with the underlying cycle theory, will be equal to the sum of all
preconditions of all the actions in the current plan plus one for the Sensing Introduction step.
Hence we can modify the previous proposition as follows.

Proposition 4.4 A computee with an actively cautious cycle theory is as good as a computee
with the underlying cycle theory with the same knowledge base KB, in the sense that whenever
the latter succeeds in achieving a goal, so does the former one, in environments where:

• sensing actions always succeed in finding out the values of all the preconditions that were
sensed for.

• during the delay in executing an action, due to sensing for its preconditions, there is no
change of the truth value of the preconditions via some unknown factor in the environment.

• time is not very critical. Each action Aj in a plan Plan, where Aj = 〈aj [t], , Cj〉, has at
least time TAj

before it times out, where TAj
= 1 + Σ|Plan|

j=0 |Cj |, where |Plan| denotes the
number of actions in Plan and |Cj | denotes the number of precondition fluents in the set
Cj.

Proof We want to prove that if there exists an operational trace T0, ..., Tκ induced by the
underlying cycle theory such that Sκ � G for some goal G, then there exists an operational
trace T ′

0, ..., T
′
n induced by the actively cautious cycle theory such that S′

n � G.
By comparing the underlying cycle theory with the actively cautious cycle theory we can

conclude that the differences between the operational traces induced by the two cycle theories,
are the following. The operational trace induced by the actively cautious cycle theory might
include some extra sensing steps, it will not include action execution transitions for actions
whose preconditions are unknown and an SI transition will always follow a PI transition.
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We prove the proposition by showing that every action that is executed successfully in the
operational trace of the computee with the underlying cycle theory is also executed successfully
in the operational trace induced by the actively cautious computee.

Let A be an action that is executed successfully in the operational trace of the computee
with the underlying cycle theory. The fact that A is executed successfully means that the
preconditions of A were true at the time of execution. According to the differences in the
behaviour of the two computees, the only difference in the actions included in their Plan, is
that the plan of the actively cautious computee may include some extra sensing actions, but all
the other actions in the plan will be the same. Hence action A is also in the plan of the actively
cautious computee. Even though the action might be executed at a later time in the operational
trace of the actively cautious computee, compared to the operational trace of the computee with
the underlying cycle theory, the delay does not affect the value of the preconditions of A, as
stated in the proposition, and the preconditions of action A still hold. The actively cautious
computee either knows that the preconditions of A hold or it senses the environment to find
out their value. Since sensing always succeeds the computee eventually finds out that the
preconditions hold. Note that the delay due to sensing does not affect the preconditions value.
Also based on our assumptions of the environment, action A does not time out during this time
and the actively cautious computee executes it successfully.

This means that if an action is executed successfully in the operational trace of the
computee with the underlying cycle theory then that action also executes successfully in the
operational trace induced by the actively cautious computee. Hence when a goal is achieved
in the operational trace induced by the underlying cycle theory it is also achieved in the
operational trace induced by the actively cautious cycle theory, therefore proposition 4.4 holds.

Based on our study on how much extra time the actively cautious computee needs in order to
execute an action and also based on the above proof we can conclude the following.

Corollary 4.1 If a computee with an underlying cycle theory successfully executes an action
Aj which belongs to a plan Plan, where Aj = 〈aj [t], , Cj〉, then the actively cautious computee
will successfully execute the same action after at most 1 + Σ|Plan|

j=0 |Cj | number of transition
steps, where |Plan| denotes the number of actions in Plan and |Cj | denotes the number of
precondition fluents in the set Cj.

Since a goal is achieved after the last action in the plan for that goal succeeds, and since we
proved that proposition 4.4 holds we can conclude the following.

Corollary 4.2 If a computee with an underlying cycle theory achieves a goal G and Aκ ∈ Plan
is the last action in the plan for goal G that is executed, where Aj = 〈aj [t], , Cj〉, then the
actively cautious computee will achieve the same goal after at most 1 + Σ|Plan|

j=0 |Cj | number
of transition steps, where |Plan| denotes the number of actions in Plan and |Cj | denotes the
number of precondition fluents in the set Cj.

We can also show that in certain cases a computee with an actively cautious cycle theory is
better than a computee with an underlying cycle theory in that the first succeeds in achieving
a goal while the second fails to achieve the same goal.

Example 3 We can easily create a scenario where the actively cautious computee succeeds but
the computee with the underlying cycle theory fails.Suppose that the two computees have exactly
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the same knowledge base and that there exists a set of actions A1, . . . , An in the set of selected
actions whose preconditions are unknown. Also assume that actions A1, . . . , An−1 belong to
plans for a set of goals Gs whereas action An belongs to a plan for a goal G′ /∈ Gs.

According to the definition of the actively cautious computee, it will execute sensing actions
since there exist actions in the set of selected actions with unknown preconditions. After ex-
ecuting sensing the actively cautious computee finds out that the preconditions of the actions
A1, . . . , An−1 do not hold whereas the preconditions of action An hold. Therefore the actively
cautious computee does not execute any of the actions whose preconditions do not hold and
executes next action An. The execution succeeds and goal G′ is achieved.

A possible operational trace for the computee with the underlying cycle theory in the above
scenario is to begin to, unsuccessfully, execute actions A1, . . . , An−1, since it does not know
that their preconditions do not hold. While it is executing these actions, action An times out.
Consequently the computee with the underlying cycle theory fails to achieve goal G′.

Therefore we conclude that in certain scenarios a computee with an actively cautious cycle
theory succeeds where a computee with an underlying cycle theory fails.

It’s important to comment here that a computee with the actively cautious profile would be
more efficient if its definition was extended so that once it recognized that an action will not
succeed because its preconditions do not hold, it would execute a plan revision transition in
order to find a new plan to execute the goal which would not include these actions. This shows
the need for a new plan revision transition which would take as input the set of actions whose
preconditions do not hold, so that these actions will not be included in the revised plan.

5 Punctual profile

The computees adopting this profile are committed to promptly devising and executing their
plans, so as to avoid that time flux can make them “obsolete”, and hence unachievable, since
their actions can not be executed and their goals can not be achieved within the expected
deadlines.

5.1 Informal statement of the property.

The computee selects urgent goals and urgent actions for planning and execution.

The above informal statement can be further refined in two possible interpretations, which
seem worth being investigated as behaviour profiles (in the following we will use the term item
for both goals and actions):

1. whenever planning or executing actions select the items that are more urgent than the
others (simple punctual computee),

2. if there are very urgent items, i.e. items close to their deadlines, prefer Planning (PI)
or/and Action Execution (AE) (punctual computee), possibly

(a) with a given preference among the two, and

(b) adopting the behaviour in 1 to determine the suitable items to which to apply the
transition.
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The first profile can be expressed by means of a basic cycle theory by suitably constraining
the items selected by the action and goal (core) selection functions, while the second one requires
a behaviour cycle theory expressing the preference for PI or AE over all the other transitions, and
a preference between the two transitions themselves (if one wants to avoid conflicts generated
by the incompatibility relation of the cycle theory, which, although admissible in a credulous
cycle theory, would make it non-deterministic).

5.2 Formal definition

Definition of the notion of more urgent items. We first define when an item is more
urgent than others. This notion will be used to define the simple punctual computee. Given a
temporal constraint store TCS, we define the deadline d of an item i[t] as the minimum time
point in which it becomes timed out:

d =

8<:
∞ if ∀m |=R TCS ∪ {t >= m}

min{m | 6|=R TCS ∪ {t >= m} } otherwise

where, given S the current state of the computee, |=R TCS stands for a total Σ(S)-valuation
σ exists such that σ |=R TCS and 6|=R TCS stands for a total Σ(S)-valuation σ such that
σ |=R TCS does not exist (see Deliverable D8, Section 7.4 for further details).

Let now be the current time, i[ti] and j[tj ] two items whose deadlines are di and dj , re-
spectively. The item i[ti] is more urgent than j[tj ] (with respect to TCS), written i[t1] � j[tj ],
iff

now ≤ di < dj

i.e. both the items are not currently timed out and the deadline of i[t] is less (closer) than
the deadline of j[t′]. The relation � is anti-reflexive and transitive (trivially d < d does not
hold, and from now ≤ d1 < d2 (i[t1] � i[t2]) and now ≤ d2 < d3 (i[t2] � i[t3]) it follows
now ≤ d2 < d3 (i[t1] � i[t3]) Informally speaking, � induces an irreflexive chain structure over
the set of items.

It is easy to observe that two items are not comparable with respect to � iff they have the
same deadline, or at least one of them is already timed out. (Trivially, the if part by definition,
and the only if part by supposing that i[t1] and j[t2] have different deadlines, and they are bigger
or equal than now, but then now ≤ d1 < d2, i.e. i[t1] � j[t2], or viceversa now ≤ d2 < d1).

Given a set of items X, the time parameter now, the relation more urgent items(X, Y, now)
holds iff Y contains the maximal elements of X, with respect to �, i.e.

∀ i[t] ∈ X. i[t] ∈ Y ⇔ 6 ∃ j[t′] ∈ X. j[t′] � i[t],

Any element in Y is closer to its deadline than any element in X. By using the
more urgent items/3 relation to select the actions to execute in an AE transition or the goals
to plan for during a PI transition induces an ordering which is “safe” with respect to TCS,
but it may unnecessarily restrict the number of executed actions or goals for which a plan
is devised. This could even cause some actions or goals to unnecessarily become timed out,
while they could have been executed all together in one single transition. In order to over-
come this problem it is possible to enlarge the set of chosen items up to a given parameter
n, so as to include not only the maximal elements, but the n bigger elements: the relation
more urgent items(X, Y, now, n) holds iff

#Y = n ∧ ∀ i[t] ∈ X. i[t] ∈ Y ⇔ 6 ∃ j[t′] ∈ X \ Y. j[t′] � i[t],
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where # is the cardinality of a set. Unfortunately, this does not guarantee anymore TCS
satisfiability, for instance in presence of strict temporal constraints, i.e. <, between two actions
that could be selected together and executed at the same instant.

Example 4 Let us consider the set of actions X = {a[ta], b[tb], c[tc]} with the constraints {ta <
tb, tb <= 100, tc <= 100}. It holds

a[ta] � b[tb] a[ta] � c[tc]

while b[tb] and c[tc] are not comparable. We have that Y = {a[ta]},
for more urgent items(X, Y, now), while Y ′ = {a[ta], b[tb], c[tc]}, for
more urgent items(X, Y ′, now, n) with n ≥ 3. Note that executing the Y ′ set of action
at now does not satisfies the constraint ta < tb. On the other hand, executing Y may render
b[tb] and c[tc] timed out when now is too close to 100.

It is worth pointing out that the choice of not imposing any (correct) ordering in the core
selection functions has been done so as to guarantee the generality of the model, in accordance
with the idea that a computee operating in a global computing environment can not be guar-
anteed to always behave correctly, but rather it is expected to be able to react to its faults or
the problems it may encounter in the environment, for instance by revising its failed plans or
updating its goals. The choice between the two options and a suitable tuning of n are heuristic
design choices, depending on the specific domain the computee is designed for, and the features,
e.g. punctuality vs. correctness, the designer is more interested in.

The computational counterpart of the definition for �, can be addressed by reasoning over
the domains of the time variables. These can be determined by means of decidable procedures,
based on constraint (arc-consistency) propagation over finite domains, which are polynomial in
time (if inequalities are not allowed). Deadlines are trivially determined from variable domains,
where ∞ means an unconstrained domain. Constraint theory is however out of scope here.
However, it is possible to adopt a simpler brute force approach, consisting in comparing all the
possible pairs of items and hence ordering them.

Definition of the notion of very urgent items. In order to define a punctual computee,
the notion of very urgent items needs to be introduced. It will be used by the punctual profile
to prefer an AE or PI transition, whenever there are actions or goals that are very urgent since
close to their deadline. Given a temporal constraint store TCS, the constant now indicating
the present time, and a time parameter u, an item i[t] is very urgent with respect to u iff

|=R TCS ∪ {t = now} ∧ 6|=R TCS ∪ {t >= now + u}

i.e. the deadline of the item is at most u time instants close, although the item is not timed
out yet. The parameter u is critical for the effectiveness of the profile, since a too loose (big) u
makes too many items very urgent, while a too tight one makes items urgent possibly when they
are too close to their deadline to be dealt with. The relation very urgent items(X, Y, now, u)
holds iff Y contains all the items of X that are very urgent, i.e.

∀i[t] ∈ X. i[t] ∈ Y ⇔ i[t] is very urgent w.r.t. u.
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State characteristics. In the states of an operational trace of a simple punctual computee
all the AE or PI transitions are applied to input sets containing the more urgent items amongst
those selected by the core selection functions. On the other hand, in the states of a puncutal
computee, whenever there are urgent items either an AE or a PI transition has to be applied.

1. Given an operational trace of a simple punctual computee

T0(S0, Y0, S1, τ0), . . . Ti(Si, Yi, Si+1, τi), . . .

for all i such that Ti = AE or Ti = PI, the set Yi satisfies the relation
more urgent items(Xi, Yi, τi, n), (or more urgent items(Xi, Yi, τi) according to the de-
sign choices of the computee), where Xi is the input set returned by the (core) selection
function in the transition Ti.

2. Given an operational trace of a punctual computee

T0(S0, Y0, S1, τ0), . . . Ti(Si, Yi, Si+1, τi), . . . ,

let V UAi be the set of very urgent actions in Si (very urgent actions(Xi, V UAi, now, u),
with Xi returned by the core action selection function), and V UGi the set of very urgent
goals (very urgent goals(Xi, V UGi, now, u), with Xi returned by the core goal selection
function). Then for all i

(a) V UAi 6= ∅ ⇒ Ti = AE ∨ (V UGi 6= ∅ ∧ Ti = PI), and

(b) V UGi 6= ∅ ⇒ Ti = PI ∨ (V UAi 6= ∅ ∧ Ti = AE).

This condition says that whenever there are very urgent actions the transition must be
AE, unless there are very urgent goals and the transition is PI, and analogously for the
presence of very urgent goals. No priority is fixed amongst AE and PI when both very
urgent actions and goals are present.

Cycle theory characterisation. A simple punctual computee can be programmed by means
of a basic cycle theory: when planning or executing actions give precedence to to the items that
are closer to their deadlines amongst those returned by the core selection functions.

The cycle theory T of a simple punctual computee contains the following basic rules (ab-
stracting away from n instantiation):

PunctualT |AE(S′, Y ) :
∗AE(S′, Y )← T (S, X, S′, τ), selected actions(S′, X ′), now(τ ′),

more urgent actions(X ′, Y, τ ′), Y 6= ∅.

PunctualT |PI(S′, Y ) :
∗PI(S′, Y )← T (S, X, S′, τ), selected goals(S′, X ′), now(τ ′),

more urgent goals(X ′, Y, τ ′), Y 6= ∅.

This schema of rules are the only ones enabling AE or PI transitions after a generic T
transition. As for the case of the cautious computee, this behaviour can be further restricted
by limiting the transitions that can be followed by an AE or PI transition. This can be obtained
by replacing the above schema, with rules where T is instantiated for each rule with the name of
one of the transitions that can be followed by AE or PI, and the body of the rule is unchanged.
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The cycle theory of a punctual computee consists of the above basic rules and a behavioural
theory that imposes the selection of an AE or PI transition whenever there are very urgent
items. The behaviour rules are as follows.

PunctualT
′

AE�T (S′, Y ) :
PunctualT ′|AE(S, Y ) � RT ′|T (S′, X)← selected actions(S′, X ′), now(τ ′),

very urgent actions(X ′, Y, τ ′, u),
Y 6= ∅.

PunctualT
′

PI�T (S′, Y ) :
PunctualT ′|PI(S, Y ) � RT ′|T (S′, X)← selected goals(S′, X ′), now(τ ′),

very urgent goals(X ′, Y, τ ′, u),
Y 6= ∅.

The two rules above state that AE (PI) is preferred to all the other transitions when there
are very urgent actions (goals), according to the idea that if there are actions and goals close
to their deadlines to require an AE or PI transition is recommendable. It is required that the
ones above are the only rules in the punctual cycle theory that define preferences over AE and
PI transitions, i.e. another rule RT ′

T�W , where W is (or can be instantiated to) either AE or
PI, does not exist in the theory.

Since the cycle theory adopts a credulous approach, the lack of a priority amongst AE and
PI in presence of both very urgent actions and very urgent goals results in a non-deterministic
choice. If one wants to control also this case, it is enough to make the conditions of the above
rules disjoint. For instance, in order to have a fixed priority of AE over PI in presence of both
very urgent actions and very urgent goals, it is enough to modify the second rule in

PunctualT
′

PI�T (S′, Y ) :
PunctualT ′|PI(S, Y ) � RT ′|T (S′, X ′)← selected goals(S′, X),

selected actions(S′,W ), now(τ ′),
very urgent goals(X, Y, τ ′, u),
very urgent actions(W,Z, τ ′, u),
Y 6= ∅, Z = ∅.

which imposes that PI can be preferred only when there are not very urgent actions.

Compliance of the cycle theory with the state characteristic for a puncutal com-
putee. Referring to a simple punctual computee, whose only basic rules enabling AE and PI
transitions are the ones labeled as Punctual, the correspondence between state characteristic
and cycle theory is trivial. Similarly to the case of a cautious computee, let us consider an
operational trace of a simple punctual computee

T0(S0, X0, S1, τ0), . . . Ti(Si, Xi, Si+1, τi), . . . ,

where for some i it holds Ti = AE. Then, the only basic rule enabling the tran-
sition is (an instance of) PuncutalT |AE It follows that Xi must satisfy the relation
more urgent actions(X ′

i, Xi, τ
′, n) and Xi 6= ∅, (X ′

i is the set of actions returned by the core
action selection function), as specified by the state characteristic for this profile. The case for
Ti = PI is analogous.
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Let us now consider the case of a punctual computee, with preference of AE over PI when
both very urgent actions and goals are present, i.e. the cycle theory T contains the Puncutal as
the only basic rules enabling AE and PI, the PunctualT

′

AE�T and the emended PunctualT
′

PI�T

behaviour rules (which are required to be the only ones determining a preference over AE and
PI).

Under the condition of preference of AE over PI, the state characteristic can be rewritten
as

(V UAi 6= ∅ ⇒ Ti = AE) ∧ (V UAi = ∅ ∧ V UGi 6= ∅ ⇒ Ti = PI)

Let us assume that V UAi 6= ∅ for a given i, and prove that necessarily Ti = AE. We have
to prove that exists ∆ ⊆ T admissible argument which concludes AE. The set ∆P , consisting of
the Puncutal basic rules and the PunctualT

′

AE�T and PunctualT
′

PI�T behaviour rules, is such an
admissible argument that concludes AE. Indeed, AE can be derived by the PuncutalT |AE rule,
whose conditions in the body are satisfied and no other argument that attacks ∆P can be found
in T . Indeed, let us assume that a counter argument ∆A that attacks ∆P exists. Then ∆A

should conclude an incompatible transition different from AE by means of a different basic rule
R. But then, such a rule should be preferred to PuncutalT |AE by a behaviour rule in ∆A ⊆ T ,
but this would violate the condition “a rule RT ′

T�W , where W is (or can be instantiated to)
either AE or PI, does not exist in T ”.

The case for V UAi = ∅ ∧ V UGi 6= ∅ is analogous.

5.3 Punctual profile features

The punctual profile behaviour presents two distinguishing features:

1. it sequences the items in its plan so that those with closer deadlines are dealt with first
(simple punctual). This can be formalised as follows:

Proposition 5.1 Let PP be a computee with a simple punctual profile, and

T0(S0, Y0, S1, τ0), . . . Ti(Si, Yi, Si+1, τi), . . . ,

be one of its traces. Then for each i such that Ti = AE, if a[ta] ∈ Yi then there is no
action b[tb] in the plans of PP in Si such that it is nor executed or timed-out and it holds
b[tb] � a[ta].

Proof. Trivial, by the definition of more urgent actions(Xi, Yi, τi), with Xi returned
by the core action selection function in the transition i.

2. according to its state characteristic, as proved above, it “forces” AE or PI whenever
there are items arbitrarily close to their deadlines (punctual). This feature may be used
to guarantee that actions or goals in the plan do not become timed-out before they have
been dealt with. A critical issue is the parameter u, determining the time window in which
items are considered critically urgent before their deadlines. Clearly this can not leave out
of consideration the costs for planning or executing actions. For instance, assuming that
the computee performs an action at the time, u could be dynamically defined in function
of the number of actions still to be executed in the plan: if there are n such actions,
starting to execute them at least n instants before the closest deadline, guarantees that
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all will be executed on time. On the other hand, setting a too big u may render too many
actions urgent, possibly unnecessarily forcing the computee to repeating AE, while other
transitions could be useful, or needed, to improve its individual welfare.

Both the above behaviours have been observed by the experimentation reported in the
following example.

Example 5 Let us consider a computee that has the goal of going to work before time 20. Its
plan is to get the bus, but this requires to have a ticket as precondition. The plan for having a
ticket is simply to buy one. Its KBplan is (analogously its KBTR):

initiates(get_bus, _, go_to_work). precondition(get_bus,
have_ticket). initiates(buy_ticket,_,have_ticket).

and the representation of its initial state is

< [], %% KB_0
[goal((go_to_work,T), root_1, [])], %% goals
[], %% empty plan
[T#<20] > %% temporal constraints

In this oversimplified representation, the trace of the normal profile selects actions and goals
independently of their temporal constraints. It first (attempts to) gets the bus, and then to buy
the ticket, hence failing to achieve its goal that can not be proved to hold according to the final
KB0 (indeed, the action get bus has been executed at 2, when the precondition have ticket
was not enforced by the action buy ticket, which has been executed at 6):

HISTORY

--> 0: step(INIT,[])
--> 1: step(PI,((go_to_wok,eqv(t1)),root_1,[]))
--> 2: step(AE,((get_bus,eqv(t4)),(go_to_wok,eqv(t1)),[have_ticket],[]))
--> 3: step(GI,[])
--> 4: step(RE,[])
--> 5: step(PI,((have_ticket,eqv(t4)),(go_to_work,eqv(t1)),[]))
--> 6: step(AE,((buy_ticket,eqv(t8)),(have_ticket,eqv(t4)),[],[]))
--> 7: step(GI,[])
--> 8: step(RE,[])
--> 9: step(GR,[])
--> 10: step(PR,[])
--> 11: ...

KB 0
-> executed(((get_bus,2),(go_to_work,eqv(t1)),[have_ticket],[]))
-> executed(((buy_ticket,6),(have_ticket,eqv(t4)),[],[]))

Instead, the punctual computee, in this implemented version that executes actions when they
become very urgent (with a notion of urgency bounded to be 5 instant close to deadlines), succeeds
in achieving its goal. go to work is now entailed by the final KB0, where buy ticket has been
executed at 14 and get bus at 15, in the correct order and just 5 instants before their respective
deadlines:
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HISTORY

--> 0: step(INIT,[])
--> 1: step(PI,((go_to_work,eqv(t1)),root_1,[]))
--> 2: step(GR,[])
--> 3: step(PR,[])
--> 4: step(PI,((have_ticket,eqv(t4)),(go_to_work,eqv(t1)),[]))
--> 5: step(GR,[])
--> 6: step(PR,[])
--> 7: step(RE,[])
--> 8: step(GR,[])
--> 9: step(PR,[])
--> 10: step(RE,[])
--> 11: step(GR,[])
--> 12: step(PR,[])
--> 13: step(RE,[])
--> 14: step(AE,((buy_ticket,eqv(t8)),(have_ticket,eqv(t4)),[],[]))
--> 15: step(AE,((get_bus,eqv(t4)),(go_to_work,eqv(t1)),[have_ticket],[]))
--> 16: step(GI,[])
--> 17: step(RE,[])
--> 18: step(GR,[])
--> 19: step(PR,[])
--> 20: step(GI,[])
--> 21: ---

KB 0
-> executed(((buy_ticket,14),(have_ticket,eqv(t4)),[],[]))
-> executed(((get_bus,15),(go_to_work,eqv(t1)),[have_ticket],[]))

It is also interesting to note how in steps 14 and 15 two consecutive AE, which are not usually
admitted in a normal profile, have been forced due to the presence of very urgent actions.

5.4 Discussion

Intuitive advantages. The main advantage of a punctual computee is not to let goals and
actions become not achievable because of their deadlines. Moreover, under the cited assump-
tions, it induces a correct ordering between goals and actions that are present in its plans. This
is intended to facilitate (top) goal satisfaction, to minimise failures due to a not careful man-
agement of time or a wrong sequencing of action execution. Not surprisingly, the effectiveness
of the profile may highly depend on the specific features of the application domain, on which
an optimal tuning of the parameter u may depend. Problems due to a too big u have been
already mentioned above, while a too small u, say 0, could probably not allow the computee to
manage actions and goals before their deadlines. In this sense, not only the pace of environment
changes is relevant but also the computational/execution costs of the computee. Indeed, in the
present formulation the costs for action execution or planning have not been taken into account,
since in principle a computee could try to execute (plan for) all the urgent actions (goals) in
one transition. In this respect a suitable tuning of the other parameter n, i.e. the number of
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items dealt with in a transition, could be valuable for the computee effectiveness, intended as
a balanced distribution of action execution and planning over time.

Trivially, in the general case, it is possible to have examples where the punctual computee
increases its welfare function more than a computee with a different behaviour profile, but also
vice-versa. It is expected that in a time-critical or fast evolving environment, the punctual
computee performs better than other computees.

Alternative definitions.

• Impatiently punctual computee. Given its notion of urgency, the computee gives up all
the plans and goals that appear “too urgent” (possibly also considering their complex-
ity). This computee abandons a goal/plan as soon as it realises it can not manage to
achieve/execute it on time. This has a relation with the idea of considering costs of ac-
tion execution and planning above mentioned. The enhanced effectiveness of this profile
should be due to not wasting time in pursuing goals that will not be achieved.

6 The Impatient Profile

In this section we examine the impatient profile of behaviour. In section 6.2 we identify the
characteristic feature of the impatient profile. In section 6.3 we define what an impatient cycle
theory is and prove that any such cycle theory induces an operational trace which has the
required feature. Finally in section 6.4 we give a new definition of what an impatient cycle
theory is and we define and prove comparison properties for the impatient profile.

6.1 Informal Definition.

In order to give the informal definition of the impatient profile of behaviour, we first need to
give the following definition.

Definition 6.1 We say that two actions A1 = 〈a1[t1], , 〉 and A2 = 〈a2[t2], , 〉 are of the
same type iff a1 = a2.

An impatient profile of behaviour prevents a computee from executing an action, if an action
of the same type was executed in the past unsuccessfully, that is, without producing the desired
effect. A more moderate version of this profile can be obtained by defining a time window after
which the computee is allowed to execute the action. In our study of the profile, the computee
never executes an action if an action of the same type was executed unsuccessfully in the past,
unless no other transition is enabled.

6.2 Formal Definition

Characteristic Feature of the Impatient Profile. Given any transition Ti(Si−1, Xi, Si, τi)
in the operational trace of the computee such that executed(a[t], τi) ∈ KBi

0 for some action
A = 〈a[t], , 〉, where Si = 〈KBi, Goalsi, P lani, TCSi〉, then

• either KBi−1 2 unsuccessful(a[t′])

• or the only transitions possible from state Si−1 are of the form AE(Si−1, As), where for
every action A = 〈a[t], , 〉 ∈ As, it holds that KBi−1 � unsuccessful(a[t′]).
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Where the predicate unsuccessful(a[t′]) is defined appropriately using the Temporal Rea-
soning capability of the computee and it means that an action 〈a[t′], , 〉 was executed unsuc-
cessfully in the past. This means that executed(a[t′], ) ∈ KB0, but the desired effects of the
action do not hold at the current time and nothing happened between the time it was executed
and the current time that could make the effects not hold.
In other words the computee does not execute an action if an action of the same type was
executed unsuccessfully in the past, unless it has no other choice of transition.

6.3 Impatient Cycle Theories

An impatient cycle theory is any cycle theory where

• The following two rules are part of the Tbehaviour part of the theory:

– Impatient PT
T1�AE : RT |T1(S, X) � RT |AE(S, As)) ← ∃A ∈ As,A =

〈a[t], , 〉, unsuccessful(a[t′])
for every T and T1, X such that either T1 6= AE or T1 = AE and X 6= As.

– Impatient MPT
T1�AE : Impatient PT

T1�AE � PT
AE�T1,

for every T and T1, such that T1 6= AE.

• There is no rule which could enable PT
AE�T1 � Impatient PT

T1�AE in the Tbehaviour part
of the cycle theory.

The purpose of the rule Impatient PT
T1�AE is to give lower priority over any other transition

to transitions of Action Execution with input parameter a set of actions As when an action
of the same type as an action in As was executed unsuccessfully in the past. The purpose of
the rule Impatient MPT

T1�AE is to give the rule Impatient PT
T1�AE higher priority than any

other priority rule which gives higher priority to an AE transition.

Proposition 6.1 An impatient cycle theory induces an operational trace which has the char-
acteristic feature of the impatient profile.

Proof In order to prove the proposition we will try to construct an admissible set of rules
which concludes an action execution transition for a set of actions As when an action of the
same type as an action in As was executed unsuccessfully in the past, assuming that there is
at least one other transition enabled. When we fail to do so, we will have proven that it is not
an admissible conclusion and therefore the cycle theory satisfies the required property.

Formally we will try to construct an admissible set of rules which concludes the transition
AE(Si, As), when there exists an action A ∈ As, where A = 〈a[t], , 〉 such that KBi �
unsuccessful(a[t′]), assuming that there exists a possible transition T ′(Si, X), where either
T ′ 6= AE or T ′ = AE, and for every action A′ = 〈a′[t], , 〉 ∈ X, KBi 2 unsuccessful(a′[t′]).

The set must contain a base rule of the form RT |AE(S, As) that enables an action execution
as the next transition. Let’s assume that such a rule exists and is enabled at the current state.
Let’s first show that a set ∆ consisting of only this rule is not admissible. The set ∆ is obviously
consistent. In order for it to be admissible it must also attack all its attacks.

Let’s now try and construct a set ∆′ that attacks ∆. Based on our assumption, there
exists a possible transition T ′(Si, X), which means that there exists a rule RT |T ′(S, X)
which is currently enabled. Let’s add this rule to the set ∆′ along with the two rules
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that were added to the cycle theory in order to achieve the impatient profile: ∆′ =
{RT |T ′(S, X), Impatient PT

T1�AE , Impatient MPT
T1�AE}.

We first need to show that ∆′ attacks ∆. The two sets draw opposite conclusions since ∆ `
AE(S, As), ∆′ ` T ′(S, X), where AE 6= T ′ or As 6= X, and incompatible(AE(S, As), T ′(S, X))
holds. Since there is no rule in ∆ that has higher priority than any rule in ∆′, ∆′ attacks ∆.

In order for ∆ to be admissible, it has to attack ∆′. The rule RT |T ′(S, X) in ∆′ has higher
priority than the rule RT |AE(S, As) in ∆ according to the rule Impatient PT

T1�AE in ∆′. But
∆ does not have a rule with higher priority than any rule in ∆′. Therefore ∆ does not attack
∆′, so the set of rules ∆ is not admissible.

In order to extend the set ∆ let’s assume that there exists a priority rule in the Tbehaviour

part of the cycle theory that gives higher priority to the rule RT |AE(S, As) over any other rule
that is currently enabled. The constructed set is ∆ = {RT |AE(S, As),PT

AE�T1}. The set ∆ is
obviously consistent. In order for it to be admissible it must also attack all its attacks. Consider
the set ∆2 ⊆ ∆′ where ∆2 = {Impatient PT

T1�AE , Impatient MPT
T1�AE}.

We first need to show that ∆′ attacks ∆. The two sets draw opposite conclusions since
∆ ` RT |AE(S, As) � RT |T1(S, X), ∆2 ` RT |T1(S, X) � RT |AE(S, As). Since there is no rule
in ∆ that has higher priority than any rule in ∆2, ∆′ attacks ∆.

In order for ∆ to be admissible, it has to attack ∆′. The rule Impatient PT
T1�AE in ∆2 has

higher priority than the rule PT
AE�T1 in ∆, according to the rule Impatient MPT

T1�AE in ∆2.
But ∆ does not have a rule with higher priority than any rule in ∆2. Therefore ∆ does not
attack ∆′, so the set of rules ∆ is not admissible.

Note that there is no rule that we could add in the set ∆ that would make it admissible, since
according to the rule Impatient MPT

T1�AE the rule Impatient PT
T1�AE has higher priority over

any other rule that gives priority to any transition over an action execution transition. Also,
according to the cycle theory definition there is no rule in Tbehaviour that gives higher priority
to any priority rule PT

AE�T1 over the rule Impatient PT
T1�AE .

We demonstrated that there does not exist an admissible set of rules which concludes an
action execution transition for a set of actions As when an action of the same type as an action
in As was executed unsuccessfully in the past and when there are other transitions enabled.
Hence, we can conclude that this transition is not an admissible conclusion of the impatient
cycle theory an therefore we have proven that a computee with an impatient cycle theory
satisfies the required property.

6.4 Properties of the Impatient profile

We defined the impatient cycle theory as any cycle theory with certain rules added and where
certain conditions hold. In order to find the properties of the impatient profile we will compare
a computee with an impatient cycle theory with a computee with a modified version of the
same cycle theory where the extra rules which were added to achieve the impatient behaviour
are removed. We will call such a theory an underlying cycle theory of the computee.

Proposition 6.2 A computee with an impatient cycle theory is as good as a computee with an
underlying cycle theory with the same knowledge base KB, in the sense that whenever the latter
succeeds in achieving a goal, so does the former one, in environments where the value of the
preconditions of an action do not change by via some unknown factor in the environment.

Note that the above proposition holds with the following exception. If the preconditions of an
action do not hold when the action is first executed, causing it to fail, but their value is then
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set to true as an effect of another action the computee executes, the impatient computee will
not try executing an action of the same type as the one that failed, hence the computee with
the underlying cycle theory might succeed in achieving a goal which the impatient computee
fails to achieve.

This motivates a new definition for the impatient cycle theory, where if the preconditions of
an action that was executed unsuccessfully in the past are made to hold by some other action
the computee executes, then it should be allowed to execute an action of the same type as the
action that failed:
An impatient cycle theory is any cycle theory where

• The following rules are part of the Tbehaviour part of the theory:

– The rule Impatient PT
T1�AE which gives lower priority over any other transition to

transitions of Action Execution with input parameter a set of actions As if an action
of the same type as an action in As was executed unsuccessfully in the past:
Impatient PT

T1�AE : RT |T1(S, X) � RT |AE(S, As) ← ∃A ∈ As,A =
〈a[t], , 〉, unsuccessful(a[t′])
for every T and T1, X such that either T1 6= AE or T1 = AE and X 6= As.

– The rule Impatient′ PT
AE�T1 which gives higher priority to an action execution

transition with input a set of actions As, over some other transition, if an action A′

of the same type as an action in the set As was executed unsuccessfully in the past
but the values of its preconditions have possibly changed as an effect of some other
action that the computee has executed between the time when A′ was executed and
the current time:
Impatient′ PT

AE�T1 : RT |AE(S, As) � RT |T1(S, X) ← ∃A ∈ As,A =
〈a[t], , 〉, unsuccessful(a[t′]), possible prec change(S, a)
for every T, T1, X, such that either T1 6= AE or T1 = AE and X 6= As, where the
predicate possible prec change is defined as follows:
possible prec change(S, a) ← last unsuccessful(a[t], τi),∃B,B =
〈b[t], , 〉, executed(b[t], τj), affects(b[t], prec(a)), τj > τi

where the predicate last unsuccessful(a[t], τ) is defined appropriately using the
Temporal Reasoning capability of the computee and it means that action of type
a was executed unsuccessfully at time τ , and the predicate affects(b[t], prec(a))
is defined appropriately using the Temporal Reasoning capability of the computee
and it means that the execution of the action b[t] can have as an effect the change
of the value of at least one of the preconditions of an action of type a.

– The rule Impatient′ MPT
AE�T1 which gives higher priority to the rule

Impatient′ PT
AE�T1 over the rule Impatient PT

T1�AE :
Impatient′ MPT

AE�T1 : Impatient′ PT
AE�T1 � Impatient PT

T1�AE

for every T and T1, such that T1 6= AE.

– The rule Impatient MPT
T1�AE which gives higher priority to the rule

Impatient PT
T1�AE over any priority rule PT

AE�T1 which gives higher priority to
an AE transition, when PT

AE�T1 6= Impatient′ P:
Impatient MPT

T1�AE : Impatient PT
T1�AE � PT

AE�T1,
for every T and T1, such that T1 6= AE and P 6= Inpatient′ P.
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• There is no rule which could enable PT
AE�T1 � Impatient PT

T1�AE) in the Tbehaviour part
of the cycle theory, besides the rule Impatient′ MPT

AE�T1.

We will now prove proposition 6.2 based on the above cycle theory.

Proof We want to prove that if there exists an operational trace T0, ..., Tκ induced by the
underlying cycle theory such that Sκ � G for some goal G, then there exists an operational
trace T ′

0, ..., T
′
n induced by the impatient cycle theory such that S′

n � G.
By comparing the underlying cycle theory with the impatient cycle theory we can conclude

that the only difference between the operational traces induced by the two cycle theories, is
that the impatient computee will not execute an action if another action of the same type was
executed unsuccessfully in the past as part of another plan, unless some other action which could
affect the preconditions of the action that failed, is executed. On the other hand, an action
of the same type as the one that failed might be executed in the operational trace induced
by the underlying cycle theory, as part of another plan, even if no action which could affect
its preconditions is executed. Hence we conclude that differences in the behaviour of the two
computees occur only when actions are executed unsuccessfully.

We have the following cases regarding the operational trace T0, ..., Tκ induced by the under-
lying cycle theory:

• No action execution in the operational trace fails. In this case, as stated earlier, the
operational trace induced by the impatient cycle theory will be identical to the one induced
by the underlying cycle theory. This means that Sκ = S′

n, hence S′
n � G and the

proposition holds.

• One action in the operational trace induced by the underlying cycle theory fails. Let
A = 〈a[t], , C〉 be that action. Since A is the only action that fails in the operational trace
induced by the underlying cycle theory, we can conclude, based on the differences between
the two computees, that the operational trace of the computee with the underlying cycle
theory is the same as the operational trace of the impatient computee until the time
that A is executed. Therefore action A also fails in the operational trace induced by the
impatient cycle theory. In this case there exist two subcases. Either some other action is
executed after A fails in the operational trace of the computee with the underlying cycle
theory which could possibly affect the value of the preconditions of action A, or no such
action is executed. Let’s study both of these cases:

– No action that could possibly affect the value of the preconditions of A is executed
in the operational trace of the computee with the underlying cycle theory after A
fails. In this case if one or more actions of the same type as action A, are executed
by the computee with the underlying cycle theory, then they will fail since no action
that could make their preconditions hold was executed and since the value of the
preconditions could not be changed by the environment. The impatient computee
on the other hand, will not try to execute such actions. Obviously the only steps
in the operational trace induced by the underlying cycle theory that are not in the
operational trace induced by the impatient cycle theory, if any, are some unsuccessful
action execution transitions. By ignoring these extra steps we can see that every
action in the operational trace of the computee with the underlying cycle theory
exists in the operational trace of the impatient computee, and since goal G succeeds
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in the operational trace induced by the computee with the underlying cycle theory
it will also succeed in the operational trace induced by the impatient computee,
therefore the proposition holds.

– An action B, which could affect the value of the preconditions of A is executed some
time after action A is executed. In this case, if an action A′ of the same type as action
A is executed some time after action B is executed, in the operational trace induced
by the underlying cycle theory, then action A′ will also be executed by the impatient
computee. This is true because the impatient cycle theory does not prevent it from
executing an action of the same type as an action that was executed unsuccessfully
in the past, if some other action which could affect its preconditions is executed in
the meantime.

This concludes that every action that succeeds in the operational trace of the computee
with the underlying cycle theory also succeeds in the operational trace of the impatient
computee, in the case where only one action fails in the operational trace induced by the
computee with the underlying cycle theory. Hence in this case, the proposition holds.

• Two or more actions fail in the operational trace induced by the underlying cycle theory.
We showed above that when exactly one action fails in the operational trace of the com-
putee with the underlying cycle theory then the only steps in that operational trace of
the computee with the underlying cycle theory that are not in the operational trace of
the impatient computee are unsuccessful action execution transitions. We can generalize
the above and say that the same behaviour occurs when more than one action fails in the
operational trace of the computee.

We have proven that every action which is executed successfully in the operational trace
induced by the underlying cycle theory is also executed successfully in the operational trace
induced by the impatient cycle theory. Hence when a goal is achieved in the operational trace
induced by the underlying cycle theory it is also achieved in the operational trace induced by
the impatient cycle theory, therefore the proposition holds.

It follows from the above proof that the impatient computee will achieve the same goal as the
computee with the underlying cycle theory in the same or less number of steps. This is the case
because, as shown above, the impatient computee will not try executing an action of the same
type as an action which failed in the past, if no action which could affect its preconditions was
executed, whereas the computee with the underlying cycle theory may include such transitions
in its operational trace.

Corollary 6.1 A computee with an impatient cycle theory will achieve the same goal as a
computee with the underlying cycle theory in equal or less number of transition steps.

We can also show that in certain cases a computee with an impatient cycle theory is better
than a computee with the underlying cycle theory in that the first succeeds in achieving a goal
that the second fails to achieve.

Example 6 We can easily create a scenario where the impatient computee succeeds but the
computee with the underlying cycle theory fails. Suppose that the two computees have exactly
the same knowledge base and that the impatient computee executes an action A which belongs
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to a plan for some goal G. Let’s say that the execution of A fails. According to the definition
of the impatient cycle theory, the impatient computee will not try executing any action of the
same type as A unless it has no other choice of transition or some action that could affect its
preconditions is executed. Suppose that no such action is executed. Let’s say that the computee
executes next an action B which belongs to a plan for a goal G′ where G′ 6= G. The execution
succeeds and goal G′ is achieved.

A possible operational trace for the computee with the underlying cycle theory in the above
scenario is to execute action A unsuccessfully and then try executing some other action A′ of
the same type as A. While the computee with the underlying cycle theory is executing action
A′, action B times out, hence the computee with the underlying cycle theory fails to achieve
goal G′.

Therefore we conclude that in certain scenarios a computee with an impatient cycle theory
succeeds where a computee with an underlying cycle theory fails.

7 Careful Profile

7.1 Informal Definition

A computee endowed with a careful profile of behaviour examines and revises its current com-
mitments frequently so as to recognise infeasible goals and actions (as well as goals that have
been achieved already) as soon as possible. The intuitive advantage of such a behaviour profile
would be that the computee’s operations are not hindered by superfluous items in the state and
that reactive rules will not be triggered unnecessarily by goals/actions that are timed-out and
not achieved/executed.

7.2 Formal Definition

This behaviour can be achieved by an operational trace where (at least) every other transition
is a State Revision (SR).

Definition 7.1 (Careful profile: transition-based characterisation) A careful computee
is a computee that will never generate an operational trace with two consecutive transitions that
are different from SR.

In fact, this condition is stronger than strictly necessary: As long as there are no redundant
or infeasible goals or actions no revision would be required. However, from a pragmatic point
of view, Definition 7.1 nevertheless provides us with an appropriate characterisation of careful
computees. This is so, because checking whether or not a state includes redundant or infeasible
goals or actions to be revised is just as costly as performing a state revision in the first place.

7.3 Careful Cycle Theories

Our next goal is to define a cycle theory (or a class of cycle theories) that is guaranteed to
induce an operational trace where every other transition is a State Revision. As we shall see
this is not as straightforward a goal as it may seem. To illustrate the difficulties and to motivate
our choices (which are eventually going to overcome these difficulties), we start by attempting
to define a careful cycle theory as an extension of the normal cycle theory.
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7.3.1 The normal-careful cycle theory

There are several ways of combining cycle theories (in this case the normal cycle theory with
the core rules characterising the careful profile). One option would be to take the union of
the two cycle theories (which are sets of basic and behaviour rules) and then, where necessary,
to introduce additional behaviour rules that determine the computee’s behaviour in case of
conflict between the rules stemming from the different parts. Another way, which gives the
profile designer less freedom but which results in much simpler cycle theories that can be
analysed more easily, would be to work at the level of basic rules as far as possible and to use
suitable enabling conditions to control the computee’s behaviour. This is the approach we are
going to follow here.

To design a careful computee, we need to ensure that basic rules expressing that SR should
follow any other transition T to get priority over any conflicting rules. Instead of using behaviour
rules to this effect, we are simply going to delete such conflicting rules in the first place. Hence,
we end up with the following approach:

• Step 1: Take the normal cycle theory as a starting point.

• Step 2: Remove any basic rules that speak about two consecutive transitions both of
which are different from SR.

• Step 3: Add the following basic rule for each transition T different from SR:

RT |SR(S′) : ∗SR(S′)← T (S, X, S′, τ)

Note that there cannot be any enabling conditions in this kind of rule; SR needs to be enabled
under any circumstances. Whenever there is already a rule RT |SR in the normal cycle theory,
that rule should be overwritten by the new rule.

This approach will render some behaviour rules redundant (because in the new cycle theory
there is less potential for conflict). We are going to assume here that such redundant rules get
deleted, although it makes no difference at the formal level (in practice, of course, it is certainly
better to delete them to reduce the complexity of the preferential reasoning processes). We end
up with the following normal-careful cycle theory:

• Tinitial is as for the normal cycle theory, i.e. the first transition will be either GI or PI,
depending on whether the set of goals returned by the goal selection function is empty or
not.

• Besides the aforementioned rules of the form RT |SR, Tbasic also contains the following
rules:

RSR|PI(S′) : ∗PI(S′, Gs)← SR(S, S′), Gs = cGS(S′, τ), Gs 6= { }
RSR|GI(S′) : ∗GI(S′)← SR(S, S′), Gs = cGS(S′, τ), Gs = { }

Tbasic will not contain any other rules, because all the remaining basic rules in the normal
cycle theory speak about transition that should follow transitions other than SR and these
are fixed for the careful profile.

• It turns out that also all of the rules in Tbehaviour are redundant, because they also speak
about what to do after a transition other than SR.
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In summary, the normal-careful cycle theory will force a computee to alternate between SR and
PI or GI (depending on whether there are currently goals to plan for). Such a computee would
be careful, but not functional. We stress again that this is not a consequence of our particular
approach which favours deleting redundant rules rather than introducing additional behaviour
rules. A normal-careful cycle theory following such an approach would result in exactly the
same computee behaviour.

We conclude that it is not possible to extend the normal cycle theory in a meaningful way to
obtain a cycle theory conforming to the careful profile of behaviour. Arguably, this is the case
because the strong “global” requirement of having a State Revision as every other transition
is very different in nature from the other profiles we have considered, which typically are more
“local” in their effects and therefore allow for the construction of a cycle theory based on the
normal cycle theory by means of local changes to its rules. It may be possible to overcome
these difficulties by extending the language for specifying cycle theories to also allow reference
to the penultimate transition to guide a computee’s behaviour. However, in the sequel we are
going to explore how far we can get by using the existing system.

7.3.2 The basic careful cycle theory

Our next aim is to put together the “most basic” cycle theory that conforms to the careful
profile and that is not non-functional like the normal-careful cycle theory constructed before.

We are certainly going to require the same basic rules as before to specify that any transition
different from SR must be followed by SR. In addition, every transition (possibly excluding SR
itself) should be enabled after SR, subject to the most basic enabling conditions. We end up
with the following basic careful cycle theory:

• Tinitial is as for the normal cycle theory.

• Tbasic contains the following rule for every transition T other than SR:

RT |SR(S′) : ∗SR(S′)← T (S, X, S′, τ)

Furthermore, Tbasic also contains the following rules:6

RSR|RE(S′) : ∗RE(S′)← SR(S, S′)
RSR|PI(S′) : ∗PI(S′, Gs)← SR(S, S′), Gs = cGS(S′, τ), Gs 6= { }
RSR|GI(S′) : ∗GI(S′)← SR(S, S′), Gs = cGS(S′, τ), Gs = { }
RSR|AE(S′) : ∗AE(S′, As)← SR(S, S′), As = cAS(S′, τ), As 6= { }
RSR|SI(S′) : ∗SI(S′, Ps)← SR(S, S′), Ps = cPS(S′, τ), Ps 6= { }
RSR|AOI(S′) : ∗AOI(S′, As)← SR(S, S′), Fs = cFS(S′, τ), Fs 6= { }
RSR|POI(S′) : ∗POI(S′)← SR(S, S′)

• Tbehaviour is empty.

The following proposition states the correspondence between the basic careful cycle theory and
the (transition-based characterisation of the) careful profile given in Definition 7.1:

Proposition 7.1 (Careful profile) The basic careful cycle theory induces the careful profile
of behaviour: Any computee using the above cycle theory will never generate an operational
trace with two consecutive transitions that are different from SR.

6The last of these rules may alternatively be regarded as providing Tinterrupt.
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Proof. This follows immediately from the fact that the basic part of the cycle theory forces a
State Revision after every other type of transition (there is exactly one basic rule to determine
the follow-up of any transition different from SR). 2

In the formal model, whenever there is a conflict between basic rules that does not get resolved
by means of behaviour rules (as would be the case for our basic careful cycle theory), the
next transition will be chosen nondeterministically. An appropriate implementation of this
feature is important, in particular when this situation can occur frequently. In practice, an
implementation strategy that is fair in the sense that any enabled transition will be chosen
eventually would be appropriate.

7.3.3 Other careful cycle theories

The two careful cycle theories we have considered so far are just two examples; there is a whole
range of cycle theories that conform to the careful behaviour profile. As we have argued, our first
example, the normal-careful cycle theory is not a useful cycle theory, while our second example,
the basic careful cycle theory is, in some sense, the most general cycle theory conforming to the
careful profile.

For concrete applications, we may wish to combine the features of careful behaviour with
other more specific features. We can construct a careful cycle theory of our choice by taking the
basic careful cycle theory as a starting point and then imposing additional behaviour constraints
using the following means:

• strengthening the enabling conditions in basic rules that determine the follow-up transi-
tion for a State Revision;

• deleting basic rules that determine the follow-up transition for a State Revision;

• adding any kind of behaviour rules;

• deleting rules that have become redundant due to other changes.

Note, however, that we cannot add any enabling conditions to the basic rules that state that SR
has to follow any other transition. Otherwise, the resulting cycle theory cannot be guaranteed
to conform to the careful profile of behaviour anymore. We also cannot delete such a rule,
unless it has already become redundant due to other changes in the cycle theory. On the other
hand, we do have complete freedom with respect to the behaviour rules we might wish to add,
because the basic rules never admit any conflict as to what transition to choose after a transition
different from SR in the first place.

Clearly, any such careful cycle theory will also induce the careful profile of behaviour in the
sense of Proposition 7.1.

7.4 A property of careful computees

Informally (under certain circumstances):

1. Careful computees will never generate a reaction via the reactivity transition to timed-out
unachieved goals or timed-out unexecuted actions.

2. Careful computees will never generate a reaction via the reactivity transition to actions
that may not be timed out yet but which are unexecuted and are no longer necessary.
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More formally:
The following will never contribute to the generation of a reaction (i.e. an action in Plan

or goal in Goals) via the reactivity transition,

1. A timed-out unexecuted action

2. A timed-out unachieved goal

3. An unexecuted action whose execution is no longer needed, i.e. an unexecuted action

(a) with an ancestor which has already been achieved
(b) with a sibling that has been timed-out
(c) with an ancestor which has been time-out,

provided that no action and no goal is timed out between an SR transition and its immediate
successor if that is an RE transition.

Proof. Let the assumption that no action and no goal is timed out between an SR transition
and its immediate successor if that is an RE transition holds. Suppose a careful computee
applies the reactivity transition in a state S = 〈KB, Goals, P lan, TCS〉.

Then by definition of the careful profile (Definition 7.1), because SR must have been applied
in the state immediately prior to S, no action or goal of the type specified in 1–3, above exists
in state S. Therefore no such action or goal could possibly contribute to the evaluation of the
conditions in the body of any reactive rule in KBreact. 2

7.5 An example showing the advantage of the careful profile

Here we describe an example informally without using the formal syntax of KGP computees.
Computee C believes that he has registered for a conference conf05 but wants not to be

registered at the conference. It plans for its goal of not being registered and consequently
generates an action in its Plan to cancel his registration at conf05. He has a reactive rule in
its KBreact that says:

If (observe that the deadline for cancellation for Conference has reached) and (an
action of cancellation of registration at Conference is expected) then tell the bank to
stop credit card payment to Conference.

Suppose before the action of cancellation is executed the computee receives a message from the
conference telling him that there was a problem with his initial attempt at registration and so
he is not actually registered. So his goal of not being registered is achieved without the need
for the cancellation action.

A careful computee will not tell the bank to stop the credit card payment (which is pointless
anyway), but, under the same circumstances, a non-careful one might.

8 Focussed Profile

8.1 Informal Definition

In the focussed profile of behaviour a computee does not plan for more than one top-level goal
at a time. More specifically, a focussed computee remains committed to a goal amongst its
top-level goals until
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• that goal has been successfully achieved, or

• that goal has become infeasible, or

• that goal is not preferred by the Goal Decision capability anymore, when invoked by the
GI transition, or

• that goal has an empty plan in the state.7

The advantages of the focussed profile come into effect in highly time-critical domains as well
as domains where a computee has several goals with mutually incompatible plans. In such
situations, a focussed computee can be expected to achieve, at least, some goals, whereby
an unfocussed computee may fail completely. This applies, in particular, to computees that
have a preference for full planning, i.e. to computees that will compute all the actions in a
plan before starting to execute them. By concentrating planning on a single goal at a time, a
focussed computee is likely to be faster and it will also avoid wasting computing resources over
incompatible plans for other goals.

8.2 Formal Definition

The focussed profile of behaviour has the following characterising property: A focussed com-
putee is a computee that, under no circumstances, will generate an operational trace that in-
cludes a state with two distinct top-level goals with children, neither of which is either achieved
or infeasible. Here we call a goal G achieved in a state if it holds according to the temporal
reasoning capability. Furthermore, a goal G is called feasible iff neither itself nor any of its
children is timed-out. An infeasible goal is a goal that is not feasible.

Note that this notion of infeasibility need not persist. A goal G may, at some point, be
infeasible, because an action in its current plan is timed-out, but G may again become feasible
later on, after the computee has revised its state and computed a new plan. Therefore, the
only way to ensure that switching to a new top-level goal for planning is admissible (under the
focussed profile) is to first check that infeasible goals will stay infeasible. This requires a State
Revision. Hence, we can give the following alternative definition of the focussed profile, which
is simpler than our first definition.

Definition 8.1 (Focussed profile: state-based characterisation) A focussed computee is
a computee that, under no circumstances, will generate an operational trace that includes a state
with two top-level goals with children.

This definition is stronger (more restrictive) than our first definition, but as argued earlier, it is
operationally equivalent to that definition, because a computee can only be sure that switching
goals will not violate the focussed profile after having executed a State Revision (or after having
performed an analogous check).

8.3 Possible extensions

Note that, according to our definition, focussed computees do not deal with more than one top-
level goal at a time, but may switch between top-level goals in some situations, as exemplified
by the following example.

7The need for this last item will become clear in Example 7.
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Example 7 Consider the following (portion of a) trace:

. . . , SR(S, X, S′, τ), P I(S′, X ′, S′′, τ ′), . . .

with Top Goals(S) = Top Goals(S′) = Top Goals(S′′) = {G1, G2}. Assume that G1 already
has got a plan in S, i.e. the set of items in Goals(S)∪Plan(S) with ancestor G1 is not empty.
Assume also that G2 has no plan in S, i.e. the set of items in Goals(S)∪Plan(S) with ancestor
G2 is empty.

Suppose that all items in the plan for G1 in S are timed-out at τ , and thus S′ is such that
Goals(S′) = Top Goals(S′) and Plan(S′) = {}. Suppose also that neither G1 nor G2 are
timed-out or achieved at τ ′, but PI is actually introducing a plan for G2, so that the set of
items in Goals(S′′) ∪ Plan(S′′) with ancestor G2 is not empty.

The computee with this trace is focussed according to the above definition. However, it does
switch from dealing with goal G1 to dealing with goal G2, despite goal G1 being still unachieved
and feasible.

The earlier definition of focussed computee may be modified to prevent goal switching, by
comparing successive computee states in traces and force that once a computee has been plan-
ning/executing for one top-most level goal in one state, it must stick to that goal in successive
states, until the goal has been achieved or has become unachievable. This would amount to
getting rid of the last item in the informal description of focussed computee at the beginning
of Section 8 (and adding some other suitable conditions instead). This stronger definition of
focussed computee would however force extending the notion of cycle theory and operational
trace, either by looking at histories of transitions rather than individual transitions when de-
ciding on the next transition, or by introducing additional information into cycle theories, such
as variables holding the current top-level goal being dealt with. We therefore leave the stronger
definition to future work.

Note also that our notion of focussed computee only refers to top-level goals, and not to sub-
goals or actions. The notion of focussed computee could be extended so as to define computees
that are focussed all the way, from top-level goals down.

Finally, note that our definition of focussed computee does not distinguish top-level goals
which are reactive and top-level goals which are not. A focussed computee focuses on one single
top-level goal at a time, no matter whether this goal is reactive or not.

8.4 Focussed Cycle Theories

To achieve the abstract specification, we have to have a cycle theory that ensures that before
any Plan Introduction a State Revision has been performed. This is to ensure that we can
proceed with planning for a top-level goal even if some of its current children have become
infeasible. However, rather than implementing this behaviour directly, we are simply going to
ensure that Plan Introduction is only enabled with respect to a set of goals that a focussed
computee may plan for given its current state according to the simplified Definition 8.1.

Definition 8.2 (Focussed cycle theories) A cycle theory is called focussed iff the initial
rule R0|PI and the basic rule RT |PI for any transition T include the enabling condition
focussed(Gs′, S,Gs), where:

(i) S stands for the current state;
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(ii) Gs′ stands for the set of goals that is returned by the goal selection function and Gs stands
for the set of goals to which PI will be applied; and

(iii) the predicate focussed(Gs′, S,Gs) succeeds iff Gs ⊆ Gs′ and all the goals in Gs are de-
scendants of the same top-level goal (possibly including that top-level goal itself) and no
other top-level goal has got any children.

In other words, focussed(Gs′, S,Gs) holds iff Gs ⊆ Gs′ and

∃Gt ∈ Top Goals : [(∀G ∈ Gs : G = Gt ∨G ∈ descendents(Gt, Goals)) ∧
(∀G ∈ Top Goals : G ∈ Gs→ Gt = G)]

The focussed variant of the normal cycle theory would have in Tinitial the rule

R0|PI(S0) : ∗PI(S0, Gs)← Gs′ = cGS(S0, τ), focussed(Gs′, S0, Gs), Gs 6= {}

instead of the original rule

R0|PI(S0) : ∗PI(S0, Gs)← Gs = cGS(S0, τ), Gs 6= {}

Similarly, the focussed variant of the normal cycle theory would have in Tbasic the rule

RAE|PI(S′, Gs) : ∗PI(S′, Gs)← AE(S, As, S′), Gs′ = cGS(S′, τ),
focussed(Gs′, S,Gs), Gs 6= {}

instead of the original rule

RAE|PI(S′, Gs) : ∗PI(S′, Gs)← AE(S, As, S′), Gs = cGS(S′, τ), Gs 6= {}

This transformation is an example of restricting Tbasic and Tinitial by adding extra conditions
in the body of their rules.

The correspondence between the state-based characterisation of the focussed profile and the
class of focussed cycle theories may be stated as follows:

Proposition 8.1 (Focussed profile) Any cycle theory that is focussed according to Defini-
tion 8.2 induces the focussed profile of behaviour according to Definition 8.1.

Proof. The enabling condition focussed(Gs′, S,Gs) restricts the set of goals for which the
computee may plan to precisely the set of goals that are available for planning according to the
state-based characterisation of the focussed profile. The claimed correspondence then follows
immediately from the fact that Plan Introduction is the only transition that can add non-top-
level goals to a state. 2

8.5 A property of the focussed profile

We have briefly discussed the intuitive advantages of the focussed profile of behaviour at the
beginning of Section 8. The following proposition makes these advantages more precise.

Informal description: Let a focussed computee be one equipped with a focussed cycle the-
ory, and a normal computee be one equipped with the normal cycle theory. Then if the two
computees have a set of goals for which they have no compatible plans then the focussed com-
putee may be able to achieve at least some of its goals while the normal computee may not be
able to achieve any of the goals. The theorem below shows under what conditions the focussed
computee is guaranteed to achieve more of its goals compared to the normal computee.
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Theorem 8.1 Let F be a focussed computee and N be a normal computee. Let F and N be in
a state S = 〈KB, Goals, P lan, TCS〉 at time T such that:

1. Plan is empty, and

2. Goals consists of top level goals G1, . . . , Gn, n > 1. (Note :This state can arise, for
example, if F and N have just executed Goal Introduction (GI) starting from the same
initial state.)

3. The goal selection function, in state S, at all times T ′, T ′ ≥ T , selects the same set of k
goals for some k > 1. Assume these are {G1, . . . , Gk}, without loss of generality.

Then if

4. At all times T ′, T ′ ≥ T , KB, Plan, Goals, {G1, . . . , Gk} |=T ′

plan

〈G1,⊥,⊥〉, . . . , 〈Gk,⊥,⊥〉, and

5. At all times T ′, T ′ ≥ T , and for all Gi, i = 1 . . . k, KB, Plan, Goals, {Gi} |=T ′

plan

〈Gi, As, ∅〉, where As is not ⊥ (i.e. the planning capability produces a full plan success-
fully)

then, F will achieve at least one of the goals amongst G1, . . . , Gn, while N will achieve none
of them, i.e.

∃T ′.∃i.i = 1..n, T ′ > T, Gi = 〈l[t], 〉 : KBTR |=tr holds(l, t) ∧ t = T ′, |=< TCS ∧ t = T ′

in the case of F , and

¬∃T ′.∃i.i = 1..n, T ′ > T, Gi = 〈l[t], 〉 : KBTR |=tr holds(l, t) ∧ t = T ′, |=< TCS ∧ t = T ′

in the case of N , provided that:

6. KBreact is empty, and

7. No POI, AOI transitions are performed, and no GI transition is performed after the
establishment of top-level goals G1, . . . ,Gn, and

8. Actions are executed in the right order, and

9. Goals and actions are non-time critical, in the sense that no goal or action is ever timed
out.

Note that this theorem shows that under the stated conditions a focussed profile is better in
terms of welfare, measured by the number of goals a computee achieves.

Proof. (Sketch) Consider the case of the normal computee N : Because of conditions 3,4,6,7 the
state of the computee remains the same (although time progresses). In this state because of
conditions 3 and 4 the computee can never make any progress towards achieving any of its top
level goals.

Now consider the case of the focussed computee F : At some time T1, T1 ≥ T , F performs
Plan Introduction (PI). By conditions 3 and 5 and the definition of the focussed profile a goal
Gi, i = 1, . . . k, is selected and PI succeeds in producing a complete plan, and updates its
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state by adding all the produced actions As to its Plan and updating TCS appropriately.
These new actions will then all be executed. They will never be timed-out by condition 9. So
they may be removed from the state of the computee by Plan Revision only if their associated
goal is achieved. By condition 8 the actions will be executed in the right order, thus earlier
actions establish the preconditions for the later actions. Any new goals and actions that may
be introduced by later applications of PI will not interfere with the execution of the actions in
As. Therefore, finally, after all the actions are executed, it will be possible to prove by TR that
goal Gi which was selected at time T1 is achieved. 2

Note that conditions 1–9 are sufficient but not necessary conditions. For example condition 7
can be replaced with one that requires only that any observation recorded as a result of a POI
is “independent” of the goals G1, . . . , Gn, and allows GI transitions but imposes restrictions on
their frequency. It is possible to construct examples where some, possibly many, of conditions
1-9 do not hold, but still the focussed computee performs better in goal achievement terms.

8.6 Experiment

Aim. The aim of this experiment is to provide empirical evidence for the advantages of the
focussed profile of behaviour discussed in D13 [?]. Recall that a focussed computee would be
expected to be more successful than a computee that is not focussed in situations where both
computees have (at least) two top-level goals that are mutually exclusive in the sense that
executing a plan for the first goal will make any potential plan for the other goals infeasible.

Parameters considered and varied. We compare the behaviour of two computees: com-
putee 1 is focussed, while computee 2 uses the normal cycle theory. In a nutshell, a computee is
focussed iff any basic rule in its cycle theory that enables the PI transition has got an enabling
condition that only allows for the selection of (i) a top-level goal if no other top-level goals have
children and (ii) a non-top-level goal G if the top-level goal G′ that is the ancestor of G is the
only top-level goal with children.

Knowledge bases. We consider a scenario where both computees aim at achieving the two
goals g1 and g2. However, the plans for these two goals are not compatible. The domain-
dependent part of KBplan is as follows:

initiates(a1,_,g1). precondition(a1,p). initiates(a3,_,p).
initiates(a2,_,g2). precondition(a2,q). initiates(a4,_,q).
[happens(a1,T1),happens(a4,T2)] implies [false].
[happens(a2,T1),happens(a3,T2)] implies [false].
executable(_).

The domain-dependent part of KBTR is defined accordingly. KBreact is empty.

Runs executed. We have run both computees, initialising them with the two goals g1 and
g2, to be achieved before time 20. Both computees start by planning for g1, generating the
action a1 and the subgoal p. Then computee 2 is free to plan either for g2 or for p, while the
focussed computee 1 is forced to plan for p during the next PI transition. Only planning for
p will lead to a feasible plan for g1, while planning for g2 causes the integrity constraints in
KBplan to fire during future calls to planning (resulting in a failure).
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We should stress that computee 2 could also plan for p and proceed in the same way as
computee 1. However, in the concrete implementation, the top-level goal g2 will be selected
before p when the implemented action selection function is used. Using the focussed profile,
the right choice of goals to plan for is guaranteed, independently from such low-level features
of a concrete implementation.

Evaluation. The experiment is intended to demonstrate a situation in which a focussed
computee is more successful than other computees. This would suggest that in certain domains,
where computees have to choose amongst a number of mutually incompatible goals, the focussed
profile of behaviour can aid computees to achieve at least a minimum number of goals in good
time. In our experiments, the two computees do indeed exhibit the expected difference in
behaviour. However, these experiments have also revealed a problem (with both the formal
model and the implementation), which causes the focussed computee to execute actions a1 and
a3 in the wrong order. This issue is currently under investigation.

9 Objective Profile

In this section we will present a cycle theory that implements the objective profile, we call it
here the objective cycle theory. Similar to other cycle theories, the objective cycle theory is an
extension of the normal cycle theory discussed before. In doing this, a characteristic feature of
the objective profile is identified as a guide in the extension.

9.1 Objective Profile

Informally, a computee with an objective profile always attempts to check immediately after
the execution of an action that the desired effects of that action were indeed established. The
computee therefore attempts to obtain from the environment explicit information confirming
the expected result of the execution of its actions. This profile is suited to volatile environments
where exogenous events can interfere with the execution and the result of an action.

9.2 Characteristic Properties of Computee States

This computee profile of trying to confirm the effect of actions is formalised by the following
property: Given any transition Ti(Si−1, Xi, Si, τi), in the operational trace of the computee and
Ti is AE and expected effects(Si, Xi, τi) 6= ∅, then there exists a transition Tj(Sj−1, Xj , Sj , τj)
in the operational trace such that:

• j > i;

• Tj is an Active Observation Introduction, and

Xj = expected effects(Si, Xi, τi) =
⋃

A=〈a′[ ],G′, , 〉∈Xi

Obj(Si, a
′, τi) ∪ {G′}\{⊥}

where

Obj(S, a, τ) = {f | S |=τ
TR initiates(a, τ, f)} ∪ {¬f | S |=τ

TR terminates(a, τ, f)}

• for all transitions Tk, k = i + 1, ..., j − 1, Tk is a POI transition.
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9.3 Objective Cycle Theories

For this profile we simply need to ensure that any Action Execution transition is followed by
an Active Observation Introduction transition for fluents that include the effects of the actions
that are executed. Formally, we have

Definition 9.1 (Objective Cycle Theory) An Objective Cycle Theory T objective is the nor-
mal theory extended with the following rules:

RAE|AOI(S′, X) : ∗AOI(S′, X)← AE(S, As, S′, τ),
X = expected effects(S′, As, τ), X 6= ∅.

Objective PAE
AOI�T ′ : RAE|AOI(S, X) � RAE|T ′(S, Y ).

Objective MP : Objective PAE
AOI�T � PAE

T�T ′

for every T 6= AOI, POI.

Notice that the first rule replaces the existing RAE|AOI in the normal cycle theory.
To prove the cycle theory has the expected objective behaviour, we need the follow lemmas.

Lemma 1 Let HEE = expected effects(S′, X), then

{RAE|AOI(S′,HEE), AE(S, X, S′)} |= AOI(S′,HEE).

Proof trival.

Theorem 9.1 Let T objective be the objective cycle theory. Then a computee having cycle theory
T objective will behave objectively. That is, let HEE = expected effects(S′, A), then

T objective ∧AE(S, X, S′) |=pr AOI(S′,HEE).

Proof Let 4 = {RAE|AOI(S′,HEE), Objective PAE
AOI�T , Objective MP}, we show that 4 is

an admissible argument. Let 4′ attack to 4, then by defintion, there must exist R′ ∈ 4′ and
R ∈ 4 such that

4′ |= R′ � R.

But R can neither be Objective PAE
AOI�T nor Objective MP because T objective does not

contain such � rules. Therefore it must be that R = RAE|AOI(S′,HEE). As there are only
three such � rules in T objective, that is,

PAE
AE�T : RAE|AE(S, As) � RAE|T (S, X)
PAE

GR�T : RAE|AOI(S, As) � RAE|T (S, X)
PAE

AOI�T : RAE|GR(S, As) � RAE|T (S, X)

to attack 4, 4′ must contain either PAE
AE�T or PAE

GR�T . However the rule Objective PAE
AOI�T

in 4 has higher priority than both of these two rules, according to the rule Objective MP
in 4. But T objective contains no rule with higher priority than Objective MP, so does 4′.
Therefore, 4′ can not attack 4. This concludes that 4 is an admissible set.

By lemma and above argument, we have

4 |=pr AOI(S′,HEE).
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Note that objective profile generally does not improve the welfare of individual computees
compared with normal profile and in some case it is even worse. For example, given a computee
with an initial state consisting of only

• one top level goal g(τ) and

• one plan {〈a1[τ1], g, []〉, 〈a2[τ2], g, []〉} and

• TCS = {τ2 = τ1 + 1, τ = τ2 + 1}.

Due to the temporal constraints, the goal can be achieved only in the case that the two actions
are executed one by one. This can happen for a computee having normal profile but is impossible
for a copmputee with objective profile.

However, in some cases, objective profile does have advantages over the normal profile as
demonstrated by the following example.

Example of advantages suppose a computee C has a top level goal g(τ) and there are two
plans P1 and P2 for g, with

P1 = {〈a1[τ1], g, []〉, 〈a2[τ2], g, [q]〉}, P2 = {〈a[τ0], g, []〉

and in P1, a1 has an expected effect, q, which, in turn, is a pre-condition of a2. The formalization
is as follows.

• State

– KBplan:
initiates(a, T, g)
precondition(a, true)
initiates(a1, T, q)
initiates(a2, T, g)
precondition(a2, q)
executable(a)
executable(a1)
executable(a2)

– KB0 = [ ]

– Goals = {G = 〈g[T ],⊥〉}

– Plan = {〈a1[T1], g[T ], []〉, 〈a2[T2], g[T ], [q]〉}

– TCS = {T1 < 6, T2 = 9, T < 10}

• Behaviour

1. If C operates under the normal profile, then C will behave as follows:

– ...,

56



– by AE, a1 is executed, say, at time 5,
– ...,
– by AE, a2 is executed at time 9,
– via SR, a1, a2 are removed, and in revising G , C finds that a1 has not met

the expected effect, and therefore G is not satisfied. However, C now can not
introduce P2 because G has to be removed due to it is now timee-out(at time
10).

2. However, if C operates under the objective profile, then C will behave as follows:

– by AE, a1 is executed, say, at time 5,
– via AOI at time 6, C finds that a1 fails to meet its expected effect and

observed(¬q, 6) is added to current state. This results in that a2 can not be
selected for execution because its pre-condition is false.

– C then goes to SR at time 7, a1, a2 are removed from state, while G is kept
there because it is not satisfied and not timed-out.

– by PI, plan P2 is introduced at time 8.
– by AE, a is executed at time 9.
– via AOI at time 10, C finds a’s expected effect has been reached.
– C goes to SR and removes a and g with g being satisfied

10 Related work

Profiles of computees are an attempt to address the need that different applications require dif-
ferent deliberation processes which therefore should be controlled by the designer/programmer.
In 3APL [2] a meta-language that refers to goals, actions, plans and rules together with con-
structs from an imperative programming is used in order to implement how to process the
object-level entities in the application.

As mentioned in deliverable D8 [3], unlike KGP which is based purely on declarative logic
programming, the 3APL language is a combination of imperative and logic programming. From
the imperative programming viewpoint, 3APL inherits the full range of regular programming
constructs, including recursive procedures and state-based computation. States of agents in
3APL, however, are belief (or knowledge) bases, which are not characterised by the usual
variable assignments of imperative programming. From the computational logic perspective,
also taken by our KGP model, answers to queries in the beliefs of a 3APL agent are proofs in
the logic programming sense.

Regarding attitudes of agents, most of the existing work refers to behaviour at the level of
social attitudes and personalities whereas our cycle profiles refer more to the level of problem
solving strategies (given an application environment). For example, in [1] five profiles (agree-
able, disagreeable, argumentative, open-minded, elephant child) are proposed to discriminate
between different attitudes of agents with varying degree of willingness to cooperate.

In a computee this aspect of its personal attitude can be captured as a part of its Goal
Decision knowledge base where it can influence its decisions (see e.g. [8, 7]). Nevertheless
the two levels are linked as a specific personal attitude can lead or induce a problem solving
strategy. In [10] different agent architectures are studied where each one of these is based on
a different combination of reactive/deliberative capabilities depending on the personal attitude
to its current needs. An different survival behaviour emerges from the different architectures.
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In our computees such variety of behaviour can be achieved via a combination of suitable Goal
Decision and Cycle theories.

Another stream of research is based on the quantitative evaluations of agent behaviours. One
of more measures of the behaviour are given and then agents are either evaluated on practical
test-bed experimentations, or studied under a given probabilistic distribution of environment
changes and actions performed by agents. These attempts, from an empirical or probabilistic
viewpoint, also try to provide guidelines about the adequacy of classes of behaviours with
respect to classes of environments.

For instance, in [9], agent behaviour is seen as the capability to transform conditions that
hold in the environment, then measures as power, greatest potential, usefulness, reliability, etc.,
are defined as a mean to compare behaviours, and the relationships between this measures are
studied, e.g. the greatest potential is bigger for more powerful behaviours. This developed
theory is then used to sustain (empirical or probabilistic) guidelines for the development and
engineering of agents, like include behaviours with weak preconditions and strong consequences
to improve usefulness.

These kind of work, although based on different settings, share similarities and aims with our
profile-based approach. On the long term, a diffused practice of profiles-based agent engineering
will facilitate the identification of those profiles that have been demonstrated more useful,
effective, economical, well-fare increasing etc, with respect to the environment of interest.

11 Conclusions

This reports summarises the progress on the specification of properties of computees based
upon their operational trace and induced by a cycle theory. We have formally defined various
cycle theories corresponding to various computee profiles of behaviour and we have stated and
proved certain properties of these.

The study of profiles of behaviour seems promising as we have demonstrated that based
on the KGP model we can program in a declarative and modular way the required pattern of
behaviour. While studying comparison properties between the different profiles, the need for
formally defining suitable notions of the environment became obvious. More work is needed in
this area, which will help in defining and proving more profile related properties.
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A Normal cycle theory

This is a modification of the normal cycle theory given in D8[3], where the two transitions GR
and PR are replaced by a single transition SR (for State Revision) and some additional rules
are incorporated in the basic part. Note that the notation given in D8 is used.

The normal cycle theory specifyies a pattern of operation where the computee prefers to
follow a sequence of transitions that allows it to achieve its goals in a way that matches an
expected “normal” behaviour. Basically, the “normal” computee first introduces goals (if it
has none to start with) via GI, then reacts to them, via RE, and then repeats the process of
planning for them, via PI, executing (part of) the chosen plans, via AE, revising its state, via
SR, until all goals are dealt with (succesfully or revised away). At this point the computeee
returns to introducing new goals via GI and repeating the process above. Whenever in this
process the computee is interrupted via a passive observation, via POI, it chooses to introduce
new goals via GI, to take into account any changes in the world. Whenever it has actions
which are “unreliable”, in the sense that their preconditions definitely need to be checked, the
computee senses them (via SI) before executing the action. Whenever it has actions which are
“unreliable”, in the sense that their effects definitely need to be checked, the computee actively
introduces actions that aim at sensing these effects, via AOI, after having executed the original
actions.

• Tinitial consists of

r0|GI(S0) : GI(S0)← empty goals(S0)

r0|PI(S0) : PI(S0, Gs)← Gs = cGS(S0, τ), Gs 6= {}
r0|POI(S0)← poi pending(τ)

This last rule is only needed with the generalisation of operational trace given in D8, if we
want to enforce that passive observations are always taken into account when occurring
(as in the original notion of operational trace in D4).
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• Tbasic consists of the following parts.

– The rules for deciding what might follow an AE transition are as follows:
rAE|PI(S′, Gs) : PI(S′, Gs)← AE(S, As, S′), Gs = cGS(S′, τ), Gs 6= {}
rAE|AE(S′, As′) : AE(S′, As′)← AE(S, As, S′), As′ = cAS(S′, τ), As′ 6= {}
rAE|AOI(S′, Fs) : AOI(S′, Fs)← AE(S, As, S′), Fs = cFS(S′, τ), Fs 6= {}
rAE|SR(S′) : SR(S′)← AE(S, S′)
rAE|GI(S′) : GI(S′)← AE(S, S′)

Namely, AE could be followed by another AE, or by a PI, or by an AOI, or by an SR,
or by a GI, or by a POI. Any other possibility, e.g. for SR to follow AE, is excluded
within this particular Tbasic theory.

– The rules for deciding what might follow SR are as follows
rSR|PI(S′) : PI(S′, Gs)← SR(S, S′), Gs = cGS(S′, τ), Gs 6= {}
rSR|GI(S′) : GI(S′)← SR(S, S′), Gs = cGS(S′, τ), Gs = {}

Namely, SR can only be followed by PI or GI, depending on whether there are goals
to plan for or not in the state. 360,1 29

– The rules for deciding what might follow PI are as follows
rPI|AE(S′, As) : AE(S′, As)← PI(S, Gs, S′), As = cAS(S′, τ), As 6= {}
rPI|SI(S′, Ps) : SI(S′, Ps)← PI(S, Gs, S′), Ps = cPS(S′, τ), Ps 6= {}

The second rule is here to allow the possibility of sensing the preconditions of an
action before its execution.

– The rules for deciding what might follow GI are as follows
rGI|RE(S′, Gs) : RE(S′)← GI(S, S′)
rGI|PI(S′, Gs) : PI(S′, Gs)← GI(S, S′), Gs = cGS(S′, τ), Gs 6= {}

Namely, GI can only be followed by RE or PI, if there are goals to plan for.

– The rules for deciding what might follow RE are as follows
rRE|PI(S′, Gs) : PI(S′, Gs)← RE(S, S′), Gs = cGS(S′, τ), Gs 6= {}
rRE|SI(S′, Ps) : SI(S′, Ps)← RE(S, S′), Ps = cPS(S′, τ), Ps 6= {}

ADDED by ALEX/WENJIN:
rRE|AE(S′, As) : AE(S′, As)← RE(S, S′), As = cAS(S′, τ), As 6= {}
rRE|SR(S′) : SR(S′)← RE(S, S′)

– The rules for deciding what might follow SI are as follows
rSI|AE(S′, As) : AE(S′, As)← SI(S, Ps, S′), As = cAS(S′, τ), As 6= {}

– The rules for deciding what might follow AOI are as follows
rAOI|AE(S′, As) : AE(S′, As)← AOI(S, Fs, S′), As = cAS(S′, τ), As 6= {}
rAOI|SR(S′) : SR(S′)← AOI(S, Fs, S′)
rAOI|SI(S′, Ps) : SI(S′, Ps)← AOI(S, Fs, S′)Ps = cPS(S′, τ), Ps 6= {}

– The rules for deciding when POI should take place are as follows
rT |POI(S′) : POI(S′, τ)← T (S, X, S′, τ ′, τ), poi pending(τ),

for all transitions T , namely POI is always an option if there is an input from the
environment (observation) pending. These rules are needed only for the generalised
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version of operational trace given in D8, if we want to enforce that passive obser-
vations are always taken into account when occurring (as in the original notion of
operational trace in D4).

• Tinterrupt consists of the following rules

rPOI|GI(S′) : GI(S′)← POI(S, S′)

rPOI|RE(S′) : RE(S′)← POI(S, S′)

rPOI|SR(S′) : SR(S′)← POI(S, S′)

rPOI|POI(S′) : POI(S′)← POI(S, S′)

This last rule is only needed with the generalisation of operational trace given in D8, if we
want to enforce that passive observations are always taken into account when occurring
(as in the original notion of operational trace in D4).

• Tbehaviour consists of the following rules (besides its auxiliary part, including the defini-
tions for incompatible given above as well as any other definitions for predicates used in
Tbehaviour, such as empty goals, unreliable pre etc):

– GI should be given higher priority if there are no goals in Goals and ac-
tions in Plan in the state: 8 RT

GI|T ′ : h p(rT |GI(S), rT |T ′(S, X)) ←
empty goals(S), empty plan(S)
for all transitions T, T ′, T ′ 6= GI, and with T possibly 0 (indicating that if there
are no goals and plans in the initial state of a computee, then GI should be its first
transition).

– GI is also given higher priority after a POI:
RPOI

GI|T : h p(rPOI|GI(S′), rPOI|T (S, S′))
for all transitions T 6= GI.

– After GI, the transition RE should be given higher priority:
RGI

RE|T : h p(rGI|RE(S), rGI|T (S, X))
for all transitions T 6= RE.

– After RE, the transition PI should be given higher priority:
RRE

PI|T : h p(rRE|PI(S, Gs), rRE|T (S, X))
for all transitions T 6= PI;

– After PI, the transition AE should be given higher priority, unless there are actions
in the actions selected for execution whose preconditions are “unreliable” and need
checking, in which case SI will be given higher priority:

RPI
AE|T : h p(rPI|AE(S, As), rPI|T (S, X))← not unreliable pre(As)

for all transitions T 6= AE;
RPI

SI|T : h p(rPI|SI(S, Ps), rPI|T (S, As))← unreliable pre(As)
for all transitions T 6= SI;
Here we assume that the auxiliary part of Tcycle specifies whether a given set of
actions contains any “unreliable” action, in the sense described above.

8Instead of the conditions empty goals(S), empty plan(S) in this rule, we could have these conditions in each
rule in Tbasic which indicates as viable any transition that could be a competitor of GI after any given transition.
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– After SI, the transition AE should be given higher priority
RSI

AE|T : h p(rSI|AE(S, As), rSI|T (S, X))
for all transitions T 6= AE.

– After AE, the transition AE should be given higher priority until there are no more
actions to execute in Plan, in which case either AOI or SR should be given higher
priority, depending on whether there are actions which are “unreliable”, in the sense
that their effects need checking, or not:

RAE
AE|T : h p(rAE|AE(S, As), rAE|T (S, X))

for all transitions T 6= AE. Note that, by definition of Tbasic, the transition AE is
applicable only if there are still actions to be executed in the state.

RAE
AOI|T : h p(rAE|AOI(S, Fs), rAE|T (S, X))← BCAE

AOI|T (S, Fs)

for all transitions T 6= AOI, where the behaviour condition BCAE
AOI|T (S, Fs) is de-

fined (in the auxiliary part) by:
BCAE

AOI|T (S, FS)← empty executable plan(S), unreliable post(S)
Similarly, we have:

RAE
SR|T : h p(rAE|SR(S), rAE|T (S, X))← BCAE

SR|T (S)
for all transitions T 6= SR where:

BCAE
SR|T (S)← empty executable plan(S), not unreliable post(S)

Here, we assume that the auxiliary part of Tcycle specifies whether a given set of ac-
tions contains any “unreliable” action, in the sense expressed by unreliable post, and
defines the predicate empty executable plan. Intuitively, empty executable plan(S)
succeeds if all the actions which can be selected for execution have already been
executed.

– After SR, the transition PI should have higher priority:
RSR

PI|T : h p(rSR|PI(S, Gs), rSR|T (S))
for all transitions T 6= PI. Note that, by definition of Tbasic, the transition PI is
applicable only if there are still goals to plan for in the state. If there are no actions
and goals left in the state, then rule RT

GI|T ′ would apply.

– After any transition, POI is preferred over all other transitions:
RT

PI|T ′ : h p(rT |POI(S), rT |T ′(S, X))

for all transitions T, T ′, T ′ 6= POI, with T possibly 0 (indicating that, if applicable
by Tinitial, POI should be the first transition).
This priority rule is only needed with the generalisation of operational trace given
in D8, if we want to enforce that passive observations are always taken into account
when occurring (as in the original notion of operational trace in D4).

– In the initial state, PI should be given higher priority:
R0

PI|T : h p(r0|PI(S, Gs), r0|T (S, X))
for all transitions T 6= PI. Note that PI, by definition of Tinitial, the transition PI
is applicable initially only if there are goals to plan for in the initial state.
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