Technology Options for Photovoltaic Solar Cells

Claudio Fiegna

Outline

- Introduction
- Working principle for solar cells
- Silicon based solar cells
 - Crystalline
 - Thin film a-Si or μ c-Si
- Other thin-film technologies
- Organic solar cells

Solar Energy and Photo-voltaic conversion

- La potenza che colpisce l'atmosfera terrestre è di circa 170 10¹⁵ Watt (170 PW).
- In meno di un'ora il sole invia sulla Terra una quantità di energia pari all'intero consumo complessivo mondiale annuale.
- Il flusso di energia solare è molto diluito ed intermittente
- La conversione fotovoltaica sfrutta il meccanismo di generazione di carica elettrica prodotto dalla radiazione luminosa in un materiale semiconduttore

Solar Energy and Photo-voltaic conversion

Development of PV technology

- The photovoltaic (PV) effect was discovered in 1839 by Edmond Becquerel
- After the introduction of silicon as the prime semiconductor material in the late 1950s, silicon PV diodes became available; main applications: TLC equipments in remote locations and satellites
- The oil crisis of 1973 led to public investments for technology development
- Since the beginning of the 1990s, ecological considerations acted as a main driving force in promoting PV solar energy

Global Status of Solar Photovoltaics

- By the end of 2007, the cumulative installed capacity of solar photovoltaic (PV) systems around the world had reached more than 9,200 MW. (1,200 MW at the end of 2000).
- Installations of PV cells and modules around the world have been growing fast
- solar electricity industry that it is now worth more than an annual € 13 billion
- The cost of PV electricity is decreasing steadily

Equivalent PV Electricity Cost (CA)

Assumptions:

PV Cost reduction past 2010 = 6% per year

CA 2007 base utility rates, increase = 3% per year

24

Outline

- Introduction
- Working principle for solar cells
- Silicon based solar cells
 - Crystalline
 - Thin film a-Si or μ c-Si
- Other thin-film technologies
- Organic solar cells

Interaction of light with semiconductors

- When light strikes the surface of a semiconductor it is partially transmitted and partially reflected;
- The transmitted light is absorbed by the semiconductor;
- The energy associated to absorbed light promotes the transition of electrons from occupied states (e.g. valence band) to the higher-energy unoccupied states (conductions band.

Solar spectrum

WAVELENGTH (nm)

Absorption of light in semiconductors

M.A. Green, "Solar Cells", Univ. South Wales.

Absorption of light in a direct-bandgap semiconductor (right) and absorption coefficient as a function of photon energy in GaAs.

Absorption of light in semiconductors

M.A. Green, "Solar Cells", Univ. South Wales.

Absorption of light in an indirect-bandgap semiconductor (right) and absorption coefficient as a function of photon wave-length in Silicon.

Other absorption mechanisms

- Phonon-assisted absorption in indirect-gap semiconductors;
- free-carrier absorption (no electro-hole generation)
- two-steps absorption through an energy level within the bandgap
- electric-field assisted sub-bandgap absorption
- effects of bandgap narrowing at large doping levels

Light absorption (normal flux)

- F(x): photon flux number of photons crossing the unit-area per unit-time [cm⁻² s⁻¹]
- $\alpha(x)$: absorption coefficient [cm⁻¹]
- Optical generation rate: $G_{OPT} = \alpha(x)F(x)$
- α(x)F(x)dx: number of absorptions per unit time within dx
- $dF(x) = -\alpha(x)F(x)dx$
- Let $\alpha(x) = \text{const}$; let x_0 be a reference abscissa (eg. Surface) ---> $F(x) = F(x_0) \exp[-(x-x_0)\alpha]$

Solar cells

- Basic requirements for solar-cell operation:
 - optical generation of electron-hole pairs under sun illumination: the band-gap must correspond to wavelength included in the spectrum of solar light.
 - Built-in electric field for separation of carriers.
 - low recombination rate low defect density.

Cella fotovoltaica convenzionale al silicio

Efficienza di conversione: 16% - 20% Massimo teorico: 31%

Tecnologie alternative:

•Film sottile silicio amorfo (7% - 9%)

•Celle multi-giunzione (fino a 40%)

•Celle in materiale organico (basso costo, bassa efficienza 5%)

The PN junction as a solar cell

M.A. Green, "Solar Cells", Univ. South Wales.

Photo-generated carriers surviving recombination and separated by the junction field contribute a negative current $-I_L$ that (approximately) superimposes to the conventional I-V characteristic.

The PN junction as a solar cell

- Under the simplifying assumption of uniform optical generation rate G_{OPT}
- Neutral region in region N: $\frac{d^2 \Delta p}{dx^2} = \frac{\Delta p}{L_h^2} \frac{G}{D_h}$
- performing the same derivation as in the "dark" case

$$J_h(x) = \frac{qD_h p_{n0}}{L_h} \left(e^{qV/hT} - 1 \right) e^{-x/L_h} - qGL_h e^{-x/L_h}$$

Optical generation in the depletion region:

 $|\delta J_e| = |\delta J_h| = q G W$

- repeating for electrons at the P side and combining results: $I = I_0 (e^{qV/kT} - 1) - I_L$ $I_L = qAG(L_e + W + L_h)$
- the photo-generated current is contributed by the depletion region plus two adjacent regions within a diffusion length on each side

PN junction solar cell

Conversion Efficiency

- Efficiency requires:
 - large open-circuit voltage V_{OC}
 - Low saturation current I_O (dark I-V charact.)
 - Large short-circuit current I_{SC}
- Low $I_{O} \rightarrow I_{O}$ recombination rates
- Large I_{SC} --> small band-gap (downside: energy wasted into heat generation).

Loss mechanisms

- Non absorption $(E_{ph} < E_g)$
- Thermalization $(E_{ph} > E_g)$
- Optical Losses (Reflection, Transmission, Area Loss)
- Collection Losses (Recombination)
 - Bulk Recombination
 - Surface Recombination
 - Mid Gap States (Dangling Bonds) in Amorphous materials

Fundamental energy losses limiting efficiency

M.A. Green, "Solar Cells", Univ. South Wales.

- For high-energy photons, the energy in excess of the bandgap is lost through phonon emission (heating).
- Although the carriers are separated in energy by a bandgap, V_{OC} is limited to a fraction of $E_G/q.$

Extrinsic energy losses

- The surface of the cell is partially reflective; anti-reflective coating reduces reflection to 10%
- Electrical contacts on the exposed surface blocks 5%-10% of the incoming light
- If the cell is too thin, part of the light may not be absorbed

M.A. Green, "Solar Cells", Univ. South Wales.

Extrinsic energy losses

- Recombination in bulk silicon and at the surfaces limits VOC
- The fill factor is degraded by parasitic series and shunt resistances

M.A. Green, "Solar Cells", Univ. South Wales.

Main technology options

- •Crystalline Silicon PV cells; effic.: 16% 20%
- •Thin film cells (7% 10%)
 - •Silicon based
 - •CdS/CIS
 - •Cds/CdTe
- •Organic Cells (5%)
- Concentrator PV cells

Best Solar Cells Efficiencies

Theoretical Limits of photovoltaic conversion

Performance parameters

Solar cell performance

- Optimal design keys:
 - High J_{sc}
 - Minimize front surface reflection (ARC)
 - Minimize transmission losses (thick absorber)
 - Minimize surface recombination (passivation layers)
 - Minimize bulk recombination
 - large diffusion lengths
 - high electronic quality material
 - Low I₀
 - High doping densities
 - Low surface recombination velocities
 - Large diffusion lengths

Solar cell performance (P-n junction)

• Short circuit current (V=0)

$$Isc = -I_L$$

• Open circuit voltage (I=0)

$$V_{OC} = \frac{KT}{q} \ln\left(\frac{I_L}{I_0} + 1\right)$$

Saturation current

$$I_0 = A \left(\frac{q D_n n_i^2}{L_n N_A} + \frac{q D_p n_i^2}{L_p N_D} \right)$$

Theoretical limits of energy conversion in solar cells

- •Theoretical upper bounds of efficiency (η) , short circuit current (Jsc) and open circuit voltage (Voc) as a function of band gap energy and thickness of a material slab are investigated.
- •We evaluate the relevance of losses due to:
- recombination mechanisms
- the absence of a light trapping strategy

Theoretical limits of energy conversion in solar cells

- AM1.5 Standard Global Spectrum with 100 mW/cm²
- Optical absorption coefficients α(E) and refractive indexes n(E) for a-Si:H and c-Si from literature
- Accounted recombination mechanisms:
- Auger and Radiative (c-Si)
- Recombination on Dangling Bond (DB) states and Band Tails in a-Si:H

Absorbance

• **One-pass** (specular with no back reflector)

$$R=0$$

$$a(E)=1-\exp\left[-2\alpha(E)L\right]$$

$$R=0$$

• Lambertian (randomized multiple scattering surfaces with back reflector)

 Step function: all photons with E > Eg are absorbed and converted into electron-hole pairs; a(E)=1 if E > Eg.

Optical solar spectrum and maximum short-circuit current

$$\lambda = \frac{c}{f} = \frac{hc}{E}$$

M.A. Green, "Solar Cells", Univ. South Wales.

Short-circuit current increases for decreasing bandgap (larger number of photons contribute to generation

Limiting short-circuit current (AM1.5G)

Limit to the open-circuit voltage

$$V_{oc} = \frac{kT}{q} \ln \left(\frac{I_L}{I_0} + 1\right)$$
$$I_0 = A \left(\frac{qD_e n_i^2}{L_e N_A} + \frac{qD_h n_i^2}{L_h N_D}\right)$$
$$n_i^2 = N_C N_V \exp \left(-\frac{E_g}{kT}\right)$$

 V_{OC} increases for low recombination rates (large diffusion lengths) and small intrinsic concentration (large bandgap)

• $R_{DR} = 4*10^4 \text{ cm}^{-3} \text{ s}^{-1}$ (recombination in mid gap states, a-Si:H)

Theoretical limitis: partial conclusions

- In case of c-Si there is a full knowledge of all loss mechanisms, but only radiative and Auger recombinations are enable since all other losses can be reduced by improving the design of the device.
- In case of a-Si:H not all recombination models were included in this analysis and what is not currently defined is the contributions of each loss mechanism
- By considering the I_{sc} limit (22.43 mA/cm²) and the solar cell fabricated in laboratory (up to I_{sc}=17 mA/cm²), a substantial gain in short circuit current can therefore still be obtained by improving the light trapping.

Theoretical limitis: partial conclusions

- In terms of efficiency, for a-Si:H the performance record (9% single junction, 12% tandem, 13% triple junction) is still too far from the upper limit (28%) and most of ths gap is due to poor material quality (defects, enhanced recombinations in intrinsic layers).
- The different optical absorption profile of a-Si:H compared to c-Si allows to design very thin slabs of absorbing material.
- The efficiency degradation ("Staebler-Wronski effect") is not included in this analysis.
- The analysis was performed with the p-n junction electrical model, but a-Si:H devices use p-i-n configuration.

Silicon solar cells

- Crystalline solar cells
 - low defect density.
 - low recombination rates
 - η: 15% 20%
- Amorphous-Si (thin film) solar cells
 - cheaper
 - thinner and lighter
 - η : 7% 10% (large recombination rate)

Prospettive di evoluzione delle celle a silicio

Advanced c-Si Solar Cells: Selective Emitter

Selective Emitter

- Deep n⁺ diffusion under front metalization (10 Ω
- N-type diffusion between finger (117 $\Omega \square \square$.
- P-Type bulk (ρ =1.33 Ω^{\Box} cm 1e16 cm⁻³)
- Contact resistance 1mΩ⁻cm²

Selective Emitter (SE) vs Homogeneous (HE)

- HE: max Eff at 2000 um (η=16.84%, Voc=0.611V, FF=0.803, Jsc=34.1 mA/cm²)
- SE: max Eff at 1800 um (η=17.38%, Voc=0.621V, FF=0.795, Jsc=35.1 mA/cm²)
 - SE+ Auger recombination
 - SE+ Surface recombination (between fingers)
 - SE+ Better Blue response
 - SE- Emitter Resistance

Advanced c-Si Solar Cells: Local Point

Local Point Solar Cell

- Expected advantage (compared to a conventional full back contact cell):
 - Reduced back surface recombination velocities (BSRV)
- Trade-off between the metalization fraction *f* and efficiency (a reduced metalization factor would increase the effective base resistance R_{s.eff})

Local Point Solar Cell analysis strategy

- Evaluation of the effective base series resistance R_{s,eff} and of the effective back surface recombination velocity S_{eff} by using an analytical semi-empirical model.
- 1D (fast) simulation to find the range of interest of the geometrical parameters (p,r,f) in order to maximize the efficiency of the device.
- Validation of the results by simulating the device with a 3D structure (Sentaurus).

Local Point Solar Cell with BSF

•W = wafer thickness

- $W_{BSF} = BSF$ layer thickness
- Majority carrier path length $LC_{bsf} = |C^*-C|+|O^*-C^*|+|O-O^*|$
- Since BSF is heavily doped, $LC_{bsf} \approx |C^*-C| < LC_{no_bsf}$

$$R_{s,eff}^{W/OBSF} = f\left(\rho, W, P, R\right) \rightarrow R_{s,eff}^{W/BSF} = f\left(\rho, \frac{W}{\alpha}, P, R\right) \qquad \alpha = \gamma$$

$$\alpha = \sqrt{\left(1 + \frac{P^2}{2 \cdot \left(W - W_{BSF}\right)}\right)} > 1$$

Local Point Solar Cell: 3D simulation and validation of the model to evaluate the effective base series resistance

Hole Pitch	Hole Size	Analytical Model	Sentaurus 3D
р	s=2r	Rs,eff	Rs,eff
[um]	[um]	$\mathbf{m}\Omega^*\mathbf{cm}^2$	$\mathbf{m}\Omega^*\mathbf{cm}^2$
200	100	40	160
1000	100	610	671
1000	200	280	385

No contact resistance assumed.

Front contact pitch = 2000 um

Wafer thickness = 185 um

Wafer resistivity = 1.33 Ω^* cm, no BSF