Short course

A vademecum of statistical pattern recognition techniques with applications to image and video analysis

Lecture 6 The Kalman filter. Particle filters

> Massimo Piccardi University of Technology, Sydney, Australia

Weighting

• A weighting matrix, K_k (n x p), called the *Kalman gain*:

$$K_k = P_k^- H^T \left(H P_k^- H^T + R \right)^{-1}$$

 K_k decides how much the a-priori estimates should be corrected by the k-th observation, z_k: the larger the measurement noise, R (uncertainty on the observation), the smaller the correction

where the x^{I} are L samples from p(x) (requiring that p(x) can be sampled, and possibly easily)

Choice of proposal function

 It was shown that the optimal proposal function to sample each x^l_k is:

$$p(x_k \mid x_{k-1}^l, z_k)$$

since it minimises the degeneracy; yet, its use is not possible in most cases

• Often, the proposal function is taken as:

$$p(x_k \mid x_{k-1}^l)$$

this simplifies the weight update formula greatly; yet, it ignores z_k in the sampling of x_k^l : it may sample away from useful directions

Other particle filters

- From Wikipedia (Jan 09):
 - Auxiliary particle filter
 - Gaussian particle filter
 - Unscented particle filter
 - Monte Carlo particle filter
 - Gauss-Hermite particle filter
 - Cost Reference particle filter
 - Rao-Blackwellized particle filter

Thank you!

• I hope the topics covered will prove useful for your future research

Massimo Piccardi iNEXT Research Centre, FEIT, University of Technology, Sydney massimo@it.uts.edu.au