Analysis and modeling techniques for ultrasonic tissue characterization

Simona Maggio

Department of Electronics, Computer Science and Systems (DEIS)
University of Bologna

Scuola di Dottorato: Scienze e Ingegneria dell’Informazione
Corso di Dottorato: Ingegneria Elettronica, Informatica e delle Telecomunicazioni
Tutor: Prof. Guido Masetti

18/01/2011
1. **Context**

 Tissue Characterization for Ultrasound Diagnostic

 Problem: limits of TRUS-guided biopsy

 Tools: ultrasound image processing

 State of the art

2. **Main contributions in image analysis**

 Deconvolution as pre-processing step

3. **Main contributions in image modelling**

 Continuous-time model for ultrasound signals

 CT parameters for tissue characterization

4. **Clinical Application**

 Ground truth collection

 Real-time Computer-Aided Biopsy

5. **Conclusions**
Outline

1. **Context**
 - Tissue Characterization for Ultrasound Diagnostic
 - Problem: limits of TRUS-guided biopsy
 - Tools: ultrasound image processing
 - State of the art

2. **Main contributions in image analysis**
 - Deconvolution as pre-processing step

3. **Main contributions in image modelling**
 - Continuous-time model for ultrasound signals
 - CT parameters for tissue characterization

4. **Clinical Application**
 - Ground truth collection
 - Real-time Computer-Aided Biopsy

5. **Conclusions**
1. Context
 Tissue Characterization for Ultrasound Diagnostic
 Problem: limits of TRUS-guided biopsy
 Tools: ultrasound image processing
 State of the art

2. Main contributions in image analysis
 Deconvolution as pre-processing step

3. Main contributions in image modelling
 Continuous-time model for ultrasound signals
 CT parameters for tissue characterization

4. Clinical Application
 Ground truth collection
 Real-time Computer-Aided Biopsy

5. Conclusions
Outline

1. Context
 Tissue Characterization for Ultrasound Diagnostic
 Problem: limits of TRUS-guided biopsy
 Tools: ultrasound image processing
 State of the art

2. Main contributions in image analysis
 Deconvolution as pre-processing step

3. Main contributions in image modelling
 Continuous-time model for ultrasound signals
 CT parameters for tissue characterization

4. Clinical Application
 Ground truth collection
 Real-time Computer-Aided Biopsy

5. Conclusions
1. **Context**
 - Tissue Characterization for Ultrasound Diagnostic
 - Problem: limits of TRUS-guided biopsy
 - Tools: ultrasound image processing
 - State of the art

2. **Main contributions in image analysis**
 - Deconvolution as pre-processing step

3. **Main contributions in image modelling**
 - Continuous-time model for ultrasound signals
 - CT parameters for tissue characterization

4. **Clinical Application**
 - Ground truth collection
 - Real-time Computer-Aided Biopsy

5. **Conclusions**
Tissue characterization for diagnostic ultrasound

- Biomedical image to monitor inner physiological systems to early diagnose potential disease
- **Image analysis** to capture features correlated to the pathological state of the tissue and invisible to human eye
- **Image modeling** provides mathematical descriptors of measured signals correlated to tissue state
- Computer-aided Diagnosis to improve reliability of physician judgement

Specific context: Improvement of standard prostate biopsy protocol
Tissue characterization for diagnostic ultrasound

- Biomedical image to **monitor** inner physiological systems to early **diagnose** potential disease
- **Image analysis** to capture features correlated to the pathological state of the tissue and invisible to human eye
- **Image modeling** provides mathematical descriptors of measured signals correlated to tissue state
- Computer-aided Diagnosis to improve reliability of physician judgement
- **Specific context**: Improvement of standard prostate biopsy protocol
Limits of standard prostate biopsy protocol

- Transrectal ultrasound (TRUS)-guided prostate biopsy
- Systematic sampling of high cancer incidence areas (PZ)
- Variable tumour appearance at TRUS \Rightarrow non lesion-directed biopsy
- Positive biopsy rate: 20-25% \Rightarrow $ppv = P(U\ core|U\ patient)$
- Detection rate over patients: 80-85% \Rightarrow $1 - (1 - ppv)^{N_{cores}}$
- Low efficiency and high number of unnecessary biopsies

Figure: double sextant biopsy protocol
Why ultrasound processing to improve biopsy?

Problem: improve efficiency of standard biopsy protocol

Solution: ultrasonic tissue characterization for lesion-directed biopsy

- Advantages of US technology: real-time, non-invasive, cheap (vs. MRI, CT)
- US machine in all health institutions
- World healthcare market target: affordable medical equipment for developing countries
- Boost performance of cost-effective devices
Why ultrasound processing to improve biopsy?

Problem: improve efficiency of standard biopsy protocol

Solution: ultrasonic tissue characterization for lesion-directed biopsy

- Advantages of US technology: real-time, non invasive, cheap (vs. MRI, CT)
- US machine in all health institutions
- World healthcare market target: affordable medical equipment for developing countries
- Boost performance of cost-effective devices
The story so far...

Figure: Tissue characterization procedure
The story so far...

Figure: Tissue characterization procedure

State of the art methods:

<table>
<thead>
<tr>
<th>Work</th>
<th>Ground Truth</th>
<th>Technique</th>
<th>Results %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td># patients</td>
<td>Features</td>
<td>SE</td>
</tr>
<tr>
<td>[Huynen et al., 1994]</td>
<td>51</td>
<td>Textural</td>
<td>80</td>
</tr>
<tr>
<td>[Houston et al., 1995]</td>
<td>25</td>
<td>Textural</td>
<td>73</td>
</tr>
<tr>
<td>[Schmitz et al., 1999]</td>
<td>33</td>
<td>Multi</td>
<td>82</td>
</tr>
<tr>
<td>[Scheipers et al., 2003]</td>
<td>100</td>
<td>Multi</td>
<td>-</td>
</tr>
<tr>
<td>[Feleppa et al., 2004]</td>
<td>200</td>
<td>Spectral</td>
<td>-</td>
</tr>
<tr>
<td>[Llobet et al., 2007]</td>
<td>300</td>
<td>Textural</td>
<td>68</td>
</tr>
<tr>
<td>[Mohamed et al., 2008]</td>
<td>20</td>
<td>Multi</td>
<td>83.3</td>
</tr>
<tr>
<td>[Han et al., 2008]</td>
<td>51</td>
<td>Multi</td>
<td>92</td>
</tr>
<tr>
<td>HistoScanning™ [2009]</td>
<td>29</td>
<td>Multi??</td>
<td>95</td>
</tr>
</tbody>
</table>
The story so far...

Figure: Tissue characterization procedure

Limits of published methods:

- Small ground truth database
- Low accuracy performances
- No real-time methods
- No medical feedback
- Inappropriate to clinical employment
Main contributions roadmap

- **Image Analysis**
 - Deconvolution as pre-processing step
 - Non linear multi-feature approach

- **Image Modeling**
 - Continuous-time model of ultrasound signal
 - New ultrasonic features for tissue characterization

- **Clinical Application**
 - Large medical ground-truth collection
 - Real time detection tool to improve biopsy efficiency
Main contributions roadmap

- **Image Analysis**
 - Deconvolution as pre-processing step
 - Non linear multi-feature approach
- **Image Modeling**
 - Continuous-time model of ultrasound signal
 - New ultrasonic features for tissue characterization
- **Clinical Application**
 - Large medical ground-truth collection
 - Real time detection tool to improve biopsy efficiency
Modified scheme for tissue characterization

- Deconvolution as preprocessing step
- Increase diagnostic significance of ultrasonic features
- Reduce system-dependent effects
- Traditional role of deconvolution: improve visual quality (subjective!)
- Non linear multi-feature approach
Modified scheme for tissue characterization

- Deconvolution as preprocessing step
- Increase diagnostic significance of ultrasonic features
- Reduce system-dependent effects
- Traditional role of deconvolution: improve visual quality (subjective!)
- Non linear multi-feature approach
Deconvolution to recover Tissue Response

Problem:
- **Convolution model:** $z[k] = x[k] \ast h[k] + n[k]$ with $x = \Sigma s$
- **Σ:** coherent reflection, macroscopic interactions, mean value of diffused field.
- **s:** incoherent reflections, interactions smaller than wavelength, random fluctuations of diffused field.

Solution:
- Blind adaptive deconvolution approach
- Advantages: simplicity, low computational cost, variable PSF
Deconvolution to recover Tissue Response

Problem:

- Convolution model: \(z[k] = x[k] \ast h[k] + n[k] \) with \(x = \Sigma s \)
- \(\Sigma \): coherent reflection, macroscopic interactions, mean value of diffused field.
- \(s \): incoherent reflections, interactions smaller than wavelength, random fluctuations of diffused field.

Solution:

- Blind adaptive deconvolution approach
- Advantages: simplicity, low computational cost, variable PSF
Improvement in lesion detection due to Deconvolution

Benignant case

<table>
<thead>
<tr>
<th></th>
<th>No Preprocessing</th>
<th>Deconvolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE</td>
<td>0.69 ± 0.06</td>
<td>0.75 ± 0.09</td>
</tr>
<tr>
<td>SP</td>
<td>0.94 ± 0.02</td>
<td>0.93 ± 0.01</td>
</tr>
<tr>
<td>Acc</td>
<td>0.93 ± 0.02</td>
<td>0.93 ± 0.02</td>
</tr>
<tr>
<td>Az</td>
<td>0.92 ± 0.02</td>
<td>0.95 ± 0.02</td>
</tr>
</tbody>
</table>
Improvement in lesion detection due to Deconvolution

Malignant case

<table>
<thead>
<tr>
<th></th>
<th>No Preprocessing</th>
<th>Deconvolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE</td>
<td>0.69 ± 0.06</td>
<td>0.75 ± 0.09</td>
</tr>
<tr>
<td>SP</td>
<td>0.94 ± 0.02</td>
<td>0.93 ± 0.01</td>
</tr>
<tr>
<td>Acc</td>
<td>0.93 ± 0.02</td>
<td>0.93 ± 0.02</td>
</tr>
<tr>
<td>Az</td>
<td>0.92 ± 0.02</td>
<td>0.95 ± 0.02</td>
</tr>
</tbody>
</table>
Main contributions roadmap

- **Image Analysis**
 - Deconvolution as pre-processing step
 - Non linear multi-feature approach

- **Image Modeling**
 - Continuous-time model of ultrasound signal
 - New ultrasonic features for tissue characterization

- **Clinical Application**
 - Large medical ground-truth collection
 - Real time detection tool to improve biopsy efficiency
Continuous-time model for ultrasound signals

- Continuous-time Auto Regressive Moving Average (CARMA)
- Continuous-model for ultrasound signal
- Identification of continuous model from sampled data
- New mathematical formulation of CARMA model based on exponential B-splines\(^1\)
- Autocorrelation of \(z(t)\) can be derived exactly by interpolation of discrete samples through appropriate exponential B-splines

\(^1\)[Unser and Blu, 2005]
Continuous-time model for ultrasound signals

- Continuous-time Auto Regressive Moving Average (CARMA)
- Continuous-model for ultrasound signal
- Identification of continuous model from sampled data
- New mathematical formulation of CARMA model based on exponential B-splines\(^1\)
- Autocorrelation of \(z(t) \) can be derived exactly by interpolation of discrete samples through appropriate exponential B-splines

\(^1\)[Unser and Blu, 2005]
New approach to CARMA identification

State of the art identification methods:

- Approximated sampling process
- Valid for high sampling frequency: no deal with aliasing

Proposed a new estimator for CARMA processes:

- Maximum-likelihood estimator
- Exploit interpolation by exponential B-splines
- Incorporate sampling process in problem formulation
- No a priori assumption on digital data nor sampling interval
- Several minima of likelihood function
- Correct solution in global minimum
- Multi-band approach to optimization
- Good estimates also in aliasing conditions
Simulation results

- Performances of algorithm for CARMA identification on simulated signals.
- Comparison with an approach based on polynomial splines\(^2\)
- CAR(2): \(\Phi(s) = \frac{1}{s^2 + 0.4s + 49.04} = \frac{\sigma^2}{s^2 + a_0s + a_1}\)

\[^2\text{[Gillberg and Ljung, 2009]}\]
Simulation results

- Performances of algorithm for CARMA identification on simulated signals.
- Comparison with an approach based on polynomial splines

\[\Phi(s) = \frac{s+3}{s^2+2s+26} = \frac{s+b_0}{s^2+a_0s+a_1} \]

\[a_0 \]

\[a_1 \]

\[b_0 \]

\[^2[Gillberg and Ljung, 2009] \]
CARMA parameters for tissue characterization

- Study: comparison between ARMA and CARMA parameters for tissue typing
- Tissue-mimicking phantoms with different particles concentration
- ARMA\((4, 3)\) vs. CARMA\((4, 2)\) parameters
- Performances as ability in capturing information about scatterers concentration

Table: Rate of misclassification\(^1\)CARMA, \(^2\)ARMA.

<table>
<thead>
<tr>
<th>Classes</th>
<th>Features for classification</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentration</td>
<td>poles</td>
<td>zeroes</td>
<td>all parameters</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(a^1) (c^2)</td>
<td>(b^1) (d^2)</td>
<td>((a, b)^{1}) ((c, d)^2)</td>
<td></td>
</tr>
<tr>
<td>[0.5%, 0.75%]</td>
<td>0.010 0.037</td>
<td>0.016 0.021</td>
<td>0.010 0.011</td>
<td></td>
</tr>
<tr>
<td>[0.5%, 0.75%, 3%]</td>
<td>0.012 0.034</td>
<td>0.009 0.027</td>
<td>0.013 0.016</td>
<td></td>
</tr>
<tr>
<td>[0.5%, 0.75%, 3%, 6%]</td>
<td>0.122 0.118</td>
<td>0.159 0.260</td>
<td>0.067 0.105</td>
<td></td>
</tr>
<tr>
<td>[0.5%, 0.75%, 3%, 6%, 12%]</td>
<td>0.133 0.127</td>
<td>0.275 0.366</td>
<td>0.088 0.126</td>
<td></td>
</tr>
</tbody>
</table>
Main contributions roadmap

- **Image Analysis**
 - Deconvolution as pre-processing step
 - Non linear multi-feature approach

- **Image Modeling**
 - Continuous-time model of ultrasound signal
 - New ultrasonic features for tissue characterization

- **Clinical Application**
 - Large medical ground-truth collection
 - Real time detection tool to improve biopsy efficiency
Ground truth database

- Collaboration with dep. Urology of S. Orsola Hospital in Bologna since Nov. ’09
- Recorded about 8-12 US video sequences for each patient
- More recorded info: PSA value, DRE result, patient history
- Histopathological analysis: % of tumour and Gleason score
- Up to now: about 1000 US videos for 120 patients

<table>
<thead>
<tr>
<th>code</th>
<th># cores</th>
<th>Description</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>18</td>
<td>% tumour ≥ 70%</td>
<td>Malignant</td>
</tr>
<tr>
<td>UM</td>
<td>46</td>
<td>% tumour < 70%</td>
<td>Unknown</td>
</tr>
<tr>
<td>BB</td>
<td>179</td>
<td>Benignant tissue(^1)</td>
<td>Benignant</td>
</tr>
<tr>
<td>BM</td>
<td>120</td>
<td>Benignant tissue(^2)</td>
<td>Benignant</td>
</tr>
<tr>
<td>U</td>
<td>40</td>
<td>Precancerous lesions</td>
<td>Unknown</td>
</tr>
<tr>
<td>TOT</td>
<td>403</td>
<td>42 patients (22 pathological)</td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) from healthy patient
\(^2\) from unhealthy patient
real-time Computer-Aided Biopsy

- Malignancy risk map to guide biopsy
- Statistical and textural features
- Motion tracking to reduce computational-time
- Parallel processing on CUDA™ enabled graphic card
- Classifier trained on ground-truth to maximize core-based PPV
- 100% median sensitivity and 39% PPV at 30 fps
- Same diagnostic value of standard protocol $\Rightarrow 1 - (1 - ppv)^N_{\text{cores}}$
- Cores reduction from 8-12 to 7 deemed feasible
Conclusions

- Deconvolution as pre-processing step in ultrasonic tissue characterization
- Continuous-time model for ultrasound signal
- CARMA parameters to type scatterers concentrations
- Clinical study to improve standard prostate biopsy protocol

Further Developments

- Study of CARMA parameters on in vivo images
- Real-time deconvolution for clinical applications
- Improvement of classification task by semi-supervised methods
- Clinical trial for computer-aided biopsy tool validation
Conclusions

• Deconvolution as pre-processing step in ultrasonic tissue characterization

• Continuous-time model for ultrasound signal

• CARMA parameters to type scatterers concentrations

• Clinical study to improve standard prostate biopsy protocol

Further Developments

• Study of CARMA parameters on in vivo images

• Real-time deconvolution for clinical applications

• Improvement of classification task by semi-supervised methods

• Clinical trial for computer-aided biopsy tool validation
Thank you for your attention!

http://mas.deis.unibo.it/
Publications

- **2011 (under revision)**
 IEEE Transactions on Signal Processing
 H. Kirshner, S. Maggio, M. Unser.
 On Continuous-Domain ARMA Modeling

- **2011 (under revision)**
 Proceedings ISBI 2011
 S. Maggio, M. Alessandrini, N. Speciale, O. Bernard, D. Vray, O. Basset, M. Unser.
 Continuous-domain ARMA modeling for ultrasound tissue characterization

- **2011 (under revision)**
 IEEE Transactions on Ultrasonics, Ferr., and Freq. Control
 An expectation maximization framework for improved tissue response characterization

- **2011 May**
 Proceedings SampTA 2011
 H. Kirshner, S. Maggio, M. Unser.
 Maximum-Likelihood Identification of Sampled Gaussian Processes

- **2011 February**
 SPIE Medical Imaging
 An expectation maximization framework for an improved tissue characterization using ultrasounds

- **2010 November**
 17 Congresso Nazionale SIEUN
 A retrospective study to reduce prostate biopsy cores by a real time interactive tool

- **2010 October**
 Proceedings IEEE IUS 2010
 N. Testoni, S. Maggio, F. Galluzzo, L. De Marchi, N. Speciale.
 rtCAB: a tool for reducing unnecessary prostate biopsy cores

- **2010 August**
 Proceedings EUSIPCO 2010
 S. Maggio, H. Kirshner, M. Unser
 Continuous-time AR model identification: does sampling rate really matter?

- **2010 February**
 IEEE Transactions on Medical Imaging
 S. Maggio, A. Palladini, L. De Marchi, M. Alessandrini, N. Speciale, G. Masetti
 Predictive deconvolution and hybrid feature Selection for Computer-Aided Detection of prostate cancer

- **2009 March**
 Proceedings International Symposium on Acoustical Imaging
 M. Scebran, A. Palladini, S. Maggio, L. De Marchi, N. Speciale
 Automatic regions of interests segmentation for computer aided classification of prostate TRUS images

- **2008 November**
 Proceedings IEEE IUS 2008
 S. Maggio, L. De Marchi, M. Alessandrini, N. Speciale
 Computer aided detection of prostate cancer based on GDA and predictive deconvolution

- **2005 November**
 WSEAS Transactions on Systems
 S. Maggio, N. Testoni, L. De Marchi, N. Speciale, G. Masetti
 Ultrasound Images Enhancement by means of Deconvolution Algorithms in the Wavelet Domain

- **2005 September**
 WSEAS ISCGAV 2005
 S. Maggio, N. Testoni, L. De Marchi, N. Speciale, G. Masetti
 Wavelet-based Deconvolution Algorithms Applied to Ultrasound Images
Ultrasonic tissue-type imaging (tti) for planning treatment of prostate cancer.
Proceedings of SPIE, 5373(223).

Frequency-domain identification of continuous-time arma models from sampled data.
Automatica, 45:1371–1378.

Computer-aided prostate cancer detection using texture features and clinical features in ultrasound image.

Prostate ultrasound image analysis: Localization of cancer lesions to assist biopsy.

Analysis of ultrasonographic prostate images for the detection of prostatic carcinoma: the automated urologic diagnostic expert system.

Computer-aided detection of prostate cancer.

Ultrasonic multifeature tissue characterization for prostate diagnostics.
Tissue-characterization of the prostate using radio frequency ultrasonic signals.

Cardinal exponential splines: Part i - theory and filtering algorithms.