

Abstract— Several knowledge management issues arise during

the life-cycle of an interactive system. In the design phase
software engineers need to elicit from users and domain experts
knowledge about what they need and about the intended use of
the interactive system. Interacting with the system, users modify
their needs and/or their ways of using the system: knowledge
about new user habits becomes then a key factor for user-system
co-evolution, i.e. for useful software maintenance and extension
interventions. In this paper we propose an agent-based
architecture to support knowledge management in the complex
process of user and system co-evolution. The architecture is based
on the visual workshop hierarchy approach, where different
kinds of interactive systems are associated in a hierarchical
fashion with the different figures involved in system life-cycle.
The approach is complemented with a community of agents which
may play two kinds of roles: observer agents in charge of
observing and recording user-system interaction at each level of
the hierarchy, and recognition agents in charge of analyzing
observation records and of extracting patterns of interactions to
be submitted to the attention of designers at the appropriate level.
Examples from a case study make discussion on the proposed
architecture concrete and a sketch about the implementation is
provided.

Index Terms—Interactive system design, System observation,
Coevolution, Knowledge management.

I. INTRODUCTION
everal approaches to the design of Interactive Systems
(ISs) ascribe a key role to the end-users. For instance, both
the participatory [1] and the user centered [2] approaches

assume that the user experience drives the design. More
recently, some researches propose collaborative approaches,
in which the design is performed by an interdisciplinary team,
including some representative of users, called domain experts
[3]. As a matter of fact, these and similar approaches are based
on the simple consideration that the most important
knowledge for IS design, i.e. knowledge about what users do
and need, is possessed by the users themselves.

P. Baroni, D. Fogli and P. Mussio are with the Dipartimento di Elettronica
per l’Automazione, Università di Brescia, Via Branze 38, 25123 Brescia, Italy
(corresponding author: D. Fogli, phone: +39-030-3715455; fax: +39-030-
380014; e-mail: {baroni, fogli, mussio}@ ing.unibs.it).

This work is supported by Italian Ministry of University and Research,
MIUR, in the framework of the project Specification, Design and
Development of Visual Interactive Systems - PRIN 2000 and by ex60%
funding programme

Adopting this standpoint, some well-known problems in the
area of IS design can be regarded as typical knowledge
management problems.

In particular, a pathological phenomenon, which often
affects the design and implementation process of Interactive
Systems and leads to the development of ISs difficult to learn
and use, is the communicational gap existing between users
and software designers [4][5].

This phenomenon is related with the variety and complexity
of the knowledge involved in IS design, which pose a serious
problem of knowledge elicitation and sharing.

In fact, at least three kinds of professional figures are
typically involved in the development process of an IS:
software engineers, domain experts, and end users.

The communicational gap arises from the fact that these
professional figures correspond to different cultural
backgrounds, and, as a consequence, detain distinct types of
knowledge and follow different approaches and reasoning
strategies to modeling, performing and documenting the tasks
to be achieved in a given application domain.

In particular, one of the main causes of the communicational
gap is the different level of abstraction adopted by different
professional figures in their reasoning and language.
Moreover, professionals with different cultural backgrounds
may adopt different approaches to abstraction, since, for
instance domain experts and software designers may have
different notions about the details that can be abstracted away.

Users reason heuristically rather than algorithmically, using
examples and analogies rather than deductive abstract tools,
documenting activities, prescriptions and results, through their
own developed notations. These notations are not defined
according to computer science formalisms but they are
concrete and situated in the specific context, in that they are
based on icons, symbols and words that resembles and
schematise the tools and the entities which are to be operated
in the working environment. They emerge from users’
practical experiences in their specific domain of activity
[4][6]. These notations highlight those kinds of information
users consider important for achieving their tasks, at the
expense of obscuring other kinds [7], and facilitate the
heuristic problem solving strategies, adopted in the specific
user community.

Moreover specialized user dialects stem from user diversity

An agent-based architecture to support
knowledge management in

interactive system life-cycle
Pietro Baroni, Daniela Fogli, Piero Mussio

S

[3], rising from the existence of users sub-communities which
develop peculiar abilities, knowledge and notations for
example for the execution of specialized subtasks.

Another relevant problem, which has received less attention
in the Human Computer Interaction (HCI) literature, but that is
well known in the knowledge acquisition field, is the existence
of implicit knowledge, namely the knowledge that a person
possesses and currently uses to carry out tasks and solve
problems but that s/he is unable to express in verbal terms and
that s/he may even be unaware of.

Also in this case, it is a common experience that in many
application fields end-users possess a large amount of implicit
knowledge, since they are often more able to do than to
explain what they do. While this may, in general, represent a
very difficult problem, in the area of IS design its solution can
be favored by the fact that the ways users understand and
exploit a system have, in any case, a precise and observable
counterpart in the actions they execute while interacting with
it. Therefore one way to make this implicit knowledge explicit
consists in observing end-users during their interaction with an
existing system or, if the system has not been developed yet,
by observing interactions of users with system mock-ups.
Mock-ups, often prepared in the early phases of system
projects, are used to have a first feedback from users with
respect to the system being developed, in order to better
understand their needs and expectations.

User observation techniques are discussed for instance in
[8]. Some of these techniques are based on the presence of a
human observer and suffer therefore by two main kinds of
limitations:

• on one side, human observers have limited
observation capabilities: some relevant aspects of
interaction may escape their attention; moreover they
can be biased in collecting use data, especially if they
coincide with software designers, while, on the other
hand, their presence may influence the users and
induce unnatural behaviors [9];

• on the other side, they are generally applied only in
the design phase of IS life-cycle: once the IS has been
released, user observation ceases.

 The latter kind of limitation, is particularly significant from
the viewpoint of a correct knowledge management along the IS
life-cycle. In fact, even if it would be possible to correctly
elicit all end-users knowledge during system development or
by observing the users interacting with the IS in the early
stages of use, this knowledge will change and increase due
simply to the fact that users use the system. In fact, an
important phenomenon, often observed in HCI studies, is that
“using the system changes the users, and as they change they
will use the system in new ways” [10].

In turn, the designer evolves the system to adapt it to its new
usages. We call this phenomenon co-evolution of users and
systems, to emphasize the interest on methods and tools to
support adequate system co-evolution [5].

Co-evolution stems from two main sources: a) user
creativity: the users may devise novel ways to exploit the

system in order to satisfy some needs not considered in the
specification and design phase; and b) user acquired habits: a
user may insist in following some interaction strategy to which
they are (or become) accustomed; this strategy must be
facilitated with respect to the initial design.

An example of the first type is the integration of non
calculation data in spreadsheets, which was included in later
versions of spreadsheets, after the observation that users
frequently forced the spreadsheet to manage non-calculation
data for data archiving and other tasks [11].

An example of co-evolution stemming from user acquired
habits is offered by the strategy for saving in a new directory a
file being edited. In earlier versions of many applications (e.g.
those of the MSOffice suite) after selecting the "Save as"
command the user can create a new directory, which however
does not become the current directory. Users are required for a
third command - open the new directory - before saving their
file. In this editing situation, forcing the user to open the newly
created directory is obviously inconvenient. Having
recognized this contextual nuisance, more recent versions of
MSOffice applications have been co-evolved to encompass
this user behavior: when a new directory is created in the
"Save as" context, it automatically becomes the current one.

In order to overcome the communicational gap, to manage
user diversity and the implicit knowledge problem,
representatives of the user community are recruited in the
design team as domain experts. They are experienced users,
who possess a higher level and more complete view of the
application domain, with the capability of distinguishing and
characterizing user groups and the relevant dialects. However
they may lack knowledge about some operational details which
are critical for the final acceptance and usability of a IS by end
users and may not be aware of all existing dialects and their
features. These dialects remain unknown during the first
design phase.

Domain expert complement software designers, who have
limited or even no domain knowledge at all. Software
engineers contribute to the design process their competence in
formal modeling and software engineering principles and
techniques. However, software engineers tend to reason about
the problems in an abstract way, because they focus on
abstraction and generalization of models, algorithmic
description of activities, formal verification, software reuse
and maintenance. For this reason, designers often tend to pay
little attention to the mapping between programs and real
cognitive processes and to the ease of user interactive solution
of problems. The result of these design approaches are ISs
which users access and steer only being forced to express their
problems in the computer oriented notations imposed them by
the designers. These ISs impose their grain to users resolution
strategies, a grain often not amenable to user reasoning, and
possibly even misleading for them [6].

The need for managing co-evolution and the existence of
unknown dialects call for the design of systems which support
users and designers in identifying the improvements to be

performed and can be incrementally adapted to these findings
emerging from its use in practice.

To reach these goals, this paper proposes an agent-based
architecture, capitalizing on openness of multi-agent
architectures, and agent pro-activeness, autonomy, social
ability and reactivity.

The rest of the paper is organized as follows. In Section 2
we present a case study which exemplifies the concepts and
problems introduced above. In Section 3 we describe the
visual workshop hierarchy approach to design of Visual
Interactive Systems (VISs), namely interactive systems based
on visual interaction, while in section 4 we present a
prototypal system for user observation and extraction of
recurrent patterns of interactions. In section 5 we show how
these concepts can be combined within an agent-based
architecture supporting the management of knowledge
concerning IS design and co-evolution. In section 6 a
discussion about the peculiarities of our work and a
comparison with recent literature are provided. Finally in
section 7 we sketch future work directions and conclude the
paper.

II. KNOWLEDGE MANAGEMENT WITHIN A WORKING
ORGANIZATION: A CASE STUDY

To make the above discussion concrete we introduce an
example taken from a case - studied in [12] and [13] - in which
Earth scientists and technicians analyze satellite glacier images
to obtain medium and long term environmental forecast and
organize the forecast results into reports and thematic maps for
different communities of client experts (planners, decision
makers, ...). Reports may include photographs, graphs, etc.,
and textual or numeric data related to the environmental
phenomena of interest.

The team of designers, including software engineers,
domain experts and HCI experts, analysed the tasks performed
in a specific working environment, for which a VIS has to be
developed. The team recognized two kinds of activity: photo-
interpreters classify, interpret and annotate remote sensed data
of glaciers; clerks organize the interpreted images into
documents to be delivered to different communities of clients.

Photo-interpreters and clerks represent two sub-
communities of end-users within the Earth Scientist &
Technologist community: they share environmental data
archives, some models for their interpretation, some notations
for their presentation but have also to achieve different tasks,
documented through different sub-notations and tools.
Therefore, their notations can be considered two (visual)
dialects of the Earth Scientist & Technologist general notation.

The team of designers decided to develop two separate but
consistent environments, called application workshops in our
terminology [13]. The first, B-glacier, was developed for the
photo-interpreter community, equipped with tools for
interactive image processing and data annotation and for
archiving the interpreted images and annotations. The second,
B-monitore, was developed for the clerk community, equipped

with tools for the retrieval of data and images, for their
annotation, for organizing images, sketches, graphs and texts
into documents, for archiving and dispatching the produced
documents. Moreover, the team of designers also observed that
adaptation of B-glacier and B-monitore to different tasks and
situations requires the knowledge of both dialects and
activities, of the tasks to be executed and of the working
organization, and the awareness of the use of the reports
outside the organization. Only senior Earth scientists may have
such a knowledge. Therefore, the team decided that a senior
expert should act as a manager of the whole activity and be
responsible of recognizing the tasks to be performed,
identifying the dialect notations of interest, and consequently
defining the whole VIS as a system of consistent application
workshops. The senior scientist achieves these goals using
another environment, a system workshop, called B-
GlacManager, where s/he finds usable tools for implementing
and adapting application workshops (see fig. 1).

Several co-evolution phenomena may concurrently arise in
such a context. End users may change the way of using their
application workshops: if the senior scientist is able to
correctly capture these changes, s/he can introduce suitable
modifications and extensions in the application workshops
using the system workshop. However if the requirements
imposed by the evolution go beyond the capabilities initially
included in the system workshop, the senior scientist has to
resort to the help of software designers.

In turn, while producing and/or modifying application
workshops, the senior scientist may change his/her way of
using the system workshop: this phenomenon should be
captured by software engineers to evolve the system workshop,
with potential indirect benefits on the application workshops
of end-users.

Correctly supporting co-evolution through proper
knowledge extraction and management may significantly
improve the usability, or even the acceptability, of the
workshops at different levels with a remarkable impact on the
productivity of the professionals involved and on the quality of
the results of their work.

III. THE VISUAL WORKSHOP HIERARCHY APPROACH
In the visual workshop hierarchy approach [13], each VIS is

designed as it would be a virtual workshop, i.e. an
environment in which users find and use virtual tools familiar
to them and used in their everyday activities according to their
habits. In fact, domain experts and end-users know the real
tools they are familiar with and their own habits, so this
knowledge can be easily applied to similar virtual tools. On the
other hand, software engineers know abstraction techniques,
programming tools and their grains and exploit this knowledge
in the system development.

The visual workshop hierarchy strategy is therefore a
collaborative approach which capitalizes on the different
knowledge sources of the professional figures involved in the
use and development of an IS. In particular, end-users, domain

experts and software engineers cooperates to identify ‘what’
and ‘how’ to do, namely to identify the application workshops
to be developed. The team of designers develop their own ISs
(system workshops) and use them to collaborate in the
development of application workshops. System and
application workshops form a hierarchy which arises from the
working organization of the user community. Figure 1 shows
the hierarchy in the case of Earth Science.

In general, the hierarchy organization depends on the
working organization of the end-user community: the designer
team organizes each hierarchy into a number of levels and, at
each level, defines a number of workshops, depending on this
organization. Each workshop is devoted to the execution of
tasks of a same type. The top level (software engineering
level), and the bottom level (application level), are always
present in a hierarchy.

Figure 1. A 3-level visual workshop hierarchy.

The hierarchy should be designed so that, in each workshop,

users find all but only the tools required to perform the
specific task type, according to their culture, skill and
experience. During task execution, at each stage of the work,
the system presents its users a working area, called ‘bench’.
The user selects from a tool repository and makes available on
the bench the tools required in that work stage. The user
selects from data repositories the entities to be worked on, and
performs the task applying the tools on these entities. In this
way, users should more easily orient their navigation in the
virtual space to achieve their goals and avoid to loose
themselves in the virtual space. However, in our experience,
all working situations cannot be foreseen in advance.
Therefore, in each workshop, it must be possible for the user
to perform some local adaptation.

The visual workshop hierarchy approach acknowledges the
existence of different types of knowledge corresponding to
different professional figures and aims at favoring the
evolution towards providing the most appropriate tool to each
figure. To fulfill this goal, it has to include automated
observation and knowledge extraction techniques supporting

co-evolution.

IV. SUPPORTING CO-EVOLUTION OF INTERACTIVE SYSTEMS
Co-evolution is a word widely used in scientific works, from

Carroll and Rosson’s co-evolution of users and tasks [14] to
the co-evolution of artifacts supporting HCI design in the
different steps of the product lifecycle, with the aim of
obtaining a consistent set of tools [15]. Co-evolution of users
and systems, as suggested in this paper, stresses the
importance of co-evolving the systems, as soon as users evolve
the performance of their tasks. Co-evolution of users and
systems is rooted in the usability engineering, in that it
supports designers to collect feedback on system from the field
of use, to improve the system usability [10]. However, recent
works claim that co-evolution requires specific analysis and
evaluation activities [16].

In [5] we proposed an approach for automated support to
user and system co-evolution. We started from the definition
of the concept of interaction pattern. Informally speaking,
interaction patterns are sequences of activities which the user
of an IS performs in some specific situation during the
interactive execution of a task. Therefore interaction patterns
can be regarded as a representation of cognitive structures
bringing knowledge about the interactions of a user with a
system. IS designers are interested in recognizing these
patterns and the reasons of their repetition, so that they can
evaluate if it is worthwhile to co-evolve the system, for
example by the introduction of new functionalities. An
interaction pattern can be observed and expressed in a form
suitable for subsequent automatic analysis. Assuming the
knowledge of the control automaton of the IS, during the
interaction it is easy to observe the activity a(t) performed by
the user at time step t and relate it to the current state s(t) of
the control automaton, and then derive the state s(t+1) which
is reached as a consequence of a(t).

A prototypal system, called SIC (Supporting Interaction Co-
evolution), has been implemented to support observation and
recognition of interaction patterns. An extended description of
SIC is provided in [5]. We give here a brief sketch of its
architecture. It consists of an Interaction Observer, two
Recognition Agents and some designer support tools. The
former component is in charge of observing user activities,
with the purpose of storing observed sequences in a log file,
which is written following the XML standard for document
description, to facilitate interoperability and document
exchange. The Recognition Agents analyze the log file and
implement interaction pattern recognition techniques. In the
developed prototype, two recognition techniques have been
implemented: the first one devoted to the recognition of the
system states preferred by the user and the second devoted to
the recognition of recurrent user behaviors. The agents then
exchange messages with the designer in order to notify
interaction patterns. Finally, the designer may modify the IS
using the co-evolution support tools, which facilitate this
activity.

Figure 2. An agent-based architecture supporting co-evolution.

The organization of SIC naturally lends itself to a multi-

agent system. One of the main advantages of this type of
organization is its openness to extensions, by the addition of
new specialized agents. For example the set of recognition
agents might be extended in order to include further
recognition techniques. For this reason SIC has been
implemented using MadKit [17], a Java-based platform which
supports the development of multi-agent systems.

V. AN AGENT ARCHITECTURE SUPPORTING KNOWLEDGE
MANAGEMENT IN INTERACTIVE SYSTEM DESIGN

The architecture we propose integrates the observation and
extraction capabilities of the SIC prototype within the visual
workshop hierarchy and is illustrated in figure 2. Each
workshop in the hierarchy is associated with an agent (an
observer agent) in charge of observing user activities and
producing a log file to be transmitted to one or more
recognition agents at the upper level.

The recognition agent(s) analyzes the log files and extracts
interaction patterns to be submitted to the attention of the
professional in charge of managing that level in the hierarchy.
While s/he uses the relevant workshop to introduce the
changes possibly required by the interaction patterns emerged,
his/her work is in turn the subject of observation by the
relevant observer agent so that the same process can be

repeated with respect to the upper level.
Let us observe that the observations collected at the highest

level can only be managed at the same level. Therefore, the
software engineer is also in charge of evaluating and evolving
his/her own interaction with B-SwEngineer.

The adoption of a multi-agent architecture is appropriate in

this context for several reasons:
• the workshops corresponding to different levels of

the hierarchy are, in general, physically distributed so
that the communication and cooperation mechanisms
typically provided by a multi-agent architecture are
required to share observation and analysis results;

• observation and recognition activities require some
degree of autonomy by the software entities in charge
of carrying out them, since they can not, in general,
be carried out in a supervised manner;

• the openness of a multi-agent architecture eases the
adoption of adaptive incremental techniques, based
on the introduction of further classes of agents, for
instance, it can be imagined that the results produced
by a recognition agent can be communicated to a
modification agent, able to automatically formulate
IS modification proposals and to submit them to the
designer.

A prototypal implementation of the proposed architecture is
currently under development using BANCO [13].

BANCO is an XML specification of a visual environment,
which can be accessed and interpreted by every public
available SVG compliant browser. SVG is W3C
recommendation for vector graphics. The browser accesses
BANCO receiving from the server messages, written in a
XML dialect called BML (Banco Markup Language), which
also convey handles – as BML attributes - specifying how they
can be shown and manipulated. BANCO embeds a kernel of
scripting programs (about 50 KB) and a library of descriptive-
customization rules [13]. The browser then interprets the
scripting programs according to the descriptive-customization
rules and displays the elements of BANCO interface. BANCO
allows the implementation of the visual workshop hierarchy
methodology because it is an XML document by which users
can generate other XML documents. An expert can use
BANCO to generate a new BANCO instance: this process is
made possible by the structure of BANCO, which is modular,
clearly separating the definition of interaction elements (and
their organization and relationships), from their interpretation
rules and interaction behaviors. Experts use BANCO at each
level of the hierarchy to consistently generate workshops
usable by the designate community of end-users. These
workshops are instances of BANCO, each one specialized to
its intended users and tasks.

As explained above, each instance includes an observer
agent in charge of collecting information about user behavior.
Non-leaf instances include also one or more recognition
agents, which receive information from observer agents of the
lower hierarchical level, apply analysis techniques and extract
patterns of interaction, to be used by experts and/or designers
for co-evolution.

VI. DISCUSSION
As stated in [8], questions such as "how often do users do

X" or "how often does Y happen" are important for designers
of an interactive system wishing to assess the impact of
suspected problems or to focus development efforts for the
next version. However this is not information that can be
reliably collected in the usability lab. For this reason
techniques for collecting information about system usage from
the field and reporting it to the design and development team
are recently emerging.

Ergolight [18] and the Quality Feedback System included in
Netscape Communicator [19] are examples of commercial
applications following this direction.

Ergolight analyzes logs of Web site navigation and
generates exploratory diagnostic reports about the site
usability. Since it operates on conventional log files generated
by Web servers Ergolight carries out only global statistical
evaluations mainly based on timing behavior of the user
populations. For this reason it provides shallow indications of
the kind "page difficult to find" or "page difficult to read"
without giving design related information.

The Quality Feedback System included in Netscape
Communicator to support beta-testing is based on a technology
called TalkBack: it is a small piece of software in charge of
gathering data about what is happening in Communicator
whenever it crashes and automatically sending them to the
Netscape development team. This technology focuses
exclusively on software bug identification and characterization
rather than on usability problems, but shares with our approach
the idea of a sort of observer in charge of collecting relevant
information on the user side and notifying them to the
designers.

As to research proposals, a huge variety of techniques for
extracting information either by direct observation or software
logging of user behavior have been explored: an extensive
survey is provided by [8]. Most of these proposals are
conceived for supporting the execution of usability tests, to be
carried out in predetermined circumstances (e.g. before the
release of a system) rather than for supporting co-evolution
along the whole system life-cycle. Moreover, as to our
knowledge, none of these proposals encompasses a
hierarchical organization of the professional figures involved
in system development, while they simply consider the
distinction between software designers and end-users.
However, as stated in [20], software development involves
many stakeholders representing many points of view. In
particular, the definition of "end users" can even be confusing,
since it may refer to people in charge of interacting with a
software application but also to their colleagues, managers,
and customers, who are otherwise affected by the deployment
of an interactive systems.

Moreover, software developers are also end users namely of
software tools.

Our architecture is in line with the requirements expressed
in [20]: it provides a framework where existing observation
and information extraction techniques can be applied in a more
articulated context. In fact, the visual workshop hierarchy
approach allows focusing knowledge extraction and
manipulation on specific user communities, reflecting their
different roles. Workshops within the hierarchy may be
evolved in a separate though in a coordinated fashion.

The architecture we propose is based on agent technology.
In fact, according to the definition provided in [21], agents

are characterized by the following properties:
• autonomy: an agent must have some kind of control on

its actions and its internal state in order to be capable of
carrying out its work without human intervention;

• social ability, it must be able to interact and cooperate
with other agents by using some kind of agent
communication language;

• reactivity: it perceives its environment and must cope
appropriately and in a timely fashion with changes
occurring within it;

• pro-activeness: it should be able to exhibit goal-
directed behavior, i.e. it should not simply act in

response of its environment but it should “take the
initiative” in relation to its internal needs and current
mental state.

In our approach, the software entities devoted to system
observation and evolution need all these properties:

• they must be able to autonomously observe interactions
and find patterns of user behavior without being under
the direct control of a human;

• they must be able to communicate their results to the
agents at the higher levels in the hierarchy or to a
human agent (i.e. the designer);

• they must be reactive in the sense that they must
perceive user activities and carry appropriate actions on
their basis;

• finally, they must be pro-active with respect to the
designer by notifying him/her whenever interesting (e.g.
anomalous) interactive patterns have been observed.

Use of agents able to perform observations of user

interaction is advocated in other proposals, e.g. APE [22] and
EDEM (Expectation-Driven Event Monitoring) [23].

The architecture of APE (Adaptive Programming
Environment) is constituted by three software agents, an
Observer, an Apprentice and an Assistant. The Observer
monitors user’s actions and stores them into a trace. The
Apprentice applies machine learning techniques to learn
situation patterns in which repetitive tasks are performed, with
the purpose of building a set of user’s habits. The Assistant
proposes to the users the performance of repetitive tasks
whenever user’s actions match one or several learned situation
patterns. APE agent architecture and its operation have some
similarity with our proposal but do not consider a hierarchical
organization of interactive environments.

EDEM is an agent-based system, which collects usage and
contextual data and exploits a multi-level event model in order
to compare developer’s usage expectations against actual
usage, at different levels of abstraction. Expectation
mismatches are reported to the designer. A possible limitation
is the fact that designers may not be able to correctly figure out
expectations. The fact that the designer has some expectations
on user behavior and that these expectations might be
disappointed is based on the hypothesis that the designer
already possesses adequate knowledge about the usages of the
system Our approach focuses rather on the acquisition of
knowledge from actual usages, possibly not foreseen by the
designers.

VII. CONCLUSION
We have presented an agent-based architecture to support

knowledge management in the life cycle of interactive systems.
The proposal complements the approach of visual workshop
hierarchy recently proposed in [13] with a hierarchy of agents
providing the techniques supporting co-evolution analyzed in
[5].

The feasibility of the approach is demonstrated by the initial
prototyping activity carried out using a recently introduced
technology, called BANCO, which turns out to be particularly
suited for implementation of our ideas.

The main goal of future work is the development of a
complete hierarchy in a working environment: we are currently
analyzing a case study in the industrial automation field.

REFERENCES
[1] D. Schuler, A. Namioka, Preface, Participatory Design, Principles and

Practice, Schuler D., Namioka A. eds., Lawrence Erlbaum Ass.
Inc.Hillsday, vii, N.J, 1993.

[2] J. Murray, D. Schell, C. Willis, User Centered Design in Action, Proc.
SIGDOC 97, Acm, N.Y., 1997, 181-188.

[3] M. F. Costabile, D. Fogli, G. Fresta, P. Mussio, A. Piccinno, Computer
Environments for Improving End-User Accessibility. Proceedings of
7th ERCIM Workshop "User Interfaces For All", Paris, 2002, 187-198.

[4] D. J. Majhew, Principles and Guideline in Software User Interface
Design, Prentice Hall, 1992.

[5] S. Arondi, P. Baroni, D. Fogli, P. Mussio, Supporting co-evolution of
users and systems by the recognition of Interaction Patterns.
Proceedings of the International Conference on Advanced Visual
Interfaces (AVI 2002), Trento (I), May 2002, 177-189.

[6] A. Dix, J. Finlay, G. Abowd, R. Beale, Human Computer Interaction,
Prentice Hall, London, 1998.

[7] M. Petre, T.R.G. Green, Learning to Read Graphics: Some Evidence
that ‘Seeing’ an Information Display is an Acquired Skill. Journal of
Visual Languages and Computing, 4(1), 1993, 55-70.

[8] D. M. Hilbert, D. F. Redmiles, Extracting usability information from
user interface events. ACM Computing Surveys, 32(4), 2000, 384-421.

[9] J. Preece, Y. Rogers, H. Sharp, D. Benyon, S. Holland, T. Carey,
Human-Computer Interaction, Addison-Wesley, UK, 1994.

[10] J. Nielsen, Usability Engineering. Academic Press, San Diego, 1993.
[11] J. Nielsen, R. L. Mack, K .H. Bergendorff, N. L. Grishkowsky,

Integrated software in the professional work environment: evidence
from questionnaires and interviews, Proc. CHI 86 Conference, Boston,
MA, 1986, 11-120.

[12] P. Carrara , A. Rampini, An event-based archive of soft maps for the
analysis of glacier changes, in Proc. of SIS, 15th Int. Symp. Informatics
for Environmental Protection, Zurich (CH), October 2001, 395-402.

[13] P. Carrara, D. Fogli, G. Fresta, P. Mussio, Toward overcoming culture,
skill and situation hurdles in human-computer interaction. Int. Journal
Universal Access in the Information Society, 1(4), 288-304, 2002.

[14] J. M. Carroll, M.B. Rosson, Deliberated Evolution: Stalking the View
Matcher in design space. Human-Computer Interaction 6 (3,4), 1992,
281-318.

[15] J. Brown, T.C.N. Graham, T. Wright, The Vista environment for the
coevolutionary design of user interfaces. Proc. of CHI 98, Conf. on
Human Factors in Computer Systems, Los Angeles, 1998, 376-383.

[16] G. Bourguin, A. Derycke, J.C. Tarby, Beyond the Interface: Co-
evolution inside Interactive Systems - A Proposal Founded on Activity
Theory, Proc. IHM-HCI 2001.

[17] MadKit Web Site, http://www.madkit.org.
[18] Ergolight Usability Software, http://www.ergolight-sw.com.
[19] Netscape Quality Feedback System for Netscape Communicator 4.5,

http://wp.netscape.com/communicator/navigator/v4.5/qfs1.html.
[20] D. F. Redmiles, Supporting the end users' views. Proceedings of the

International Conference on Advanced Visual Interfaces (AVI 2002),
Trento (I), May 2002, 34-42.

[21] M. Wooldridge, N. R. Jennings, Intelligent Agents: Theory and Practice.
Knowledge Engineering Review, vol. 10(2), 1995, 115-152.

[22] J-D. Ruvini, C. Dony, APE: Learning User’s Habits to Automate
Repetitive Tasks. ACM Int. Conf. on Intelligent User Interfaces, New
Orleans, LA, USA, 2000, 229-232.

[23] D. M. Hilbert, J. E. Robbins, D. F. Redmiles, EDEM: Intelligent Agents
for Collecting Usage Data and Increasing User Involvement in
Development. ACM Int. Conf. on Intelligent User Interfaces, San
Francisco, CA, 1998, 73-76.

