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• The Kalman filter

• Particle filters
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• Example papers
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State space models

• In many cases, we are interested in systems whose state 
is a continuous multivariate r. v. (as opposed to HMM 
where it is discrete). Such systems are often referred to 
as state(-)space models

• Their evolution in time is described by two equations, the 
state equation, or system, or process, model, and the 
output equation, or measurement model

• Our further assumptions are: i) time-discrete evolution; ii) 
time-invariant parameters; iii) no control inputs; iv) noise 
over the state transitions and on the measurements; v) 
first-order Markov process; vi) independence of 
measurements given the state (aka Bayesian tracking 
hypotheses)
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State space models

• Under these assumptions, we obtain the following 
equations: 

• xk is the state r.v. ∈ Rn

vk is the process noise r.v. ∈ Rl

zk is the measurement r.v. ∈ Rp

nk is the measurement noise r.v. ∈ Rr
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Recursive Bayesian estimation

• Problem: estimate the state of a system, xk, from the 
sequence of received measurements, Zk = {zi, 
i=1…K}

• Recursive estimation: every new zk → new xk

• Estimating the state of a system means to estimate 
its pdf given the received measurements, p(xk|Zk)
p(xk|Zk) is known as the filtering density and is a 
marginal of the posterior density p(Xk|Zk)

• Typical application: target tracking
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Recursive Bayesian estimation

• How do we recursively estimate p(xk|Zk)? 
– At time k, p(xk-1|Zk-1) is available

– Repeatedly apply the Bayes theorem and use the 
independence of observations given the state:
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Recursive Bayesian estimation

• prior:

because                                                (Markov)

• likelihood: given by the measurement model

• evidence:
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p(xk|Zk)

Other related problems

• filtering

• prediction

• smoothing (fixed-lag)

• offline/batch 
(fixed-interval smoothing)

t = k ∆t

t = k ∆t

t = k ∆t

t = k ∆t

p(xk-h|Zk)

p(xk+h|Zk)

p(x1|ZN), … p(xN|ZN)

t = (k+h) ∆t

t = (k-h) ∆t

t = N ∆t
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The Kalman filter

• “Linear/Gaussian” assumptions: linear system and 
measurement models, Gaussian distributions for all 
random variables

• If p(x0) and noise distributions are assumed Gaussian, 
subsequent distributions remain Gaussian under linear 
transformations

X ~ N(µ, Σ)
Y = AX + K 
→ Y ~  N(Aµ + K, AΣAT)

• An optimal solution exists (R.E. Kalman, 1960)
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The Kalman filter

• The assumptions lead to the following equations: 

• xk is the state r.v. ∈ Rn

vk is the process noise r.v. ∈ Rn, independent, ~ N(0,Q)
A is the state transition matrix (n x n)
zk is the measurement r.v. ∈ Rp

nk is the measurement noise r.v. ∈ Rp , independent, ~ N(0,R)
H is the state transition matrix (p x n)
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Solution

• The target is the filtering distribution’s pdf, p(xk|Zk); 
however, since it is Gaussian, mean and covariance 
suffice to identify it fully

• Usually, the mean at time interval k is noted as     , the 
covariance as      and called the error covariance

• The solution is obtained in two steps:
– the time update, i.e. the application of the dynamics (system 

model); a prediction; quantities are noted as     ,      and called 
a-priori estimates

– the measurement update, i.e. the use of the measurement 
(measurement model); a correction to the previous estimates 
yielding the a-posteriori estimates
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Time update equations

• A-priori estimates:

• Directly from transformation of Gaussian r.v.
• Optimal estimate in the absence of measurement
• Process noise causes P to increase
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Weighting

• A weighting matrix, Kk (n x p), called the Kalman gain:

• Kk decides how much the a-priori estimates should be 
corrected by the k-th observation, zk: the larger the 
measurement noise, R (uncertainty on the 
observation), the smaller the correction
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Measurement update equations

• A-posteriori estimates:

• is the difference between the actual and 
predicted observations (aka innovation or 
measurement residual)
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Drift model

• State vector contains only the position of the target
• Constant position assumption – x changes only due to 

the effect of noise
• 1-D example (u: position)

[ ]ux = [ ]1=A
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Constant velocity model

• State vector contains position and velocity of the 
target

• Constant velocity assumption
• 1-D example (u: position; v: velocity)
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Constant acceleration model

• State vector contains position, velocity and 
acceleration of the target

• Constant acceleration assumption
• 1-D example (u: position; v: velocity; a: acceleration)
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Periodic motion model

• State vector contains position and velocity of the 
target

• Periodic motion assumption: d2u/dt2 = -cu
• 1-D example (u: position; v: velocity)
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Example

• An example courtesy of Greg Welch and Gary 
Bishop, An Introduction to the Kalman Filter, ACM 
SIGGRAPH 2001 tutorial

• 2D data from a PC tablet

• A rich resource page at 
http://www.cs.unc.edu/~welch/kalman/

• A Java-based 1-D Kalman Filter Learning Tool
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• Process model:

• Measurement model (z: measured position):

• Initialization:

Drift model
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Results

• y co-ordinate: first moving, then still
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Results: highlights
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• Process model:

• Measurement model (same as before):

Constant velocity model
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Results: highlights
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Beyond linear/Gaussian

• The Gaussian modelling of distributions proper of the 
Kalman filter is restrictive is many cases

• If transformations are not linear, subsequent distributions 
would become non-Gaussian in any case

• Many other models have been proposed, the main of which 
are named here:
– Extended Kalman filter
– Grid filter
– Unscented Kalman filter
– Particle filters 

• A nice punch line: the Kalman filter provides an exact 
solution for an approximate model; we may prefer an 
approximate solution for an exact model
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Particle filters

• In the following, we will focus on particle filters

• In particle filters, distributions are represented by 
weighted sets of samples (called particles)

• Particle filters are not a single algorithm, rather a 
family of methods, also known as sequential Monte 
Carlo methods

• The main target is again the filtering density, p(xk|Zk)

• Distributions are not restricted to be Gaussian

• The model may be linear or not linear
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Monte Carlo methods

• In many practical cases, it is hard to evaluate certain 
target distributions, and expectations based on them

• In such cases, approximation schemes are needed 
(either deterministic or probabilistic)

• Monte Carlo methods are probabilistic methods 
where a distribution is simply represented by a set of 
its samples

• These techniques were first adopted by physicists; 
the name was coined by N. C. Metropolis based on 
the gambling habits of a colleague’s relative 
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Monte Carlo: expectations

An expectation based on the exact integral:

is estimated by:

where the xl are L samples from p(x) (requiring that p(x) 
can be sampled, and possibly easily)
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Sequential Monte Carlo methods

• In particle filters, distributions are represented a la 
Monte Carlo by a set of their samples

• Given that observations become available one by 
one, the filtering density, p(xk|Zk), is, as usual, 
estimated recursively

• This has paved the way for a number of sequential 
(i.e. recursive) Monte Carlo methods; here, we will 
see:
– Sequential Importance Sampling
– Sequential Importance Sampling with Resampling
– Sampling Importance Resampling
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Importance sampling

• Before we can jump the gun on particle filters, we 
need to cover two introductory topics:
– Importance sampling
– Resampling

• Importance sampling is a sampling technique based 
on the following assumptions:
– we want to sample p(x); yet, it is hard
– we can easily sample another distribution, q(x) (known as 

the proposal distribution or importance density)
– we can easily evaluate both p(x) and q(x) (which means: 

given x, we can easily compute p(x) and q(x), at least up to 
proportionality)
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Importance sampling

where the xl are sampled from q(x)
• Quantities ωl = p(xl)/q(xl) are called the importance 

weights
• The weighted set of samples {xl, ωl} is a 

representation for p(x)
• For efficiency, q(x) should be large where f(x)p(x) is
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Example

x

f(x)q(x)

p(x)

xl

ωl = p(xl)/q(xl)
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• Given a distribution represented by a weighted set of 
its samples, {xl, ωl}, l:1…L, we sample it to obtain a 
replacement set of L samples, xl*, all of equal weight, 
ωl* = 1/L

• The xl* samples take value in the {xl} set

• Auxiliary assumption: samples can be generated out 
of a uniform distribution between 0 and 1, U[0,1]

Resampling
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• Construct the cdf of the weighted set:

ci = ci-1 + ωi c0 = 0, i = 1…L

• Sample U[0,1] L times to obtain the ul samples

• ul falls in the j-th interval → xl* = xj

Resampling

cj-1c1 …

ul

xl* = xj

0 1
c0

ω1

c2 cL

ωL

… cL-1cj
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SIS particle filter

• Sequential importance sampling (SIS) is the 
sequential extension of importance sampling

• It can be used to recursively estimate the filtering 
density, p(xk|Zk)

• L samples, xl
k, are drawn out of a proposal 

distribution, q(xl
k | xl

k-1, zk), at every time k

• The advantage of the sequential approach is that 
new weights ωl

k need only be adjusted from previous 
weights, ωl

k-1, through the dynamics and 
measurement models, and then normalised to add up 
to 1
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• Sampling:

• Weight update:

• Filtering density:

SIS particle filter
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SIS particle filter

• SIS particle filter:

At every k,
– draw the xl

k from the current proposal distribution

– update weights ωl
k based on formula

– normalise weights

the new set of samples and weights is an 
approximation for the desired filtering density, p(xk|Zk)
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SIS particle filter: weight degeneracy

• Degeneracy of the weights: it was shown that the 
variance of the ωl

k weights can only increase over 
time: after a few iterations, all but one particle will 
have weight ωl

k = 0
• Useful measure of degeneracy:

• There are two practicable countermeasures:
1. choice of a good proposal function
2. resampling

( )∑
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Choice of proposal function

• It was shown that the optimal proposal function to sample 
each xl

k is:

since it minimises the degeneracy; yet, its use is not 
possible in most cases

• Often, the proposal function is taken as:

this simplifies the weight update formula greatly; yet, it 
ignores zk in the sampling of xl

k: it may sample away from 
useful directions

( )kl
kk zxxp ,| 1−
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Resampling

• Degeneracy can be monitored at every iteration; if > 
threshold, resampling is applied

• SIS particle filter with resampling:

At every k,
– Draw the xl

k from the current proposal distribution

– update weights ωl
k based on formula

– normalise weights

– measure degeneracy: if > threshold, resample
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SIR particle filter

• The sampling importance resampling (SIR) particle 
filter is a particle filter that uses p(xk | xl

k-1) as proposal 
and resamples at every time k

• SIR particle filter:

At every k,
– draw the xl

k from p(xk | xl
k-1)

– compute weights ωl
k; formula simplifies because of 

proposal and previous weights being all equal to 1/L
– normalise weights
– resample
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SIR particle filter: issues

• The SIR particle filter uses a simple proposal 
distribution and avoids weight degeneracy by frequent 
resampling

• Yet, the proposal distribution ignores zk in the sampling 
of xl

k: it may sample away from useful directions

• Moreover, a very frequent resampling tends to create 
sample impoverishment: the samples with highest 
weights tend to be sampled more often and create xl

k
that are all equal; the degeneracy of the ωl

k weights is 
mollified at the cost of a degeneracy in the xl

k samples 
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Other particle filters

• From Wikipedia (Jan 09):

– Auxiliary particle filter
– Gaussian particle filter
– Unscented particle filter
– Monte Carlo particle filter
– Gauss-Hermite particle filter
– Cost Reference particle filter
– Rao-Blackwellized particle filter
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Demo

Particle filter (PF) classes in the Mobile Robot 
Programming Toolkit (MRPT)
http://babel.isa.uma.es/mrpt/index.php/Particle_Filters
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Probabilistic data association

• At least a mention must go to probabilistic data 
association (PDA)

• Correspondence between observations and tracked 
targets may be challenging and outstrip the 
predictive capability of the filter

• Single target, multiple observations: PDA filter 
(PDAF)

• Multiple targets: joint PDAF (JPDAF)

• Other algorithms: multiple hypothesis tracker (MHT), 
interacting multiple model (IMM, IMMJPDAF), 
integrated PDA (IPDA), …
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Example papers

• Application: tracking of visual objects

Tracking of multiple targets in videos.

• Tracking with particle filters:
M. Isard, A. Blake, “CONDENSATION -- conditional density 
propagation for visual tracking,“ Int. J. Computer Vision, vol. 
29, no. 1, pp. 5-28, 1998.
2051 cites on Google Scholar, 18 Nov 2008

• Tracking and data association with EM:
H. Tao, H. S. Sawhney, R. Kumar, “Object Tracking with 
Bayesian Estimation of Dynamic Layer Representations,” IEEE 
Trans. on Pattern Anal. and Machine Intell., vol. 24, no. 1, pp. 
75-89, 2002.
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Thank you!

• I hope the topics covered will prove useful for your 
future research

Massimo Piccardi
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