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Abstract. This paper presents the distributed implementation of ALIAS,
an architecture composed of several cooperating intelligent agents. This
system is particularly suited to solve problems in cases where knowl-
edge about the problem domain is incomplete and agents may need to
form reasonable hypotheses. In ALIAS agents are equipped with hypo-
thetical reasoning capabilities, performed by means of abduction: if the
knowledge available to a logic agent is insu�cient to solve a query, the
agent could abduce new hypotheses. Each agent is characterized by a
local knowledge base represented by an abductive logic program. Agents
might di�er in their knowledge bases, but must agree on assumed hy-
potheses. That global knowledge base is dynamically created and man-
aged by means of a shared tuple space. The prototype, developed using
Java and Prolog, can run on a TCP/IP network of computers. In the
paper, we also discuss some experimental results to evaluate prototype
e�ciency.

1 Introduction

The agent concept has become of great signi�cance in distributed arti�cial intelli-
gence. An intelligent agent is a software or hardware system that is autonomous,
interactive with and reactive to its environment and other agents. An agent can
also be pro-active in taking the initiative in goal-directed behavior. Thus, the
agent concept is systematically used to represent entities with the ability to solve
problems, reecting the results on the environment. Moreover, intelligent agents
have goals to solve but have also to work in environments not completely under
their control. In recent years, the interest for intelligent agents has considerably
grown from both theoretical and practical point of view [12]. Intelligent agents
need deductive and pattern-matching capabilities to perform goals and activity
requests on them. In this respect, the knowledge of an agent can be speci�ed by
using the logic programming paradigm [15], and a logic language in particular.

In knowledge-intensive (distributed) applications, it is often the case that an
intelligent agent requires some sort of guess about a computation (viz., a goal
in a logic programming perspective) which cannot be performed (viz., solved)
locally since the local knowledge is incomplete. In this respect, the Closed World
Assumption [4] usually adopted in logic programming can be no longer assumed,



and some form of open or abductive reasoning has to be considered. Abduction
has been widely recognized as a powerful mechanism for hypothetical reasoning
in presence of incomplete knowledge [5, 6, 9]. Abduction is generally understood
as reasoning from e�ects to causes, and also captures other important issues
such as reasoning with defaults and beliefs (see for instance [11, 13]). Incomplete
knowledge is handled by labelling some pieces of information as abducibles, i.e.,
possible hypotheses which can be assumed, provided that they are consistent
with the current knowledge base. In the context of intelligent agents, abduction
can be regarded as a way of dynamically enlarging the agent's knowledge with
abducible atoms. In a multi-agent environment, abductive reasoning requires a
form of coordination among agents in order to guarantee that abduced hypothe-
ses are assumed consistently. When one agent wants to abduce a hypothesis h,
it has to check not only the consistency of its knowledge base with the new
assumption h, but also that the knowledge bases of all the other agents are
consistent with the new assumption. Furthermore, when h is assumed, one has
to guarantee that any other subsequent assumption will be consistent with the
new enlarged knowledge base. In this work, we present the distributed imple-
mentation of the Abductive LogIc Agents System (from now on, ALIAS), an
architecture composed of several cooperating intelligent agents. In ALIAS, logic
agents are equipped with hypothetical reasoning capabilities, obtained by means
of abduction. In this framework, agents can perform standard deduction and also
abduce new hypotheses, provided that they are consistent with the knowledge
of other agents. To this purpose, a mechanism to coordinate agent reasoning is
introduced. In particular, reasoning and coordination are integrated within the
Distributed Abduction Algorithm (DAA, for short). Each agent is characterized
by statically de�ned local knowledge represented by an abductive logic program
[8]. Moreover, a global knowledge (represented by the assumed hypotheses posted
into a shared tuple space) is dynamically built. While static knowledge is peculiar
to each agent and might di�er from agent to agent, all agents must agree on the
global set of assumed abducibles. To this purpose, a set of integrity constraints
is used - together with program clauses - to con�rm or discard new hypotheses.
In this respect, an agent is pro-active when it executes (its own) goals, while it
is reactive to its environment, and cooperate with other agents when it checks
the consistency of hypotheses raised by other agents. The properties of ALIAS
make it very suitable for the solution of problems in a distributed environment
where knowledge might be incomplete, multiple and even conicting. We are
experimenting, for instance, the employment of ALIAS agents for the solution
of distributed diagnosis problems in the automotive industry. In the paper we
describe the distributed implementation of ALIAS, based on Java and Amzi!
Prolog. The �rst prototype executes on a TCP/IP network of computers. The
analysis of experimental results lead us to focus on future improvements and
optimizations.



2 The architecture of ALIAS

In ALIAS, the computation is carried out by several parallel agents that coop-
erate for solving goals. Each agent has its own (possibly incomplete) knowledge
base, and uses abduction as a way of hypothetical reasoning. Agents can be
grouped into bunches: each bunch of arguing agents is associated with a set of
abducible hypotheses (i.e., the set of hypotheses that could be possibly raised).
Moreover, agents of the same bunch refer to the common set of hypotheses, �,
assumed so far (the dynamic knowledge of the bunch). When an agent A tries
to raise a new hypothesis h, agents belonging to the same bunch cooperate with
A (by means of the coordination protocol) in order to check that h is consis-
tent with the knowledge of the other agents and with the assumptions made so
far: if all agents agree about the assumption of h, h is assumed; otherwise it
is discarded. The composition of a bunch can be statically speci�ed or can be
dynamically determined. In this latter case, when an agent dynamically wants
to enter a bunch, it expresses its interest by raising a suitable event thus starting
a protocol aimed at checking the consistency of its local knowledge base with
the global knowledge of the bunch, �.

The inner structure of each ALIAS agent is shown in Fig. 1: each agent is
composed of three functional blocks: a reasoning module, which contains the
abductive (and deductive) reasoning mechanisms, a coordination module which
interfaces the agent with other agents in the system, and a user interface module
for the interaction with external users. Each agent A can accept queries from
external users by means of the user interface module; each query q is passed to
the reasoning module which performs a local computation in order to calculate
an answer for q. If the local knowledge of A is insu�cient to solve the query,
the solution of q could be possibly obtained by making additional assumptions.
Each time A tries to abduce a new hypothesis h, the coordination module starts
a message exchange session involving A and other agents in the bunch, in order
to check the consistency of h with the knowledge of the other agents and with
the assumptions made so far. At the end of this coordination activity, if all
agents agree in assuming h, the hypothesis is inserted in the common set of
assumptions associated to the bunch, and the computation can proceed. At the
end of the computation (if successful) the set of assumptions is stored in the
bunch tuple space, and the answer is returned to the external user (through the
user interface). Agents are autonomous and parallel: this means that within the
same bunch more than one computation could be started in parallel. For this
reason, accesses to the tuple space have to be suitably synchronized, in order to
preserve the consistency of the dynamic knowledge.

3 Agent Reasoning and Coordination

As described in Section 2, an ALIAS multi-agent application is composed of
several agents, possibly grouped into bunches. Each bunch consists of n + 1
agents arguing out a common set of abducibles. Each bunch is also associated
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Fig. 1. ALIAS agent functional structure

with a dynamic knowledge, represented by the set �, containing the hypotheses
so far assumed by all agents in the group. Each agent Ai, for i = 0; : : : ; n,
encapsulates (in its reasoning module) an abductive logic program hPi;Ai; ICii

An abductive logic program is a triple hP;A; ICi where P is a logic program
possibly with abducible atoms in clause bodies; A is a set of abducible predicates,
i.e., open predicates which can be used to form explaining sentences; IC is a
set of integrity constraints: each constraint is a denial containing at least one
abducible1. Given an abductive program hP;A; ICi and a formula G, the goal of
abduction is to �nd a (possibly minimal) set of atoms � which together with P

entails G. It is also required that the program P [� is consistent with respect to
IC. According to [6], negation as default, possibly occurring in clause bodies, can
be recovered into abduction by replacing negated literals of the form not a with
a new positive, abducible atom not a and by adding the integrity constraint
 a; not a to IC. The natural syntactic correspondence between a standard
atom and its negation by default is given by the following notion of complement

l =
n
� if l = not �

not � otherwise

where � is an atom.

We suppose that each integrity constraint in ICi of an agent Ai has at least
one abducible in the body. We suppose that abducible predicates have no def-
inition as in [10]. As concerns integrity constraints, the user-de�ned ones are
partitioned among the various agents, while those for handling negation as de-
fault, like the constraint p; not p, are left implicit and replicated in each agent's
knowledge base. The set � contains the hypotheses so far assumed by all agents.
The set of program clauses and integrity constraints might di�er from agent to
agent, but we assume that the set of abducible predicates (default predicates
included) is the same for all the agents in a bunch.

1 In the following, for the sake of simplicity, we consider only ground programs, thus
assuming that P and IC have already been instantiated.



3.1 The Distributed Abduction Algorithm

The DAA algorithm we adopt for abductive reasoning in a multi-agent system
is based on a proof procedure, de�ned originally in [6] by Eshgi and Kowalski
and further re�ned by Kakas and Mancarella [10], which is correct with respect
to the abductive semantics de�ned in [3]. The proof procedure presented in
[10] extends the basic resolution mechanism adopted in logic programming by
introducing the notion of abductive and consistency derivation. Intuitively, an ab-
ductive derivation is the usual logic programming derivation suitably extended
in order to consider abducibles. When an abducible atom h is encountered dur-
ing this derivation, it is assumed, provided this is consistent. The consistency
check of a hypothesis, then, starts the second kind of derivation. The consis-
tency derivation veri�es that, when the hypothesis h is assumed and added to
the current set of hypotheses, any integrity constraint containing h fails (i.e., the
bodies of all the integrity constraints containing h are false). During this latter
procedure, when an abducible L is encountered, in order to prove its failure, an
abductive derivation for its complement, L, is attempted. The DAA algorithm
extends the Kakas and Mancarella approach in the sense of distribution: now
knowledge is distributed among various agents, and consistency derivations have
to be coordinated within a pool of logic agents.

Abductive derivation

An abductive derivation from (G1 �1) to (Gn �n) for an agent A0 (with arguing agents
A1; : : : ; Am) with knowledge base given by the abductive logic program hP;Ab; ICi via
a selection rule R is a sequence (G1 �1); (G2 �2); : : : ; (Gn �n) such that each Gi has
the form  L1; : : : ; Lk, R(Gi) = Lj and (Gi+1 �i+1) is obtained according to one of
the following rules:

(1) If Lj is not abducible, then Gi+1 = C and �i+1 = �i where C is the resolvent of
some clause in P with Gi on the selected literal Lj ;

(2) If Lj is abducible and Lj 2 �i then
Gi+1 = L1; : : : ; Lj�1; Lj+1; : : : ; Lk and �i+1 = �i;

(3) If Lj is abducible, Lj 62 �i and Lj 62 �i and for each arguing agent Ak (k =
1; : : : ;m) there exists a consistency derivation from (fLjg �i [ fLjg) to (fg �0

k)
and the union set [k=1;:::;n�

0

k is consistent (i.e., L and L do not belong to the
union set for any literal L), then
Gi+1 = L1; : : : ; Lj�1; Lj+1; : : : ; Lk and
�i+1 = [k=1;:::;n�

0

k.

Steps (1) and (2) are local SLD-resolution steps using only the rules of A0

and abductive hypotheses, respectively. Step (3) requires the coordination of
all agents in the bunch: the new hypothesis Lj could be possibly assumed if
all arguing agents perform a successful consistency derivation for Lj , starting
from �i [ fLjg. In general, the consistency of each hypothesis Lj is checked
concurrently by all the arguing agents. Each consistency check, when successful,
might require the assumption of other hypotheses. If all consistency derivation
are successful, Lj , together with the additional hypotheses �i returned by the
arguing agents, is added to the current set of hypotheses, provided that the union



set of these hypotheses is consistent; then, the computation proceeds within A0

by assuming Lj and the set �out =
S

i=1;:::;n�i.

Consistency derivation

Given an agent A0 (with arguing agents A1; : : : ; Am) whose knowledge base is given
by the abductive logic program hP;Ab; ICi, a consistency derivation for an abducible
literal � from (� �1) to (Fn �n) is a sequence (� �1); (F1 �1); (F2 �2); : : : ; (Fn �n)
where :

(i) F1 is the union of all goals of the form  L1; : : : ; Ln obtained by resolving the
abducible � with the denials in IC with no such goal been empty,  ;

(ii) for each i > 1, Fi has the form f L1; : : : ; Lkg [ F
0

i and for some j = 1; : : : ; k
(Fi+1 �i+1) is obtained according to one of the following rules:

(C1) If Lj is not abducible, then Fi+1 = C0[F 0

i where C
0 is the set of all resolvents

of clauses in P with L1; : : : ; Lk on the literal Lj and 62 C
0, and�i+1 = �i;

(C2) If Lj is abducible, Lj 2 �i and k > 1, then
Fi+1 = f L1; : : : ; Lj�1; Lj+1; : : : ; Lkg [ F

0

i and �i+1 = �i;
(C3) If Lj is abducible, Lj 2 �i then Fi+1 = F 0

i and �i+1 = �i;
(C4) If Lj is abducible, Lj 62 �i and Lj 62 �i, and there exists a (local) abductive

derivation from ( Lj �i) to ( �0) then Fi+1 = F 0

i and �i+1 = �0.

It is worth to notice that the consistency derivation involves only local compu-
tation. In fact, abducible predicates have no de�nition (as in [6, 9]); if, during
a consistency derivation, an abducible atom h is encountered, a local abductive
derivation is performed. That corresponds to assume h and then, during this
local abductive derivation, to ask each arguing agent for the consistency check
of h.

3.2 An Example

Agents coordinate themselves on the basis of the set of assumed hypotheses �
by using a global repository for knowledge. All agents have to access the global
repository for getting the current set of assumed hypotheses to be considered
in their further computations. The global repository can be realized by a tuple
space accessed in a reading, reading and consuming, and writing mode through
Linda-like primitives read, in and out [7].

It is worth noting that several agents may issue distinct hypotheses, in paral-
lel and independently one of each other. This may lead to a situation where two
agents may try to store into the tuple space two conicting sets of hypotheses.

Example 1. Let us consider a system composed of four agents (A0, A1, A2, A3)
whose knowledge base is structured as follows:

A0) s : �p: A1) : �q; not b: A2) : �p; not c: A3) r : �q:
: �b; c:

where p, q, b, and c are abducible atoms. Let the current set of hypotheses � be
empty. Suppose that agentA0 raises the goal s and agentA3 the goal r. Each
single request is processed in parallel, producing two di�erent and conicting sets
of hypotheses (fp; c; not b; not qg for A0 and fq; b; not c; not pg for A3).



A possible solution to the conict is to guarantee the mutual exclusion of
agents in accessing the set of hypotheses in the tuple space, so that the �rst
agent succeeding in extracting the current � blocks further accesses until the
consistency check terminates. Other computations are de facto serialized on the
basis of the agent relative speeds in accessing the tuple space. However, two
di�erent computations starting with the same set of current hypotheses might
result in two sets which are consistent with each other. In that case, agents may
read in parallel the tuple space, while the blackboard checks the consistency of
consequent updates.

4 The Implementation

The implementation has been obtained by using Java and Amzi! Prolog [2]. With
reference to the terminology adopted in Fig. 1, Java is adopted to implement the
User Interface and the Coordination Module, Prolog to implement the Abductive
Reasoning Module. The implementation scheme of a single agent is shown in Fig.
2, where each block represents a software module. The user interacts with the
system through the User Interface by invoking the methods provided by the class
agentFrame. In particular, it is possible to start an abductive derivation process
by specifying the goal to prove. Moreover, a blackboard is used to store the
current list of abducibles. This way, we separate shared dynamic knowledge (the
list of abducibles which is available from the blackboard and can be updated
at run-time by the agents) from agent-speci�c local knowledge base, which is
statically speci�ed.
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Fig. 2. The implementation scheme of a single agent.

Class blackboard, which implements the tuple space, handles the current list
of abducibles and basically provides the access to the global knowledge. For



a better comprehension of the relationships among the classes, let us consider
the case of a user that asks a query to an agent through the User interface.
Each agent of the bunch has an instance of class agentServer listening to an
IP address:port waiting for remote requests. Then, the User Interface creates a
logicAgent which is asked to demonstrate the goal (method solveAbducible()).
First of all, logicAgent invokes the remote method read() of the blackboard in
order to obtain the list of abducibles, �. As it receives an answer, it gives con-
trol to a Prolog engine, instantiating an object of class logicServer. During the
logicServer initialization phase, it loads its knowledge base and its interface with
Java. Then it starts the abductive derivation for the query. If no abducible is
encountered during the abductive derivation phase, the logicServer returns con-
trol to the logicAgent, which displays the result. In that case, no coordination
protocol among agents is required since the computation is performed locally. In
some other cases, instead, the Prolog engine could attempt to abduce a hypoth-
esis h. The consistency of the new abducible has to be checked by all the agents
of the bunch. Therefore, Prolog returns the control to Java (ask remote cons/3),
which creates one thread for each other agent in the bunch (clientThread) for
communication purposes. Each thread sends the consistency request (by means
of method askRemoteCons() of agentServer) to a speci�c remote agent. The re-
mote agentServer receiving the request starts a consistency derivation for h, for
which a new Prolog engine is dynamically created. It is worth to notice that the
consistency derivation could start nested abductive and consistency derivations.
After a remote consistency check returns the result (which will be positive iif all
of the clientThreads returned true) the initial Prolog engine proceeds in its ab-
ductive derivation. This process of asking remote consistency might be invoked
several times before a goal is demonstrated. As logicServer returns control to
the logicAgent, it invokes method write() of object blackboard in order to store
in the blackboard the current list of abducibles.

The source code, whose latest version is available at [1], has been written in
Java 1.2 and imports class logicSever of Amzi! Prolog [2] in order to interface with
the Prolog engine. Amzi! has been chosen among the other Prolog interpreters
since it allows multiple instances of class logicServer to be created at the same
time inside a single Java process. In fact, for the sake of deadlock avoidance,
the agentServer which answers to remote requests must create a new instance of
class logicAgent any time the consistency of a new abducible has to be proved.
As our tests demonstrate, this sequence of operations is responsible for most of
the overhead.

5 Experimental Results

We tested the prototype in order to trace the behavior of the protocol when
speci�c parameters change. The Prolog knowledge bases we generated on purpose
consist in general of a certain number of goals to prove, a set of rules organized
in a hierarchy to form an AND/OR tree, a set of integrity constraints and a
list of abducibles. We made experiments with bunches ranging from two to four



agents and with di�erent depths of the program (depth is intended to be the
maximum number of nodes between a goal and the leaves, constituted by rules
having abducibles in the body). Other parameters are the number of atoms,
of abducibles, of integrity constraints, and the average length of the body of a
clause.

From the experimental results emerged that there is evidence of a dependency
between the number of consistency checks (c) requested by a computation, and
the response time (t). In Fig. 3, we report t/c, calculated for di�erent values

100

120

140

160

180

100 1000 10000 100000 1000000

number of consistency check requested

re
s

p
o

n
s

e
ti

m
e

p
e

r

c
o

n
s

is
te

n
c

y
c

h
e

c
k

(m
s

e
c

)

Fig. 3. Average consistency check cost

of c. From these results we can see that t/c remains almost constant. We can
say that in our architecture t depends linearly on c. A closer analysis of the
single consistency request cost allows us to focus on two di�erent sources of
overhead. The communication overhead is the cost of pure message exchange.
The Prolog engine load time is the time spent by the agentServer creating a
thread and loading a Prolog engine. In order measure these sources of overhead
we considered a bunch composed of two agents, the former running a standard
program, the latter playing the role of an agentServer having no computation to
do but a list of abducibles. Prolog engine load time resulted responsible for 82%
of the whole response time, while communication overhead is of 17%.

The performance results show that the implementation can be improved and
optimized. In particular, we are considering to provide the agentServer with a
pool of threads ready to answer to remote queries, in order to reduce the overhead
produced by both thread creation and Prolog engine management. We are also
considering the opportunity of using other Prolog engines, for instance some
lighter interpreter with a shorter load-time. Another way is to reduce the number
of consistency check requests itself, for instance by indexing the broadcast and
implementing a consistency derivation driven by the characteristics of each agent
constraints (multicast in place of broadcast).



6 Conclusions and Future Work

We have presented the implementation of ALIAS, an architecture composed
of several cooperating abductive logic agents. We de�ned a basic protocol to
coordinate the reasoning of abductive (rational) agents, in order to introduce
abduction in a (logic) multi-agent environment. ALIAS is currently available
in its prototypical implementation obtained with Java and Amzi! Prolog. We
evaluated the performance of ALIAS executing simple applications without any
concrete meaning; current work is now devoted to test the system e�ectiveness
with real applications. To this purpose we are working at the de�nition of an
application for distributed diagnosis in the automotive �eld. However, we are
aware that the strict monotonicity of the DAA algorithm with respect to the
set of abduced hypotheses may represent an obstacle when implementing real
applications: for this reason, a future topic will be the extension of the system
with respect to the capability of retracting abduced hypotheses. Current work
focuses also on extending the implementation by considering dynamic composi-
tion of agents into bunches. Finally we also intend to investigate the application
of the coordination protocol to other existing abductive methods, in addition to
the one here considered.
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