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State space models

* In many cases, we are interested in systems whose state
is a continuous multivariate r. v. (as opposed to HMM
where it is discrete). Such systems are often referred to
as state(-)space models

* Their evolution in time is described by two equations, the
state equation, or system, or process, model, and the
output equation, or measurement model

* Our further assumptions are: i) time-discrete evolution; ii)
time-invariant parameters; iii) no control inputs; iv) noise
over the state transitions and on the measurements; v)
first-order Markov process; vi) independence of
measurements given the state (aka Bayesian tracking
hypotheses)
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State space models

* Under these assumptions, we obtain the following
equations:

X, =f (xk—lavk—l)
2 = h(xk>nk)

* X, is the stater.v. e R"
v, is the process noise r.v. € R
z, is the measurementr.v. € RP
n, is the measurement noise r.v. € R’
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Recursive Bayesian estimation

+ Problem: estimate the state of a system, x,, from the
sequence of received measurements, Z, = {z,
K}

+ Recursive estimation: every new z, — new x,

» Estimating the state of a system means to estimate
its pdf given the received measurements, p(x,|Z,)

p(x.Z,) is known as the filtering density and is a
marginal of the posterior density p(X,|Z,)

+ Typical application: target tracking
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Recursive Bayesian estimation

* How do we recursively estimate p(x,|Z,)?
— Attime k, p(x,4|Z..,) is available

— Repeatedly apply the Bayes theorem and use the
independence of observations given the state:

P(Zk |xk)p(xk) p(zkaZH |xk)p(xk) _

plx |Zk)= ( k) - p(Zk,Zk )

p\Z
_ P(Zk |Zk—13ka(xk) Zk | Z, lﬂxk p(}}c/j
P(Zk |Zka?’—(7:) (Zk |Z/ Zc 1)

P(Zk |Zk—17'xk)p(xk |Zk—1) _ p(zk |xk) (xk |Zk—1)
p(zk |Zk—1) p(zk |Z/f71)
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Recursive Bayesian estimation

posterior likelihood

filtering density

~ p(x, 1Z,)= Pz | x)p(x, 1 Z,)

prior filtering

< density

p(zk |Zk—1) “— evidence

+ prior: p(xk |ZH)= I p(xk ’xk—l)p(xk—l ’Zk—l)dxk—l

because pl(x, | x,_)=plx |x,1.Z,) (Markov)

+ likelihood: given by the measurement model

- evidence: P(Zk |Zk—1): IP(Zk»xk |Zk—1)dxk =
= IP(Zk |xk’Zk—l)p(xk |Zk—1)dxk =

= J.p(zk | X )p(xk | Zk—l )dxk © Massimo Piccardi, UTS
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Other related problems

« filtering =k At
p(x|Z,)
* prediction t=k At t= (k+h) At
PXynlZy)
» smoothing (fixed-lag)
t = (k-h) At t=k At
) ) P(XyhlZy)
« offline/batch
(fixed-interval smoothing)  t=kAt t=N At

PX,1Zn)s - P(XNIZ)
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The Kalman filter

“Linear/Gaussian” assumptions: linear system and
measurement models, Gaussian distributions for all
random variables

If p(x,) and noise distributions are assumed Gaussian,

subsequent distributions remain Gaussian under linear

transformations

X~N(w, X)
Y = AX + K
— Y ~ N(Ap + K, AZAT)

An optimal solution exists (R.E. Kalman, 1960)
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The Kalman filter

The assumptions lead to the following equations:

X, =Ax, | +v,,
z, = Hx, +n,

X, is the state r.v. e R"

v, is the process noise r.v. € R", independent, ~ N(0,Q)
A is the state transition matrix (n x n)

z, is the measurementr.v. € RP

n, is the measurement noise r.v. € RP, independent, ~ N(0,R)

H is the state transition matrix (p x n)

© Massimo Piccardi, UTS

10




Solution

The target is the filtering distribution’s pdf, p(x,|Z,);
however, since it is Gaussian, mean and covariance
suffice to identify it fully

Usually, the mean at time interval k is noted as X, the
covariance as }3{ and called the error covariance

The solution is obtained in two steps:

— the time update, i.e. the application of the dynamics (system
model); a prediction; quantities are noted as k% Pk_and called
a-priori estimates k

— the measurement update, i.e. the use of the measurement
(measurement model); a correction to the previous estimates
yielding the a-posteriori estimates
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Time update equations

A-priori estimates:
X = AX;
- _ T
B = AP A" +Q

Directly from transformation of Gaussian r.v.
Optimal estimate in the absence of measurement
Process noise causes P to increase
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Weighting

+ A weighting matrix, K, (n x p), called the Kalman gain:

K, =P H' (HEH" +R)'

» K, decides how much the a-priori estimates should be
corrected by the k-th observation, z,: the larger the
measurement noise, R (uncertainty on the
observation), the smaller the correction
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Measurement update equations

» A-posteriori estimates:

B =([-KH)F

. z, — HX, is the difference between the actual and
predicted observations (aka innovation or
measurement residual)
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Drift model

+ State vector contains only the position of the target

» Constant position assumption — x changes only due to
the effect of noise

* 1-D example (u: position)

x:[u] A:[l]
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Constant velocity model

+ State vector contains position and velocity of the
target

» Constant velocity assumption
» 1-D example (u: position; v: velocity)

u 1 A,
X = A=

% 0 1
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Constant acceleration model

+ State vector contains position, velocity and
acceleration of the target

» Constant acceleration assumption
» 1-D example (u: position; v: velocity; a: acceleration)
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Periodic motion model

+ State vector contains position and velocity of the
target

 Periodic motion assumption: d2u/dt? = -cu
» 1-D example (u: position; v: velocity)

u 1 A,
X = A= {

v —CA,
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Example

An example courtesy of Greg Welch and Gary
Bishop, An Introduction to the Kalman Filter, ACM
SIGGRAPH 2001 tutorial

2D data from a PC tablet

A rich resource page at
http://www.cs.unc.edu/~welch/kalman/

A Java-based 1-D Kalman Filter Learning Tool
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Drift model

Process model:

| (1o 0. 0
LJ A{O J QZ[O QJ

Measurement model (z: measured position):

Initialization:

P e 0
%, =H 'z, 1o ¢
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Results

* y co-ordinate: first moving, then still
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Constant velocity model

* Process model:

u, 1 0 A, 0

u, 01 0 A
X = A:

Vy 00 1 O

v, 00 0 1|

* Measurement model (same as before):
H. 00 0
H=| _
0 H,0 0
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Results: highlights
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Beyond linear/Gaussian

The Gaussian modelling of distributions proper of the
Kalman filter is restrictive is many cases

If transformations are not linear, subsequent distributions
would become non-Gaussian in any case

Many other models have been proposed, the main of which
are named here:

Extended Kalman filter

Grid filter

Unscented Kalman filter

Particle filters

A nice punch line: the Kalman filter provides an exact
solution for an approximate model; we may prefer an
approximate solution for an exact model
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Particle filters

In the following, we will focus on particle filters

In particle filters, distributions are represented by
weighted sets of samples (called particles)

Particle filters are not a single algorithm, rather a
family of methods, also known as sequential Monte
Carlo methods

The main target is again the filtering density, p(x,|Z,)
Distributions are not restricted to be Gaussian
The model may be linear or not linear
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Monte Carlo methods

* In many practical cases, it is hard to evaluate certain
target distributions, and expectations based on them

* In such cases, approximation schemes are needed
(either deterministic or probabilistic)

» Monte Carlo methods are probabilistic methods
where a distribution is simply represented by a set of
its samples

» These techniques were first adopted by physicists;
the name was coined by N. C. Metropolis based on
the gambling habits of a colleague’s relative
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Monte Carlo: expectations

An expectation based on the exact integral:
E[f(x)]= [ f(x)p(x)dx
is estimated by: *
1 L
—> f X!
13 t)

where the x' are L samples from p(x) (requiring that p(x)
can be sampled, and possibly easily)
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Sequential Monte Carlo methods

+ In particle filters, distributions are represented a la
Monte Carlo by a set of their samples

» Given that observations become available one by
one, the filtering density, p(x,|Z,), is, as usual,
estimated recursively

» This has paved the way for a number of sequential
(i.e. recursive) Monte Carlo methods; here, we will
see:
— Sequential Importance Sampling
— Sequential Importance Sampling with Resampling
— Sampling Importance Resampling
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Importance sampling

+ Before we can jump the gun on particle filters, we
need to cover two introductory topics:

— Importance sampling
— Resampling

» Importance sampling is a sampling technique based
on the following assumptions:

— we want to sample p(x); yet, it is hard

— we can easily sample another distribution, q(x) (known as
the proposal distribution or importance density)

— we can easily evaluate both p(x) and q(x) (which means:
given x, we can easily compute p(x) and q(x), at least up to
proportionality)
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Importance sampling

E[f(x)]= [ f(x)p(x)dx =
B VRYICI JRVNE Ry )
—J;f(x)q(x)Q( )d —L;f( )M

where the x' are sampled from q(x)

« Quantities o' = p(x')/q(x') are called the importance
weights

» The weighted set of samples {X, ®'} is a
representation for p(x)

 For efficiency, q(x) should be large where f(x)p(x) is
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o' = p(x)/q(x')
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Resampling

» Given a distribution represented by a weighted set of
its samples, {x!, o'}, I:1...L, we sample it to obtain a
replacement set of L samples, x", all of equal weight,
o =1/L

« The x" samples take value in the {x'} set

+ Auxiliary assumption: samples can be generated out
of a uniform distribution between 0 and 1, U[0,1]
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Resampling

» Construct the cdf of the weighted set:
Ci=C4t o c=0,i=1...L
« Sample U[0,1] L times to obtain the u' samples

« U falls in the j-th interval — x" = xi

0 u! 1
Co ¢ G Ci.1 G CrLa CL
1 L
® ®
xI" = xi
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SIS particle filter

« Sequential importance sampling (SIS) is the
sequential extension of importance sampling

* It can be used to recursively estimate the filtering
density, p(x,|Z)

« L samples, x|, are drawn out of a proposal
distribution, q(x | X1, z,), at every time k

« The advantage of the sequential approach is that
new weights o', need only be adjusted from previous
weights, ! _4, through the dynamics and
measurement models, and then normalised to add up
to 1
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SIS particle filter

» Sampling:

Xla 9 | X'ers )
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SIS particle filter

SIS particle filter:

At every K,

— draw the X! from the current proposal distribution
— update weights o' based on formula

— normalise weights

the new set of samples and weights is an

approximation for the desired filtering density, p(x,|Z,)
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SIS particle filter: weight degeneracy

Degeneracy of the weights: it was shown that the
variance of the o', weights can only increase over
time: after a few iterations, all but one particle will
have weight ®', = 0
Useful measure of degeneracy:

L

-1 /
Ny = (a)k)z

=1
There are two practicable countermeasures:
1. choice of a good proposal function
2. resampling
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Choice of proposal function

* It was shown that the optimal proposal function to sample
each x|, is:

/
p(xk | X1 Zk)

since it minimises the degeneracy; yet, its use is not
possible in most cases

» Often, the proposal function is taken as:

l
p(xk |xk—l)
this simplifies the weight update formula greatly; yet, it
ignores z, in the sampling of x\: it may sample away from
useful directions
© Massimo Piccardi, UTS 39

Resampling

» Degeneracy can be monitored at every iteration; if >
threshold, resampling is applied
+ SIS particle filter with resampling:

At every Kk,
Draw the X!, from the current proposal distribution

update weights o', based on formula

normalise weights

measure degeneracy: if > threshold, resample
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SIR particle filter

« The sampling importance resampling (SIR) particle
filter is a particle filter that uses p(x, | X_4) as proposal
and resamples at every time k

* SIR particle filter:

At every Kk,
— draw the x! from p(X; | X_¢)

— compute weights o; formula simplifies because of
proposal and previous weights being all equal to 1/L

— normalise weights
— resample
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SIR particle filter: issues

* The SIR particle filter uses a simple proposal
distribution and avoids weight degeneracy by frequent
resampling

* Yet, the proposal distribution ignores z, in the sampling
of x: it may sample away from useful directions

« Moreover, a very frequent resampling tends to create
sample impoverishment: the samples with highest
weights tend to be sampled more often and create x/,
that are all equal; the degeneracy of the !, weights is
mollified at the cost of a degeneracy in the x!, samples
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Other particle filters

« From Wikipedia (Jan 09):

Auxiliary particle filter
Gaussian particle filter
Unscented particle filter

Monte Carlo particle filter
Gauss-Hermite particle filter
Cost Reference particle filter
Rao-Blackwellized particle filter
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Demo

Particle filter (PF) classes in the Mobile Robot
Programming Toolkit (MRPT)

http://babel.isa.uma.es/mrpt/index.php/Particle_Filters
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Probabilistic data association

At least a mention must go to probabilistic data
association (PDA)

Correspondence between observations and tracked
targets may be challenging and outstrip the
predictive capability of the filter

Single target, multiple observations: PDA filter
(PDAF)

Multiple targets: joint PDAF (JPDAF)

Other algorithms: multiple hypothesis tracker (MHT),
interacting multiple model (IMM, IMMJPDAF),
integrated PDA (IPDA), ...
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Example papers

Application: tracking of visual objects
Tracking of multiple targets in videos.

Tracking with particle filters:

M. Isard, A. Blake, “CONDENSATION -- conditional density
propagation for visual tracking,” Int. J. Computer Vision, vol.
29, no. 1, pp. 5-28, 1998.

2051 cites on Google Scholar, 18 Nov 2008
Tracking and data association with EM:

H. Tao, H. S. Sawhney, R. Kumar, “Object Tracking with
Bayesian Estimation of Dynamic Layer Representations,” IEEE
Trans. on Pattern Anal. and Machine Intell., vol. 24, no. 1, pp.
75-89, 2002.
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Thank you!

* | hope the topics covered will prove useful for your
future research

Massimo Piccardi
iINEXT Research Centre, FEIT,
University of Technology, Sydney

massimo@it.uts.edu.au o
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