Signal processing for active and passive UWB communication

Nicolò Decarli

Supervisor: prof. ing. Marco Chiani
Co-Supervisor: prof. ing. Davide Dardari

Wilab, DEIS, University of Bologna at Cesena, Italy

Seminari di fine anno, XXV ciclo
Outline

1. Introduction
 - Definition of UWB active and passive communication
 - Themes addressed during the PhD

2. Optimization of Transmitted Reference receivers
 - UWB Transmitted Reference
 - Integration time optimization
 - Stop-and-Go Receiver

3. UWB backscatter communication
 - Concept of UWB-RFID system
 - Performance analysis

4. Dissemination activity
Definition of UWB active and passive communication

Definition:
Band > 500 MHz
Fractional band > 0.2

In particular we concentrate on *impulse radio* UWB where the emitted signal is composed of very short pulses.

In the first part of the presentation we present a demodulation technique for active UWB transmission.

In the second part we focus on UWB passive transmission, i.e. a technique that can be employed in RFID systems by using the concept of *backscatter modulation.*
Themes addressed during the PhD

- LOS/NLOS detection for UWB signals
- Model order selection techniques and application to UWB signal processing
- UWB backscatter modulation
- Relay techniques for localization
- Near-field electromagnetic ranging

In the context of the Europeans projects EUWB, NEWCOM++, SELECT
In figure we have an example of UWB received signal, measured during an experimentation carried out in the context of Newcom++ project. Optimal demodulation requires the availability of a filter matched to the overall received signal, composed of many multipath components, or the presence of a complex Rake receiver.

Alternative techniques to matched filtering can be adopted to perform demodulation, avoiding complex channel estimation.
Transmitted Reference receiver

The symbol is composed of a pair of pulses: the first one not modulated is used as reference template for the correlation of the (modulated) second one.

Problem: find the optimum T.

Small T leads to performance loss because a part of the useful signal energy coming from the multipath components is not correlated.

Large T leads to excessive noise accumulation due to the noisy template and the generic negative exponential power delay profile.

Optimum T is function of the channel PDP and noise PSD.
A solution is proposed for the optimization of the parameter T, without any a-priori knowledge on on the noise PSD N_0 and the channel statistic (blind approach).

The circuit having in charge the T determination is composed of an energy detector and a block that, by analyzing the energy profile of the received signal, estimates the portion containing useful energy; this estimation is realized through information theoretic criteria (ITC) techniques.
Transmitted Reference receiver

Example of UWB received signal, extraction of the correspondent energy profile and integration time T determination.
Integration time determination approach

Once ordered in decreasing order the energy bins, the integration time is estimated by deciding how many of these bins contain useful signal energy. This is done by minimizing:

$$\hat{k} = \arg\min_{k \in \{1, \ldots, N_{\text{bin}} - 1\}} \text{ITC}(k)$$ (1)

with

$$\text{ITC}(k) = -2 \ln f \left(X; \hat{\Theta}^{(k)} \right) + \mathcal{L}(k),$$ (2)

where $f(\cdot; \cdot)$ is the likelihood of observed data X, $\hat{\Theta}^{(k)}$ is the vector of the estimated parameters under k-th model order hypothesis, and $\mathcal{L}(k)$ is a penalty factor associated to the specific model order selection rule.

Observed data X can be described as Chi-Squared central/non-central random variables, while the vector of the estimated parameters can be expressed as:

$$\hat{\Theta}^{(k)} = \left(\hat{\lambda}^{(k)}_0, \ldots, \hat{\lambda}^{(k)}_{k-1}, 0, \ldots, 0, \hat{\sigma}^2(k) \right)$$ (3)

$\hat{\lambda}^{(k)}$: maximum likelihood (ML) estimation of the non-centrality parameters (energy of the noise-free signal) under the hp. k

$\hat{\sigma}^2(k)$: noise power under the hp. k
Figure: BEP for the TR AcR as a function of the SNR for an Exponential PDP channel model, considering different strategies for the integration time determination. Continuous lines (−) are for the receiver with proposed blind integration time determination, dashed (−−) lines are for the receiver with channel ensemble optimum integration time, and dot-dashed (−·) lines refers to fixed integration time equal to the maximum channel excess delay.
The idea is to discard, using a switching device, all the bins that do not bring useful contribution, by comparing the energy profile with a specific threshold. Different methods have been proposed to properly set this threshold with different degrees of complexity and necessary a-priori knowledge.
This part is related to the last year activity, carried out in the context of the FP7 project SELECT. The idea is to study a new RFID communication system based on backscatter modulation adopting UWB signals.

Smart and Efficient Location, idEntification and Cooperation Techniques

The study deals with:

- System performance analysis using channel models and measurements (e.g. bit error rate (BER))
- Front-end implementation (signal processing in analog and digital parts)
- Performance analysis in presence of implementation impairments and mitigation strategies
UWB Backscattering Modulation

- **Structural Mode Scattering**
 - It involves the antenna itself and any other structure part such as the antenna support

- **Antenna Mode Scattering**
 - It stems from the capability of the antenna to radiate when excited at its ports
Tags-Reader Backscatter Communication using UWB signals

\{a_n\}: reader’s code \quad \{c_n\}: tag’s code

- After the transmission of each pulse, the reader is switched in RX mode to detect the TAG response.
- At the receiver the sampled signal is multiplied by the composite sequence a_nc_n which identifies the couple reader-tag.
When switched on, the tag changes continuously its reflection property according the sign of the code symbols (every T_p seconds) and data symbols (every $T_s = T_p \cdot N_s$ seconds).

Multiple readers can access the same tag using different codes provided that they have good cross-correlation properties (e.g. Gold codes).
Transmitted and Backscattered Signals structure

Reader transmitted signal

Backscattered received signal

clutter
+antenna structural mode scattering

TAG data sequence

Decarli N. (University of Bologna)
Clutter removal

data symbol "+1"

frame 1

frame 2

frame Ns−1

frame Ns

data symbol "−1"

frame 1

frame 2

frame Ns−1

frame Ns
Symbol structure

The diagram illustrates the symbol structure with the following parameters:

- T_s: symbol duration
- T_c: bit duration
- T_p: pulse duration
- d_0, d_1, d_{N_c-1}: symbols
- N_r: number of symbols in the sequence
- N_{pc}: number of pulses in the sequence

The symbols are arranged in a sequence as follows:

1. d_0 in position 1
2. d_1 in position 2
3. d_{N_c-1} in position N_c
Two scenarios of reference

Quasi-Synchronous
- Reader and all tags code generators are synchronized at PRP level
- The Time of Arrival of the signals only depends on the reader-tag distance

Asynchronous
- Reader and interfering tags code generators are not synchronized

Code Choice for Clutter Removal and Multiple Access
- **Clutter removal**
 - If the TAG has zero mean, the clutter is removed after the de-spreader (if slow-varying)

- For MUI, the situation is similar to what happens in conventional code division multiple access systems
 - When the scenario is quasi-synchronous, orthogonal codes, such as Hadamard codes, represent a good choice
 - When the scenario is asynchronous, classical codes such as Gold Codes and M-sequences offer good performance.
 - Problem: they do not have zero mean!
 - Extended M-sequences seem a good solution in order to achieve zero mean with a slight loss in cross-correlation properties
Two scenarios of reference

Quasi-Synchronous
- Reader and all tags code generators are synchronized at PRP level
- The Time of Arrival of the signals only depends on the reader-tag distance

Asynchronous
Reader and interfering tags code generators are not synchronized

Code Choice for Clutter Removal and Multiple Access

- **Clutter removal**
 - If the TAG has zero mean, the clutter is removed after the de-spreader (if slow-varying)

- For MUI, the situation is similar to what happens in conventional code division multiple access systems
 - When the scenario is quasi-synchronous, orthogonal codes, such as Hadamard codes, represent a good choice
 - When the scenario is asynchronous, classical codes such as Gold Codes and M-sequences offer good performance.
 - Problem: they do not have zero mean!
 - Extended M-sequences seem a good solution in order to achieve zero mean with a slight loss in cross-correlation properties
Two scenarios of reference

Quasi-Synchronous
- Reader and all tags code generators are synchronized at PRP level
- The Time of Arrival of the signals only depends on the reader-tag distance

Asynchronous
Reader and interfering tags code generators are not synchronized

Code Choice for Clutter Removal and Multiple Access
- **Clutter removal**
 - If the TAG has zero mean, the clutter is removed after the de-spreader (if slow-varying)

- For **MUI**, the situation is similar to what happens in conventional code division multiple access systems
 - When the scenario is quasi-synchronous, orthogonal codes, such as Hadamard codes, represent a good choice
 - When the scenario is asynchronous, classical codes such as Gold Codes and M-sequences offer good performance.

Problem: they do not have zero mean!

Extended M-sequences seem a good solution in order to achieve zero mean with a slight loss in cross-correlation properties
Two scenarios of reference

Quasi-Synchronous
- Reader and all tags code generators are synchronized at PRP level
- The Time of Arrival of the signals only depends on the reader-tag distance

Asynchronous
Reader and interfering tags code generators are not synchronized

Code Choice for Clutter Removal and Multiple Access

- **Clutter removal**
 - If the TAG has zero mean, the clutter is removed after the de-spreader (if slow-varying)

- For **MUI**, the situation is similar to what happens in conventional code division multiple access systems
 - When the scenario is quasi-synchronous, orthogonal codes, such as Hadamard codes, represent a good choice
 - When the scenario is asynchronous, classical codes such as Gold Codes and M-sequences offer good performance. **Problem: they do not have zero mean!**
 - Extended \(M \)-sequences seem a good solution in order to achieve zero mean with a slight loss in cross-correlation properties
BER-Ns in multi-tags multipath scenario with artificial clutter

The evaluation of the system performance is obtained through Monte-Carlo simulations

Transmitter side: RRC signal compliant to the EU-UWB mask in the 3.1 − 4.8 GHz band

Receiver side: a receiver noise figure of 4 dB and Single Path Matched Filter considered

Simulation parameters: useful tag placed at 7 m from the reader, 59 interfering tags randomly distributed in 1m around the useful one, 802.15.4a CM1 channel model, $G_r = 5$ dBi, $G_t = 1$ dBi, $T_p = 128$ ns, $N_c = 1024$, artificial clutter modeled with uniform PDP with Nakagami fading

- In Quasi-synchronous scenario, when Hadamard (Orthogonal) codes are used, performance results to be not affected by MUI and clutter
- In Asynchronous scenario, extended M-sequences confirms to be a good solution
Antennas and measurement conditions (ENSTA, Paris):

- 2 Horn Lindgren 3117 as Reader
- 1 DFMS (Dual Feed Monopole Stripline) as TAG
- 2 different load conditions: OpenL, ShortL
- 1 VNA to measure the S_{21} parameter and to set: BW=2-12GHz, Step=5MHz

- The signal from the location D is considered as that backscattered from the useful tag
- The signals from the locations A, B, C, E and F as the MUI
- $T_p = 64$ ns
In the asynchronous scenario, it is possible to observe the beneficial impact of extended M-sequences.
Other themes (UWB-RFID system)

Other activities carried out, or in course of study, related to the UWB backscattering communication system:

- Non-coherent backscatter signal detection

- Low-complexity front-end structures design and performance analysis

- Analog-to-digital conversion issues (managing of the extreme near-far problem due to the presence of clutter and multi reader interference. The received signal is composed of a backscattered component, that exhibits a distance-dependent path loss with a law d^{-4}, and direct reader-reader components with a path loss dependance of d^{-2}, fact that produces very high amplitude differences in the band of interest)

- Analog partial de-spreading techniques for clutter removal

- Synchronization and code tracking in presence of tag clock drift (reduced tag oscillator accuracy)

- UHF-UWB integration (e.g. tag wake-up strategies for initial code synchronization)

- Time of Arrival estimation for network localization
Dissemination

Conference papers:

- Francesco Guidi; **Nicolò Decarli;** Davide Dardari, Christophe Roblin; Alain Sibille, “Performance of UWB RFID in Multi-Tag Scenario Using Experimental Data”, IEEE International Conference on Ultrawide Band (ICUWB), Bologna, 2011.

Journal papers:

- Andrea Conti; Matteo Guerra; Davide Dardari; **Nicolò Decarli;** Moe Z. Win, “Network Experimentation for Indoor Cooperative Localization”, IEEE Journal on Selected Area in Communications, Special Issue on Cooperative Networking - Challenges and Applications, 2012.
Dissemination

Demo:

presented at:

Future Networks & Mobile Summit 2010 (Florence, Italy),
IEEE Globecom 2010 (Miami, Florida, USA),

Project deliverables:

- EUWB D2.2.2 “Interference Identification Algorithms”, 2010.
- EUWB D2.4.2 “Interference Mitigation Techniques Algorithms”, 2010.
- SELECT D2.3.1 “Multi-functional network design: intermediate system specification”, 2011.
Thanks for the attention