
H.S. Kunii, S. Jajodia, and A. Sølvberg (Eds.): ER 2001, LNCS 2224, pp. 471-484, 2001.
 Springer-Verlag Berlin Heidelberg 2001

An Approach for Method Reengineering

Jolita Ralyté *, Colette Rolland **

* CUI, Université de Genève, 24 rue du Gén. Dufour, CH-1211 Genève 4, Switzerland
ralyte@cui.unige.ch

** CRI, Université de Paris 1, 90 rue de Tolbiac, 75013 Paris, France
rolland@univ-paris1.fr

Abstract. The increasing complexity of the Information Systems (IS) asks for
new IS development methods constructed �on the fly� to be adapted to the
specific situations of the projects at hand. Situational Method Engineering
responds to this need by offering techniques to construct methods by
assembling reusable method fragments stored in some method repository. For
method engineering to be performed it is necessary to build method bases. In
this paper we propose an approach supporting the reengineering of existing
methods. The reengineering process leads to the representation of an existing
method in a modular fashion i.e. as a set of reusable method chunks, easy to
retrieve and to assemble one the others. Once the method chunks are stored in a
method repository they can be assembled in different manners to construct new
methods. The emphasis of this paper is on the guidance provided by the method
reengineering process model. The approach is exemplified with the OOSE
reengineering case study.

1. Introduction

More and more real world activities are supported by Information Systems (IS).
Besides, the complexity of these IS increases whereas the development time reduces.
As a consequence, the traditional rigid IS engineering methods are inadequate to
provide the necessary support in new IS developments. New methods, more flexible
and better adaptable to the situation of every IS development project, must be
constructed.

To take this problem into account, Situational Method Engineering (SME)
proposes to support �on the fly� construction of methods based on a reuse strategy. By
assembling reusable method fragments originating from different methods, a new
method can be tailored to the project situation at hand. Works performed in the SME
area introduce the notions of method fragment [3], [16], [13] and method chunk [14],
[10] as the basic blocks for constructing �on the fly� methods. Reusable method
fragments/chunks are stored in some method repository [16], [4], [14], [10]. In
addition there are a number of proposals for approaches to assemble these
fragments/chunks [18], [2], [8], [9], [11]. New methods can thus be constructed by
selecting the fragments/chunks that are the most appropriate to a given situation [2],
[8] from the method repository. As it can be seen, SME favours the construction of

472 Jolita Ralyté and Colette Rolland

modular methods that can be modified and augmented to meet the requirements of a
given situation [3], [17].

Whether attention has been paid to the language for describing method chunks, the
question of how to support the method fragments/chunks retrieval and assembly
process is not well tackled in the literature. Besides, the prerequisite for modular
method construction is a method repository containing a large collection of method
chunks. This requires reengineering existing methods to produce the method chunks
that populate the method repository. Method Reengineering is our concern in this
paper.

This paper is organised as follows: section 2 provides an overview of our method
reengineering approach. In section 3, we sum up the notion of a method chunk
whereas in section 4 we describe the method reengineering process model. Section 5
illustrates the approach with an example demonstrating the reengineering process step
by step. Section 6 draws some conclusions and discussions around our future work.

2. Overview of the Approach

The work presented in this paper is a part of our assembly-based method engineering
approach summarised in Figure 1. As shown in this figure, the process starts with the
reconstruction of the existing IS engineering methods in a modular way. The result is
a collection of reusable method chunks, which are stored in the method base. Once
the method base is populated with a number of chunks, the construction of a new
method is possible through the retrieval of those chunks that match the characteristics
of the project situation at hand and their assembly to form the new method.

Initial
method

description

Initial
method

description

Modular method
description

C1 C2

C3

C4 C5

C1 C2

C3

C4 C5

Method
Base

C6.3C6.3
C1.1C1.1

CN.5CN.5
C4.3C4.3

C1.3C1.3

C4.3

New method

C1.2

CN.3

C2.5

C6.2

C4.1

Method Construction
Guidelines

Method Reengineering
Guidelines

Fig. 1. Assembly based method engineering

In previous papers [14], [10] we presented a modular method meta-model allowing
to represent any method as an assembly of method chunks. We also proposed a
structure for a method chunks repository that we called a method base. Furthermore in

 An Approach for Method Reengineering 473

[12], we presented an assembly process model to guide the construction of new
methods by selecting and assembling method chunks. In this paper we bridge the gap
between existing methods and their modular representation. We complete our
approach by defining a method reengineering process model providing guidelines to
reengineer an existing IS development method into reusable method chunks. Figure 2
summarises our method reengineering approach.

...

Method Meta-model

......

Method Meta-model

instantiated by

constructs

guides

Method Reengineering
Process Model

Method Reengineering
Process Model

C6.3

Method Base

C6.3
C1.1

CN.5
C4.3

C1.3

C4.3

Method Base

C6.3C6.3
C1.1C1.1

CN.5CN.5
C4.3C4.3

C1.3C1.3

C4.3

Initial
Method

Description
Modular Method

C1.1

C1.2

C1.3

C1.4
...

Method EngineerMethod Engineer

transformed by

Fig. 2. The approach for method reengineering

As shown in this figure, the central element of our approach is the method
reengineering process model, which guides the method engineer in the reconstruction
of every method into an assembly of method chunks. While guided by this process
model, the method engineer instantiates the method meta-model to describe the
identified method chunks. In the next section we describe the method meta-model and
in section 4 we present the reengineering process in detail.

3. The Notion of a Method Chunk

Situational method engineering proposes to assemble fragments of existing methods
to construct a new method. Based on the observation that any method has two
interrelated aspects, product and process, several authors propose two types of method
fragments: process fragments and product fragments [4], [2]. In our approach we
integrate these two aspects in the same fragment that we call a method chunk.

A method chunk ensures a tight coupling of some process part and its related
product part. It is a coherent module and any method is viewed as a set of loosely
coupled method chunks expressed at different levels of granularity [10]. Our modular
view of methods favours their adaptation and extension. Moreover, this view permits
to reuse chunks of a given method in the construction of new ones. Figure 3 shows the
method meta-model (using UML notations [19]). According to this meta-model a
method is also viewed as a method chunk of the highest level of granularity. The
definition of the method chunk is �process-driven� in the sense that a chunk is based
on the decomposition of the method process model into reusable guidelines. Thus, the

474 Jolita Ralyté and Colette Rolland

core of a method chunk is its guideline to which are attached the associated product
parts needed to perform the process encapsulated in this guideline.

Guideline

represented by

*

1

11 has
Interface

1

1
Descriptor

Chunk Not-Chunk1..* 1

Simple
Guideline

Nesting
Link

Abstraction
Link

Sequence

AND/OR Link

Composition

Choice
Strategic
Guideline

1

has

Situation

Intention

target of

1..*

1..*

*

is based on

1..*

1..*

has

is based on 1..*

1..*

appartient à

1..*

1

1

2..*

relates

relates

2..*

1*

*

AtomicAggregate

2..*

Tactical
Guideline

Product
Model

Method

Product
Part

1..*

1 Reuse
Situation1..*

1
Reuse

Intention
Process
Model

Fig. 3. The method meta-model

A guideline is defined [7] as �a set of indications on how to proceed to achieve an
objective or perform an activity�. For us, a guideline embodies method knowledge to
guide the application engineer in achieving an intention in a given situation.
Therefore, the guideline has an interface, which describes the conditions of its
applicability (the situation) and a body providing guidance to achieve the intention,
i.e. to proceed in the construction of the target product. The interface is a couple
<situation, intention>, which characterises the situation that is the input of the chunk
process and the intention (the goal) that the chunk achieves. The body of the guideline
details how to apply the chunk to achieve the intention. The interface of the guideline
is also the interface of the corresponding method chunk. Guidelines in different
methods have different contents, formality, granularity, etc. In order to capture this
variety, we identify three types of guidelines: simple, tactical and strategic.

A simple guideline may have an informal content advising on how to proceed to
handle the situation in a narrative form. It can be more structured comprising an
executable plan of actions leading to some transformation of the product under
construction.

A tactical guideline is a complex guideline, which uses a tree structure to relate its
sub-guidelines one with the others. This guideline follows the NATURE process
modelling formalism [6], which proposes two different structures: the choice and the
plan. Each of its sub-guidelines belongs to one these types of guideline.

A strategic guideline is a complex guideline called a map [15], [1], which uses a
graph structure to relate its sub-guidelines. Each sub-guideline belongs to one of the
three types of guidelines. A strategic guideline provides a strategic view of the
development process telling which intention can be achieved following which
strategy. Thus, a map is a labelled directed graph in which the nodes are the intentions
and the edges between intentions are strategies. The map permits to represent a

 An Approach for Method Reengineering 475

process allowing several different ways to develop the product. A set of guidelines is
associated to the map. They help the application engineer to progress in the map and
to achieve the intentions following selected strategies. More exactly, a map is a
composition of a set of sections where a section is a triplet <source intention, target
intention, strategy>. An Intention Achievement Guideline (IAG) is associated to every
section and defines how to realise the target intention from the source intention
following the selected strategy. Two other types of guidelines, Intention Selection
Guideline (ISG) and Strategy Selection Guideline (SSG), help to progress in the map
i.e. to select the next intention and to select next section respectively.

A descriptor is associated to every method chunk. It extends the contextual view
captured in the chunk interface to define the context in which the chunk can be
reused. The two key elements of the descriptor are the reuse situation and the reuse
intention. Every chunk can be applied in one or several system engineering domains
and can support one or more activities in the system design process. The reuse
situation captures this information in the Application domain and Design activity
attributes. The reuse intention expresses the objective that the method chunk helps to
satisfy in the corresponding design activity. The descriptor also contains a narrative
description of the objective of the chunk and specifies its type (i.e. atomic or
aggregate) and identifies the origin of the chunk (i.e. the originator method of the
chunk). See [10], [11], [14] for more information on the method chunk structure.

4. The Reengineering Process

The process of method reengineering that we propose in this paper makes the
assumption that it is worth representing the process model of every method as a map
with its associated guidelines. Consequently, method reengineering in our approach
consists in redefining the existing method process model in the form of a map and its
associated guidelines. The required product parts and descriptors are associated to the
each of these guidelines to define them as complete method chunks.

As shown in Figure 4, our method reengineering process model is an instance of
the strategic process meta-model (a map) introduced in the previous section and
consists in satisfying reengineering intentions using appropriated strategies. We
comment the intentions of this map and their associated strategies in turn.

4.1 Map Intentions

As shown in Figure 4, the process model is based on the achievement of four main
intentions: Define a section, Define a guideline, Identify a method chunk and Define a
method chunk.

The first two intentions allow the method engineer to restructure the initial method
process model (if existing) or to define it (if the method does not have any formalised
process model) as a map. As mentioned in the previous section, a map is made of
sections with associated guidelines. Thus, the intention Define a section aims at
section identification whereas the intention Define a guideline refers to the definition
of the guidelines associated to these sections.

476 Jolita Ralyté and Colette Rolland

verification
startegy

progression
discovery startegy

Define
a section

guided
startegy

modifications
startegy

correction
startegy

template based
strategy

decomposition
discovery
startegy

aggregation
discovery
startegy

alternative
discovery
startegy

Start

structural
startegy

functional
startegy

Stop

Define a
method chunk

guided startegy

section based
discovery
startegy paralel

sections
discovery
startegy consecutive

sections
discovery
startegy

decomposition
startegy

agregation
startegytemplate

based
strategy

completeness
startegy

Identify a
method chunk

Define
a guideline

Fig. 4. Method reengineering process model

The two next intentions correspond to the identification and definition of method
chunks. This is based on sections and their grouping. Indeed, according to our method
chunk concept, every section in the method map is candidate to be defined as a
method chunk. The chunk is legitimate if the intention achievement guideline
associated to the section identifies an autonomous and reusable methodological
procedure. Some aggregations of sections can also form reusable chunks. This
reengineering work is supported by the fulfilment of the intention Identify a method
chunk in Figure 4. The intention Define a method chunk supports the definition of the
identified method chunks. This includes the completion of the guidelines and the
definition of their descriptors.

4.2 Map Strategies

The method reengineering process map presented in Figure 4 proposes a set of
strategies to satisfy the four intentions of the map. For example, there are two
strategies structural and functional to achieve the intention Identify a section. The
structural strategy is recommended when the reengineered method does not provide
the method engineer with a process model formally defined but rather simply with a
description of the product to construct. This strategy uses a glossary of generic
process intentions to support the discovery of method intentions. In the contrary, the
functional strategy should be preferred if the method has a defined process model
taking the form of some steps and recommended actions. This strategy helps to
identify the method map sections from these actions, and steps.

 An Approach for Method Reengineering 477

When the section definition is completed, the method engineer can either define
the guidelines associated to these sections (to progress to the intention Define a
guideline) or to define new sections (to repeat the intention Define a section).

The definition of the section guidelines consists in describing the IAG associated to
each section, the ISG associated to a set of sections having the same source intention
and different target intentions and the SSG associated to every set of parallel sections.
The definition of these guidelines is supported by two strategies: the template based
strategy and the guided strategy. The former provides a template for every type of
guideline and is advised to experts whereas the latter helps novices by providing more
detailed recommendations.

The definition of new sections based on the existing ones may be achieved in four
different manners: the decomposition discovery strategy helps decomposing an
existing section in several ones, the aggregation discovery strategy advises how to
combine a set of sections into a new one, the alternative discovery strategy helps to
identify a new section having an alternative strategy or an alternative source or target
intention to the existing one, and the progression discovery strategy helps to define a
new section allowing to progress in the method map from the existing one.

Analysing the already defined guidelines may imply the definition of new sections
or the modification of the existing ones. For example, if an intention achievement
guideline needs to be decomposed into several sub-guidelines, the corresponding
section must also be decomposed. In a similar manner, the modifications
(decomposition, aggregation) realised on sections imply modifications on the
associated guidelines. The modification strategy guides the method engineer to
accomplish these transformations.

The identification of method chunks is supported by three strategies: the section
based discovery strategy, the parallel sections discovery strategy and the consecutive
sections discovery strategy. The first strategy is based on the assumption that every
section in the method map may be considered as a method chunk. More exactly, the
IAG associated to this section is a basis for a method chunk if it is reusable outside its
originator method. According to our method meta-model, the aggregation of the IAG
associated to the parallel map sections may be considered as an aggregate chunk too.
The parallel section discovery strategy helps to identify the IAG associated to parallel
sections and to aggregate them into a new guideline. In the same manner, the
consecutive sections discovery strategy helps to identify the IAG associated to the
consecutive map sections and to integrate them with the objective to obtain the
guideline of a new aggregate chunk.

Finally, every guideline declared as a reusable one is defined as a method chunk.
This is supported by the template based and the guided strategies that help the method
engineer to attach the necessary product parts to the guideline and to define the chunk
descriptor. The method reengineering process ends with the verification strategy. This
strategy helps to verify if all guidelines associated to the map sections have been
defined, if all possible combinations of the guidelines have been analysed to identify
the method chunks and if all identified chunks have been described. Due to space
limitation we cannot present all these guidelines. However some of them will be
further explained when used in the case study presented in Section 5. See also [11] for
more details.

478 Jolita Ralyté and Colette Rolland

5. Case Study

In this section we illustrate the method reengineering process model presented in the
previous section to reengineer the OOSE method as described in [5]. This method
proposes five different models: use case, analysis, design, implementation and test.
We restrict our case study to reengineering the use case model construction.
Step 1: Starting the reengineering process. The OOSE description is an informal text
describing the structure of the use case model and providing some heuristics � to
construct this model�. As a consequence, we select the structural strategy of Figure 4
to start the reengineering process.
Step 2: Defining the OOSE map sections. The selected strategy recommends first to
identify the method map interface, then to identify the intentions and the associated
strategies and finally to order them in the map.

The source document makes clear the method goal (the map interface intention)
that is to construct the use case model of the system under construction starting with
the initial description of the corresponding problem (the interface situation). The
interface of the OOSE method map is therefore as follows:

<(Problem description), Construct the use case model following the OOSE strategy>

To identify the map intentions the guideline suggests to couple the key product
parts of the method product model with some of the generic intentions provided in our
method base glossary. The use case model includes the following product parts: actor,
basic scenario, exception scenario and use case. The generic intentions selected from
the glossary that seem suitable to those products parts are shown in the table below.

Product part Intention verb
Actor Identify, Define
Basic scenario Write, Validate
Exception scenario Write, Validate
Use case Identify, Discover, Conceptualise

Combining intentions and product parts (verb + target) leads to candidate OOSE
map intentions. Based on the OOSE documentation, the final choice of the relevant
intentions is made. For example, as the structure of the concept actor is very simple
(it contains only two attributes: name and informal description), the intention Define
an actor can be merged with the intention Identify an actor. The OOSE process does
not provide any mean to validate the basic scenario and the exception scenario. Thus,
we eliminate the intentions Validate a basic scenario and Validate an exceptional
scenario from the list of candidate OOSE map intentions. The intentions Identify a
use case and Discover a use case are equivalent because the verbs identify and
discover are synonyms in the method base glossary. Finally, we select the following
list of intentions:

• Identify an actor
• Write a basic scenario
• Write an exemption scenario

• Discover a use case
• Conceptualise a use case

 An Approach for Method Reengineering 479

The next sub-step is to identify the potential strategies to realise these intentions.
For this, we need to find the different manners to satisfy these intentions out of the
OOSE description. Every identified manner may be considered as a strategy or a
tactics. The following table summarises the strategies� identification process.

 Intention Manner (extracted from the OOSE book) Strategy
Identify an actor Ask the questions:

• Which persons will use one or several functions of the
system?

• Which persons will handle and maintain the system?
• Which external systems will interact with the system ?

Questions
driven
strategy

Write a basic
scenario

Write a scenario describing the best understood case of system use. Normal case
strategy

Write an exception
scenario

Write scenarios describing variations in the basic scenario that
correspond to an exceptional system functioning.

Exception
case strategy

Discover a use
case

Ask the questions:
• What are the main tasks of each actor?
• Does the actor need to read, write or modify the information

stored in the system?
• Does the actor need to inform the system of external changes?

Actor based
discovery
strategy

Group the basic scenario with the exception scenarios concerning
the same use case.

Integration
strategy

Conceptualise a
use case

Extend the complete use case by other use cases with the objective
to represent:
• the optional parts of the use case,
• the complex and unusual scenarios,
• the possibility to introduce new use cases , etc.

Extension
strategy

Identify and extract the descriptions, which are common to several
use cases, and define them as abstract use cases.

Abstraction
strategy

Verify the completeness of the use case model. Completenes
s strategy

Finally, the guideline suggests to identify the precedence links between the
selected intentions. For every intention and one associated strategy we must identify
the situation in which the intention may be applied following this strategy. That is, we
need to identify the product part necessary to achieve this intention and then to
identify the intention constructing this product part. For example, the product
necessary to achieve the intention Identify an actor following the question driven
strategy is the initial description of the problem. This product part exists when the
analysis process starts; therefore the Identify an actor intention follows the Start
intention. The achievement of the intention Write a basic scenario is possible only if
the corresponding use case has been identified. Thus, the intention Write a basic
scenario follows the intention Discover a use case. According to the source
description, the basic scenario must always be written before the exception scenarios
are produced. We also know that the use cases discovery is based on actors. Then, the
intention Discover a use case follows the intention Identify an actor. Use case
extension and abstraction is a mean to conceptualise new use cases from already
conceptualised ones. This means that the extension and abstraction strategies are
reflexive strategies. Figure 5(a) illustrates the result of the initial identification of the
OOSE map sections.

480 Jolita Ralyté and Colette Rolland

Start
questions driven
strategy

normal case
strategy

extension
strategy

abstraction
strategy

completeness
strategy

Stop

Conceptualise
a use case

integration
strategy

Write a basic
scenario

Write an
exeption scenario

Identify
an actor

actor based
discovery strategy

exception case strategy

Discover
a use case

Start
questions driven
strategy

normal case
strategy

extension
strategy

abstraction
strategy

completeness
strategy

Stop

Conceptualise
a use case

integration
strategy

Write a basic
scenario

Write an
exeption scenario

Identify
an actor

actor based
discovery strategy

exception case strategy

Discover
a use case

Start actor based
discovery strategy

normal case
first strategy

extension
strategy

abstraction
strategy

completeness
strategyStop

Conceptualise
a use case

Discover
a use case

Start actor based
discovery strategy

normal case
first strategy

extension
strategy

abstraction
strategy

completeness
strategyStop

Conceptualise
a use case

reuse strategy

Discover
a use case

(a): initial map

(b): intermediate map (c): final map

Fig. 5. The construction of the OOSE method map

Step3: Revising the defined sections. The current candidate OOSE map (Figure 5(a))
exhibits an entirely linear use case construction process that suggests some
adjustments. Let us use the aggregation strategy (Figure 4) to help us combining
sections. In the chain of intentions Start, Discover an actor, Discover a use case, only
one strategy supports the achievement of every of these intentions. It can be noticed
that even defined as a full step in the OOSE method, the identification of actors is not
useful as such but only as a mean to identify use cases. For a better reusability of the
OOSE approach it is worth transforming the actor identification as a strategy to
identify use cases. Thus, we replace the sequence of these sections by the section
<Start, Discover a use case, actor based discovery strategy> (Figure 5(b)).

In a similar manner we replace the chain of intentions Write a basic scenario,
Write an exception scenario and Conceptualise a use case by the section <Discover a
use case, Conceptualise a use case, normal case first strategy>. This is justified by
the fact that only very basic guidelines are provided by the OOSE method for scenario
writing, scenario variation discovery and scenario integration in a single use case.
This leads us to Figure 5(b). The analysis of this map allows us to notice that abstract
use cases are generated (following the abstraction strategy) but not used. The OOSE
method advises to reuse them in the conceptualisation of new use cases but does not
say when and how to do it. The alternative discovery strategy in the reengineering
map (Figure 4) gives us the idea to introduce a reuse strategy as a means to achieve

 An Approach for Method Reengineering 481

the intention Conceptualise a use case. This new strategy guides the reuse of abstract
use cases in the description of concrete use cases. Thus, by adding the section
<Discover a use case, Conceptualise a use case, reuse strategy> we obtain the OOSE
map shown in Figure 5(c).
Step 4: Defining guidelines. We can now move on in the reengineering map (Figure
4) to the definition of guidelines. We follow the guided strategy to associate an IAG
to every section of the OOSE map. Let us consider the IAG associated to the section
<Start, Discover a use case, actor based discovery strategy>. The definition of an
IAG consists in defining its interface and its body. The interface situation refers to the
product, which is the target of the source intention, the Start intention in our case. The
product part is the �problem description� and, the interface of the IAG is <(Problem
description), Discover a use case with the actor based discovery strategy>. The
definition of its body depends on its type (simple, tactical or strategic). We identify
the IAG under construction as a tactical guideline, which can be represented by a plan
including two steps: the definition of actors and the definition of use cases. These two
steps are defined as sub-guidelines as shown in Figure 6.

<(Problem description),
Discover a use case with actor based discovery strategy>

<(Problem description),
Define an actor>*

<(Actor),
Define a use case>*

<(Problem description),
Discover a use case with actor based discovery strategy>

<(Problem description),
Define an actor>*

<(Actor),
Define a use case>*

Define an
actor

Define a use
case

Begin
End

c1

c2

c3

c4

c5

Plan guideline:

Precedence links:

Choice criteria:
c1: a2 ET NON a3
c2: a1 OU (a2 ET a3)
c3: a1 ET NON a3
c4: (a1 ET NON a4) OU

(a2 ET NON a5)
c5: a5

Arguments:
a1: �in width first�
a2: �in depth first�
a3: all the actors have been identified
a4: all the use cases of an actor heve

been identified
a5: all the use cases of every actor

heve been identified

Fig. 6. The IAG associated to the section < Start, Discover a use case, actor based discovery
strategy>

Next, we need to define the precedence links between these sub-guidelines.
According to the initial method description, the definition of the use cases always
follows the identification of the actors. However, one can proceed in different
manners, we can identify all the actors first and then define the corresponding use
cases or define the corresponding use cases after the identification of every actor.
These two ways of proceeding are integrated in the guideline definition through the
arguments called �in width first� and �in depth first� in Figure 6. Moreover, the plan
must help verifying if all actors have been identified, if all use cases have been
defined for an actor and if all use cases have been defined for all actors. The different
combinations of these arguments allow us to define choice criteria of every
precedence link of the IAG plan presented in Figure 6. It shall be noticed that the
chunk concept contributes to a substantial improvement of the method guideline
initially provided by the OOSE description. Following similar approach the two sub-
guidelines can be defined.

482 Jolita Ralyté and Colette Rolland

Step 5: Identifying method chunks. To illustrate the identification of the method
chunks in the reengineering process, let us apply the section based discovery strategy
of the reengineering map (Figure 4) to the OOSE map. This strategy draws the
method engineer attention to the fact that a method chunk must satisfy some
reusability criteria to be inserted in the method base. This leads to verify if every IAG
may be reused as an independent method unit. For example, the IAG associated to the
section <Start, Discover a use case, actor based discovery strategy> has been
transformed enough from its initial version in the OOSE map to be applicable in
many different but similar situations requiring to identify the services that an
information system must provide to its users. Therefore, we confirm that a method
chunk can be based on this IAG.

Let us consider another example to illustrate the sequence discovery strategy
(Figure 4). Following this strategy we select two consecutive sections <Start,
Discover a use case, actor based discovery strategy>, <Discover a use case,
Conceptualise a use case, normal case first strategy> to construct a new guideline
embedding the two IAG associated to these two sections of the OOSE map. This
guideline is a tactical plan guideline introducing an ordering of the plan elements of
the two initial IAG (see Figure 7).

 <(Problem description), Conceptualise a use case>

<(Problem description),
Select IAG: <(Problem description), Discover a use

case with actor based discovery strategy>>

<(Use case),
Select IAG: <(Use case), Conceptualise a use case

with normal case first strategy>>

Fig. 7. Example of method chunk

Step 6: Defining method chunks. Finally, we illustrate the definition of a method
chunk using the guided strategy of the reengineering map (Figure 4). We apply this
strategy to the guideline defined in the previous step and presented in Figure 6. The
strategy recommends to define first the product parts used by the guideline and then,
to define the chunk descriptor. The product parts used in the use case discovery
process are the two concepts: actor and use case. According to the method meta-
model presented in Section 3, the definition of the chunk descriptor consists first in
determining in which domain and for which design activity the chunk is applicable.
This information may be explicitly stated in the method description or inferred from it
or from the chunk descriptions. The method base includes a catalogue of predefined
domains and design activities that can be selected to characterise a given chunk in the
reengineering process. In the example at hand, the chunk may be applied in the
following domains: information systems, interactive systems or business process
reengineering to support the discovering of system requirements. Second, the
descriptor intention shall be formulated. It specifies the objective of the chunk and the
manner used to attain this objective. In our case, we propose the following: Discover
functional system requirements following a use case discovery strategy. Third, in
order to facilitate the retrieval of the method chunk from the method base it is
recommended to complete this information by the informal description of the chunk
objective. In our case, the chunk objective is to help the requirements engineer to
identify the users of the system and the services that the system must provide. Finally
it is recommended to provide the links to the aggregate chunks that include this one as

 An Approach for Method Reengineering 483

well as the components of this chunk. The chunk of our example is an atomic one, but
it is used in other aggregate chunks that we designate by their interfaces: <(Problem
description), Construct a use case model following the OOSE strategy> (the whole
use case model) and <(Problem description), Conceptualise a use case> (the chunk
identified in Figure 7). Figure 8 shows the completed method chunk.

<(Problem description),
Discover a use case with actor based discovery strategy>

<(Problem description),
Define an actor>*

<(Actor),
Define a use case>*

Define an
actor

Define a use
case

Begin End

c1

c2

c3 c4

c5

initialise

maintain

1 1..*

* *

Actor
Name

Actor
Name

Use case

Objective
Description

Guideline�s bodyGuideline�s body Product partsProduct parts

Situation : Application Domain : Information systems, Interactive systems, Business process reeingineering
Design Activity : Discover sysem requirements

Intention : Discover fuctional system requirements with use case discovery strategy
Origin : Method OOSE
Objective : To help the requirements engineer to identify the users of the system and the services that the system must

provide

Type : Atomic
Aggregates : <(Problem description), Construct a use case model following the OOSE strategy>

<(Problem description), Conceptualise a use case>

DescriptorDescriptor

InterfaceInterface

Fig. 8. Example of a completed OOSE method chunk

6. Conclusion

In this paper we look at situational method engineering from the reuse perspective.
This method engineering discipline promotes the �on the fly� method construction by
reusing the existing methods� chunks. To enable such method construction we need to
build repositories containing different reusable method chunks. Therefore, the
existing methods are not presented in a modular way and are not ready to be stored in
a method repository. As a solution we propose a process model supporting
reengineering of the existing methods in a modular fashion. A method, reconstructed
following our reengineering process, is represented by a set of reusable method
chunks easy to store in a method repository, to retrieve and to assemble in different
manners with the aim to construct new methods.

The reengineering process model is represented as a map with associated
guidelines. This allows us to offer flexibility to the method engineer for carrying out
the reengineering activity. Besides, guidelines provide a methodological support
based on the method meta-model. This meta-model allows to represent any method as
a collection of the chunks of different granularity levels where the highest level
corresponds to the overall method represented by a strategic guideline i.e. a map with
associated guidelines.

Our reengineering process has been evaluated on different methods. The obtained
results are encouraging and the experience is positive. In this paper we illustrate the

484 Jolita Ralyté and Colette Rolland

application of this process on the OOSE method. A software environment to support
our reengineering process and to improve its effectiveness is our current
preoccupation.

References

1. Benjamen A., Une Approche Multi-démarches pour la modélisation des démarches
méthodologiques. Thèse de doctorat en informatique de l'Université Paris 1, 1999.

2. Brinkkemper S., M. Saeki, F. Harmsen, Assembly Techniques for Method Engineering. 10th

Conference on Advanced Information Systems Engineering, CAiSE�98. Pisa Italy, 1998.
3. Harmsen A.F., S. Brinkkemper, H. Oei, Situational Method Engineering for Information

System Projects. In Olle T.W. and A.A. Verrijn Stuart (Eds.), Mathods and Associated Tools
for the Information Systems Life Cycle, Proc. of the IFIP WG8.1 Working Conference
CRIS'94, pp. 169-194, North-Holland, Amsterdam, 1994.

4. Harmsen A.F., Situational Method Engineering. Moret Ernst & Young , 1997.
5. Jacobson I., M. Christenson, P. Jonsson, G. Oevergaard, Object Oriented Software

Engineering: a Use Case Driven Approach. Addison-Wesley, 1992.
6. Jarke M., C. Rolland, A. Sutcliffe, R. Domges, The NATURE requirements Engineering.

Shaker Verlag, Aachen 1999.
7. Le Petit Robert, French Dictionary, Dictionnaires LE ROBERT, France,1995.
8. Plihon V., J. Ralyté, A. Benjamen, N.A.M. Maiden, A. Sutcliffe, E. Dubois, P. Heymans, A

Reuse-Oriented Approach for the Construction of Scenario Based Methods. 5th

International Conference on Software Process (ICSP'98), Chicago, Illinois, USA, 1998.
9. Ralyté J., C. Rolland, V. Plihon, Method Enhancement by Scenario Based Techniques. 11th

Conference on Advanced Information Systems Engineering CAiSE�99, Germany, 1999.
10.Ralyté J., Reusing Scenario Based Approaches in Requirement Engineering Methods:

CREWS Method Base. Proc. of the 10th Int. Workshop on Database and Expert Systems
Applications (DEXA'99), 1st Int. REP�99 Workshop, Florence, Italy, 1999.

11.Ralyté J., Ingénierie des méthodes par assemblage de composants. Thèse de doctorat en
informatique de l'Université Paris 1. Janvier, 2001.

12. Ralyté J. C. Rolland, An Assembly Process Model for Method Engineering. 13th Conf. on
Advanced Information Systems Engineering, CAISE�01 Interlaken, Switzerland, 2001.

13.Rolland C., N. Prakash, A proposal for context-specific method engineering, IFIP WG 8.1
Conf. on Method Engineering, pp 191-208, Atlanta, Gerorgie, USA, 1996.

14.Rolland C., V. Plihon, J. Ralyté, Specifying the reuse context of scenario method chunks.
10th Conf. on Advanced Information Systems Engineering, CAiSE�98. Pisa Italy, 1998.

15.Rolland C., N. Prakash, A. Benjamen, A multi-model view of process modelling.
Requirements Engineering Journal, p. 169-187,1999.

16.Saeki M., K. Iguchi, K Wen-yin, M Shinohara, A meta-model for representing software
specification & design methods. Proc. of the IFIP¨WG8.1 Conference on Information
Systems Development Process, Come, pp 149-166, 1993.

17.van Slooten K., S. Brinkkemper, A Method Engineering Approach to Information Systems
Development. In Information Systems Development process, N. Prakash, C. Rolland, B.
Pernici (Eds.), Elsevier Science Publishers B.V. (North-Holand), 1993.

18.Song X., A Framework for Understanding the Integration of Design Methodologies. In:
ACM SIGSOFT Software Engineering Notes, 20 (1), pp. 46-54, 1995.

19.Rational Software Corporation, Unified Modelling Language version 1.3. Available at
http://www.rational.com/uml/resources/documentation/, 2000.

	1.	Introduction
	2.	Overview of the Approach
	3.	The Notion of a Method Chunk
	4.	The Reengineering Process
	5.	Case Study
	6.	Conclusion
	References

