
UNIVERSITÀ DEGLI STUDI DI BOLOGNA

FACOLTÀ DI INGEGNERIA
Dipartimento di Elettronica Informatica e Sistemistica

Dottorato in Ingegneria Elettronica e Informatica
XIII Ciclo

Mobile Agent Models and Technologies
for Distributed Coordinated Applications

in Global Systems

Candidato: Coordinatore:
Ing. Paolo Bellavista Chiar.mo Prof. Ing. Fabio Filicori

Relatore:
Chiar.mo Prof. Ing. Maurelio Boari

Anno Accademico 1999-2000

1 INTRODUCTION... 1

2 MOBILE AGENT-BASED INFRASTRUCTURES FOR INTERNET SERVICES 7

2.1 EMERGING ARCHITECTURES IN STATE-OF-THE-ART MOBILE AGENT PLATFORMS.................. 11
2.2 A FLEXIBLE AND MODULAR MIDDLEWARE ARCHITECTURE FOR INTERNET SERVICES........... 16

2.2.1 Properties ... 16
2.2.2 The Proposed Middleware Architecture... 20
2.2.3 The Java Middleware: Editions, Configurations and Profiles 23
2.2.4 The CORBA Middleware: Broker, Services and Facilities... 27

3 THE SOMA MIDDLEWARE CONFIGURATIONS.. 31

3.1 BASIC CONFIGURATION .. 34
3.2 COMPLETE CONFIGURATION... 35

3.2.1 The Agent Naming Facility ... 35
3.2.2 The Agent Interoperability Facility .. 39
3.2.3 The Agent Security Facility... 45

4 THE SOMA PROFILE FOR INTEGRATED MANAGEMENT .. 49

4.1 RELATED WORK ... 51
4.2 ON-LINE MONITORING.. 55

4.2.1 Java Technologies for Monitoring.. 56
4.2.2 The MAPI Component .. 60
4.2.3 The MAPI Implementation.. 63
4.2.4 The MAPI Overhead ... 67

4.3 ON-LINE DISTRIBUTED MONITORING AND MANAGEMENT.. 69
4.3.1 The On-line Distributed Control of MA Resource Consumption.................................. 72
4.3.2 The Performance of Distributed Monitoring .. 73

4.4 VIDEO ON DEMAND SERVICE MANAGEMENT.. 74
4.4.1 The MADAMA Performance... 78

5 THE SOMA PROFILE FOR MOBILE COMPUTING.. 81

5.1 RELATED WORK ... 84
5.1.1 User Mobility .. 84
5.1.2 Terminal Mobility ... 85
5.1.3 Mobile Access to Resources.. 87

5.2 USER VIRTUAL ENVIRONMENT ... 87
5.3 MOBILE VIRTUAL TERMINAL.. 89
5.4 VIRTUAL RESOURCE MANAGEMENT... 90
5.5 THE PERFORMANCE OF THE MOBILE COMPUTING PROFILE .. 91
5.6 AN EXAMPLE OF APPLICATION SCENARIO .. 93

6 CONCLUDING REMARKS ... 97

6.1 LESSONS LEARNED ... 97
6.2 FUTURE WORK.. 98

ACKNOWLEDGEMENTS ... 101

REFERENCES ... 103

1

1 Introduction

The Internet is transforming into an open and global distributed system to provide

services to an increasing number of users, interconnected by very different and

heterogeneous devices, e.g., PCs, personal digital assistants, and even cellular phones

[Lewis, 98]. In addition, the diffusion of multimedia Web services and the

competition among service providers stress innovative service properties more and

more important for vendors, network operators and final customers. The key property

is Quality of Service (QoS), defined as the possibility to grant and guarantee

negotiated service levels independently of the dynamic conditions of resources in the

involved networks and systems [Chalmers, 99] [Hutchison, 94]. The providers

offering services with some controlled and differentiated QoS levels are interested in

accounting users for consumed resources and in enforcing effectively the desired

billing policies. Users request the possibility to specify and dynamically modify the

desired QoS level of their applications, and to control the effective quality achieved

during service provision before paying their service providers and network operators.

In the untrusted Internet environment, another important service property is security,

which permits to identify and face all forms of misuse and attack, such as denial-of-

service obtained by overloading resources to cause service unavailability.

Whereas the standardization of communication protocols has made possible to

interconnect geographically distributed resources in a unique global system, the

extensive usage of the Internet for the implementation and provision of distributed

services demands the additional availability of basic common facilities, provided at

the infrastructure level, to simplify the interworking between distributed components

[Bolliger, 98]. This facility infrastructure is crucial to help application developers in

the realization of highly accessible and personalized Web services supporting

differentiated levels of quality. In this scenario, applications should consist of and be

accessed by interworking resources and service components, geographically

distributed and intrinsically heterogeneous due to the openness of the Internet. For

instance, any Internet service implemented in terms of cooperating components needs

a flexible naming infrastructure to simplify the dynamic identification and location of

required entities, even based on a partial knowledge of searched resources (e.g., by

Mobile Agent-based Infrastructures for Internet Services

2

knowing their functionality but not their interface). Naming is probably the most

evident example of a general-interest facility for distributed systems: single

applications that implement their proper ad hoc naming service not only force their

designers to a considerable implementation effort but, most important of all, lead to

competing and incompatible solutions that are in contrast with the reuse and

interoperability principles emerging in the Internet environment.

The provision of services in an open, global and mobile environment has

significantly stimulated research work on new programming paradigms to enhance

the flexibility of the traditional Client/Server model. All proposed paradigms focus

on the support of code mobility at runtime. In particular, the Mobile Agent (MA)

programming paradigm associates with location-aware computing entities (mobile

agents) the possibility of migrating with code and reached execution state from one

network host to another one while in execution [Fuggetta, 98]. The property of

mobility makes the MA technology more flexible than the traditional C/S one

because it can exploit locality in the access to distributed resources and to perform

distributed operations in a completely asynchronous way with respect to both

commanding users and originating hosts [Fuggetta, 98] [Rothermel, 98] [Kotz, 00].

While first research activities on mobile agents aimed at the definition of models,

design principles and methodologies, as the focus has moved to the implementation

of MA systems and MA-based complex services, one of the main objectives of state-

of-the-art MA platforms is becoming the identification and provision of a common

middleware of basic facilities. This middleware should provide application designers

with a wide set of general-purpose (i.e. horizontal) facilities, possibly designed

according to a flexible and modular layered architecture, to simplify the rapid

prototyping of MA-based distributed services and to support their deployment and

execution at run-time [Bellavista, 00a].

To summarize, the growing requirements of Web service provision are forcing

distributed component technologies towards the definition of a common set of

facilities ubiquitously accessible as an integrated part of the communication

infrastructure. This trend involves both the traditional area of Client/Server

distributed systems and the emerging sector of the MA technology. Middleware

facilities not only provide the basis where developers design and deploy their

applications, but also should be flexible and easily extensible, in order to

1. Introduction

3

accommodate evolving system/service requirements and expectations of final users.

This common global infrastructure is the current vision of what is traditionally

known as middleware.

While there is a general agreement on the necessity of providing middleware

solutions for Internet services, researchers hardly agree on the precise definition of

what middleware is, which facilities and services are part of it, and which

middleware facilities have to be considered either at a lower layer (as components of

the network infrastructure) or at a higher one (as application-specific components).

In fact, the concept of middleware tends to depend on the different and subjective

perspectives of the different implementers. It is even dependent on when the question

is asked, since the middleware of yesterday (e.g., Domain Name Service, Public Key

Infrastructure and Event Services) may become the fundamental network

infrastructure of tomorrow. Final users and programmers usually see everything

below the Application Programming Interfaces (API) as middleware. Networking

people see anything above IP as middleware. Researchers and practitioners between

these two extremes consider middleware somewhere between TCP and the API, and

attempt further classification of middleware solutions into application-specific upper

middleware, generic middleware, and resource-specific lower middleware [Aiken,

00] [NGI].

To briefly present a historical evolution of the middleware definition, some of its

earliest conceptualizations originated within the distributed operating research of the

late 1970s and early 1980s and were further advanced by the I-WAY project [Foster,

96]. The I-WAY linked high-performance computers over high-performance

networks such that the resulting nation-wide environment worked as a single high-

performance system. On the basis of this experiment, the involved researchers re-

emphasized the fact that effective high-performance distributed computing required

distributed common resources and facilities, including libraries and utilities for

resource discovery, scheduling and monitoring, process creation, communication and

data transport. In May 1997, the members of the Next Generation Internet (NGI)

consortium extended the traditional definition of middleware by stressing

requirements such as reusability and expandability [NGI]. Their definition includes a

wide set of services at different layers of abstraction, such as traditional operating

systems facilities (e.g., run-time support and libraries), distributed programming

Mobile Agent-based Infrastructures for Internet Services

4

environments (e.g., the Java framework), and network infrastructure services (e.g.,

the Domain Name Service).

This thesis has neither the pretension nor the objective of presenting a conclusive

definition of middleware. Its aim is, instead, to point out the convergence of research

efforts in the MA area towards the provision of a set of horizontal facilities to help in

the development and deployment of globally available services. In addition to simple

basic facilities for agent identification, migration and communication, the research

community starts to recognize that is crucial for MA platforms to provide advanced

facilities to answer the increasing requirements of both users and providers in terms

of service quality, dynamic personalization and tailoring, rapid application

development and deployment.

After a thorough analysis of the related literature and after first experiences in

deploying MA-based services in several application domains (e.g., systems

management and distributed information retrieval), we have investigated the

possibility to design a middleware for Internet services according to the following

guidelines:

• Adoption of the MA technology. Mobile agents are suitable for the implementation

of middleware services in the emerging Internet scenario because of their

mobility, autonomy, asynchronicity with regards to their users.

• Interoperability. Several research efforts, both in traditional distributed computing

and in the emerging sector of mobile agents, are defining different middleware

infrastructures of general-purpose facilities. It is crucial to allow these

infrastructures to interoperate the one with the other, and to interwork with the

large base of installed systems and service components.

• Flexibility. Middleware should support very different requirements, possibly

evolving during service provision. Middleware facilities should consist of

different extensible and composable modules, possibly organized in hierarchical

layers dynamically added only when and where specifically required.

This thesis presents the work done to develop, implement and deploy a modular MA-

based middleware called Secure and Open Mobile Agents* (SOMA). We have

* SOMA, related papers and documentation are available at:
 http://lia.deis.unibo.it/Research/SOMA/

1. Introduction

5

implemented the SOMA middleware as a layered architecture of general-purpose

horizontal facilities, defining SOMA configurations, and of domain-specific vertical

facilities, defining SOMA profiles. These facilities can be installed dynamically

depending on location-specific and service-specific runtime conditions.

With regards to existing middleware approaches, mobile agents are a suitable

technology to enable a new perspective focused on the mobility of computing

entities, service users and system resources, and require both developing new

solutions from scratch and adapting existing components. We have tried to follow

both directions, by obtaining very useful feedback by the direct exploitation of

SOMA middleware facilities in the implementation of MA-based service prototypes

in several application domains, from distributed monitoring and control of network

equipment to QoS management of distributed multimedia services, from automatic

personalization of Web services according to mobile users’ preferences to re-

qualification of bindings to needed resources and services in the case of terminal

mobility.

Beginning with an analysis of emerging architectures of the state-of-the-art MA

platforms, Chapter 2 defines the concepts of configuration and profile, and briefly

describes the notable example of the Java middleware with its current different

editions. Then, the chapter presents our proposed layered architecture of extensible

and modular components, organized in two possible configurations (the basic

configuration and the complete one) described in Chapter 3. In particular, Chapter 3

focuses on the design and implementation of the interoperability facility of the

complete configuration, which has been the result of the first year of the doctorate

work. Over the configuration layer, the SOMA middleware provides two different

profiles of facilities that are oriented towards domain-specific scenarios.

Chapter 4 presents the SOMA profile for the integrated management of network

elements, legacy systems and service components, either MA-based or not. The

chapter presents the implementation of a Java-based on-line monitoring facility for

distributed heterogeneous components. The monitoring facility is the basis to trigger

management operations performed autonomously by mobile agents depending on

runtime conditions. The ultimate goal is to permit the dynamic control of service

quality and its adaptation in response to the current state of distributed resources and

to the current user requirements.

Mobile Agent-based Infrastructures for Internet Services

6

Chapter 5 describes the SOMA profile for the support of the several different

forms of mobility that are emerging in the Internet scenario. User mobility requires

the collection and automatic migration of user preferences in order to provide users

with a uniform interface to their usual working environments. Terminal mobility

calls for the possibility to maintain network connectivity transparently to the current

location of mobile devices. Resource mobility imposes to support the automatic re-

configuration of needed bindings when networked resources and service components

have the possibility to move during service provision. Both SOMA profiles are

described together with the experience coming from the implementation of SOMA-

based service prototypes on top of them, and with the presentation of the

experimental measurements of the costs of the adopted solutions.

Finally, Chapter 6 summarizes the lessons learned from the accomplished work,

and sketches guidelines for the further evolution of the SOMA middleware, in terms

of both the extension/refinement of middleware facilities and the deployment of new

service prototypes for the ubiquitous access to distributed heterogeneous information

in virtual museums.

7

2 Mobile Agent-based Infrastructures for Internet
Services

The appearance of the Mobile Agent (MA) concept can be derived mainly by a new

technology called TeleScript developed by General Magic in 1994 [White, 94]. It

was the period when scripting languages, such as the Tool Command Language

(TCL) and its derivative SafeTCL [Borenstein, 94] gained much attention, since they

enabled rapid prototyping and the generation of portable code. The concept of smart

messaging [Kisielius, 97], based on the encapsulation of SafeTCL scripts within

emails [Borenstein, 94], made new mail-enabled applications possible. In the same

years, the concept of mobile computing, intended as the possibility of moving users

and terminals in the Internet with no need to suspend service provision, has gained

increasing importance and has further stimulated the research on mobile code

technologies [Chess, 95]. Last but not least, it was the beginning of the Java age, and

Java is the basis for the largest part of current MA systems.

In the last years, the MA technology has achieved a large and general interest, and

has been the object of several development efforts, much of which has evolved from

the platform independence of the Java language with its object serialization and

network communication support. We can summarize that, based on this coincidence

of the appearance of various agent concepts, agents become a fashion technology for

both the academic and industrial development communities. However, this also

created confusion, since there was a lack of common definitions and standards,

resulting in various concepts, languages, architectures, technologies and terminology.

Mobile agents are based on the principle of code mobility. In the Client/Server

(C/S) paradigm, the server is defined as a computational entity that offers some

functionality: the client requests the execution of these services by interacting with

the server; after the service is executed, the result is delivered back to the client.

Therefore, the server provides the knowledge of how to handle the request as well as

the necessary resources. Mobile code enhances the traditional C/S paradigm by

performing changes along two orthogonal axes:

• Where is the know-how of the service located?

Mobile Agent-based Infrastructures for Internet Services

8

• Who provides the computational resources?

Three main programming paradigms based on the possibility of dynamic code

migration have been identified [Fuggetta, 98]: Remote Evaluation (REV), Code on

Demand (CoD), and Mobile Agents. These paradigms differ in how the know-how,

the processor and the resources are distributed among the components SA and SB of a

distributed system (see Figure 2.1). The know-how represents the code necessary to

accomplish the computation. The resources (i.e., the file system where application-

specific data are stored) are located at the machine that will execute the specific

computation.

In the REV paradigm [Stamos, 90], a component A sends instructions specifying

how to perform a service to a component B. For instance, the instructions can be

expressed in the Java bytecode. B then executes the request on its local resources.

Java Servlets are an example of REV [Gosling, 97]. In the CoD paradigm, the same

interactions take place as in REV. The difference is that component A has resources

located in its execution environment but lacks the knowledge of how to access and

process these resources. It gets this information from component B. As soon as A has

the necessary know-how, it can start executing. Java applets fall under this paradigm.

Before AfterParadigm
SA SB SA SB

Client/Server A
Know-how
Resource

B
A

Know-how
Resource

B

Remote Evaluation
Know-how

A
Resource

B A
Know-how
Resource

B

Code on Demand
Resource

A
Know-how

B
Resource
Know-how

A
B

Mobile Agent
Know-how

A Resource ---
Know-how
Resource

A

Figure 2.1: Taxonomy of programming paradigms based on code mobility [Fuggetta, 98]

It is possible to think of the MA paradigm as an extension of the REV one [Fuggetta,

98]. Whereas the latter primarily focuses on the transfer of code, the MA paradigm

involves the mobility of an entire computational entity, along with its code and the

reached execution state. In other words, if component A is a mobile agent, it has the

know-how capabilities and a processor, but it lacks the resources where to perform

2. MA Infrastructures for Internet Services

9

its operations. The computation associated with the interaction takes place on

component B that has a processor and the required resources. For instance, a client

owns the code to perform a service, but does not own the resources necessary to

provide the service. Therefore, the client delegates the know-how to the server where

the know-how will gain access to the required resources and the service will be

provided. An entity encompassing the know-how is a mobile agent. It has the ability

to migrate autonomously to a different computing node where the required resources

are available. Furthermore, it is capable of resuming its execution seamlessly,

because it preserves its execution state.

This means that a mobile agent is not bound to the network host where it begins

execution. The ability to travel permits a mobile agent to move to a destination agent

system that contains the resources with which the agent wants to interact. Moreover,

the agent may be interested in exploiting the services offered by the destination agent

system. When an agent travels, its state and code are transported with it. The agent

state can be either its execution state or agent attribute values that determine what to

do when execution is resumed at the destination agent system. The agent attribute

values can include the agent system state associated with the agent (e.g., time to

live).

The MA paradigm is showing its suitability for the provision of middleware

facilities for Internet services because it represents an alternate, or at least

complementary, solution to traditional C/S models of interaction [Chess, 95]. MA

solutions may contribute to a reduction of the overall communication traffic in

network. For example, mobile code has the ability to engage with a server locally for

searching large databases; the proximity to the server ensures high communication

bandwidth.

The adoption of the MA technology is encouraged by many researchers in the

distributed system area, by citing the following deriving benefits [Chess, 98]:

• Asynchronous/autonomous task execution – After the injection of an agent into

the network environment, both the commanding user and the originating network

host have no control duties on the launched agent and can perform other tasks. In

addition, agents can exhibit an autonomous behavior and can have built-in

itineraries which determine which tasks they have to perform and where.

Mobile Agent-based Infrastructures for Internet Services

10

• Reduction of network traffic and client processing power – Both massive and

frequent data exchanges are handled locally at the nodes hosting the data, and

client computers could concentrate on performing only limited local tasks.

• Flexibility and extensibility – Software can be distributed at run-time and only

when needed (on-demand software distribution). Service software can be

encapsulated within mobile agents, instantly downloaded to the client side, to the

server side and to any intermediate node involved, and installed by transporting

agents even when complex and time-/contect-dependent configuration operations

have to be performed on target hosts.

• Decentralized control and management – Dynamic agent migration and the

possibility to multiply the agent instances via cloning significantly simplify the

automated distribution of formerly centralized programs for the control and

management of network resources and distributed applications.

• Increased robustness – The reduction of dependence between interworking

components allows MA-based applications to overcome temporary unavailability

of both the network and the needed C/S resources. Once the agent arrived at a

target system, the originating host may crash or the network may become

unavailable without any drawbacks on the task processing.

This means that mobile agents provide flexibility in dynamically (re-)distributing

intelligence inside a distributed network environment, in particular to reduce network

load and to optimize service performance. The MA benefits listed above permit to

overcome various problems and inefficiencies of traditional C/S architectures,

especially when dealing with application scenarios intrinsically mobile, such as users

that modify their terminal of attachment to the Internet and portable devices that

roam from one hosting network to another one. In addition, QoS requirements

imposes on-line adaptive operations that can significantly profit from the possibility

to migrate agents locally to the resources to be managed, as extensively described in

Chapter 4.

The possible drawback of the MA technology is represented by the security risks

introduced by the necessity to host the execution of new computing entities that carry

their own code. Furthermore, an agent may be attacked, modified or deleted by a

hostile agent platform on a malicious network host. Another typically stated and

2. MA Infrastructures for Internet Services

11

obvious concern related to mobile agents is the question if agent migration is always

of advantage if compared with message passing. For example, it is probably better to

interact by message passing in case the agent code is bigger than the expected data

volume to be exchanged.

In summary, it has to be stated that the MA technology has a lot of appealing

advantages compared to traditional technologies for solving specific requirements

that are emerging in the provision of distributed services in the Internet environment.

But the agent support implies the introduction of middleware components in the

target environment in order to enable mobility, local agent execution and inter-agent

communication. In addition, to be effectively usable in the short term, mobile agents

require mechanisms and tools to interact with existing services and legacy systems

designed according to the traditional C/S programming paradigm.

2.1 Emerging Architectures in State-of-the-art Mobile Agent Platforms

Several research laboratories and industrial manufacturers were involved in the

development of various MA platforms since 1996. Those platforms were built on top

of different operating systems, and based on different programming languages and

technologies. Even new languages have been realized, exclusively designed for the

support of mobile agents (e.g., TeleScript).

However, what is more relevant from the middleware perspective is that common

trends in MA platforms have started to emerge evidently within the last couple of

years. Interpreter-based programming languages, particularly Java, are forming the

basis for most of today’s agent platforms, mainly due to their easy portability over

heterogeneous platforms. In addition, Java is frequently chosen for the available

support, directly at the language level, of fine-grained security policies and transport

facilities via object serialization [Gosling, 97]. Moreover, even if coming from

different experiences and domain-specific design constraints, the implementers of

MA platforms are achieving a general agreement on the architecture of middleware

services that are necessary for supporting mobile agents in open and global

environments and for leveraging the diffusion of MA-based services in the Internet.

Finally, several approaches have recently explored the possibility of integrating

mobile agents and RPC-based middleware like the OMG Common Object Request

Mobile Agent-based Infrastructures for Internet Services

12

Broker Architecture (CORBA), possibly stimulated by the research work

accomplished for the definition of agent interoperability standards [Zhang, 98].

Good examples of state-of-the-art MA systems are Aglets Workbench from IBM

Japan [Lange, 98], Concordia from Mitsubishi [Concordia], Odyssey from General

Magic [Odyssey], Voyager from ObjectSpace [Voyager], Ajanta from the University

of Minnesota [Ajanta], TACOMA from Universities of Cornell and Tromso

[TACOMA], Grasshopper from IKV++ GmbH [Grasshopper], and SOMA from

University of Bologna [SOMA]. An extensive description and comparison of MA

platforms is out of the scope of this thesis and can be found in [Perdikeas, 99].

MA platforms typically realize a distributed processing environment, consisting of

several middleware components, and usually referred to as Distributed Agent

Environment (DAE). DAEs usually support a hierarchy of locality abstractions

(domains, agent systems and places) to model network physical resources, and two

different types of agents (mobile and stationary). Figure 2.2 depicts an abstract view

of these entities.

Agent System B

Place 1 Place 2

Agent System C

Place 1
Communication

Migration

Domain A

Agent System A

Place 1

Domain
Registry

Mobile agent

stationary
agent

Figure 2.2: Structure of a Distributed Agent Environment (DAE)

The actual runtime environment for agents is called agent system: on each network

host, at least one agent system has to run to support the execution of agents. Agent

systems are structured by means of places, i.e., isolated execution contexts that are

able to offer specific additional services. For example, there may exist a

communication place offering sophisticated communication features, or there may be

2. MA Infrastructures for Internet Services

13

a trading place where agents offer/buy information and service access. Agent

systems can be grouped into domains that usually model a physical local area

network: each domain has an associated (domain) registry that maintains information

about all registered agent systems, places and agents.

The domain locality abstraction facilitates the management of the distributed

components (agent systems, places and agents) in the DAE and improves its

scalability. The domain registry maintains information about all components that are

associated to a specific domain. When a new fixed/mobile entity is created, it is

automatically registered within the corresponding domain registry. While agent

systems and their places are generally associated to a single domain for their entire

lifetime, mobile agents are able to move between different agent systems of possibly

different domains. The current location of mobile agents is updated in the

corresponding domain registry after each migration. By contacting the domain

registry, other entities (e.g., agents or human users) are able to locate agents, places,

and agent systems residing in a domain.

Two different types of agents are defined. Mobile agents are able to move from

one physical network location (agent system A in Figure 2.2) to another one (agent

system B). Stationary agents, instead, are bound to the agent system where they have

been installed and where they remain for their whole lifetime to provide a place

persistent service according to the C/S model of interaction.

Several fundamental requirements have been identified due to the experiences

made during research and development activities in the MA area. These requirements

are fulfilled by any state-of-the-art MA platform, and their identification is the first

fundamental step towards the definition of a common and interoperable distributed

middleware to support mobile agents in the Internet scenario. The implementation of

a modern MA system requires middleware components to support:

• Agent execution. An MA platform must provide the basic capability to put

incoming mobile agents into execution, taking into account possible agent-

specific requirements regarding the runtime environment (e.g., binding to

specified local resources). The platform has to retrieve the agent code that may

be either delivered with the migration request or downloaded separately from an

external code base.

Mobile Agent-based Infrastructures for Internet Services

14

• Transport. A special mobility support must be provided by the platform, not only

to facilitate the network transport of agent code and execution state, but also to

permit MA system administrators to command remote execution and migration.

Note that both agent execution and transport cannot be sufficiently handled

without a strict interworking with the security support mentioned in the

following.

• Unique identification. Mobile agents as well as agent systems have to be

uniquely identifiable in the scope of the entire Internet environment. Thus,

special support is required for the generation of unique agent and agent system

identifiers.

• Communication. Agents should be able to communicate with each other as well

as with platform services. Several mechanisms are possible, such as messages,

method invocation, object sharing and tuple-spaces, with different levels of

expressive power and of temporal/spatial coupling between coordinating entities

[Cabri, 00]. Communication through messages may be done point-to-point, by

multicasting, or by broadcasting.

• Security. Basic issues are authentication (i.e., the determination of the identity of

an agent or an agent system), and access control of resources/services depending

on the authenticated identity of the requesting entity. To guarantee privacy and

integrity, crucial information such as code and state of a migrating agent should

exploit public-key cryptographic encryption before transfer over an untrusted

network.

• Management. It is necessary for agent administrators to be able to remotely

monitor and control mobile agents and MA-based provided services. Control

functions include temporary interruption of the execution of an agent task, agent

premature termination, and modification of its task list. The monitoring of an

agent is associated with its localization in the scope of the whole distributed

environment. Regarding an agent system, all hosted agents as well as the

occupied system resources have to be monitored and controlled, possibly to

notice and avoid denial-of-service attacks.

Figure 2.3 shows the structure of a core agent system that includes several services in

order to fulfil the basic functional requirements identified above. Note that some

2. MA Infrastructures for Internet Services

15

services provide remote interfaces in order to be accessible by external actors, such

as other agent systems, agents, or human users.

Agent
Management

Service

Agent
Transport
Service

Enhanced
Services

Agent System

Heterogeneous Network Components

ID
GeneratorInformation

Base

Agent
Communication

Service

Security
Service

Agent
Execution

Figure 2.3: Architecture of basic facilities in mobile agent platforms

Apart from the basic capabilities shown in the figure, additional ones have been

taken into consideration in some of the most recent MA platforms [Grasshopper]

[SOMA]. For instance, an interoperability module is offered to permit the integration

of heterogeneous agents and agent systems with already existing services and legacy

components. Interoperability is obtained via compliance with emerging standards in

the MA area, all based upon the CORBA middleware, and the implementation of the

interoperability facility in SOMA will be described in Section 3.2.2.

Other capabilities have started to be accepted as fundamental and tend to be

integrated in MA platforms. The persistency facility, for example, permits to

temporarily suspend executing agents and to store them on a persistent medium.

Persistency allows agents not to waste system resources while they are waiting for

external events such as the reconnection of one user or terminal where they have to

yield back the results of their operations. In addition, a facility for the mobile

computing support is provided in some MA systems to accommodate the nomadicity

of users, terminals and service components, which can move with no need to suspend

offered/accessed services [Bellavista, 00b]. These additional features can

significantly benefit from the modular organization of MA platforms and should be

Mobile Agent-based Infrastructures for Internet Services

16

handled as add-ons that can be "plugged" into a core MA system to dynamically

extend its basic functionality.

2.2 A Flexible and Modular Middleware Architecture for Internet Services

The adoption of new and more flexible technologies for distributed programming

such as the MA paradigm is not sufficient in itself to face up with the complexity of

providing Internet services capable of answering the increasing requirements of both

users and providers. This complexity calls for the availability of rich and flexible

general-purpose middleware facilities that provides service developers with a large

set of APIs to support the design, implementation and deployment of ubiquitously

accessible services with differentiated QoS levels in the global heterogeneous

environment. These middleware facilities should permit service developers to

abstract from the duties of horizontal infrastructure solutions, and to focus their

attention and competence only on domain-specific issues. The key relevance of

providing middleware facilities for Internet services is widely recognized in the

distributed systems community [Sventek, 00] [Schmidt, 00] [Bellavista, 01b].

2.2.1 Properties

Middleware infrastructures should offer a wide set of facilities to develop and

support distributed services at runtime in a uniform way, independently of the

possible heterogeneity of distributed resources and systems involved. Middleware

facilities should compose an integrated framework where they interwork to give

service developers the possibility to choose, at design time and at execution time, the

most suitable application-specific trade-off between contrasting requirements, such

as completeness and efficiency of the support solution.

We claim that the main aim of a middleware infrastructure is to provide the widest

set of the following properties, to face the new challenges of service provision in

globally interconnected networks.

Dynamicity

New protocols and services should be introduced dynamically, in order to answer

application-, session- or user- specific requirements; for instance, a customized

multicast protocol can be deployed at runtime to support a teleconference service.

2. MA Infrastructures for Internet Services

17

Adaptability

Services should adapt to current network situation and should evolve with user

requirements with no need to suspend during their phase of tuning; for instance, a

specific level of QoS can be renegotiated when congestion makes no longer possible

its provision.

Interoperability

Services should take advantage of any other existing service and resource, from

legacy systems to CORBA-compliant services, from diffused management

components (based on standard protocols as SNMP and CMIP [Stallings, 98] [ISO,

92]) to any other resource that exploits possibly different emerging standards.

Distribution of service control

In general, services are not furnished by one predefined service provider, but by

several providers allocated anywhere in the system. This motivates the need for

distributing replicated service controllers to avoid the bottleneck of centralized

management; for instance, a distributed control could be more efficient for a

geographically distributed teleconference service.

Coordination of services and service providers

Any service can coordinate with other ones to negotiate any required strategy, and

different providers can cooperate to offer coordinated services; for instance, only the

coordination between network operators and multimedia providers can guarantee a

specified bandwidth and latency in a video on demand service.

Security

Services are distributed in a global and untrusted environment, shared among a

multitude of users and providers, in a scenario that imposes strong requirements for

security; for instance, a specific service should be available only to recognized users,

and any service should choose the proper balance between efficiency and required

security level.

In addition, serving the wide market of Internet services calls not only for the

availability of suitable middleware facilities, but also for a large measure of

flexibility in how these facilities are organized in the middleware architecture. This

flexibility is required because of:

Mobile Agent-based Infrastructures for Internet Services

18

• increasing and evolving expectations of users for service personalization and

differentiated levels of QoS;

• increasing and evolving requirements of service providers for the monitoring,

control and management of distributed service components, and for the

accounting of effective resource consumption of their customers;

• the diverse range of the application domains involved;

• the large base of already installed systems and services (legacy components);

• the heterogeneity of the large range of device types and hardware configurations,

especially when considering portable devices;

• the constant and rapid evolutions in device and communication technologies.

On the one hand, middleware facilities should evolve dynamically, possibly without

imposing any suspension in service provision. On the other hand, the complexity and

heterogeneity of service requirements impose to provide middleware solutions

obtained by the composition of separated modules specialized in providing specific

service properties and for specific domains of application. We have applied

thoroughly the guidelines of middleware extensibility and modularity as solution

strategies to the increasing complexity of service provision in the Internet scenario

[Sventek, 00].

A similar trend towards flexibility in terms of dynamic extensibility and

modularity can be also noticed in the users’ approach to the market of e-services.

Users tend to purchase economically priced devices/services with basic

functionalities, and then expand them in increasingly complex solutions. In addition,

the market of connected consumer devices such as cell phones, pagers, personal

organizers, and set-top boxes, is going to become the dominant force in the Internet.

These devices are highly heterogeneous in form, function and features, and can

hardly support the access to services that have been designed and implemented for

the computation capabilities and the network connectivity of standard desktop

computers. This diversity imposes different versions of the same service, tailored to

different device characteristics, or, more effectively, to design Internet services with

different levels of accessibility and functionality. Each service level derives from the

interaction of simpler and reusable components [Bolliger, 98].

2. MA Infrastructures for Internet Services

19

We claim that all the above mentioned elements call for the availability of a

middleware infrastructure built as the composition of small size facility modules that

can be organized and configured in a widely customizable way. For instance,

resource-limited portable devices can generally support minimal configurations of

the middleware facilities. Service developers access APIs with only essential

capabilities of each kind of device and the achievable subset of service properties. As

device manufacturers develop new features in their devices, or service providers

develop new applications, minimal configurations can be expanded with additional

APIs and with the corresponding richer complement of the middleware facilities.

To support customizability and modularity, the design of middleware

architectures can significantly benefit from an organization in terms of

configurations and profiles.

A middleware configuration defines a minimum horizontal platform for a

category of devices or a class of service features, each with similar resource and

system requirements, e.g., processing power, memory budget and available network

bandwidth. A configuration defines the middleware facilities and minimum APIs for

service developers that a device manufacturer or a service provider can expect to be

available on all devices of the same category.

A middleware profile is layered on top of (and thus extends) a configuration. A

profile consists of middleware facilities that addresses the specific demands of a

specific vertical segment of the service market or a specific device family. The main

goal of a profile is to guarantee interoperability within a subset of devices/services by

defining standard middleware facilities for that market. Profiles typically include

facilities and corresponding APIs that are far more domain-specific than the

facilities/APIs provided in a configuration. Whenever possible, the facilities included

in one profile should not belong to any other profile, in order not to increase the

dimension of the middleware with redundant components and functionality.

It is possible for a single device to support several profiles and for a service to

require the support of several profiles. Some of these profiles can be very device-

specific, while others can be more application-specific. Applications are written for

their specific profiles and are required to use only the features defined by those

profiles. The value proposition to the consumer is that any application written for a

particular profile will run on any system that supports that profile. Thus, portability is

Mobile Agent-based Infrastructures for Internet Services

20

achieved between the applications and the devices served by that profile. New

devices can take advantage of a large and familiar application base. Most

importantly, new Internet services (perhaps completely unforeseen by the original

profile designers) can be dynamically downloaded to already installed and possibly

heterogeneous systems, with the constraint to employ only the APIs supported by the

profile.

To clarify the introduced concepts of middleware configurations and profiles, let

us consider some examples of middleware facilities and their organization in a

modular layered architecture. For instance, a naming service, which retrieves a

needed resource on the basis of either its logical location-independent name or the

values of some research attributes, is a typical general-purpose horizontal facility

included in a middleware configuration. On top of this configuration, developers may

require to deploy two different classes of services: e-commerce services and

Computer Supported Collaborative Work (CSCW) services. The first class can

benefit from the availability of middleware APIs including the support for

transactions, negotiation protocols and auction protocols. The latter class requires the

provision of facilities, for example, for event distribution and versioning

management. The two service classes identify different domain-specific middleware

facilities that are not so general-purpose to justify their inclusion in any distribution

of the middleware. These facilities should belong to two different profiles, each one

to be installed only when and where there are requests for provision of an e-

commerce/CSCW service.

2.2.2 The Proposed Middleware Architecture

According to the guidelines presented in the previous section, we have defined a

middleware architecture of facilities that should simplify the duties of service

developers in the design, implementation and deployment of Internet services. The

architecture is organized in layers, as depicted in Figure 2.4. Services at the

application layer are implemented by exploiting the underlying layer of one or more

domain-specific profile facilities. In their turn, profile facilities employ general-

purpose facilities belonging to one configuration.

2. MA Infrastructures for Internet Services

21

NCCE

DPE
Implement.

Configuration
Facilities

Services

CORBA DPE Other DPEDAE

Nam
in

g

Sec
ur

ity

In
ter

op
er

ab
ili

ty

M
ig

ra
tio

n

Com
m

un
ica

tio
n

Id
en

tif
ica

tio
n

e-commerce
Web Info
Retrieval

Video on
Demand

Per
sis

ten
cy

Profile
Facilities

Profile 1 Profile 2 Profile 3

Figure 2.4: Our layered middleware architecture to support Internet services

Profile and configuration facilities are supported by the implementations of the

underlying Distributed Processing Environments (DPE), but should not rely on a

specific one to provide flexible solutions. For instance, a naming facility can be built

on different naming systems provided by different DPE implementations, e.g, DNS-,

CORBA-, and LDAP-compliant naming services [Albitz, 98] [OMG, 98] [Howes,

97]. Our architecture suggests several DPE implementations to coexist. For instance,

the figure depicts the case with a CORBA DPE, a mobile agent-based DPE (i.e., a

Distributed Agent Environment - DAE), and a generic other proprietary DPE. Any

DPE, in its turn, abstracts and hides specific details of the underlying, possibly

heterogeneous, Native Computing and Communication Environments (NCCE).

Each configuration facility answers specific general-purpose horizontal issues,

and can also interact with other facilities, e.g., naming and security facilities

interwork when the system has to authenticate an entity and to recognize its role

[Lupu, 97]. Our architecture proposal identifies a single non-layered middleware

configuration with the following set of facilities:

Mobile Agent-based Infrastructures for Internet Services

22

• the identification facility permits to tag resources, users and services, by

assigning unique names to entities in the system;

• the migration facility is in charge of transporting one entity that should change

its allocation from its sending node to the destination one. The reallocated entity,

if it is active, should transparently restart its execution at the new location;

• the communication facility supports any exchange of information between

service components, and is capable of eventually delivering messages to

reallocated entities;

• the persistency facility permits to transparently save service components,

whether MA-based or not, to stable storage, for the sake of minimizing the

consumption of execution resources and of enabling fault-tolerant solutions;

• the naming facility accommodates and organizes all names of public entities and

makes possible to search and trace them, also in case of their migration;

• the interoperability facility permits interoperation among different resources and

different service components, designed with any programming style, by closely

considering conformance with accepted standards;

• the security facility protects any entity in the system, by providing a wide range

of mechanisms and tools for authentication, authorization, controlled access to

all resources and services, privacy, and integrity.

Although some middleware solutions could neglect migration and the corresponding

facility, we consider the possibility of reallocating entities as a basic feature when

dealing with open and dynamic systems. Apart from the pioneer MbD work in the

specific application domain of network and systems management [Goldszmidt, 95],

the recent research activities that exploit both MA and AN technologies adopt this

perspective [Chen, 98] [Bieszczad, 98].

The proposed architecture organizes all horizontal facilities in a single

configuration. However, depending on the particular implementation of

configuration facilities, it is sometimes preferable to split those facilities in subsets at

different levels of abstraction. For instance, the naming facility can employ the

identification facility to build more complex and user-level naming systems on the

basis of the lower level identifiers. If and only if the facility subsets are disjoint and

hierarchically organized (i.e., facilities in one subset are servers and not clients of

2. MA Infrastructures for Internet Services

23

facilities in another subset), the subsets identify different middleware configurations.

In particular, Chapter 3 will describe how we have mapped our architecture proposal

into an MA-based middleware; in that implementation, configuration facilities are

split on two distinguished subsets that identify two different configurations, the

SOMA basic one and the SOMA complete one.

Different profiles are intended to support service provision in different application

domains. Profile APIs provide features that are either domain-specific or directed to

a certain category of devices. For instance, this doctorate has mainly aimed at

investigating the domains of integrated management and of mobile computing, and

the work has leaded to the design and implementation of two different profiles for

the SOMA middleware, which are presented, respectively, in Chapter 4 and Chapter

5. Even if in our architecture Internet services generally execute on top of a single

profile, it is possible for different profiles to interwork in order to provide the support

for classes of services that need the middleware APIs typical of different application

domains. From another perspective, the idea is that profiles can be also composed in

new profiles when required, to obtain maximum reusability of middleware

components and rapid deployment of new services.

Let us end the chapter by clarifying the introduced concepts of middleware

facilities, configurations and profiles via the notable examples of the widely diffused

Java and CORBA middleware architectures, briefly sketched according to this

perspective in the following two sections. The Java distributed programming

environment is available in different editions, each one consisting of different

configurations and profiles [SUN]. The CORBA distributed infrastructure provides

service developers with a wide set of APIs (CORBA Services and Facilities) to

support both horizontal features and vertical ones [OMG, 98].

2.2.3 The Java Middleware: Editions, Configurations and Profiles

Recognizing the increasing complexity and heterogeneity of the service provision

scenario in the global Internet environment (“one size does not fit all”), SUN has

decided to group its Java middleware technologies into three editions: the Java 2

Enterprise Edition (J2EE), the Java 2 Standard Edition (J2SE), and the Java 2 Micro

Edition (J2ME), as depicted in Figure 2.5.

Mobile Agent-based Infrastructures for Internet Services

24

Figure 2.5: The three different editions of the Java middleware

Each Java edition is aimed at a specific category of devices and includes three layers

of facilities built upon the host operating system:

1. Java Virtual Machine Layer. This layer is an implementation of a Java Virtual

Machine (JVM) that is customized for the characteristics of a particular device or

host operating system, and supports a particular configuration.

2. Configuration Layer. The configuration layer is less visible to users, but is very

important to profile implementers. It defines the minimum set of JVM features

and Java class libraries available on a particular category of devices representing

a particular horizontal market segment. In other words, a configuration defines

the lowest common denominator of the Java platform features and libraries that

service developers can assume to be available on all devices.

3. Profile Layer. The profile layer is the most visible layer to users and application

providers. It defines the minimum set of APIs available on a particular family of

systems representing a particular vertical market segment. Profiles are

implemented upon a particular configuration. Applications are written for a

particular profile and are thus portable to any device that supports that profile. A

system can support multiple profiles.

2. MA Infrastructures for Internet Services

25

The most interesting edition of the Java middleware in terms of flexibility and

customizability is certainly the recently introduced J2ME, which extends the scope

of the Java technology to meet the demand for information appliances in the

consumer and embedded markets. The J2ME architecture currently has two

configurations: the Connected Device Configuration (CDC) and the Connected

Limited Device Configuration (CLDC). They are the result of the standardization

process of configuration specifications that has involved a large community of device

manufacturers, network operators and service developers [CLDC].

The CDC runs on top of the classic JVM, a full-featured virtual machine residing

on a desktop system. This configuration is intended for devices with at least a few

megabytes of available memory.

For wireless devices and other systems with severely constrained memory

environments, J2ME uses the CLDC [CLDC]. The CLDC configuration executes on

top of a specific virtual machine (the SUN Kilobyte Virtual Machine - KVM)

suitable for devices with 16-bit microprocessors/controllers clocked as low as 25

MHz, and with as little as 160 KB of total memory available. The CLDC provides a

set of general-purpose middleware facilities appropriate for supporting an industry-

defined profile for wireless devices, called Mobile Information Device Profile

(MIDP), briefly presented in the following.

The J2ME middleware provides also the concept of profiles to make it possible to

define Java platforms for specific vertical markets. Profiles can serve two distinct

portability requirements. On the one hand, a profile provides a complete toolkit for

implementing applications for a particular kind of device, such as pagers, set-top

boxes, cell phones, washing machines, or interactive electronic toys. On the other

hand, a profile may also be created to support a significant, coherent group of

applications that might be hosted on several categories of devices. For example,

while the differences between set-top boxes, pagers, cell phones, and washing

machines are significant enough to justify creating a separate profile for each, it

might be useful for certain kinds of personal information management or home

banking applications to be portable to each of these devices. This could be

accomplished by creating a separate profile for these kinds of applications and

Mobile Agent-based Infrastructures for Internet Services

26

ensuring that this new profile can be easily and effectively supported on each of the

target devices along with its normal more device-specific profile.

At the moment, the Java community has terminated the process of specification

and standardization of one profile called MIDP in the J2ME [MIDP]. The MIDP

APIs are tailored to target devices characterized by severe limitations in total

memory, power (often battery-powered), connectivity (often with a wireless

intermittent connection with 9600-bps bandwidth), and user interfaces. MIDP

extends the facilities provided by the CLDC and the KVM with APIs mainly for user

interfaces, persistent storage and networking. For instance, MIDP includes class

libraries to support a subset of the HTTP protocol; these libraries work on top of the

GenericConnection framework of the CLDC, which addresses the

communication issues at the lower layers of the OSI protocol stack [MIDP].

Figure 2.6 shows the J2ME architecture proposal for the provision of Internet

services to wireless devices. Service developers can deploy applications either based

on the MIDP or dependent of the device operating system. MIDP-based applications

can exploit the MIDP APIs but also have visibility of the facilities directly provided

by both the KVM and the CLDC. These applications are portable (and dynamically

downloadable) on any device that supports the MIDP. The interworking between

MIDP-based portable applications and system-dependent ones in the context of a

single device can be achieved via specific mechanisms for the JVM integration with

native code, such as the Java Native Interface (JNI) described in Section 4.2.1.

Native Operating System

KVM

CLDC

MIDP

MIDP-based Services
System-

dependent
Services

Figure 2.6: The CLDC-based architecture of the J2ME middleware

2. MA Infrastructures for Internet Services

27

2.2.4 The CORBA Middleware: Broker, Services and Facilities

Among the middleware supports for distributed objects, CORBA is certainly the

most widespread, complex and mature infrastructure, also because the major

competing support, Microsoft Distributed Common Object Model (DCOM), has

started later and with different aims in terms of openness and generality [OMG, 98]

[Sessions, 97] [Chung, 98].

CORBA is a middleware that permits a very rich variety of interworking

modalities between its components. The architecture is based on the concept of a

common software bus allowing for distributed object interoperability and providing a

wide set of bus-related facilities to interacting objects. The main aim is to release

application developers from all the duties stemming from the possible heterogeneity

and distribution of C/S components. CORBA client objects have no visibility of the

location of the CORBA server objects they collaborate with, and their interaction is

completely independent of both their implementation language and the platform

where they are running. The most notable consideration in this context is that

CORBA, apart from the variety of available policies for communication and

coordination between components, has been designed from the beginning as a

complex and layered architecture of facilities and services to support the

implementation of distributed C/S applications.

Differently from the Java middleware, CORBA does not assume a homogeneous

programming language environment based on a common virtual machine for service

execution. The independence of both the implementation language and the execution

platform is guaranteed in CORBA by the specification of a standard language to

define object interfaces, the Interface Definition Language (IDL). CORBA server

objects that publish their IDL interfaces can be invoked by any CORBA client object

that has an a priori knowledge of server interfaces, by exploiting static mechanisms

of interaction based on pre-compiled proxies both on the client side (stubs) and on

the server one (skeletons). It is also possible to have more flexible and sophisticated

modalities of interaction between CORBA objects, based on the availability of

dynamic invocation mechanisms that permit to defer the knowledge of the IDL

interfaces of the involved objects. A CORBA client can dynamically build an

invocation request from scratch by exploiting the Dynamic Invocation Interface

(DII). A CORBA server can analogously be unaware at compile-time of its skeleton

Mobile Agent-based Infrastructures for Internet Services

28

by exploiting the Dynamic Skeleton Interface (DSI) functionality. Any possible

combination of static/dynamic clients invoking static/dynamic servers is supported.

In any case, object interactions in CORBA are mediated by run-time facilities for

object activation on the server side (Basic/Portable Object Adapter - BOA/POA) and

for dynamic retrieval of information on currently available CORBA interfaces

(Interface Repository - IntR) and CORBA object implementations (Implementation

Repository - ImpR).

All the above mechanisms are components of the CORBA core facilities, i.e., the

software bus that realizes the transparency of allocation and implementation between

CORBA objects and that is called Object Request Broker (ORB). Upon the ORB

core, the OMG specifies the possibility to implement a layered architecture of

additional modules to help in the design and deployment of distributed applications.

These facilities are organized into a structured middleware architecture called Object

Management Architecture (OMA), and classified as CORBA services,

horizontal/vertical facilities and application objects.

Non-standardized
application-specific interfaces

Frameworks - Vertical
domain-specific interfaces

Vertical Market Facilities

General service interfaces

CORBA services

Horizontal Common
facility interfaces

Horizontal FacilitiesApplication Objects

Object Request Broker

Common Facilities

Figure 2.7: OMG Object Management Architecture

The OMA includes the ORB (also referred to as CORBA object bus), which supports

object location transparency, server object activation and inter-object

communication, and four categories of object interfaces (as depicted in Figure 2.7):

2. MA Infrastructures for Internet Services

29

• Object Services are a collection of domain-independent low-level services that

extend the ORB functionality with basic functions that are likely to be used in

any program based on distributed objects (such as lifecycle management,

naming, persistence, and transactions). These services provide the generic

environment where single objects can perform their tasks. Together with the

ORB, they are the modular components of what we have previously identified as

a middleware configuration;

• (Horizontal) Common Facilities are interfaces for horizontal facilities that are

oriented to final users and applicable to most application domains (such as user

interfaces, information management, system management, and task

management). When and where needed, they extend the basic configuration of

the ORB and object services, in order to provide more complex middleware

configurations with additional properties and APIs for service developers;

• (Vertical) Domain Interfaces are APIs tailored to specific domains and areas

(such as electronic commerce, telecommunications, and tele-medicine), which

may be based on object services and common facilities. According to the

previously introduced terminology, they compose the profile layer of middleware

facilities;

• Application Interfaces are non-standardized application-specific interfaces, which

also allow wrapping existing interfaces into the CORBA framework (such as

legacy switch control and management interfaces). Since the OMG is interested

in the specification of middleware components and not of final applications,

these interfaces are not subject to standardization.

Mobile Agent-based Infrastructures for Internet Services

30

31

3 The SOMA Middleware Configurations

The architecture presented in Chapter 2 has guided the design and the

implementation of the SOMA integrated middleware, created for the provision of

MA-based services in the Internet global, open and untrusted environment. SOMA is

a Java-based MA platform that provides a layered infrastructure of horizontal and

vertical facilities, organized into a modular framework of configurations and profiles.

These facilities help service developers in the design, implementation and

deployment of flexible Internet services with differentiated levels of QoS in

scenarios where users, terminals and networked resources can be mobile, as

extensively described in Chapter 4 and Chapter 5.

To achieve scalability, SOMA offers a hierarchy of locality abstractions to

describe any kind of interconnected system, from simple intranet LANs to the

Internet (see Figure 3.1).

Place2

Default
Place

Place3

Place1

Domain A

CORBA
Legacy System

CORBA
Legacy System

Place1

Default
Place

Place2

Domain B

Mobile
Place

Place2

Default
Place

Place1Domain C

Mobile
Place

CORBA

Figure 3.1: SOMA locality abstractions

Any node hosts at least one place for agent execution; several places are grouped

into domain abstractions that correspond to network localities. In each domain, a

default place is in charge of inter-domain routing functionality and integration with

legacy components via CORBA (see Section 3.2.2). The mobile place is suitable for

Mobile Agent-based Infrastructures for Internet Services

32

supporting mobile devices: it enhances the place locality abstraction with specific

functions for automatic reconfiguration when changing domain, and will be

presented in more details in Section 3.2.1. Locality abstractions permit also to

introduce a scope when considering all other system policies, and help in granting a

protected framework for the belonging entities.

SOMA provides weak mobility, i.e., agents migrate together with their code and

state, and at the receiving host their execution starts from the method indicated as a

parameter of the migration operation. This is achieved without any modification to

the standard Java virtual machine, in order to enlarge SOMA usability in the open

Internet environment.

The SOMA framework provides a layer of core facilities, i.e., the SOMA basic

configuration, which include agent services for migration, identification,

communication and persistency. On top of the basic configuration, it is possible to

have another set of general-purpose facilities that extend the basic set with advanced

mechanisms and services for naming, interoperability and security. These facilities

are the components of the SOMA complete configuration [Bellavista, 00c].

Figure 3.2 gives a general overview of the SOMA architecture, with the different

configurations and profiles already implemented. SOMA-based Internet services can

be built directly upon the basic/complete configuration, or can exploit all the

facilities provided by one or both the SOMA profiles. For instance, a video-on-

demand service that distributes multimedia flows to a dynamic set of receivers with

heterogeneous characteristics requires middleware facilities for the on-line

monitoring and management of the QoS offered and for scaling dynamically the

distributed flows depending on current network and systems conditions.

Consequently, the service is usually implemented on top of the integrated

management profile. When the service is to be provided also to portable mobile

devices with strict limitations on computational power, display capacities and

network connectivity, it additionally requires middleware facilities for mobile

terminal profiling and connectivity maintenance that are provided by the SOMA

profile for mobile computing. In this case, as depicted for the Mobile Video-on-

demand service in the figure, the service exploits the middleware facilities of both

SOMA profiles.

3. SOMA Middleware Configurations

33

The two configurations available in SOMA are the object of the remainder of this

chapter, while Chapter 4 and Chapter 5 will present, respectively, the SOMA profile

for integrated management and the SOMA profile for mobile computing, both built

on top of the SOMA complete configuration.

Other DPE CORBA DPE

SOMA Basic Conf.

Com
m

un
ica

tio
n

Id
en

tif
ica

tio
n

M
ig

ra
tio

n

SOMA Complete Conf.

In
ter

op
er

ab
ili

ty

Sec
ur

ity

Nam
in

g

NCCE
Layer

Profile
Layer

Configuration
Layer

Per
sis

ten
cy

SOMA Profile1: Integrated Management SOMA Profile2: Mobile Computing

QoS
M

on
ito

rin
g

QoS
M

an
ag

em
en

t

Use
r V

irt
ua

l

 E
nv

iro
nm

en
t

Virt
ua

l
Res

ou
rc

e

 M

an
ag

er

M
ob

ile
Virt

ua
l

 T

er
m

in
al

Accounting
Video on
Demand

Mobile Web
Retrieval

Mobile
Video on Demand

Service
Layer

Figure 3.2: The architecture of the SOMA middleware

The two implemented SOMA profiles have not the objective of covering all needs of

middleware support for any possible application domain, but simply try to provide a

wide set of facilities for the integrated management and the mobile computing areas,

which currently rise a great interest in the state-of-the-art research of both academies

and industries. Other SOMA profiles are under investigation. For instance, a profile

for autonomous information retrieval for virtual museums will include middleware

facilities for heterogeneous database connectivity, XML-based interoperable data

representations, and complex image-based search patterns. In addition, a SOMA

profile for e-commerce will provide an e-marketplace support with facilities for

auctions, transactions, and connectivity with enterprise resource planning systems.

Mobile Agent-based Infrastructures for Internet Services

34

3.1 Basic Configuration

The core part of the SOMA project is its architecture, that has been designed along

the guidelines of Chapter 2, and offers a distributed infrastructure with a set of

facilities for the design and the development of complex network-centric

applications. This framework of facilities implement the SOMA Distributed Agent

Environment (DAE), which, due to the openness property of the SOMA

infrastructure, can be extended at runtime by dynamically adding new services, even

built on the already provided functionality.

The SOMA basic configuration groups the basic and primary mechanisms. It

includes:

1. Agent Migration Facility. It gives application designers the possibility to simply

reallocate network resources and service components at run-time. Entities

capable of reallocation are encapsulated by agents that can move in the network

by carrying both code and current state with themselves. The migration facility

allows developers to choose between SOMA native migration methods and

standard transport specifications, such as CORBA Internet Inter-ORB Protocol

(IIOP) [OMG, 98] and MASIF [Milojicic, 98], thus permitting a different trade-

off between contrasting requirements, such as minimization of transport costs and

maximization of interoperability. Interoperable solutions for agent transport are

more extensively described in Section 3.2.2.

2. Agent Identification Facility. It permits to assign tags dynamically to any entity

in the system. These tags are Globally Unique Identifiers (GUIDs), assigned in a

completely decentralized way (see also Section 3.2.1 and [Bellavista, 00b]), and

are independent of possible reallocations of entities at runtime. GUIDs are the

basis for the realization of the multiple naming systems provided in the naming

facility included in the SOMA complete configuration.

3. Agent Communication Facility. It provides mechanisms and tools to simplify

coordination and communication between entities. Agents in the same place

interact by means of shared objects, such as blackboards and tuple spaces [Cabri,

00]. Any place hosts a Local Resource Manager module that regulates agent

access to the node resources. This module controls the authorization of agents

3. SOMA Middleware Configurations

35

and enforces the place security policy. Whenever one agent needs to share one

resource with another agent that resides in a remote place, it is forced to migrate

to that place. Outside the scope of the place, agents can perform coordinated

tasks by exchanging messages delivered to agents even in case of migration.

4. Agent Persistency Facility. It gives the possibility to suspend temporarily

executing agents and to store them on a persistent medium. The facility allows

agents not to waste system resources while they are waiting for external events

such as the reconnection of one user or terminal to yield back the results of

autonomously performed operations (see the SOMA profile for mobile

computing in Chapter 5). In addition, it can be also exploited in providing fault-

tolerant solutions by organizing and disseminating stored copies of agents [Assis-

Silva, 98].

Further details about the facilities provided in the SOMA basic configuration are

presented elsewhere [Bellavista, 99a] [Bellavista, 00c]. The short sketch of

description reported here simply aims at permitting to understand the more detailed

presentation of the advanced facilities of the complete configuration (and, in

particular, the naming and interoperability ones), and of the domain-specific profiles,

which are the main object of the work done in this doctorate.

3.2 Complete Configuration

The SOMA complete configuration presented in the following can make use, in its

implementation, of the lower facilities of the basic configuration. For instance, the

naming facility extensively exploits the underlying identification facility. As already

said, the complete configuration includes three advanced facilities: the naming

facility, the interoperability facility and the security facility, presented in the

following.

3.2.1 The Agent Naming Facility

A mobility-enabled naming service, i.e. capable of tracing entities that move in the

global Internet environment, requires basic mechanisms to assign GUIDs. MA

platforms usually enforce identifier uniqueness by assigning GUIDs to their entities.

Mobile Agent-based Infrastructures for Internet Services

36

The simple solution with only one identification authority is usually not viable

because of reliability and overload problems due to centralization. Frequently

adopted solutions partition the global environment in non-overlapping regions, and

any identification authority is in charge of serving its zone. GUIDs are usually very

low-level identifiers; naming services can associate entities with several names that

are GUID aliases, suitable for service developers and final users.

Naming services not only translate a high-level name into the corresponding GUID,

but also maintain information about current entity location. As a consequence,

mobility stresses to the limit the naming service because it should intervene at any

migration and at any mobile entity search.

Different naming services can support mobility, with different properties in terms

of flexibility, efficiency and scalability, and application developers should choose the

most suitable service depending on their specific domain (see also Chapter 5).

Mobility-enabled naming facilities can be classified in two main categories,

discovery and directory services. Discovery services usually employ simple

protocols to obtain information about entity location (address and simple

configuration data) with a minimal knowledge of hosting environments [Perkins,99].

Directory services usually organize names and properties for registered entities in a

very flexible way and provide operations to browse all registered information with

complex search patterns [Howes, 97].

The discovery service generally provides a solution in a local scope without

requiring specific knowledge to its clients: the service is typically requested with a

broadcast in the local network. Discovery is usually implemented by a set of

independent distributed servers, each one serving the information for its locality.

Because of restricted visibility scope and limited query flexibility, many discovery

services are lightweight and exhibit excellent performance.

The directory service permits entities to register in flexible hierarchies and can

answer advanced queries with pattern matching on complex attributes. The directory

service aims to give global visibility to all authorized clients. It is usually

implemented in a scalable way by distributed servers that manage (partially)

replicated copies of the name space and that coordinate to answer global requests,

even by maintaining cached copies of frequently asked information.

3. SOMA Middleware Configurations

37

Discovery and directory services differ in visibility scope (respectively, local vs.

global), flexibility (rigidly predefined and simple structure vs. flexible content and

organization), and performance (limited low-level efficient protocols vs. complete

high-level searching/registering operations). All these properties can be useful in

mobile computing (see the corresponding SOMA profile in Chapter 5), and suggest

the provision of a naming service that integrates the different solutions. Directory

services should register entities globally available and occasionally mobile, because

of the overhead of registration/deregistration and update propagation. Discovery

solutions, instead, provide access to entities that move often and are used mainly by

components within the same locality. Both naming services require security solutions

to permit the access only to authorized users.

SOMA naming is based on care-of mechanisms to locate mobile agents/places, as

depicted in Figure 3.3. Any mobile agent to be traced should have its care-of (agent

home) at the place of its first creation. Similarly, any mobile place has its care-of

(place home) at the default place of the instantiation domain. The SOMA middleware

transparently updates homes of agents at their migration, and homes of places at their

connection/disconnection. SOMA mobile agents/places have GUIDs independent of

their current position: GUIDs consist of the identifier of the corresponding home

associated with a number unique in the home locality. For instance, a mobile place

owns a GUID of the form (DomainID, progNumber) where DomainID is the address

of its place home [Bellavista, 00c].

Place1

Place
HomeDomain A

Mobile
Place 1

Creation of a Mobile Place Agents/Messages delivered to a Mobile Place

Place1

Place
HomeDomain A

Mobile
Place 1

Place1

Default
Place

Domain B

Mobile
Place 1

Place2

Agent A

Agent B
Agent A owns the update position of the mobile place and immediately reaches it.

Agent B and Message try to reach the mobile place that has already moved; they are tunneled via the place home.

12

1

3

Message

Figure 3.3: Agent and message delivery to a mobile place

Mobile Agent-based Infrastructures for Internet Services

38

In addition to basic naming mechanisms, the SOMA middleware provides a naming

service that integrates a discovery protocol and a directory service based on the

Lightweight Directory Access Protocol (LDAP) [Howes, 97].

The discovery service is the default solution for resource naming within one

SOMA domain. We adopt a broadcast protocol to register/deregister resources at the

discovery server located at the default place. The choice of the discovery service is

suggested by the expected low frequency of resource migration and locality resource

access. Up to now, SOMA uses a proprietary discovery protocol, but we are

implementing a solution compliant with the Service Location Protocol (SLP)

[Perkins, 99].

All entities in need of global visibility register to the LDAP-based SOMA

directory service. Any LDAP directory server keeps its entity names and coordinates

with other servers to maintain global consistency and to resolve external names. For

instance, profiles of users at our department (LIA User Profiles in Figure 3.4) are

registered at the directory service to provide mobile users with corresponding

preferences from any location. Resources after migration can override the default

discovery solution and register to the SOMA directory for wider accessibility.

Figure 3.4: The LDAP-based SOMA directory service

3. SOMA Middleware Configurations

39

3.2.2 The Agent Interoperability Facility

The large number of recently implemented MA platforms shows the interest of the

distributed systems area in the MA programming paradigm. This variety, however,

risks to endanger interoperability and to limit the growth of an MA applications

industry. The only way to promote both interoperability and system diversity is to

standardize some aspects of the MA technology.

In the area of the traditional C/S approach to OO distributed computing, the

Common Object Request Broker Architecture (CORBA) [OMG, 98] is the

universally adopted standard for object management, apart from the notable

exception of Microsoft which has its own Distributed Component Object Model

(DCOM) [DCOM]. CORBA puts together objects that can communicate to each

other across boundaries such as network, different operating systems, and different

programming languages. CORBA provides network transparency, openness and

interoperability. In addition to that core functionality, it specifies an extensive set of

object services, common facilities and application interfaces.

The MA model embodies a new programming paradigm, distinguished from the

C/S one, and, consequently, different from the CORBA programming model under

many points of view (e.g. location awareness vs. network transparency). However,

we claim that CORBA can play a fundamental role in achieving interoperability also

for the MA technology, working as a standard bridge among proprietary

implementations.

The opportunity of an integration of CORBA and MA is also demonstrated by the

standardization efforts that have emerged to achieve interoperability between

heterogeneous mobile agents. Even if coming from different research communities

and different scientific backgrounds, both the Object Management Group Mobile

Agent System Interoperability Facility (OMG MASIF) and the Foundation for

Intelligent Physical Agents (FIPA) adopt CORBA as the standard bridge to

overcome heterogeneity [Milojicic, 98] [FIPA].

The OMG has worked on the specification of MASIF, an agent interoperability

standard, built within the CORBA framework, to support agent mobility and

management. The goal of MASIF is to achieve interoperability among existing MA

platforms from different manufacturers, without forcing any radical modification, but

simply by extending implementation with specific “add-on” modules.

Mobile Agent-based Infrastructures for Internet Services

40

MASIF does not suggest standardization of local agent operations such as agent

interpretation, serialization, execution and deserialization, because these actions are

application specific, and there is no reason to limit MA system implementations.

MASIF proposes the standardization for agent and agent system names, for agent

system types and for location syntax. It specifies two interfaces: the

MAFAgentSystem interface provides operations for the management and transfer of

agents, whereas the MAFFinder interface supports the localization of agents and MA

systems in the scope of an administered locality. A MAFAgentSystem object should

interact internally with MA system-specific services, and provides the associated

CORBA interface to external users.

FIPA represents a different approach to interoperability. FIPA specifies the

interfaces of the different components for agent interaction with other entities such as

humans, other agents, non-agent software and the physical world. Being mainly

proposed from the intelligent agent area, FIPA puts the emphasis on the

standardization of agent communication, and a dedicated Agent Communication

Language (ACL) is proposed for all communication between FIPA-compliant agents.

FIPA defines the concept of an agent platform offering three basic services. These

services are namely the Agent Management System (AMS), the Directory Facilitator

(DF) and the Agent Communication Channel (ACC). The AMS provides

management functions that are similar to the MAFAgentSystem ones, except for the

notable difference that the FIPA AMS does not address the possibility of migrating

agents between heterogeneous MA platforms. FIPA agents may offer their services

to other agents and make their services searchable in yellow pages by the DF.

Registration on a DF is discretionary while registering on the AMS is mandatory on

any agent platform. Finally, the ACC enables communication between agents on the

same platform and between possibly heterogeneous platforms, by offering a message

forwarding service. Reachability between platforms is obtained by making the

forward service available over the CORBA ORB whose integration is considered

mandatory for any FIPA-compliant MA platform. Agent messages are transferred on

top of the CORBA IIOP.

While the AMS and DF services provide functionality similar to the MASIF

MAFAgentSystem and MAFFinder, a specific characteristic of the FIPA

standardization proposal is the agent communication via the definition of an

3. SOMA Middleware Configurations

41

interoperable ACL. In addition, FIPA agents acquire a predictable behavior being

described by common semantics defined in the interpretation of a common language.

This is achieved by the concept of communication acts [FIPA].

The SOMA interoperability facility takes into account both MASIF and FIPA

specifications, as described in the following. Before giving details about the

implementation of interoperability in SOMA, let us note that CORBA compliance

imposes some additional costs, especially in terms of run-time performance, but it is

worth the trouble because it ensures openness and stability to applications, saving the

investments in MA-based programming. Our scenario puts together two models: we

use proprietary and efficient solutions for internal operations among SOMA entities,

but provide standard CORBA interfaces, both for exploiting the available CORBA

services and for making SOMA itself a CORBA application object.

1

2

3SOMA Agents as CORBA Clients

SOMA Agents as CORBA Servers

MASIF Interoperability

2
3

1

MA DPE CORBA DPE

CORBA Bridge

MASIF

MASIF
Bridge

CORBA
Server

CORBA
Client

SOMA DPE

4 FIPA Agent Comm. Channel

FIPA
ACC

FIPA
Bridge

SOMA-based Applications

Network, Systems &
Service Management

Multimedia
Distribution

Mobile
Computing

4

Figure 3.5: The four modules of the SOMA interoperability facility

SOMA faces four different challenges to provide interoperability (see Figure 3.5):

1. an agent may call external CORBA objects (SOMA agents as CORBA clients);

2. an agent may publish its interface to one ORB (SOMA applications as CORBA

servers);

Mobile Agent-based Infrastructures for Internet Services

42

3. any external entity may access SOMA through the standard MASIF interface

(interoperability between SOMA and other CORBA components);

4. an agent may send/receive messages to/from any agent platform via the FIPA

ACC forward service (communication interoperability between SOMA agents

and FIPA-compliant agents).

The first two features are provided by the CORBA C/S extension of SOMA: agents

can play the role of CORBA clients and can also register themselves as CORBA

servers to offer access points to an application outside the SOMA system. Even if

there is no conceptual problem in a mobile agent registering as a CORBA server, we

currently grant this possibility only to SOMA agents that do not migrate during their

lifetime (stationary agents) to avoid the overhead of registering/unregistering with

the CORBA Naming Service at every migration.

The third feature is a more complex issue and SOMA addresses it via MASIF

compliance. Any external system can control remote agents of a MASIF-compliant

MA system via the MAFAgentSystem interface: MASIF defines methods for

suspending/resuming/terminating agents and for moving agents from one MA

platform to another one. The interoperation is significant only when the two

interworking systems present a compatibility base, that is the same implementation

language, or compatible externalization mechanisms. Agent tracking functions

permit the tracing of agents registered with MAFFinder, introduced to provide an

MA name service, because the CORBA Naming Service is not suitable for entities

that are intrinsically and frequently mobile.

About the fourth interoperability point, at the moment SOMA agents can

communicate via proprietary mechanisms and protocols, but can also decide to

exploit the CORBA middleware to coordinate via shared CORBA objects. Agent

communication is outside the scope of MASIF: for this reason, we have decided and

are now completing the integration of an additional module to provide full

compliance with FIPA. SOMA mainly focuses on the implementation of the ACC

because it provides interoperability for communication between heterogeneous

agents that is not covered by the MASIF compliance. The SOMA ACC is available

as a place facility that agents exploit to convert messages into the corresponding

ACL format and vice versa, with an approach similar to the one of Jade [Jade]. The

3. SOMA Middleware Configurations

43

implementation of the AMS and DF facilities are mapped into the analogous

functionality for agent management and registration already available in the SOMA

MAFAgentSystem and MAFFinder modules.

The SOMA programming framework achieves interoperability by extending its

basic functions in a modular way, as depicted in Figure 3.6. In particular, places in

charge of interoperating are extended with the CORBABridge add-on that is

composed by three modules: the first one (CORBA C/S) simplifies the design of

SOMA entities as CORBA clients/servers; the second one (MASIFBridge)

implements the MASIF functionality; the third one (FIPABridge) implements the

FIPA ACC.

Since MASIF and FIPA compliance increases the code dimension of SOMA

places, our default configuration does not extend all places with the

MASIFBridge/FIPABridge modules, but only the default place of each domain. The

CORBA C/S module instead is lightweight, and many places in the same domain may

use it to access the CORBA bus, either for calling external services or for registering

as servers.

Any SOMA agent, resident at a CORBA C/S extended place, is able to act as a

CORBA client/server through static (IDL stub/skeleton) and dynamic (Dynamic

Invocation Interface/Dynamic Skeleton Interface) invocations/registrations. Our

implementation is based on the VisiBroker 4 ORB [Visibroker]. However, it is

portable, with no modification at all, on any other ORB implementation compliant to

the CORBA 2.2 specification. In fact, we have only used the portable functions

provided by the Internet Inter-ORB Protocol and the Portable Object Adapter [OMG,

99a], introduced to overcome possible incompatibility between different ORB

products.

The implementation work to achieve SOMA interoperability via full compliance

with CORBA has been simplified by the fact that SOMA is completely written in

Java. In our experience, CORBA and Java have demonstrated to integrate with one

another in a synergic way. The former provides network transparency, while the

latter achieves implementation transparency via the Java Virtual Machine common

software layer. In addition, Java is deeply integrated with the Web, thus offering

universal accessibility and a potentially wide user base to CORBA. For instance, a

dynamic download of one applet with a CORBA client can produce the invocation of

Mobile Agent-based Infrastructures for Internet Services

44

a CORBA server object from a CORBA-enhanced Web browser, such as Netscape

Communicator 4.x.

CORBA ORB

CORBA C/S

MASIF
Bridge

Place 1

Place 2

Place 3

Default
Place

CORBA C/S CORBA C/S

CORBA C/S
MASIF
Bridge

Place 1

Place 3

Place 4Default
Place

CORBA C/SCORBA C/S

Place 2

DomainA

DomainB

FIPA
Bridge

FIPA
Bridge

FIPA
Bridge

MASIF
Bridge

 Figure 3.6: The modular implementation of the SOMA interoperability facility

To give an idea of the interoperability costs in SOMA, Figure 3.7 compares the

average cost of the native migration mechanism with the one imposed by the MASIF

interface. A more exhaustive discussion of the different SOMA interoperability costs

(e.g., including interoperable registration and communication) can be found in

[Bellavista, 99].

Here, we have carried out the experimental results in a SOMA system composed

by several domains, and we have measured the cost for migration between default

places of different domains. The measurements have been taken on an Ethernet LAN

of 300-MHz PentiumII PCs with Windows NT. As we expected, MASIF agent

migration is more expensive than SOMA proprietary one, as reported in the Total

columns. The Total columns include the initial setup overhead to establish a

connection between previously unconnected places. For this reason, any successive

migration between the same places achieves better performance, as indicated in the

table. In addition, in the case of MASIF migration, the Total column includes also

the cost to obtain needed references to the MAFAgentSystem and MAFFinder from

CORBA and MASIF naming services (as reported in the phase 1 column).

The results also show that MASIF performance is only about 10% worse than the

SOMA one in the case of successive migrations for 50kB-sized agents. This is

3. SOMA Middleware Configurations

45

mainly due to the fact that both the VisiBroker ORB and the SOMA framework use

the same Java de/serialization mechanisms, and the de/serialization overhead

represents the most relevant factor with the increasing of agent size. The

performance obtained for MASIF migration, however, is extremely acceptable and

demonstrates the viability of the MASIF approach to interoperability.

MASIF
migration (ms)

SOMA proprietary
migration (ms)

Agent
size
(kB) Phase 1 Total Succ.

migrations
Total Succ.

migrations

5 660 2320 1714 1648 1393
50 645 4854 4261 4204 3919

Figure 3.7: Costs of SOMA interoperable/native agent migration

3.2.3 The Agent Security Facility

The service provision in untrusted Internet environments imposes a thorough security

framework, which should be also flexible enough to accommodate the range of

service operators with different levels of authorized operations, from service

providers to network administrators and to simple users. This motivates the SOMA

model of trust, that defines who or what in the system is trusted, in what way, and to

what extent [Oppliger, 98].

While the naming and interoperability facilities have been designed and

implemented within my doctorate work, the security facility has been the focus of the

activity of another doctorate candidate in my research group. For this reason and to

permit the understanding of some parts in the following, I report here only a brief

description of the security facility. A more extensive discussion about SOMA

security solutions can be found in [Corradi, 99] [Montanari, 01].

SOMA has been developed for an untrusted Internet environment, where the

communication network is considered insecure and any node may host the execution

of possibly malicious entities. In addition, a SOMA agent is an active entity that acts

on behalf of a principal, i.e. the person/organization that has launched the agent

execution and that is responsible for its operations. SOMA agents are authenticated

by means of standard certificates, provided and administered through the integration

with a public key infrastructure [Entrust]; this integration permits agent

authentication not only in the case of single-hop migration, but also when

Mobile Agent-based Infrastructures for Internet Services

46

considering multiple-hop mobility. The actions that agents are authorized to perform

depend on roles associated to agent principals. SOMA permits the dynamic

definition and control of a range of roles, from administrators to users [Lupu, 97].

The SOMA security mechanisms support the model of trust and enforce security

policies: authentication permits to identify the role associated with SOMA agents;

authorization recognizes whether an operation is permitted on a resource; integrity

guarantees that agents and data have not been maliciously modified during

reallocation; secrecy permits to protect entities from any exposure to malicious

intrusions.

In SOMA, security is provided with application-level tools, taking advantage of

available standard solutions and products (e.g., the IAIK cryptographic functionality

and the Entrust Public Key Infrastructure [IAIK] [Entrust] [Gong, 97]). If the debate

about at which level a system has to offer security is still open, the discussion

concentrates on the issues of transparency, flexibility and performance [Chen, 98]

[Oppliger, 98]. Independently of the abstraction level adopted, it is important to

consider security as a property to be integrated at any system layer. Only this

pervasive approach followed by SOMA design can achieve the full level of security,

higher than the minimal one obtained by systems that add a posteriori security

strategies.

The security infrastructure for mobile agents extends the traditional sandbox

solution used to protect network nodes from the execution of untrusted code, because

the sandbox approach limits too much the MA expressive power [Gong, 97]. With

regard to implementation, SOMA agents use X.509 certificates for authentication,

which ascertain the role of the agent principal before authorizing any interaction with

resources. In addition, we have integrated SOMA with a commercial Public Key

Infrastructure (PKI), provided by Entrust [Entrust], to automatically distribute keys,

to manage certificates and to perform all related administrative tasks. The integrity

check can employ either MD5 or SHA1. Secrecy is granted when needed by

encrypting/decrypting communications with DES and SSL [IAIK].

CORBA and MASIF standards recognize the security requirement by imposing

tools and mechanisms to enforce security when interacting with external

components. In accord with this guideline, SOMA addresses the security threats

introduced by interoperating with CORBA. On the one hand, sending/receiving

3. SOMA Middleware Configurations

47

CORBA requests/replies requires channel encryption to ensure privacy on exchanged

messages. On the other hand, the possibility for SOMA agents to act as CORBA

servers and for SOMA localities to host agents from other MA platforms calls for

mechanisms for client/agent authentication, auditing and access controlling. SOMA

provides security solutions compliant both with CORBA Security Services and with

MASIF security specifications [OMG, 98] [Milojicic, 98]. We have worked also on

providing SOMA compliance with the Secure Inter-ORB Protocol [OMG, 98] to

enable secure interactions between entities resident on different ORBs, provided that

they adopt the same security technology.

Finally, SOMA gives users the possibility to choose the best trade-off between

security needs and required performance, according to the intended usage, as

depicted in Figure 3.8. Agents in trusted environments (e.g., a private Intranet of a

department) could directly access resources after the authorization check, while

agents moving in untrusted environments (e.g., the Internet) generally have to pass

all security steps for secrecy, integrity, authentication and authorization.

Place

Local Resources

Authorization(Place Policy)
Place Authentication

Integrity

Secrecy

MA

MA

MA

MA

Authentication

Secrecy

Integrity

Default Place

Authorization (Domain Policy)

Domain

Untrusted Environment

Trusted Environment

Figure 3.8: The SOMA security facility in trusted/untrusted environments

To conclude, the SOMA middleware is available in two general-purpose

configurations: the basic lightweight configuration and the complete configuration,

which extends the basic one with facilities for naming, interoperability and security.

In addition, to support SOMA developers in the design, implementation and

Mobile Agent-based Infrastructures for Internet Services

48

deployment of Internet services in application domains with specific requirements,

we have already developed two different SOMA profiles that run on top of the

complete configuration. The SOMA profile of middleware facilities for integrated

management and the one for mobile computing are extensively presented,

respectively, in the following Chapter 4 and Chapter 5.

49

4 The SOMA Profile for Integrated Management

Several research efforts have investigated solutions for the increasing requirements

of QoS differentiation and guarantees in Web-based services, by considering

different levels of abstraction [Chalmers, 99] [Hutchison, 94].

On the one hand, the definition and standardization of new protocols has been

investigated to ensure the reservation of the needed amount of network resources

[Zhang, 93] [Busse, 96]. However, the process of acceptance and deployment of new

standards for network-layer protocols is long and difficult, mainly due to the large

base of non-programmable and already installed network equipment. In this field,

mobile agents have shown their suitability for implementing tunneling techniques to

integrate network resources that are not compliant with the reservation standards [de

Meer, 98].

On the other hand, some work has shown the opportunity of an application-layer

approach to QoS, especially in the areas of mobile communications and multimedia

distribution [Chalmers, 99] [Kone, 98]. Application-layer solutions propose service

infrastructures that tries to respect the specified QoS requirements without any

guarantee of satisfaction, but with no need to modify the underlying best-effort

network layer. The idea is to monitor the available QoS and to notify service

components of quality modifications in order to adapt to the network traffic.

The requirements for on-line monitoring and management of QoS are the most

evident example of how the provision of services in the global Internet environment

is significantly increasing the complexity of the management issue. Management not

only involves the configuration and control of geographically distributed network

elements, but also tends to include the administration of heterogeneous general-

purpose systems (e.g., configuration, load-balancing and performance management)

and the dynamic control, adaptation and tailoring of the offered services with

specified properties (e.g., scalability and fault-tolerance). Other examples of

emerging service requirements are the registering, billing and accounting of service

users for their effective resource consumption, and the protection from the different

possible forms of denial-of-service attacks, whether malicious or not.

Mobile Agent-based Infrastructures for Internet Services

50

The evolution of management requirements has suggested considering new

management models to overcome the limits of traditional centralized client/server

approaches. There is a growing interest in taking into account Web-based

management systems [Thompson, 98] [Anerousis, 99] and in adopting integration

standards such as CORBA that also permits to deal with legacy components [OMG,

98] [Haggerty, 98] [Mazumdar, 96] [CORBA/CMIP]. There is strong emphasis in

the use of mobile entities to provide flexible, scalable, and effective management

solutions by programming network resources dynamically [Goldszmidt, 95]

[Fuggetta, 98] [Karmouch, 98] [Breugst, 98] [Bieszczad, 98] [Bellavista, 99b]

[Bellavista, 00a] [Chen, 98] [Magedanz, 96]. There are also encompassing efforts in

defining open architectures to integrate the management of traditional

telecommunications with new distributed services [Inoue, 98] [Glitho, 95]. Recent

research approaches recognize the following important issues in resource and service

management for open, global, and untrusted systems:

• to facilitate delegation and automation of control actions, thus reducing network

load, relieving the central manager duties, and improving scalability;

• to address the management of heterogeneous network elements by focusing on

interoperability and by promoting acceptance of new standards;

• to help in the design and fast deployment of new services, improving user

customization and avoiding time-consuming redesign;

• to provide secure environments on top of intrinsically untrusted networks.

New management approaches propose solutions to the above issues with different

peculiarities and at different levels of abstraction. For instance, consider the case of

resource allocation that can be either visible or transparent to managers. While

allocation visibility permits to obtain efficient solutions, allocation transparency

helps to cope with the complexity of internetworked systems. Active Networks

(ANs) exemplify how allocation visibility can be used for management purposes and

also for introducing new protocols without discontinuing system operations. On the

contrary, CORBA-based solutions propose a higher-level approach that hides

allocation to applications, simplifying the development of distributed services. We

believe that a management environment should offer both allocation visibility and

allocation transparency. The former is compulsory to express management policies

4. The Integrated Management Profile

51

and to obtain efficient solutions while final users prefer the latter when designing

complex distributed services.

We feel that the main issue still to be faced is the definition of a comprehensive

solution for the integrated management of both network resources and services, able

to provide all the features required by different levels of usage and with different

levels of abstraction [Glitho, 98].

To provide a framework capable of answering all the issues sketched above, we

have designed and implemented a specific SOMA profile, called Integrated

Management Profile. The profile aims at providing all needed mechanisms, tools and

policies to support the management of network elements, systems and services in the

global Internet environment. It runs on top of the SOMA complete configuration, and

can be installed, even at runtime, on the nodes that require the integrated

management functionality. The profile is composed by a module called MAPI

(Monitoring Application Programming Interface), which extends the visibility of the

state of heterogeneous networked resources achievable from within the JVM, and by

a set of management agents that migrate to their target resources, exploit MAPI for

their monitoring, and autonomously perform management operations on local

resources.

This chapter gives first an overview of the recent related work about integrated

management. Then, it presents the MAPI component for local on-line monitoring of

heterogeneous resources, and the MAPI exploitation in MA-based tools for

distributed management. The experience of applying the SOMA profile for

integrated management to the domain of multimedia flow distribution with

differentiated QoS ends the chapter.

4.1 Related Work

Recent researches have proposed several different approaches to overcome the limits

of traditional management systems. We do not want to give a general overview of

these approaches, but only try to sketch their peculiarities and to identify their main

differences. In particular, we stress that proposed solutions are at different levels of

abstraction and suit different specific issues in the management domain.

Mobile Agent-based Infrastructures for Internet Services

52

The main idea in ANs is to program network components, so that users can

directly modify the behavior of the network itself while it continues to operate. ANs

push programmability down to the network layer of the OSI protocol stack, and have

already shown their capacity of achieving significant results in terms of flexibility,

performance, scalability and QoS provision [Chen, 98] [Tennenhouse, 97] [Psounis,

99]. However, there are several typical management issues difficult to be solved at

the network layer. For instance, there is no general agreement on the level at which

security should be faced, and people discuss whether security should be considered at

either the network layer or the application one [Oppliger, 98]. We believe that many

security-related tasks are more easily addressed at a higher level. For instance, user

authentication requires public key infrastructures usually available as application

level tools, and also the association of authenticated users with recognized roles

needs application level facilities for defining and managing the proper trust model

[Lupu, 97].

Other solutions that make use of code mobility for network management come

from the MA research activity [Karmouch, 98] [Breugst, 98] [Bieszczad, 98]

[Bellavista, 99b] [Rothermel, 98] [Gavalas, 99]. Probably, the most limiting feature

of MA-based management approaches seems the fact that only a few MA platforms

address interoperability with existing management components, whether MA-based

or traditional ones [Grasshopper] [Voyager] [SOMA]. In addition, they do not

generally provide a layered architecture of common services, making difficult the

development of complex management applications.

CORBA is the most widely diffused architecture to deal with distributed

heterogeneous programming. However, even if CORBA has raised great interest in

the management area, it currently seems more to play the role of integration

technology among existing solutions (CORBA gateways toward SNMP/CMIP

components [Mazumdar, 96] [CORBA/CMIP]) than to propose a framework to build

new CORBA-based management applications. Some peculiarities of CORBA

partially limits its use in the management area: CORBA-based applications are

typically location unaware, while managing distributed resources and services

usually requests visibility of topology and locality information. In addition, CORBA

implementations lack abstractions for managing object groups, even if the collection

abstraction is clearly necessary for the management of replicated services [Felber,

4. The Integrated Management Profile

53

98] [OMG, 98]. Finally, the interaction of objects using diverse security technologies

is complex because CORBA does not standardize the possibility to negotiate security

technology [Staamann, 98].

Other proposals abstract from implementation technologies and describe solution

frameworks at the architecture level. The Telecommunications Management

Network (TMN) framework [Glitho, 95] goes beyond the manager/agent model of

OSI systems management [ISO, 92] by introducing a distributed set of cooperating

systems for monitoring and control, conceptually separated from the

telecommunications network being managed [Glitho, 98] [Psounis, 99]. TMN main

limitation for highly dynamic and open systems seems to be its client/server

management model.

The Telecommunication Information Networking Architecture (TINA) [Inoue,

98] proposes a solution at a higher level of abstraction. TINA architecture is directed

to design any kind of service, running on a global scale and on different network

technologies. TINA suggests a uniform support for management where the

management itself is considered a service. TINA applications, service components

and network resources reside on top of a DPE that can hide the complexity of

distribution and heterogeneity from service developers. Unfortunately, to present a

global solution, TINA seems to push towards very complex implementation, so that

some research works have addressed the issue of implementing simplified

architectures of TINA to offer an earlier opportunity for cost-effective evolution of

current networks [Redlich, 98].

In addition to the research activities on management architectures and

organizational frameworks presented above, several researchers have recently

worked on the implementation of mechanisms and tools to support both local and

distributed monitoring with very different approaches [Buyya, 00] [Russ, 99] [Al-

Shaer, 99] [Miller, 95] [Lange, 92] [Bakic, 00] [Schroeder, 95] [Weiming, 98]

[Corradi, 97] [Liang, 99] [Stallings, 98].

Several distributed instrumentation systems have achieved interesting results,

especially in terms of minimization of monitoring intrusion [Miller, 95] [Lange, 92]

[Bakic, 00]. However, they require to instrument statically/dynamically monitored

applications and tend to be either language- or platform-specific. This is not suitable

Mobile Agent-based Infrastructures for Internet Services

54

for the on-line monitoring of Web-based services that consist of distributed

components not to be suspended during execution.

Some efforts have specifically addressed on-line monitoring. They have

concentrated on producing effective tools by generally exploiting ad-hoc

mechanisms available only for specific operating systems [Schroeder, 95] [Weiming,

98]. These solutions are too platform-dependent to be suitable for open and

intrinsically heterogeneous distributed environments such as the Internet.

In the area of network monitoring and management, many researchers have used

standard protocols to interrogate the state of network equipment. The most diffused

protocol is still SNMP, briefly described in Section 4.2, mainly because of its

simplicity [Jiao, 00]. Other approaches start to be common: some of them provide

network traffic monitoring with the granularity of a whole network segment (Remote

MONitoring - RMON [Stallings, 98]); others exploit platform-dependent libraries

and commands (such as the UNIX libpcap library) to enable network packet

capture, filtering and analysis at general-purpose hosts [Kumar, 00] [Deri, 00]. The

goal of these tools, however, is mainly the dynamic observation of network traffic,

and not the provision of on-line monitoring of service components at the application

level.

The diffusion of Java for the implementation of Web services has changed the

perspective also in the monitoring area. First activities have simply addressed the

enhancement of standard SNMP solutions with Web accessibility [Lee, 00]. Then,

some proposals have started to exploit Java networking facilities and code mobility

to provide an integrated middleware for distributed monitoring. Probably due to the

novelty of the technology, there are few examples of Java monitoring tools based on

the JVM Profiler Interface (JVMPI), presented in the following section. Perfanal

[Meyers, 00] exploits the SUN HPROF profiler agent to perform an off-line analysis

of collected monitoring data and to obtain a user-level concise view for debugging

Java applications. JProf [Pennington, 00] implements its own profiler agent and

profiler process, and provides a large set of functions to present the results of an off-

line data analysis in user-level interoperable formats, such as tables and diagrams

organized by using XML. To the best of our knowledge, there are no solutions that

currently exploit Java Native Integration (JNI), briefly sketched in the following, to

integrate native monitoring mechanisms in a Java-based monitoring tool.

4. The Integrated Management Profile

55

4.2 On-line Monitoring

To support integrated management, the service infrastructure should be informed of

the current usage of all heterogeneous resources at runtime. In other words, the

service infrastructure should include an on-line monitoring tool able to detect the

current condition of network, system and application components during service

execution. This is necessary to enable dynamic service management via runtime

corrective operations.

Monitoring information covers different abstraction levels, from system

conditions at each node (the usage of CPU, memory, bandwidth, etc.), called kernel

state in the following, to the state of application-level service components (the state

of a service-specific daemon process, etc.), sometimes referred as application state

[Buyya, 00]. In addition, the on-line requirement makes critical to have short

response time and to reduce the overhead in the observed target, thus forcing to

collect only a restricted set of kernel and application state indicators.

We have designed and implemented a Java-based Monitoring Application

Programming Interface (MAPI) for the on-line monitoring of Web services. MAPI

overcomes Internet platform heterogeneity and permits to observe the state of

systems/applications during execution. MAPI collects monitoring data at different

levels of abstraction. At the application level, it permits the dynamic interaction with

the JVM to gather detailed information about the execution of Java-based services.

At the kernel level, it enables the access to the needed system indicators of the

monitored target (either Java-based or external to the JVM), such as CPU and

memory usage of all active processes.

The extensive utilization of the Java technology as the middleware to develop

Internet applications and services has motivated the choice of Java for the

implementation of the MAPI interface. To overcome the transparency imposed by

the JVM, MAPI exploits some recent extensions of the Java technology: the JVM

Profiler Interface (JVMPI) [JVMPI] and the Java Native Interface (JNI) [Gordon,

98]. In addition, MAPI integrates with external standard monitoring entities

particularly diffused in the network management domain, i.e., Simple Network

Management Protocol (SNMP) agents [Stallings, 98]. JVMPI makes possible to

instrument dynamically the JVM for debugging and monitoring purposes, and MAPI

Mobile Agent-based Infrastructures for Internet Services

56

exploits it to collect, filter and analyze application-level events produced by Java

applications, e.g., object allocation and method invocation. At the kernel level, MAPI

collects system-dependent monitoring data, e.g., CPU usage and incoming network

packets, by interrogating SNMP agents that export local monitoring data via their

standard Management Information Base (MIB). To monitor the kernel state of hosts

without any SNMP agent in execution, MAPI uses JNI to integrate with platform-

dependent monitoring mechanisms, which we have currently implemented for the

Windows NT, Solaris, and Linux platforms.

4.2.1 Java Technologies for Monitoring

The Java technology plays a fundamental role in the design, implementation, and

deployment of Web services over the Internet infrastructure. Apart from Java

portability, dynamic class loading, and easy integration with the Web, the main

motivation of Java diffusion is its virtual machine that hides the local operating

system and presents a uniform vision of all available computing resources and

middleware facilities.

However, the monitoring perspective requires a complete and low level visibility

of both JVM internals and underlying platforms. At the application level, the MAPI

monitoring component exploits JVMPI to acquire visibility of the JVM internal

events. At the kernel level, MAPI employs modules external to the JVM, to gather

information about platform-dependent resources and non-Java application

components. In MAPI, these external modules include both native monitoring

mechanisms integrated via the JNI technology, and standard monitoring components,

i.e., SNMP agents.

The Java Virtual Machine Profiler Interface

JVMPI is an experimental interface featured by the Java 2 platform and mainly

designed to help developers in monitoring Java-based applications during debugging.

JVMPI is an API available to the JVM and to a dedicated profiler agent, often

implemented as a platform-dependent native library for sake of performance (see

Figure 4.1). In one direction, the JVM notifies several internal events to the profiler

agent; in the other direction, the profiler agent can enable/disable the notification of

4. The Integrated Management Profile

57

specific types of events and can perform some limited management actions on the

JVM.

 With a finer detail degree, several conditions trigger JVMPI events: Java thread

state change (start, end, when blocking on a locked monitor); beginning/ending of

invoked methods; class loading operations; object allocation/deallocation;

beginning/ending of the JVM garbage collection. Any event notification carries full

information about the entities that have generated that event. For instance, the

allocation of a new object triggers the JVMPI_EVENT_OBJECT_ALLOC event, and

the profiler agent receives the identifiers of the new object and of its class, together

with the size of the allocated heap memory.

The profiler agent can also use JVMPI in the opposite direction, to modify

dynamically the behavior of monitored applications. Apart from notification

enabling/disabling, the agent can intervene on the JVM by invoking a very small set

of JVMPI methods: management actions are limited to suspend/resume Java threads

and to enable/disable/force the immediate execution of the JVM garbage collector.

Figure 4.1 shows the SUN-proposed profiling architecture. The profiler process

acts as a front-end to provide application developers with a readable presentation of

the monitoring data. The profiler agent collects all notifications of enabled JVM

events. Both process and agent can also be external to the JVM.

The SUN distribution provides a simple implementation of the profiler agent for

both Solaris and Windows NT operating systems. This agent, called HPROF

[JVMPI], collects general-purpose events and allows simple static configurations. It

is not designed for on-line monitoring, but works mainly as an off-line post-mortem

tool for debugging and performance analysis. In fact, it tends to collect a large

volume of monitoring data that requires heavy filtering and processing to obtain

significant and concise service indicators. For this reason, some researchers have

implemented their ad hoc profiler processes to organize HPROF data in immediately

readable graphic interfaces [Pennington, 00] [Meyers, 00].

JVMPI constrains the provision of monitoring information. Developers can only

specify whether the JVMPI supported events should be notified to the profiler agent,

and the specification is coarse-grained, with no possibility of fine selection and

dynamic refinement. For instance, a profiler agent can only choose to enable/disable

all events related to all Java classes (or objects/methods/monitors), but it can neither

Mobile Agent-based Infrastructures for Internet Services

58

focus on the events generated by a specific class nor define user-/application-specific

events. The only way to obtain more fine-grained indicators is to implement ad hoc

profiler agents, as our MAPI profiler agent presented in Section 4.2.3, capable of

filtering the events of interest and suitable to compose them in higher level

indicators. Moreover, JVMPI cannot give any direct information about system

resources and application components outside the JVM, e.g., the number of non-Java

processes and the set of files opened by a non-Java process.

Java Thread1Java Thread1

Java Thread2Java Thread2

Java Thread3Java Thread3
profiler
process

profiler
process

Java Virtual Machine
Event

notification

Tracing enable /
disable; thread
control actions

Host

HPROF

profiler agent
HPROFlibrary

J
V
M
P
I

Figure 4.1: JVMPI-based architecture for JVM monitoring

The Java Native Interface

JNI permits Java threads to invoke native methods, i.e., platform-specific functions

typically written in C/C++, usually available as Dynamic Link Libraries (DLL) in the

Windows platform and Shared Object (SO) libraries under Solaris and Linux (see

Figure 4.2). These native libraries contain platform-dependent executable code and

cannot be directly ported to heterogeneous targets. SUN has introduced JNI to ensure

compatibility of native code invocations in all JVM implementations.

JNI is a two-way interface. In one direction, a Java program invokes a native

method, by declaring the method with the keyword native and with no body. After

the binding obtained by calling the System.loadLibrary() method, the JVM

uses JNI to call the requested function in the native library during execution. JNI

specifies the details of method invocation: for instance, it rules the parameter

marshalling/unmarshalling between the Java invoking thread and the invoked native

method.

4. The Integrated Management Profile

59

In the other direction, from the native library towards the JVM, JNI allows native

methods to interact with their invoking Java framework. JNI permits native code to

callback the Java environment and the invoking Java object, to access and modify

object values, to call Java methods, and to raise Java exceptions.

With regards to monitoring, JNI permits to integrate the JVM with native

monitoring libraries, to obtain the visibility of kernel and application indicators not

accessible via JVMPI. For instance, our MAPI component can collect information

about all active processes (e.g., to record process CPU usage in a specified time

interval), by invoking the execution of C-based native libraries that extract that

information, depending on the monitored target, from either the Windows NT

registry keys or the Solaris /proc directory.

Java Thread1Java Thread1

Java Thread2Java Thread2

Java Thread3Java Thread3

Java Virtual Machine
Native library

invocation

Invocation
results;

working on Java
environments
via callbacks

native
library

native
library

J
N
I

Host

Figure 4.2: Two-way JNI for native library invocation

The Java Integration with SNMP Agents

Recent research work has recognized the relevance of Java as the technology to

simplify the integration of new and legacy monitoring components in a multi-layered

management framework, because of Java object-orientation, dynamic extensibility,

and ease of programming [Lee, 00].

The adoption of the Java technology facilitates the integration of standard SNMP

agents, either Java-based or not. SNMP is currently the most diffused monitoring

solution in the network management domain. It is a specialized request/reply

protocol between two types of possibly remote entities, SNMP managers and SNMP

agents. The SNMP manager uses the protocol to request the current value of a state

indicator to one of its SNMP agents. SNMP agents act as servers that reply to

manager requests by extracting the indicator values from their local MIBs. The MIB

Mobile Agent-based Infrastructures for Internet Services

60

specification defines the organization and formats of the maintained state indicators.

SNMP has significantly evolved from its first introduction: SNMPv2 has introduced

the possibility to organize SNMP managers hierarchically to increase the protocol

scalability; SNMPv3 has added security specifications to support agent-manager

mutual authentication. SNMP agents compliant to different protocol versions are

currently integrated either directly in some operating systems or as components of

commercial management frameworks [Stallings, 98].

In case of SNMP agents implemented in Java, it is possible to exploit Java-

specific facilities for distributed computing and management integration, such as,

respectively, the Java Remote Method Invocation and the Java Management

Extensions API. In any other case, Java directly supports at the language level a wide

variety of mechanisms and tools to interface with networked heterogeneous

components [Lee, 00].

4.2.2 The MAPI Component

Software-based middleware approaches for QoS control and adaptation are usually

based on the capacity to monitor dynamically the quality offered by distributed

service components, to enable either application-transparent or application-aware

management operations; this kind of solutions is demonstrating its viability

[Chalmers, 99] [Bellavista, 00a]. Service components operate in a global and open

distributed system that is intrinsically heterogeneous. As a consequence, there is the

need for on-line monitoring tools that are capable of controlling distributed

heterogeneous resources and systems, possibly without imposing any service

suspension and providing developers with a uniform interface.

This section presents the architecture and the interface of the MAPI component

for the local monitoring of heterogeneous kernel/application resources, while the

following section gives some technical insights of its implementation.

Figure 4.3 shows the MAPI architecture. MAPI provides a uniform monitor

interface independent of platform heterogeneity, and implemented by the

ResourceManager class that integrates three different components: MAPI Profiler

Agent, MAPI SNMP Agent, and MAPI*ResManager.

MAPI Profiler Agent is able to gather application-level information about the Java

environment on the monitored target. It not only collects JVMPI events but also

4. The Integrated Management Profile

61

filters and processes them on-line, to offer concise monitoring indicators during

service execution. These JVMPI-based monitoring functions are immediately

portable on any host that runs the JVM version 2.

Resource Manager class

Java Native Interface

JVM Profiler Interface
MAPI NT

ResManager class

Java Virtual Machine

MAPI Profiler Agent

Monitoring Application Programming Interface (MAPI)

Windows NT OS

MAPI
WindowsRM

DLL

SNMPv3
agent

Solaris OS

MAPI
SolarisRM

SO

SNMPv3
agent

SuSE Linux OS

MAPI
LinuxRM

SO

SNMPv3
agent

MAPI SVR4
ResManager class

MAPI Linux
ResManager class

MAPI SNMP
Agent class

Off-the-shelf
components

MAPI platform-independent
components

MAPI platform-dependent
components

Figure 4.3: The architecture of our Java-based MAPI

According to the SNMP terminology, MAPI SNMP Agent acts as an SNMP manager

that interrogates the standard SNMP agent available on its local target to obtain

kernel-level monitoring data. MAPI SNMP Agent not only provides a uniform Java

interface by wrapping possibly non-Java SNMP agents. It also implements several

local optimizations of the SNMP protocol (mainly, bulk-transfer and filtering

described in the following section). In addition, it simplifies the configuration phase

of the security parameters needed in SNMPv3, by integrating with the SOMA

distributed security infrastructure.

In case the monitored targets do not host the execution of suitable SNMP agents,

ResourceManager exploits MAPI*ResManager classes to integrate with platform-

dependent monitoring functions via JNI. These functions are implemented as native

libraries with uniform interfaces for different platforms (MAPI WindowsRM DLL on

Microsoft Windows NT 4.0, MAPI SolarisRM SO on SUN Solaris 2.7, and MAPI

Mobile Agent-based Infrastructures for Internet Services

62

LinuxRM SO on SuSE Linux 6.2). ResourceManager transparently loads at run-time

the correct native library for the current monitored target, to provide platform

independence.

MAPI offers a set of methods that provide concise monitoring parameters to

summarize the current state of the monitored target. Service administrators (or even

autonomous software-based service managers) can use MAPI to obtain the dynamic

management information to adapt service provision. In this scenario, the overhead is

critical, and monitoring results should be prompt and immediately available to

managers (see Section 4.2.4). For this reason, MAPI can tune its intrusion to service-

specific time constraints: all MAPI methods have a msec invocation parameter that

indicates the time interval for the refresh of monitoring indicators. This time interval

is propagated to all MAPI components to update the statistics of collected JVMPI

events, to interrogate SNMP agents, and to invoke native monitoring libraries.

MAPI methods return either an object or an array of objects of the three classes

ProcessInfo, NetworkInfo, and FileSystemInfo. The ProcessInfo object

maintains all the data related to the current pid process. Monitored data include the

CPU usage (percentage and total time) for any specified process, its allocated

memory (physical and virtual), and miscellaneous information on its composing

threads. It is also possible to obtain additional data about the threads possibly

contained in a process. In addition, in the case of JVM threads, MAPI maintains the

reference to the Java thread object, its lifetime, and the number of loaded classes,

used monitors, allocated objects, invoked methods, network and file system

operations. For non-Java threads, MAPI provides the thread identifier and the

percentage/effective time of CPU usage.

The NetworkInfo class reports aggregated monitoring data about the usage of

the communication infrastructure on the target host. Monitored data include the total

number of sent/received UDP/IP packets, of TCP connections and sent/received

segments, the percentage of UDP/IP packets received with errors, and the percentage

of discarded UDP/IP output packets. These parameters are sufficient to give an

overall evaluation of the host traffic conditions and to identify congestion situations.

Finally, the FileSystemInfo class maintains general information about the file

system of the target (disk free space and its percentage on total size) and detailed

data about currently opened files. In particular, for any active process and for any file

4. The Integrated Management Profile

63

opened in the current session, the class returns the opening time and its opening

mode (read/write/both/locked).

4.2.3 The MAPI Implementation

The MAPI tool is a Java-based component that permits to monitor both kernel and

application state, without modifying the standard JVM. This conformance and the

possibility to monitor service components without requiring any intervention on

either their source code or their executables are fundamental for the MAPI

application to the on-line distributed monitoring of the open Internet infrastructure.

MAPI has required the design and implementation of several ad hoc modules: 1)

the MAPI Profiler Agent for dynamically configurable on-line monitoring of the

JVM state; 2) the MAPI SNMP Agent to obtain monitoring data from SNMP agents

in execution on the targets; 3) MAPI*ResManager and its native libraries (MAPI

Windows/Solaris/Linux RM DLL/SO) for uniform data acquisition via heterogeneous

platform-dependent monitoring mechanisms.

MAPI Profiler Agent permits to configure dynamically the JVMPI-based event

notification, and to provide the ResourceManager class with concise monitor

indicators, obtained as the results of the previous performance history. In a more

detailed view, our profiler agent gives the possibility to change the set of notifiable

events with no suspension of the monitoring execution, by implementing methods to

enable/disable the event notification related to object allocation/deallocation, method

invocation/exit, and lock/unlock of Java monitors. The profiler keeps and updates

statistics of the monitored events, to provide immediately readable indicators with no

need to maintain huge logs of monitoring data. For instance, the profiler traces only

the size of the total memory allocated to a Java thread and does not log the full data

related to the execution of any system call for memory allocation. In addition, the

refresh interval of monitoring indicators can change dynamically to tune the MAPI

intrusion depending on service-specific constraints and run-time conditions, as

described in the following section.

Figure 4.4 sketches a piece of the MAPI Profiler Agent code. When a registered

event occurs, the JVMPI signals an event ev to the profiler that performs event-

specific actions. In particular, the figure shows the initializations made when the

class SocketInputStream is loaded. After initializing the internal socketread

Mobile Agent-based Infrastructures for Internet Services

64

variable, the profiler can trace any invocation of the method socketRead() by

incrementing the stat->tcp_read counter, which maintains the account for the

TCP read operations of any Java thread in a specified time interval.

These registered data represent a rough estimation of the incoming network traffic

produced by Java service components. If there is the need of more precise

information about the traffic due to specific Java threads, ResourceManager can

command MAPI Profiler Agent to examine dynamically the invocation parameters of

the socketRead()/socketWrite() methods. This is possible via the JVMPI-

based triggering of JVMPI_EVENT_OBJECT_DUMP of the needed objects, at the

maximum level of detail (JVMPI_DUMP_LEVEL_2). MAPI Profiler Agent, of course,

behaves differently at default to avoid the excessive overhead of the dynamic

generation and processing of object dumps.

JVMPI_Event *ev; // JVMPI event reference
jmethodID socketread = NULL; // method reference

switch(ev->event_type)
{...

case JVMPI_EVENT_CLASS_LOAD:
 if(strcmp(ev->u.class_load.class_name,
 "java/net/SocketInputStream")==0)
 {
 JVMPI_Method *meth;
 for(meth=ev->u.class_load.methods; ...; meth++)
 if(strcmp(meth->method_name,"socketRead")==0)
 socketread=meth->method_id;
 }
 break;
case JVMPI_EVENT_METHOD_ENTRY2:
 stat = tab1.get(ev->env_id);
 if(ev->u.method.method_id==socketread)

 stat->tcp_read++; // update TCP statistics
...

Figure 4.4: Monitoring the invocation of the socketRead() method in MAPI Profiler

Agent

MAPI SNMP Agent acts as an SNMP manager that locally interrogates its SNMP

agent. MAPI SNMP Agent is programmed to request monitoring information

maintained not only in the standard MIB (monitoring data about network elements

and protocols), but also, where supported, in the MIB extensions included in the Host

Resources Groups called Storage, Running Software, and Running Software

Performance [Waldbusser, 00]. These groups provide the data about resource usage

4. The Integrated Management Profile

65

of processes currently in execution to obtain the MAPI ProcessInfo and

FileSystemInfo, while NetworkInfo exploits the standard SNMP MIB.

MAPI SNMP Agent can improve the efficiency of standard client/server SNMP

operations, especially when dealing with the network transfer of large chunks of

monitoring data. It transmits only the changed MAPI indicators to

ResourceManager, which maintains old values for the non-received parameters.

Most important, MAPI SNMP Agent locally interrogates its SNMP agent and pre-

processes the obtained results to offer concise indicators to possibly remote

managers, thus significantly reducing the generated network traffic. In fact, a single

MIB variable is usually at a lower level than the MAPI indicators, and an

aggregation of multiple variables is required. These aggregations are known as health

functions [Gavalas, 00]. For instance, the percentage of discarded IP output packets

is obtained by combining five MIB variables:

gramsipForwDatastsipOutReque

100*s)ipFragFailtesipOutNoRouards(ipOutDisc
rripPackOutE

+
++=

In addition, MAPI SNMP Agent can perform all the operations needed for the

support of mutual authentication in case of interaction with SNMPv3 agents. It can

obtain dynamically the needed security information from the public key

infrastructure integrated with the SOMA programming framework. Finally, it can

locally store configuration parameters specific for its SNMP agent (e.g., the

supported MIBs), in order to automate the possibly complex phase of initialization at

any reboot of the MAPI tool.

If either the SNMP agent or the Host Resources MIB extensions are not supported

on the target host, ResourceManager automatically enables the gathering of

monitoring data via native mechanisms. MAPI native modules extract uniform data

by exploiting heterogeneous monitoring mechanisms provided by the target

operating system. The ResourceManager class employs JNI to load the target-

specific native library at runtime. We have currently implemented the native

monitoring components for Windows NT (MAPI WindowsRM DLL), Solaris (MAPI

SolarisRM SO) and Linux (MAPI LinuxRM SO). Each component integrates with

Java via the system-specific classes called MAPI NTResManager, SVR4ResManager

and LinuxResManager, as depicted in Figure 4.3.

Mobile Agent-based Infrastructures for Internet Services

66

Figure 4.5 shows a piece of the MAPI WindowsRM DLL that accesses kernel and

application state indicators maintained in Microsoft system registry keys. In

particular, the figure reports the polling of the registry to obtain updated information

about the processes in execution. The system call

RegQueryValueEx(HKEY_PERFORMANCE _DATA, …) permits to obtain some

performance data. The reported invocation returns a perfdata reference to the

native method; perfdata is used to access the whole information about a process

with identifier PID .

For Solaris and Linux platforms, we have implemented native monitoring

modules as dynamic SO libraries that mainly exploit the /proc feature. /proc is a

virtual directory that exports kernel and application state indicators as a specific sub-

tree of the file system. The MAPI SolarisRM/LinuxRM library polls monitoring

information about currently executing processes by reading the corresponding files in

the /proc directory.

For instance, the ioctl() call, with PIOCPSINFO and PIOCUSAGE parameters,

permits to obtain prpsinfo and prusage information, which maintain several data

about the identity of a specified process and its CPU usage, respectively. Similarly,

SolarisRM/LinuxRM native components extract the descriptors of the open files from

the /proc/PID/fd virtual directory, where PID is the identifier of the monitored

process. File descriptors data are combined with information from the system file

table, with an approach similar to the one followed in the implementation of the Unix

fuser utility. Aggregated information about the network usage is obtained via the

invocation of the standard netstat system call [Nemeth, 00].

RegQueryValueEx(HKEY_PERFORMANCE_DATA, “232”, NULL, NULL, perfdata ,
&size);

// "232" for process-related data
RegCloseKey (HKEY_PERFORMANCE_DATA);
pointer = (PBYTE)perfdata + perfdata->HeaderLength;
obj = (PPERF_OBJECT_TYPE)pointer;
pointer = (PBYTE)obj + obj->HeaderLength;
cnt = (PPERF_COUNTER_DEFINITION)pointer;
while (cnt->CounterNameTitleIndex != PID)

{ pointer = (PBYTE)cnt + cnt->ByteLength;
 cnt = (PPERF_COUNTER_DEFINITION)pointer;
}

pointer = (PBYTE)obj + obj->DefinitionLength;
inst = (PPERF_INSTANCE_DEFINITION)pointer;
pointer = (PBYTE)inst + inst->ByteLength + cnt->CounterOffset;
value = *((jlong*) pointer);

Figure 4.5: Monitoring process information in MAPI WindowsRM DLL

4. The Integrated Management Profile

67

4.2.4 The MAPI Overhead

It is critical for on-line monitoring tools to limit the overhead on their targets because

they are expected to help service management during provision. To validate the

MAPI applicability, we have measured separately the costs of the MAPI monitoring

modules (MAPI*ResManagers, MAPI Profiler Agent, and MAPI SNMP Agent). All

reported costs are averaged on several hundred measurements for Intel PentiumIII

600MHz PCs with either Microsoft Windows NT4 or SuSE Linux6.2, and for SUN

Ultra5 400MHz workstations with Solaris7. Hosts are interconnected via 10 Mb

Ethernet Local Area Networks (LANs).

To measure the overheads of JVMPI-based monitoring solutions and of JNI-based

integration of native monitoring modules, we have installed a Java benchmark

application that stresses CPU and memory usage by generating a fixed number of

different threads and objects. In particular, the measurements reported in the

following refer to the case of 50 benchmark processes in execution, each one with an

average number of 5 threads. The benchmark executes first on target hosts with

neither applications nor the MAPI component. We have compared the average

completion time of the benchmark, called TnoMon, with the average time (TMon)

measured with our MAPI tool in execution. The graphs in Figure 4.6 and Figure 4.7

report the overhead percentage (Overhead%) introduced by the monitoring tool,

defined as:

1001% ∗

 −=

noMon

mon

T

T
Overhead

Let us preliminarily note that the experiment with only the benchmark application

in execution is the worst possible case for Overhead%. In fact, when the host is

either average loaded or even overloaded, TnoMon tends to increase faster than Tmon,

and consequently their ratio Overhead% tends to decrease. This has been validated

by taking Overhead% measurements with several general-purpose benchmark tests

running: the measurements have confirmed the expected behavior, with an average

decrease of about 1.0-1.5% of the Overhead% parameter in conditions of average

load.

Figure 4.6 depicts the Overhead% introduced by MAPI*ResManager to monitor

all the information contained in ProcessInfo. The diagram of Overhead% is

drawn function of the sample time for the three supported platforms. The refresh

Mobile Agent-based Infrastructures for Internet Services

68

time represents the interval between two successive invocations of the native

monitoring modules via JNI. Overhead% exhibits a linear dependence on the

reciprocal of the refresh time. We have obtained analogous trends in intrusion

measurements in case of native monitoring of NetworkInfo and

FileSystemInfo.

In general, all tests show that MAPI*ResManager causes a limited overhead

(Overhead% lower than 3%) when the refresh time interval is greater than 3 s. On

the one hand, this overhead can be considered acceptable because the refreshing of

monitor indicators with this time period is sufficient for most Web-based services. In

fact, native modules continuously collect monitored events, and the refresh time is

only the period to interrogate native monitoring results. On the other hand, however,

the overhead imposed by MAPI*ResManager is sensibly higher than the one of

MAPI SNMP Agent presented in the following. This has suggested to prefer the latter

if it is available and supports the Host Resources MIB extensions.

ProcessInfo

0.00

2.00

4.00

6.00

8.00

10.00

12.00

0.0 2.0 4.0 6.0 8.0 10.0 12.0

Refresh Time (sec)

O
ve

rh
ea

d
%

MAPI Window s ResManager
MAPI Solaris ResManager
MAPI Linux ResManager

Figure 4.6: Overhead% of MAPI*ResManagers for process monitoring

We have also measured the overhead introduced by MAPI Profiler Agent. It requires

the JVM to notify continuously certain kinds of events (not only at polling times),

and the refresh time represents the interval to process the collection of observed

events in order to obtain the desired concise monitoring indicators. Figure 4.7 depicts

4. The Integrated Management Profile

69

the different contributions of the Overhead% related to data access and to different

JVMPI kinds of events, i.e., monitor, method and object tracing. The figure reports

only the results obtained for the Solaris platform, because they are very similar to the

ones for Windows NT and Linux, with differences lower than 3% of the maximum

Overhead%.

The JVMPI notification mechanisms are scarcely intrusive under different load

conditions and independent of refresh times. Object tracing has shown to be the most

relevant factor in the MAPI Profiler Agent intrusion because of the large amount of

data it requires to receive and collect in the profiler. Apart from object tracing,

JVMPI notification introduces a very low overhead (lower than 0.6%). The refresh

time affects only the overhead due to the processing of collected events and to the

reading of MAPI indicators. In any case, the total overhead can be kept under 2.0%

when the refresh interval is greater than 2 s and object tracing is disabled.

JVMPI monitoring

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

Refresh Time (sec)

O
ve

rh
ea

d
%

Data reading

Object trace

Method trace

Class/Monitor Trace

JVMPI monitoring (without object tracing)

0.00

0.50

1.00

1.50

2.00

2.50

3.00

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

Refresh Time (sec)

O
ve

rh
ea

d
%

Data reading

Method trace

Class/Monitor trace

Figure 4.7: Overhead% of the MAPI Profiler Agent for Java thread monitoring

4.3 On-line Distributed Monitoring and Management

We have integrated the MAPI component in the SOMA profile for integrated

management both to exploit the MA technology for distributed monitoring and to

build an on-line monitoring tool for SOMA-based service components. We have also

implemented a MAPI-based distributed monitoring tool in terms of mobile agents

that cooperate to enforce distributed management policies. Monitoring agents can

migrate close to the networked resources to observe and manage autonomously on

behalf of system administrators. We exploit the MAPI distributed tool to monitor and

Mobile Agent-based Infrastructures for Internet Services

70

manage the QoS provided by SOMA-based distributed applications. In particular,

Section 4.3.1 presents the employment of the distributed tool for the dynamic control

of resource usage by SOMA agents, for sake of accounting and security.

We have designed and implemented a distributed tool in terms of SOMA agents

that use MAPI to monitor any single target. The MA technology is adopted because

it can improve the performance in collecting/processing distributed monitoring

information and facilitates the coordination of groups of autonomous monitoring

agents, as detailed in the following.

The SOMA profile for integrated management provides developers with an API to

invoke a set of common system management operations that are implemented in

terms of the SOMA monitoring and management agents described in the following.

In addition, it is easy to tailor new agents to new specific administration needs. The

following list gives a few examples of functionality already available in the SOMA

profile:

• monitoring the state of the distributed system;

• controlling and coordinating replicated resources;

• dynamically installing new services;

• helping in the configuration of any new or reinserted node;

• shutting down the whole system by ensuring a minimal survival service level.

The MAPI-based distributed tool is the result of the interworking of two types of

agents: monitoring Managers and monitoring Explorers. Each Explorer agent is in

charge of collecting monitoring data from one set of targets (i.e., target domain),

usually belonging to the same network locality. The Manager agent commands the

Explorers, combines their monitoring results and presents a global view of monitored

domains to system administrators.

There are several possible organizations, with different hierarchical levels and

numbers of Managers/Explorers per target domain. In our organization, each system

administrator can delegate several management operations to one or more Managers

that operate autonomously. Each Manager coordinates its set of Explorers, one per

each target domain.

4. The Integrated Management Profile

71

For instance, a Manager agent can be in charge of controlling the storage

devices of its administered domains. If the Manager ascertains that the available

space is lower than a specified threshold, it can alert the system administrator and

even command simple actions to remove useless files (e.g., files in the /tmp

directory) on overloaded target hosts/domains. To collect information about the

overall state of its administered domains, the Manager coordinates the operations of

its Explorer agents. In particular, it can ask them to gather specific monitoring data,

with specific alert thresholds and refresh time intervals, and can also command

management operations on controlled Explorers. In addition, a Manager can create

new monitoring Explorers at run-time to go and control existing/new target domains.

Explorer agents periodically migrate to their target domain hosts to invoke there

the MAPI functions, in order to observe locally both kernel and application state

indicators. Explorers can be launched with alert thresholds that the responsible

Manager is authorized to modify dynamically: when thresholds are exceeded, the

Explorer can either notify its Manager or autonomously take corrective operations

on service components. These solutions allows Explorers to reduce the network

traffic due to distributed monitoring and to perform autonomously local management

operations without requiring the intervention of either Managers or system

administrators.

Explorers can also invoke MAPI Profiler Agent functions to control and manage

local Java threads. In particular, they can modify the priority of running threads and

can force thread suspension/termination. These functions help in controlling the

execution of Java applications, and make possible to limit their resource

consumption at run-time, as described in the example of the following section.

Managers can tune dynamically the overhead introduced by Explorer-based

distributed monitoring by modifying at run-time the time period with which

Explorers visit their target domain hosts. In addition, Managers can command

Explorers to invoke the MAPI Profiler Agent methods to enable/disable the

notification of specific kinds of events, thus adapting dynamically the collection of

monitoring data to the currently enforced management policy.

The SOMA profile for integrated management can represent the basic middleware

to enable the on-line QoS management and accounting of resource consumption in

most classes of Web services. To show the applicability and the usage of that profile,

Mobile Agent-based Infrastructures for Internet Services

72

in the following section we present the example of the control and limitation of

SOMA agent operations and, consequently, of the resource consumption of SOMA-

based Web services. The ultimate goal is to provide service administrators with an

API to account agent operations on their responsible principals and to protect target

hosts from possible denial-of-service attacks due to either malicious or badly

programmed agents.

4.3.1 The On-line Distributed Control of MA Resource Consumption

SOMA administrators can specify management policies to automate the distributed

control of agents. Policies can be enforced over either a single target host or a whole

target domain, and include conditions and management actions. Conditions are

expressed as even complex functions of the MAPI monitoring indicators: the trespass

of the specified conditions triggers management actions to correct agent behavior.

Admissible conditions require to monitor not only SOMA agents and their Java

threads, but also system/service components external to the JVM.

An example of local condition specifiable in SOMA is “on target host A, if the

CPU usage percentage of the local Web server (httpd process) is higher than t%,

the total CPU usage percentage of all the agents of principal Paolo cannot be higher

than 10*(1-t%)”. If the scheduler at host A assigns httpd threads a higher priority

than the one of SOMA agents, this policy attempts to preserve the throughput of the

local Web service when highly loaded, by monitoring and limiting the number of

CPU cycles consumed by Paolo’s agents. There is no limit on agent execution,

instead, when the Web server is less loaded.

As an example of distributed condition, SOMA administrators can request to

enforce “the total number of socket read/write operations performed by Paolo’s

agents cannot overcome sock# per day in the target domain B”. The aim of this

policy is to limit the agent consumption of network resources during a time window,

by assuming in first approximation that the number of socket operations is

proportional to the sent/received network traffic. This condition should be enforced

over the whole set of targets.

Apart from monitored conditions, any policy specifies a time interval to control

condition respect and corrective actions to execute in case of trespass. At the

moment, the integrated management profile API permits three different corrective

4. The Integrated Management Profile

73

actions: 1) to decrease the priority of the Java threads of breaker agents; 2) to

suspend breaker agents for a specified interval time, by exploiting the SOMA

persistency mechanisms [Bellavista, 00b]; 3) to force the termination of breaker

agents.

4.3.2 The Performance of Distributed Monitoring

Distributed monitoring is based on the interworking of mobile Explorer agents with

the local MAPI modules. The size of mobile agents vary from about 8kB (at first

migration, without carrying any monitoring indicator) to 15kB (at the end of

exploration, including all the monitoring state of the target domain). The average

time needed for migrating Explorers from one target host to another one within the

same LAN is 113ms (307ms with enabled controls on the integrity of agent code and

state) in the case of 8kB, and is 189ms (477ms with integrity enabled) in the case of

15kB. [Bellavista, 00c] fully describes the costs of agent migration, when enabling

the different security levels provided in SOMA.

 Figure 4.8 reports the time for an Explorer to collect monitoring indicators using

MAPI SNMP Agents, in function of the number n of hosts in the target domain.

MAPI SNMP Agent filters and pre-processes the monitoring data that Explorer has to

collect. On the basis of a wide set of resource consumption policies that we have

enforced for SOMA agents, we have measured an average 1/3 reduction factor for

the size of MAPI indicators collected by the Explorer with respect to the size of

corresponding raw MIB values. This kind of optimization is not possible when

adopting a traditional client/server approach where a fixed and centralized manager

remotely interrogates the different SNMP agents involved (SNMP Client/Server

graph in the figure). In addition, the MA technology is particularly suitable when the

target domain includes different LANs, interconnected with low bandwidth links (in

our measurements, two Ethernet LANs with n/2 hosts and connected via a 56kb

modem link). In this case, Explorer uses the slow link only once to migrate from one

LAN to the other, while the Client/Server solution exploits the link at least for n/2

SNMP requests and n/2 SNMP replies, wherever the centralized manager is located.

All results show that, in case of either significant data filtering or heterogeneous

network connectivity, the adoption of mobile agents can reduce both time

performance and generated traffic. Our results confirm model estimations and first

Mobile Agent-based Infrastructures for Internet Services

74

experimental measurements of recent research work on MA-based SNMP distributed

monitoring [Gavalas, 00] [Baldi, 98].

MAPI Explorer vs. SNMP Client/Server

0

2000

4000

6000

8000

10000

12000

0 2 4 6 8 10 12 14
#devices in target domain

T
im

e
(m

se
c)

Explorer agent

SNMP Client/Server

Explorer agent (dif ferent LANs)

SNMP Client/Server (dif ferent LANs)

Figure 4.8: MAPI Explorer vs. SNMP Client/Server to monitor one target domain

4.4 Video on Demand Service Management

The main goal of the SOMA profile for integrated management is to provide

application developers with a complete and flexible middleware support for the

management of complex network services, even obtained by tailoring and composing

existing ones, and to dynamically introduce new services in the existing

infrastructure without suspending operations.

Apart from the already mentioned tools for the distributed monitoring of

heterogeneous services and for the control of resource consumption of SOMA

agents, we have exploited the SOMA profile in the Video on Demand (VoD)

application area. We have designed and implemented a VoD service, called Mobile

Agent-based Distributed Architecture for Multimedia Applications (MADAMA)

[Bellavista, 01a], in collaboration with the University of Naples, in order to unify

their experience in VoD systems [DIVA] with our competence in MA-based

middleware facilities.

4. The Integrated Management Profile

75

MADAMA is based on the set of profile facilities previously described, and

implemented in terms of SOMA agents that are distributed over the paths between

the source and the targets of the video stream. MADAMA permits users to require a

QoS level for any multimedia stream, and allows managing and adjusting the

requested quality during service provision, to respond to dynamic modifications of

network resource availability. The monitoring, control and management of the

offered QoS level are currently made at the application-layer; we are extending the

MADAMA implementation to integrate network-layer technologies, such as ATM,

that provide direct control of QoS parameters, with a solution that is similar to

[Kassler, 99].

The VoD service is realized by coordinating two different types of SOMA agents

built on top of the integrated management profile: the QoS Negotiators (QoSNs) that

define and grant a specific level of quality for the service, and the Admission

Controllers (ACs) that manage the resources to be engaged by local intermediate

nodes (see Figure 4.9).

ACs are present on every node of the network; this assumption is not severe

because they are implemented by mobile agents that can move and be installed

whenever they are needed. Each AC monitors and manages local resources (it is a

specialization of the SOMA Explorer agent presented in Section 4.3). In addition, it

keeps track of the current commitment of local resources to already accepted

multimedia streams. The flow specifications of streams are recorded in a local table

of <receiving-host, bandwidth, delay, loss> tuples [Gibbs, 94]. Any

tuple represents the statistics of VoD traffic between the local and the receiving host:

the first time, it contains values calculated upon a short sample of communication;

then, it is updated by monitoring real traffic of current VoD sessions. ACs are in

charge of answering to reservation requests from QoSNs.

MADAMA requires the coordination of a set of QoSN agents located at the

source, at the target and at some intermediate nodes. QoSNs maintain session state:

they record user preferences and flow specifications for a video stream. QoSNs

evaluate the feasibility of meeting these requirements against the local AC database

of monitoring indicators and exploit the communication facility of the SOMA basic

configuration to perform the negotiation phase for the definition of the achievable

QoS. After the negotiation phase, during multimedia streaming, any QoSN is in

Mobile Agent-based Infrastructures for Internet Services

76

charge of receiving packets from the previous QoSN and of forwarding them to the

next QoSN. When multiple video streams interest the same network node, one QoSN

can handle all of them.

Domain
Locality

source

AC

QoSN

AC

QoSN

AC

QoSN

AC

AC

QoSN

AC

QoSN

target1

AC

QoSN

target2

AC

QoSN

target3

AC

QoSN

 tunneling corouting

1

2
3

3

32

2

2

1 32 multicast

Figure 4.9: Tunneling, corouting and multicast in MADAMA

Let us first consider the case of a video stream addressed to one target only. The path

between the source and the target is automatically determined at run-time, by tracing

the route via one dummy packet sent from source to target (it can be also

predetermined by the MADAMA source according to some previously collected

routing information). QoSNs move to the chosen hosts on the path and interrogate

the AC database: if available resources are not enough for the desired QoS, QoSNs

can coordinate and reduce their requests by scaling the stream (at the moment, by

dropping frames in Motion JPEG streams or by reducing resolution in MPEG-2 ones

[Gibbs, 94]). Only if these diminished reservation requests cannot be satisfied, the

VoD service is denied.

After a successful negotiation phase, the (possibly scaled) multimedia stream

starts to flow. During the video distribution, a link can fail or its quality can

deteriorate, thus making impossible to a particular QoSN to maintain the negotiated

quality. In that case, the interested QoSN can enhance the throughput of its link via

stream striping on non-corouted paths [Traw, 95]. In this case, it sends back a

4. The Integrated Management Profile

77

message to temporarily stop the stream, and sends forward a message to suspend

updates in AC tables on the path. Then, it sends its clones to handle new non-

corouted paths and starts the negotiation phase with the clones. When negotiation

completes, the QoSN sends back a message that restarts the stream: apart from a

delay in receiving the stream, the VoD target goes on transparently.

In the case of multicast distribution of the same video stream (for N targets), the

generated network traffic can be limited by exploiting location awareness of agents.

Mobile agents give an active role to intermediate nodes that can perform

acknowledgement aggregation and buffering to reduce implosion problems, and can

realize soft state caching of multicast data to permit local recovery with no need to

request all retransmissions to the multimedia service provider [Calderon, 98].

In our opinion, however, the most significant contribution of the MA technology

to VoD multicast is in the mobile agents capacity of dynamically adapting

multimedia traffic to receiver requirements and network conditions. In fact, the

common usage scenario is the multimedia distribution over the Internet to a group of

heterogeneous receivers with different processing capabilities and different (possibly

time-changing) bandwidths available in the paths, with the goal of optimizing

network traffic according to the QoS requirements of the receivers. Various

approaches are possible [Li, 99] (see Figure 4.10). The simplest one is usually called

the single-stream multicast: the sender simply adjust the multimedia QoS to the

worst receiver [Bolot, 94]. More sophisticated and fair is the replicated-stream

multicast approach: the sender distributes a small number of multimedia flows with

different QoS to receivers with different capabilities [Li, 96]. Another case, indicated

as layered multicast, exploits the possibility for many compression techniques

[Tudor, 95] [McCanne, 96] to separate the multimedia flow in different layers. Each

multimedia client receives a subset of the layers suited to its QoS requirements.

The SOMA integrated management profile is a suitable technology not only for

the deployment but also for the enhancement of these multicast architectures. Agents

are able to locally operate on the exchanged data to perform suitable transformations

on the multimedia flow. In case of replicated-streams, they can reduce network

traffic by avoiding the sender to transmit different flows at different QoS levels:

agents themselves are able to reduce the quality of their incoming multimedia flow

before distributing it to the next node (see Figure 4.11). The time needed for agents

Mobile Agent-based Infrastructures for Internet Services

78

to perform the transformations on the flow does not affect the quality of the service

once the client has started to receive the multimedia flow. If adequately supported by

buffering policies at the intermediate nodes, agent operations on data only increment

the service startup delay.

Sender

Receiver6

Receiver1 Receiver4

Receiver5Receiver3Receiver2

Router

RouterRouter Router

RouterRouter

Single-stream Multicast Worst-QoS
adapted stream

Sender

Receiver6

Receiver1 Receiver4

Receiver5Receiver3Receiver2

Router

RouterRouter Router

RouterRouter

Replicated-stream Multicast High-QoS stream
Medium-QoS stream
Low-QoS stream Sender

Receiver6

Receiver1 Receiver4

Receiver5Receiver3Receiver2

Router

RouterRouter Router

RouterRouter

Layered Multicast Enhancement2 layer
Enhancement1 layer
Basic layer

Figure 4.10: Single-stream, replicated-stream and layered multicast

Sender

Receiver6

Receiver1 Receiver4

Receiver5Receiver3Receiver2

Router

RouterRouter Router

RouterRouter

MA-enhanced Multicast
High-QoS stream
Medium-QoS stream
Low-QoS stream

Figure 4.11: Multicast and differentiated QoS in MADAMA

4.4.1 The MADAMA Performance

The MADAMA service requires the presence of the above described infrastructure

composed by distributed and coordinated agents. Therefore, before the multimedia

stream can start to flow, users have to wait for the completion of a setup phase in

which the service provider determines the path between the source and the target,

4. The Integrated Management Profile

79

and distributes all ACs and QoSNs needed on participating nodes. After the setup

phase has negotiated the service levels, the stream can flow from source to target.

During service provision, the flow can also be dynamically adapted, to adjust the

required QoS level at runtime with a best-effort approach, or to dynamically organize

corouted paths, with a further distribution of agents on new nodes. Dynamic

adaptations introduce overhead that is only a percentage of the one required by the

setup phase.

For that reason, we report about the setup costs in a normal usage scenario. In this

phase, one lightweight agent (about 1KB-sized) is sent from the source to the target

to identify the path for the multimedia stream. This agent reports back to the source

the information about how many ACs (about 6KB-sized) and QoSNs (about 4KB-

sized) have to be instantiated and to be sent in parallel to interested nodes. We have

considered the worst case when none of the intermediate nodes has neither the AC

nor the QoSN agent. In more realistic scenarios, hosts may have already the AC

agent running for purposes of remote monitoring and diagnosis.

In addition, the VoD service should be typically carried out in untrusted

environments, where cooperating agents have to pass integrity and authentication

checks before being allowed to operate to local resources. The SOMA complete

configuration permits users to choose which subset of functionality are used by

specific services. In that way, services can obtain the most suitable trade-off between

performance and security, depending on the level of trust of the environment and on

the criticality of the application domain. In particular, the VoD service provided in a

trusted environment may omit authentication and integrity checks, with considerable

time saving on the setup overhead.

We report the setup time for the MADAMA VoD service in a non-dedicated

network consisting of the interconnection of several LANs. In particular, the results

apply to a case where the video source is 8 hop far from the target, i.e. the

multimedia flow has to pass through 7 intermediate non-tunneled nodes to reach its

target. Any intermediate node hosts the default place of the domain it belongs to, and

any domain abstraction models a distinct real LAN in our university organization.

The LANs are composed by heterogeneous hosts (PentiumII PCs with Windows NT

4.0 and Sun SPARCstation with Solaris 2.5) and are based on different

communication technologies, mainly Ethernet and Fast-Ethernet.

Mobile Agent-based Infrastructures for Internet Services

80

In the case of untrusted environments, the multimedia source has to calculate a

1024-bytes blocksize MD5 hash of all sent agents and to sign them with its 1024-bits

RSA private key. Any intermediate node must perform the security checks to verify

the signature and the hash. The average setup time measured in this scenario is 10907

ms and shows the feasibility of the approach in the case of complex interconnection

of non-dedicated local networks.

In the case of trusted environments, MADAMA gives the possibility of providing

the VoD service with no security checks, with a considerably reduced average setup

time (7634 ms that is 30% less of the first case). We are experimenting other

significant time reductions via the utilization of the HotJava just-in-time compilation

techniques and via the recent introduction in our organization of fast communication

technologies based on FDDI and ATM.

81

5 The SOMA Profile for Mobile Computing

The diffusion of the Internet permits an almost ubiquitous availability of attachment

points, and users expect to access Internet services independently of their physical

location, e.g., at their workplace, at home, at a public telephone-Internet box. In

addition, advances in cellular telecommunication and device miniaturization are

forcing to open Internet services to the increasing number of portable network

devices, e.g., laptops, Wireless Application Protocol (WAP) phones and Personal

Digital Assistants (PDAs) [Lewis, 98].

This trend suggests considering an advanced infrastructure to support different

forms of mobility. The support for user mobility should provide users with a uniform

view of their preferred working environments, i.e. user preferences and subscribed

services, independently of their current positions in the network [Kumar, 96]. The

support for terminal mobility should allow devices to move and connect to different

points of attachment in the global network. An emerging issue is the dynamic

adaptation of mobile-aware resources and services, to be automatically retrieved by

mobile users/terminals independently of their current location [Jing, 99]. In the

following, we call this issue mobile access to resources.

The ultimate goal is to permit the movement and execution of a whole computing

environment in heterogeneous networks, while maintaining both the Internet service

provision and the access to distributed resources even in case of network

disconnection. Mobile computing issues span from the network layer to the

application one, and require the design and implementation of a mobility middleware

that integrates suitable support protocols, mechanisms and tools. The idea of a global

infrastructure has already been accepted in the communication area, where the

Telecommunication Information Networking Architecture standardizes a layered

architecture to integrate service components, network operators and management

functionality.

The mobility middleware should be capable of dynamically reallocating and

tracing mobile users and terminals, and of permitting communication and

coordination of mobile entities. In addition, open and untrusted environments impose

to deal with different devices and systems and to grant the needed security level.

Mobile Agent-based Infrastructures for Internet Services

82

Solutions to these issues require compliance with standards to face heterogeneity and

to interoperate with legacy components, and the presence of a thorough security

infrastructure based on standard cryptographic mechanisms and tools.

The realization of a mobility middleware can significantly take advantage of the

adoption of the Mobile Agent (MA) technology because many MA requirements

coincide with mobility ones [Kovacs, 98] [Kotz, 97] [Lipperts, 99].

Mobility requires dynamicity, intended as the possibility of modifying and

extending the middleware with new components and protocols to adapt to evolving

service/user requirements at run-time. Dynamic distribution/modification of code and

dynamic resource binding are very similar in case of both mobile agents and mobile

users/terminals. Mobile agents benefit from the additional flexibility of moving code

together with the state produced by performed computation.

Mobility stresses the security issue, to authenticate mobile users/terminals, to

authorize the access to system resources and to grant secrecy and integrity in

communications. After the pioneering results of IBM Aglets [Lange, 98], recent MA

research activities have identified solutions for security problems: several MA

platforms provide flexible mechanisms and policies to grant the most suitable

security level [Tripathi, 00] [Bellavista, 00c]. For instance, many MA systems

integrate with Public Key Infrastructures to simplify authentication of mobile

users/terminals.

Mobile users/terminals need interoperability when moving to unknown hosting

environments to interact with available resources and services. To face similar

problems, the MA research has promoted interoperable and standard interfaces. For

instance, some MA platforms already provide compliance with CORBA and related

standards, such as the MASIF and the FIPA specifications [Milojicic, 98] [FIPA], as

described in Section 3.2.2.

Mobile computing can greatly benefit from the possibility of asynchronicity

between requests of user/terminal operations and their execution. For instance,

wireless connections impose strict constraints on available bandwidth and on

communication reliability, and force to minimize the connection time for the wireless

device support. The MA paradigm does not need continuous network connectivity

because connections can last only the time needed to inject agents from mobile

terminals to the fixed network. Agents are autonomous and permit to carry on

5. The Mobile Computing Profile

83

services even when launching users/terminals are disconnected and to give results

back at their reconnection [Kovacs, 98] [Kotz, 97] [Lipperts, 99].

The mobility middleware should give application designers location awareness to

perform service-specific optimization and to adapt to local resources. A mobility-

enabled application should face the possibility of mobile users to change location and

should dynamically tailor to the properties of the current network connections and to

the characteristics of hardware devices. Location awareness of the MA paradigm can

propagate allocation visibility up to the application level, thus simplifying the

support of dynamic QoS adaptation to the local situation [Kotz, 97] [Lipperts, 99]. In

addition, the MA autonomy from users simplifies dynamic personalization: mobile

agents can follow user movements and tailor service results depending on personal

preferences.

Because of these considerations, we have decided to design and implement a

SOMA-based specific profile for the support of mobile computing. The mobile

computing profile runs on top of the SOMA complete configuration, and offers

middleware facilities for the deployment of Internet services in contexts of

user/terminal mobility and of mobile access to resources. These middleware facilities

are organized in three modules: the User Virtual Environment (UVE), the Mobile

Virtual Terminal (MVT), and the Virtual Resource Management (VRM). The UVE

facility is in charge of providing users with a uniform view of their working

environments independently of current locations and currently used terminals. The

MVT facility extends traditional terminal mobility by preserving the whole terminal

execution state to be restored at new locations (including active processes and

subscribed services). The VRM facility permits mobile users/terminals to maintain

the access to resources/services by automatically re-qualifying the bindings, and also

to move specific resources/services to permit load balancing and replication.

In the following, after presenting an overview of the recent related work on user

mobility, terminal mobility and mobile access to resources, the chapter will describe

the design, implementation and functionality of the three modules of the SOMA

profile for mobile computing. Then, Section 5.5 will report and discuss the costs of

the middleware facilities, while Section 5.6 will end the chapter by presenting a real

usage scenario where the mobile computing facilities provide the middleware for the

deployment of mobility-enabled Internet services.

Mobile Agent-based Infrastructures for Internet Services

84

5.1 Related Work

Several researches deal with mobility, with different approaches and goals. This

section presents some common approaches to user and terminal mobility, and also

describes the first directions of solution in the area of mobile access to resources.

Figure 5.1 sketches an example with a mobile user and a mobile terminal, which

change their location but maintain access to a printer service. In this example, the

mobile terminal chooses to maintain its previous binding to the currently remote

printer (Figure 5.1 – case a), while the mobile user re-qualifies the binding to an

equivalent printer in the new hosting locality (Figure 5.1 – case b).

LAN 1 LAN 2

Internet

user mobility

LAN n

terminal mobility

a
a

b

b

Figure 5.1: An example of user mobility, terminal mobility and mobile access to resources

5.1.1 User Mobility

User mobility provides users with a uniform vision of their preferred working

environments independently of both terminal properties and current physical

location. The support for user mobility has to authenticate user access and to

organize her working environment according to the information contained in her user

5. The Mobile Computing Profile

85

profile. The profile describes the graphical interface information and all user

preferences, e.g., the default language, the required security level, and the subscribed

services. Profiles may also include user-specified information to adapt the working

environment to the hardware characteristics of the current terminal. For instance, if

the user is connected via a PDA with limited bandwidth and limited graphic

resolution, it is worthwhile to discard large size images.

Several research activities on user mobility focus on the definition and

management of suitable user profiles. The UMTS proposes a service infrastructure

based on the concept of Virtual Home Environment (VHE) [UMTS] that presents

users with the same personalized features, user interfaces and services independently

of the current hosting network. The provided user working environment should

depend on profile preferences, terminal equipment and current network conditions.

The World Wide Web Consortium promotes the Composite Capability/Preference

Profiles (CC/PP), a standard proposal for both the representation of profile

information and the exchange protocol, based on the Resource Description Format

encoded in XML [W3C CC/PP]. WAP mobile phones are going to adopt CC/PP to

tailor the provision of Internet services to their specific characteristics [WAP]. In

addition, the Foundation for Intelligent and Physical Agents (FIPA) is working to

define an agent interoperability framework for nomadic support that deals with the

information for user profile management and mobile device characteristics [FIPA].

Let us note that several proposals tend to integrate in the user profile both user

preferences and information about current terminal characteristics, e.g.,

hardware/software platform and screen resolution [WAP]. Though personalization

and adaptation of services need both user- and terminal-dependent information, we

claim that the two dimensions should be cleanly de-coupled. User profiles should

contain only user-related information, and devices should inform the support

infrastructure of their characteristics in an independent way. This achieves maximum

flexibility and reusability in all real scenarios where, for instance, the same user can

exploit a set of different terminals with different characteristics.

5.1.2 Terminal Mobility

Terminal mobility refers to the possibility of moving portable devices while

maintaining current working sessions with different degrees of transparency for

Mobile Agent-based Infrastructures for Internet Services

86

running applications. In more detail, roaming computing focuses on communication-

layer mechanisms to preserve communication channels transparently to applications,

while nomadic computing mainly aims at reactivating network connectivity after

migrations.

Many state-of-the-art proposals face roaming computing at the lower layers of the

OSI protocol stack. Network-layer protocols, such as Mobile IP [Bhagwat, 96],

associate a mobile host with two IP addresses. The first one represents the current

point of attachment to the network; the second one reflects the mobile host home

address, i.e. the address of a fixed care-of entity that has the duty of tracing the

current position of the mobile host. Mobile IP is backward compatible with IP but

cannot achieve optimal routing because it always requires packets to pass through the

care-of (triangle routing problem). Another solution is IPv6 [Bhagwat, 96] that

adopts an approach similar to Mobile IP but also provides acceptable performance

and excellent scalability by permitting senders to cache information about current

location of their mobile destinations. The process of acceptance and adoption of

IPv6, however, is likely to last long, as for all new protocol proposals.

The issue of wireless communication in local area networks is addressed by the

IEEE 802.11 standard protocol. It spans from the physical-media layer that defines

frequencies and their usage, to the media access layer that defines basic packet

framing and headers. Unfortunately, not all the wireless device producers have

accepted the 802.11 and full multi-vendor interoperability is only a long-term hope

[IEEE P802.11].

The long acceptance process of new protocols has recently motivated and

suggested the proposal of programmable network architectures to simplify protocol

prototyping and deployment [Psounis, 99]. While programmable networks are still an

open research issue, there are other TCP/IP-based solutions for specific aspects of the

mobility support. For instance, the Dynamic Host Configuration Protocol (DHCP)

can automate the configuration of nomadic hosts via dynamic assignment of

temporary IP addresses [Perkins, 99].

As a final consideration, it is still unclear whether network-layer approaches can

provide a flexible solution to fundamental mobility issues, such as security and

interoperability, that are faced at a higher level of abstraction and can benefit from

standard tools at the application level [Bolliger, 98].

5. The Mobile Computing Profile

87

5.1.3 Mobile Access to Resources

Research activities about mobility have not fully addressed the possibility of

maintaining access to available resources and services while moving. This goal

requires mobility-enabled naming solutions to keep the information about availability

and allocation of resources and services. Naming solutions suitable to face mobility

can be classified in two main categories, discovery and directory services.

Discovery services usually employ simple protocols to obtain information about

entity location (address and simple configuration data) with a minimal knowledge of

hosting environments. Recent researches have produced widely accepted distributed

protocols to maintain information about current resource availability in local

networks and to answer simple queries. Different implementations reflect the

different types of resources they classify, from simple embedded devices, as in the

Simple Service Discovery Protocol of Microsoft proprietary Universal Plug and Play

[UPnP], to more complex service components, as in Jini and in the Service Location

Protocol (SLP) [Perkins, 99].

Directory services usually organize names and properties for registered entities in

a very flexible way and provide operations to browse all registered information with

complex search patterns. Apart from the traditional work on directory standards, such

as the X.500 Directory Access Protocol (DAP), the Internet community has defined

lightweight protocols with a simplified interface, such as the Lightweight DAP

(LDAP), that run directly on top of TCP/IP [Howes, 97].

However, the automatic maintenance and updating of bindings to

resources/services in mobility scenarios via discovery and directory services is still in

its infancy. The first proposals agree on the necessity of middleware functions to

provide, for instance, the transparent reestablishment of TCP/IP connections in

nomadic computing [Hansen, 98], and the automatic adaptation of service flows to

the type of resources that are currently available to PDAs [Fox, 98].

5.2 User Virtual Environment

The UVE facility is the component of the SOMA profile for mobile computing that

supports the concept of VHE. It permits users to connect at different locations,

possibly via heterogeneous terminals, while maintaining the personal configurations

Mobile Agent-based Infrastructures for Internet Services

88

indicated in user profiles. Users can specify profile information at the first

registration, and modify it at any time. The profile information contains not only

usual attributes, such as the preferred icon arrangement on the display. It can also

include more complex data, such as personal X.509 certificates, the resources

requested to the hosting environment for ordinary tasks (e.g., a printer of a specified

quality), and user constraints to direct QoS adaptation to the current terminal type

(e.g., in a connection via a mobile phone, the user may request the mobility

middleware to discard large size attachments in incoming mail).

The UVE facility stores user profiles at the user home, i.e., a fixed host where the

user has first registered. For increased reliability and efficiency, UVE can replicate

and cache user profile copies at several other locations. UVE can make user profiles

globally available, by exploiting the directory service integrated in the SOMA

complete configuration. The directory service can transparently map requests to the

most convenient UVE server available, according to any user preferred metric

(network distance, response time, load balancing, etc.).

The UVE facility greatly benefits from its MA-based implementation because

SOMA agents simplify the dynamic distribution of UVE information and the

realization of fault-tolerant solutions via agent replication. In addition, the

persistency facility in the SOMA basic configuration provides automatic/manual

mechanisms to save the state of the user session, and to move and restore it to the

new location, where the user can find previously configured services, possibly

adapted and scaled. UVE can also permit to yield execution results to users

independently of their current location. When users are disconnected, UVE

commands the SOMA-based middleware to temporarily freeze the agents with the

results. These agents are restarted only at user reconnection.

UVE must ensure secrecy of the information in user profiles: the security facility

of the SOMA complete configuration enforces user authentication and the

corresponding security policy. Only after authentication, the hosting environment can

disclose the associated user profile.

Many other add-on modules can enhance the UVE facility. In the case of a

regularly mobile user, the SOMA-based middleware could arrange result delivery in

advance. For instance, if the user is interested in the results of the same query, e.g.,

selected stock updates, the result can be sent where the user works from Mondays to

5. The Mobile Computing Profile

89

Wednesdays and to a different location the rest of the week. We are working on

several of these components that can enhance the SOMA middleware in other

specific application domains, possibly combined with the mobile computing support,

such as the autonomous distributed retrieval of heterogeneous museum information

[Bellavista, 00d] briefly sketched as current work in Chapter 6.

5.3 Mobile Virtual Terminal

The MVT facility is the component of the SOMA mobile computing profile that

supports the migration of mobile devices between different locations, by permitting

the mobile terminal to continue execution while preserving the state of the

interactions with network resources and services. The protocols cited in Section 5.1.2

are the first steps to support MVT, but they address only network connectivity. The

SOMA-based middleware, instead, simplifies the tracing of mobile terminals, the

dynamic rebinding of resources/services, the support of out-of-band computations,

and the persistency of interaction state.

SOMA identification and naming facilities support the tracing of mobile

terminals. As it happens with mobile agents, traceability after migration is obtained

via care-of solutions, discovery and directory services. A SOMA agent at a fixed

location can act as the care-of entity, working as a forwarder for its mobile device.

The SOMA discovery-based naming system is preferred to keep track of a mobile

terminal within a network locality. The directory-based naming service makes

mobile devices visible to all authorized entities in the global system, but imposes a

larger run-time overhead. The SOMA integrated middleware provides service

developers with the support for any of these solutions.

In addition, any mobile terminal should continue to access the needed network

resources/services independently of its location. The MVT facility can interact with

VRM (see Section 5.4) to provide several solutions. MVT can re-qualify terminal

references by binding to equivalent resources/services in the new locality; it can

maintain references to currently remote resources if re-qualification is either

impossible or undesired; it can support the creation of new bindings to previously

unknown resources/services.

Mobile Agent-based Infrastructures for Internet Services

90

The MVT implementation in terms of mobile agents is suitable to support out-of-

band computations, i.e., non-interactive operations performed while the terminal is

disconnected. Before terminal disconnection, MVT can command SOMA agents

running on the mobile device to migrate to hosts in the fixed network. Agents can

operate asynchronously with the disconnected terminal. When a mobile terminal

reconnects at another point of attachment, MVT delivers waiting agents and

messages to the mobile device.

In addition, the SOMA migration facility supports the serialization of both agent

code and execution state into streams suitable for network transfer and storage

persistency. MVT exploits serialization to marshal/unmarshal the terminal session

state on stable storage media and to continue the execution from recovered

information. This persistency checkpoint can help in critical situations, e.g., a

connectivity loss or a power shortage.

MVT also faces the security and interoperability issues to protect resources from

the unauthorized usage of malicious mobile agents and to face heterogeneity. In

particular, MVT exploits the SOMA security facility (authentication via X.509

certificates, flexible authorization policies, secrecy and integrity via standard

cryptographic libraries) to grant security to mobile terminals, and the SOMA

interoperability module to integrate mobile terminals with heterogeneous

resources/services.

5.4 Virtual Resource Management

The VRM facility of the SOMA profile for mobile computing is in charge of

maintaining information about the properties and current location of available

resources/services. For instance, in case of terminal mobility, VRM implements the

server-side functions to establish dynamic connections between mobile terminals and

needed resources, while MVT provides the client-side ones.

The SOMA-based implementation of VRM facilitates the modification and

migration of system resources/services at run-time, thus enabling even complex

management operations. For instance, an administrator can exploit VRM to favor

locality in resource access and to balance the system load by means of dynamic

redistribution of components. Moreover, the SOMA mobility middleware can

5. The Mobile Computing Profile

91

maintain pending bindings to agent-wrapped migrated resources by exploiting the

same mechanisms for agent tracing.

In addition, the mobility of resources/services significantly benefits from the

flexible naming facility available in the SOMA complete configuration. VRM can

employ discovery and directory solutions depending on resource/service

requirements. For instance, VRM exploits the discovery service to retrieve a folder

for project files of one developer team working locally in a LAN. If the project

requires the collaboration of other departments, a system administrator can register

the resource also at the directory service, for a wider accessibility by all authorized

developers.

Global scenarios force VRM to face resource/service heterogeneity. MA systems

generally employ the Java object technology to wrap resources into agents that

standardize interfaces and control access; the SOMA framework also simplifies the

integration with legacy systems via CORBA, as described in Section 3.2.2. From a

different point of view, agent wrapping permits to exploit the same security

mechanisms and policies already available for SOMA agents to control, to monitor

and to log accesses to resources. The possibility to migrate resources and service

components introduces additional security issues: similar problems have already

produced solutions in the MA area to ensure integrity and secrecy of mobile agents

during both network transmission and hosted execution [Tripathi, 00] [Bellavista,

00c].

5.5 The Performance of the Mobile Computing Profile

We report here the costs of the basic mechanisms of the SOMA mobile computing

profile, extensively used to support terminal/user mobility and mobile access to

resources. The costs are measured for two platforms, one cluster of 300-MHz

PentiumII PCs with Windows NT, and another cluster of 120-MHz Sun

SPARCstation5 with Solaris 2.6. Both clusters exploit 10Mbit Ethernet connections.

The mobile place has been hosted by a 233-MHz AMD K6 laptop with Windows 95.

Figure 5.2 reports the performance of the mobile computing profile in the two

platforms. The terminal mobility cost measures the time for the mobile place to

connect to the new hosting domain and to rebind its resources to the local equivalent

Mobile Agent-based Infrastructures for Internet Services

92

ones via the SOMA discovery-based naming service. The connection time has a

linear dependence from the number of resources to rebind. The user mobility cost

consists of a constant threshold due to the time needed by the support to detect user

reconnection and to wake up the corresponding profile agent, and of a variable part

necessary to migrate the profile agent from the user home to the current point of

attachment. This last action permits the UVE to configure the local terminal

according to the user profile. The variable part linearly depends on the profile agent

size. The cost of mobile access to resources measures the migration of database

resources of different size, and includes the time for de/registration at the discovery-

based naming service at the leaving/entering domain. Apart from the fixed cost paid

to update the SOMA naming facility, the results scale linearly with the size of

migrating resources.

Costs of Resource Mobility

2500

3000

3500

4000

4500

5000

5500

10 20 30 40 50
Resource size (kB)

Ti
m

e
(m

se
c)

PC cluster

SPARC cluster

Costs of User Mobility

2000

2500

3000

3500

4000

4500

2 4 6 8 10
Profile agent size (kB)

Ti
m

e
(m

se
c)

PC cluster

SPARC cluster

Costs of Terminal Mobility

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

0 1 2 3 4 5 6 7
Number of resources to rebind

Ti
m

e
(m

se
c)

PC cluster

SPARC cluster

Figure 5.2: Costs of terminal/user mobility and mobile access to resources

All results demonstrate not only the viability of the SOMA approach to mobile

computing but also the good scalability in case of entities limited in number and size,

as it is typical in ordinary mobility-enabled Internet services. This is mainly due to

5. The Mobile Computing Profile

93

scalability of the SOMA naming facility for mobile entities that delegates and

distributes registration/deregistration duties only in the involved SOMA domains. As

a final consideration, we assert that the performance of the different platforms is

comparable: the workstations have exhibited larger starting threshold costs, mainly

due to their minor processing power, but their performance enhances as soon as the

number and size of mobile entities enlarge. This result stems mainly from the

optimized mapping of thread and socket mechanisms of the Java Virtual Machine on

Solaris platforms.

5.6 An Example of Application Scenario

To clarify the functionality available via the SOMA profile for mobile computing

and the modalities of interaction of the UVE, MVT and VRM facilities, let us end

this chapter with the presentation of a practical usage scenario of the SOMA-based

mobility middleware.

Figure 5.3 shows the UVE interface for profile modification. The profile reports

personal data, user security requirements, and user suggestions for possible service

adaptation via the specialized agents for QoS control available in the SOMA profile

for integrated management. For instance, if the user indicates that her X.509

certificate is registered in the directory-based naming facility, the mobility

middleware exploits that certificate to perform public-key cryptographic operations;

otherwise, the SOMA security facility interrogates the responsible certification

authority at run-time.

In addition, the figure presents the console of a mobile place MP1, coming from

the Bologna domain and requesting to enter the new hosting Ferrara domain. MVT

updates the care-of at the MP1 home with the information of Ferrara current

location. In Figure 5.3, one mobile agent is frozen at the MP1 home during MP1

disconnection (and, similarly, two messages sent to agents in execution on MP1).

MVT forwards all suspended entities to MP1 in Ferrara. The figure also shows the

case of a user, working in MP1, with the profile that states her Web access via a

specific Web proxy. Before leaving Bologna, she owned a binding to the

corresponding Web proxy server in the Bologna domain. At the reconnection in

Ferrara, MVT asks VRM to know about the availability of one equivalent Web

Mobile Agent-based Infrastructures for Internet Services

94

proxy. The VRM first interrogates the discovery-based naming facility: if a local

proxy is available, VRM rebinds MP1 to it, as shown in Figure 5.3. Otherwise, VRM

asks the SOMA directory-based naming system: if there were many functionally

equivalent Web proxies, MVT would have prompted the user for a choice. Finally,

MVT updates the SOMA naming facility local to the Ferrara domain to include

MP1, which can work as a SOMA fixed place.

The UVE, MVT and VRM modules exploit the available persistency facility of

the SOMA basic configuration to freeze/wake-up SOMA agents and messages in

case of disconnection/reconnection of users, terminals and networked service

components. Persistency minimizes the consumption of system resources while

agents wait for a currently disconnected user/terminal/component. In addition, the

persistency facility can provide fault-tolerance by duplicating and storing agent

copies before beginning critical operations.

(a) (b)

Figure 5.3: UVE user profile information summary (a); mobile place interactions with the

MVT and VRM services at reconnection in the Ferrara domain (b)

The SOMA profile for mobile computing is showing its effectiveness in supporting

mobility-enabled Internet services [Bellavista, 00b] [Bellavista, 00e]. We are

completing the implementation of several service prototypes based on the profile. In

the area of network, systems and service management, the Mobile Manager service

will permit to system administrators to transparently attach their mobile terminals to

locally inspect different parts of the controlled systems.

5. The Mobile Computing Profile

95

In the domain of distributed retrieval of heterogeneous information, the Virtual

Museum service will take advantage of the possibility of moving database resources

to improve service performance and to balance the system load. In addition, the

updated results of queries that are regularly of interest of some registered users will

be automatically cached within the network localities where those possibly mobile

users presumably will try to access them.

Mobile Agent-based Infrastructures for Internet Services

96

97

6 Concluding Remarks

6.1 Lessons Learned

The Internet global communication infrastructure is becoming the privileged medium

to provide services to a fast growing market of users, interconnected by possibly

mobile heterogeneous devices. The widespread diffusion of Internet services and the

consequent increasing commercial competition are pushing and accelerating the

demand of users, service providers and network operators for new and complex

service properties, from differentiated QoS levels to ubiquitous accessibility, from

dynamic personalization of service functionality to user accounting for effective

resource consumption.

This scenario requires providing solutions to several technological challenges at

different levels of abstraction, and induces a considerable growing of the complexity

of the Internet communication infrastructure. The complexity can be faced up only

with the provision of rich and flexible general-purpose middleware facilities that give

service developers the possibility to use enhanced APIs to support the design,

development and deployment of Internet services with the properties mentioned

above. In this way, service developers can abstract from the duties of horizontal

infrastructure solutions, and can focus their attention and competence only on

domain-specific issues. The key relevance of providing middleware facilities for

Internet services is widely recognized in the distributed systems community

[Sventek, 00] [Schmidt, 00] [Bellavista, 01b].

The doctorate has investigated the design of a middleware for Internet services

based on mobile agents. We have adopted the MA technology mainly because of the

agent capacity of exploiting locality in the access to distributed resources and of

performing distributed operations in an autonomous and asynchronous way with

respect to both commanding users and originating hosts. In particular, we have

designed and implemented an integrated middleware, called SOMA, organized in

different layers of configurations (general-purpose horizontal facilities) and profiles

(domain-specific vertical facilities), in order to support flexibly the different and

Mobile Agent-based Infrastructures for Internet Services

98

sometimes interrelated requirements of Internet services in different application

domains. On the basis of the SOMA middleware, we have implemented several

service prototypes, especially in the areas of network and systems management, of

multimedia distribution with differentiated QoS levels, and of user/terminal/resource

mobility. The prototypes have contributed to the state-of-the-art of the research in the

field [Bellavista, 99b] [Bellavista, 00a] [Bellavista, 01c] and have permitted to

evaluate the effectiveness of the solutions adopted in the SOMA middleware, thus

producing significant feedback for its refinement.

An important lesson learned is that it is feasible to provide modular, flexible and

dynamically configurable middleware solutions with acceptable results in terms of

both performance and support complexity. To achieve this result, we have shown

that it is crucial to adopt suitable methodologies, programming paradigms and

technologies, in order to support dynamic extensibility, modularity, reusability and

locality in the access to distributed resources. The facilities available on the network

nodes involved in the provision of a specific service should be tailored, even at

runtime, to user-specific and domain-specific requirements. The middleware cannot

be complete and lightweight at the same time. For this reason, we have organized the

SOMA middleware in configurations and profiles, in order to give service developers

the possibility to choose dynamically the most suitable balance between support

completeness and achievable performance.

In addition, in our experience it is fundamental to provide service developers with

different abstraction levels depending on the specific application domain addressed

because the same level of transparency/awareness is not suitable for all service

domains. A flexible middleware should be capable of taking transparent decisions

about entity location and QoS management, but should also propagate the visibility

of location and QoS properties to the application level when application-specific

operations are required, e.g., multimedia flow scaling when the frame transfer rate is

minor than a specified threshold.

6.2 Future Work

Given the encouraging results obtained by the implementation of both the SOMA

middleware and the Internet services built on top of it, we plan to continue this

6. Concluding Remarks

99

research activity within the framework of two national projects (the MURST Project

of National Relevance “QoS Infrastructures for Web-based Multimedia Services with

Heterogeneous Ubiquitous Accessibility” and the MURST Parnaso “Ecumene:

Technologies and Tools for Virtual Museums”) that have been just funded.

From the point of view of the SOMA profile for integrated management, we are

working on the extension of profile facilities for QoS management in order to grant

and guarantee specified levels of quality. We are evaluating and testing solutions that

adopt network-layer reservation protocols, such as RSVP, and network-layer

technologies providing direct control of QoS parameters, such as ATM. In addition,

we are developing and deploying a SOMA-based service prototype for the adaptive

scaling of multimedia flows to heterogeneous mobile devices. The service will

exploit not only the middleware APIs of the integrated management profile, but also

the mobile computing profile facility to manage terminal mobility and device

profiling.

We are working also on the design and implementation of a new SOMA profile

for the autonomous retrieval of distributed and heterogeneous museum information.

The goal is to provide middleware facilities for a virtual museum service that permits

to access and manage the data (e.g., pictures, figures, maps, texts, audio, and

animated images) about artistic and historical objects maintained over a large number

of geographically distributed servers of public and private organizations in Italy. The

complexity of the scenario mainly stems from the high heterogeneity of data servers,

formats and contents. This is due to the lack of common standards for neither storing

the inventory data and the digital representations of the cultural patrimony, nor

providing catalogues and indexing structures at the local sites or at the global level.

This application domain will permit also to experiment distributed caching solutions

based on the SOMA technology. Caching agents will maintain and automatically

update the results of query of usual interest directly in the network locality of

interested users. In addition, caching agents can migrate to follow mobile users who

show recurring and predictable mobility patterns, as mentioned in Section 5.6, thus

integrating with the SOMA profile for mobile computing.

We will continue to take into consideration state-of-the-art standard proposals,

addressed both to configuration-layer interoperability and to domain-specific profile-

layer efforts of standardization. In particular, we are interested in making SOMA

Mobile Agent-based Infrastructures for Internet Services

100

fully compliant with the recent FIPA’00 specification [FIPA], and we are

investigating the design guidelines emerging from the current OMG work to specify

a CORBA service for object migration [OMG, 99b]. About domain-specific

interoperability, we are working to provide the MADAMA video-on-demand service

with a CORBA interface compliant to OMG multimedia streaming specifications

[OMG, 99c]. In addition, we are going to adopt an emerging interoperable

representation format for museum information to encapsulate legacy data resources

in order to widen their accessibility and enable their integration. This format

specifies an XML-based Document Type Definition and is the result of the

standardization efforts of the Consortium for the Computer Interchange of Museum

Information (CIMI) [CIMI].

Finally, from the point of view of the extension of the SOMA complete

configuration, we are working on the integration with policy specification languages

to express agent authorizations and duties. This will permit to SOMA system

administrators to adopt a suitable high-level approach to the specification of security

constraints on resource utilization and of management operations to perform

automatically in response to runtime conditions. To this purpose, we are integrating

SOMA with a state-of-the-art policy specification language called Ponder [Corradi,

01]. Ponder policies permit to specify both the conditions to control and the actions

to perform triggered by system conditions. Local/distributed conditions can be time-

independent (e.g., the agent place of origin and its principal) and time-dependent

(e.g., the current state of memory usage in a whole SOMA domain), and will be

controlled via MAPI-based solutions.

101

Acknowledgements

The research activities described in the doctorate thesis have been supported by

several national research projects:

• MURST Research Project of National Relevance (ex-40%) “MOSAICO: Design

Methodologies and Tools of High Performance Systems for Distributed

Applications”, 1997-1999;

• MURST Research Project of National Relevance (ex-40%) “QoS Infrastructures

for Web-based Multimedia Services with Heterogeneous Ubiquitous

Accessibility”, 2000-2002;

• Coordinated CNR Project “Models and Environments for Distributed, Open,

Parallel and Mobile Systems”, sub-project “Global Applications in the Internet

Environment”, 1997-1999;

• Special Funding of the University of Bologna “Integrated Environments for the

Development of Secure Services”, 1999-2001;

• Young Researcher Project of the University of Bologna “A Mobile Agent

Middleware for the Support of User, Terminal and Resource Mobility in Global

Systems”, 2000.

Many thanks to my supervisor, Maurelio Boari, and to Antonio Corradi and Cesare

Stefanelli, for their invaluable advice, direction, encouragement and comments on

this dissertation.

A further thanks to all people from academic institutions and industrial research

laboratories who have contributed to the design and implementation of the SOMA

middleware, and in particular to Thomas Magedanz from IKV++, Stefano Russo

from the University of Naples, and Andrea Tomasi from the University of Pisa.

A final thanks to all in the Laboratorio di Informatica Avanzata (LIA) for making

this an enjoyable and stimulating period of study.

Mobile Agent-based Infrastructures for Internet Services

102

103

References

[Aiken, 00] B. Aiken et al., “A Report of a Workshop on Middleware”,
http://www.ietf.org/rfc/rfc2768.txt, Feb. 2000.

[Ajanta] University of Minnesota, Ajanta Mobile Agents Research Project,
http://www.cs.umn.edu/Ajanta/.

[Albitz, 98] P. Albitz and C. Liu, DNS and BIND, 3rd Edition, O'Reilly &
Associates, Sep. 1998.

[Al-Shaer, 99] E. Al-Shaer, H. Abdel-Wahab and K. Maly, “HiFi: a New Monitoring
Architecture for Distributed Systems Management”, 19th Int. Conf. on
Distributed Computing Systems (ICDCS’99), IEEE Computer Society,
1999.

[Anerousis, 99] N. Anerousis, “An Architecture for Building Scalable, Web-based
Management Services”, Journal of Networks and Systems Management,
Special Issue on Enterprise Management, Vol. 7, No. 1, March 1999.

[Assis-Silva, 98] F. M. Assis-Silva and R. Popescu-Zeletin, “An Approach for Providing
Mobile Agent Fault Tolerance”, in [Rothermel, 98].

[Bakic, 00] A. Bakic, M. W. Mutka and D. T. Rover, “BRISK: a Portable and
Flexible Distributed Instrumentation System”, Software - Practice and
Experience, Vol. 30, No. 12, 2000.

[Baldi, 98] M. Baldi and G. P. Picco, “Evaluating the Tradeoffs of Mobile Code
Design Paradigms in Network Management Applications”, 20th Int.
Conf. on Software Engineering, IEEE Computer Society Press, Apr.
1998.

[Bellavista, 00a] P. Bellavista, A. Corradi and C. Stefanelli, “An Integrated Management
Environment for Network Resources and Services”, IEEE Journal on
Selected Areas in Communication, Special Issue on Recent Advances in
Network Management and Operations, Vol. 8, No. 5, May 2000.

[Bellavista, 00b] P. Bellavista, A. Corradi and C. Stefanelli, “A Mobile Agent
Infrastructure for Terminal, User and Resource Mobility”, IEEE/IFIP
Network Operations and Management Symposium (NOMS 2000),
Hawaii, April 2000.

[Bellavista, 00c] P. Bellavista, A. Corradi and C. Stefanelli, “Protection and
Interoperability for Mobile Agents: A Secure and Open Programming
Environment,” IEICE Transactions on Communications, IEICE/IEEE

Mobile Agent-based Infrastructures for Internet Services

104

Special Issue on Autonomous Decentralized Systems, Vol. E83-B, No.
5, May 2000.

[Bellavista, 00d] P. Bellavista, A. Corradi and A. Tomasi, “The Mobile Agent
Technology to Support and to Access to Museum Information”, 2000
ACM Symposium on Applied Computing (SAC 2000), ACM Press, Italy,
Mar. 2000.

[Bellavista, 00e] P. Bellavista, A. Corradi and C. Stefanelli, “A Mobile Agent
Infrastructure for the Mobility Support”, 2000 ACM Symposium on
Applied Computing (SAC 2000), ACM Press, Italy, Mar. 2000.

[Bellavista, 00f] P. Bellavista, A. Corradi and C. Stefanelli, “CORBA Solutions for
Interoperability in Mobile Agent Environments”, 2nd Int. Symp. on
Distributed Objects & Applications (DOA’00), IEEE Computer Society
Press, Belgium, Sep. 2000.

[Bellavista, 00g] P. Bellavista, A. Corradi, R. Montanari and C. Stefanelli, “Security in
Programmable Network Infrastructures: the Integration of Network and
Application Solutions”, 2nd Int. Working Conf. on Active Networks
(IWAN 2000), Japan, Oct. 2000.

[Bellavista, 00h] P. Bellavista, A. Corradi, R. Montanari and C. Stefanelli, “How a
Secure and Open Mobile Agent Framework Suits Electronic Commerce
Applications”, Workshop of Italian Ass. Artificial Intelligence (AI*IA)
and the Italian Ass. Advanced Technologies based on Object-Oriented
Concepts (TABOO), Italy, 2000.

[Bellavista, 01a] P. Bellavista, A. Corradi, D. Cotroneo and S. Russo, “Integrating
Mobile Agent Infrastructures with CORBA-based Distributed
Multimedia Applications”, accepted at 9th Euromicro Workshop on
Parallel and Distributed Processing (Euro-PDP’01), IEEE Computer
Society Press, Italy, Feb. 2001.

[Bellavista, 01b] P. Bellavista and T. Magedanz, “Middleware Technologies: CORBA
and Mobile Agents”, accepted for publication in the book Coordination
for Internet Agents, Springer-Verlag, Mar. 2001.

[Bellavista, 01c] P. Bellavista, A. Corradi and C. Stefanelli, “Mobile Agent Middleware
to Support Mobile Computing”, accepted for publication in IEEE
Computer Magazine, IEEE Computer Society Press, Mar. 2001.

[Bellavista, 99a] P. Bellavista, C. Cavallari, A. Corradi and C. Stefanelli, “Agenti Mobili
per Servizi in Internet: Direzioni di Standardizzazione e loro
Implementazione in SOMA”, 37th Conf. of the Italian Association for
Computer Science and Automatic Computation (AICA’99), Italy, Sep.
1999.

References

105

[Bellavista, 99b] P. Bellavista, A. Corradi and C. Stefanelli, “An Open Secure Mobile
Agent Framework for Systems Management”, Journal of Network and
Systems Management, Vol. 7, No. 3, Sep. 1999.

[Bellavista, 99c] P. Bellavista, A. Corradi and C. Stefanelli, “A Secure and Open Mobile
Agent Programming Environment”, Int. Symp. on Autonomous
Decentralized Systems, Tokyo, Japan, Mar. 1999.

[Bellavista, 99d] P. Bellavista, A. Corradi, C. Stefanelli and F. Tarantino, “Mobile
Agents for Web-based Systems Management”, Internet Research, MCB
University Press, Vol. 9, No. 5, Nov. 1999.

[Bhagwat, 96] P. Bhagwat, C. Perkins and S. Tripathi, “Network Layer Mobility: an
Architecture and Survey,” IEEE Personal Communications, Vol. 3, No.
3, June 1996.

[Bieszczad, 98] A. Bieszczad, B. Pagurek and T. White, “Mobile Agents for Network
Management”, IEEE Communications Surveys, Vol. 1, No. 4, Dec.
1998.

[Bolliger, 98] J. Bolliger and T. Gross, “A Framework-based Approach to the
Development of Network-aware Applications,” IEEE Transactions on
Software Engineering, Vol. 24, No. 5, May 1998.

[Bolot, 94] J.-C. Bolot, T. Turtelli and I. Wakeman, “Scalable Feedback Control for
Multicast Video Distribution in the Internet”, Proc. ACM
SIGCOMM’94, Sep. 1994.

[Borenstein, 94] N. S. Borenstein, “E-Mail with a Mind of its Own: the Safe-Tcl
Language for Enabled Mail”, IFIP Transactions C (Communication
Systems), Vol. C-25, 1994.

[Breugst, 98] M. Breugst, L. Hagen and T. Magedanz, “Impacts of Mobile Agent
Technology on Mobile Communications System Evolution”, IEEE
Personal Communications, Vol. 5, No. 4, Aug. 1998.

[Busse, 96] I. Busse, B. Deffner and H. Schulzrinne, “Dynamic QoS Control of
Multimedia Applications Based on RTP”, Computer Communications,
Vol. 19, No. 1, Jan. 1996.

[Buyya, 00] R. Buyya, “PARMON: a Portable and Scalable Monitoring System for
Clusters”, Software – Practice and Experience, Vol. 30, No. 7, 2000.

[Cabri, 00] G. Cabri, L. Leonardi and F. Zambonelli, “ Mobile-agent coordination
models for Internet applications” , IEEE Computer, Vol. 33, No. 2, Feb.
2000.

[Calderon, 98] M. Calderon, M. Sedano, A. Azcorra and C. Alonso, “Active Network
Support for Multicast Applications”, IEEE Network, Vol. 12, No. 3,
May 1998.

Mobile Agent-based Infrastructures for Internet Services

106

[Chalmers, 99] D. Chalmers and M. Sloman, “A Survey of Quality of Service in
Mobile Computing Environments”, IEEE Communications Surveys,
Vol. 2, No. 2, 1999.

[Chen, 98] T. M. Chen and A.W. Jackson (eds.), Special Issue on Active and
Programmable Networks, IEEE Network Magazine, Vol. 12, No. 3,
May 1998.

[Chess, 95] D. Chess et al., “Itinerant Agents for Mobile Computing”, IEEE
Personal Communications Magazine, Vol.2, No. 5, May 1995.

[Chess, 98] D. Chess, C. G. Harrison and A. Kershenbaum, “Mobile Agents: Are
They a Good Idea?”, in G. Vigna (ed.), Mobile Agents and Security,
LNCS 1419, Springer Verlag, 1998.

[Chung, 98] P. E. Chung et al., “DCOM and CORBA Side by Side, Step by Step,
and Layer by Layer”, C++-Report, Vol. 10, No. 1, Jan. 1998.

[CIMI] Consortium for the Computer Interchange of Museum Information
(CIMI), Dublin Core Metadata, http://www.cimi.org/.

[CLDC] Sun Microsystems, Inc. - CLDC and the K Virtual Machine (KVM),
http://java.sun.com/products/cldc/.

[Concordia] Mitsubishi – Concordia, http://www.meitca.com/HSL/Projects/
Concordia/.

[CORBA/CMIP] UH Communications ApS - The UHC CORBA/CMIP Gateway
product, http://www.uhc.dk/.

[Corradi, 01] A. Corradi, N. Dulay, R. Montanari and C. Stefanelli, “Policy-Driven
Management of Agent Systems”, accepted for publication in Policy
Workshop 2001, Great Britain, 2001.

[Corradi, 97] A. Corradi and C. Stefanelli, “HOLMES: a Tool for Monitoring
Heterogeneous Architectures”, 4th Int. Conf. on High Performance
Computing, IEEE Computer Society, Los Alamitos, 1997.

[Corradi, 99] A. Corradi, M. Cremonini, R. Montanari and C. Stefanelli, “Mobile
Agents Integrity for Electronic Commerce Applications”, Special Issue
on Information Systems Support for Electronic Commerce, Information
Systems, Elsevier, Vol. IS24, No. 6, Nov. 1999.

[DCOM] Microsoft – DCOM, http://www.microsoft.com/com/ tech/DCOM.asp.

[de Meer, 98] H. de Meer, et al., “Tunnel Agents for Enhanced Internet QoS”, IEEE
Concurrency Magazine, Vol. 6, No. 2, Apr. 1998.

References

107

[Deri, 00] L. Deri and S. Suin, “Effective Traffic Measurement Using Ntop”,
IEEE Communications Magazine, Vol. 38, No. 5, May 2000.

[DIVA] University of Naples – Distributed Video Architecture (DiVA),
http://grid.grid.unina.it/projects/diva/.

[Entrust] Entrust Technologies - Entrust, http://www.entrust.com/.

[Felber, 98] P. Felber, R. Guerraoui and A. Schiper, “The Implementation of a
CORBA Group Communication Service”, Theory and Practice of
Object Systems, Vol. 4, No. 2, 1998.

[FIPA] Foundation for Intelligent Physical Agents – FIPA’00,
http://www.fipa.org/.

[Foster, 96] I. Foster, J. Geisler, B. Nickless, W. Smith and S. Tuecke, “Software
infrastructure for the I-WAY high-performance distributed computing
experiment”, 5th IEEE Int. Symp. on High Performance Distributed
Computing, IEEE Computer Society Press, 1996.

[Fox, 98] A. Fox, S. D. Gribble, Y. Chawathe and E. A. Brewer, “Adapting to
Network and Client Variation Using Infrastructural Proxies: Lessons
and Perspectives,” IEEE Personal Communications, Vol. 5, No. 5, Oct.
1998.

[Fuggetta, 98] A. Fuggetta, G. P. Picco and G. Vigna, “Understanding Code Mobility”,
IEEE Transactions on Software Engineering, Vol. 24, No. 5, May 1998.

[Gavalas, 00] D. Gavalas, M. Ghanbari, M. O'Mahony and D. Greenwood, “Enabling
Mobile Agent Technology for Intelligent Bulk Management Data
Filtering”, IEEE/IFIP Network Operations and Management
Symposium (NOMS 2000), USA, Apr. 2000.

[Gavalas, 99] D. Gavalas, et al., “An Infrastructure for Distributed and Dynamic
Network Management Based on Mobile Agent Technology”, IEEE Int.
Conf. On Communications, Vancouver, June 1999.

[Gibbs, 94] S. J. Gibbs and D. C. Tsichritzis, Multimedia Programming, Addison-
Wesley, 1994.

[Glitho, 95] R. H. Glitho and S. Hayes (eds.), Special Issue on Telecommunications
Management Network, IEEE Communications Magazine, Vol. 33, No.
3, Mar. 1995.

[Glitho, 98] R. H. Glitho, “Contrasting OSI Systems Management to SNMP and
TMN”, Journal of Network and Systems Management, Vol. 6, No. 2,
June 1998.

Mobile Agent-based Infrastructures for Internet Services

108

[Goldszmidt, 95] G. Goldszmidt and Y. Yemini, “Distributed Management by
Delegation”, 15th Int. Conf. on Distributed Computing Systems, Italy,
1995.

[Gong, 97] L. Gong, et al., “Going Beyond the Sandbox”, USENIX Symp. on
Internet Technologies and Systems, USA, Dec. 1997.

[Gordon, 98] R. Gordon, Essential Java Native Interface, Prentice Hall, 1998.

[Gosling, 97] J. Gosling and K. Arnold, The Java Programming Language, Second
Edition, Addison Wesley, Dec. 1997.

[Grasshopper] IKV++ GmbH - Grasshopper, http://www.ikv.de/products/grasshopper/.

[Haggerty, 98] P. Haggerty and K. Seetharaman, “The Benefits of CORBA-Based
Network Management”, Communications of the ACM, Vol. 41, No. 10,
Oct. 1998.

[Hansen, 98] J. S. Hansen, T. Reich, B. Andersen and E. Jul, “Dynamic Adaptation
of Network Connections in Mobile Environments,” IEEE Internet
Computing, Vol. 2, No. 1, Jan. 1998.

[Howes, 97] T. Howes and M. Smith, LDAP: Programming Directory - Enabled
Applications with Lightweight Directory Access Protocol, Macmillan
Technical Publishing, Jan. 1997.

[Hutchison, 94] D. Hutchison, et al., “QoS Management in Distributed Systems”, in
Network and Distributed Systems Management, M. Sloman (ed.),
Addison-Wesley, 1994.

[IAIK] Institute for Applied Information Processing and Communications -
IAIK JCE, http://jcewww.iaik.at/jce/jce.htm.

[IEEE P802.11] IEEE P802.11 Wireless Local Area Networks Committee -
http://grouper.ieee.org/groups/802/ 11/index.html.

[Inoue, 98] Y. Inoue, D. Guha and H. Berndt, “The TINA Consortium”, IEEE
Communications Magazine, Vol. 36, No. 10, Sep. 1998.

[ISO, 92] ISO/IEC 10165-1, Information Technology - Open System
Interconnection - Structure of Management Information: Management
Information Model, CCITT Recommendation X.720, 1992.

[Jade] CSELT - Jade, http://sharon.cselt.it/projects/jade/.

[Jiao, 00] J. Jiao, S. Naqvi, D. Raz and B. Sugla, “Toward Efficient Monitoring”,
IEEE Journal on Selected Areas in Communications, Vol. 18, No. 5,
May 2000.

References

109

[Jing, 99] J. Jing, A. S. Helal and A. Elmagarmid, “Client-Server Computing in
Mobile Environments,” ACM Computing Surveys, Vol. 31, No. 2, June
1999.

[JVMPI] Sun Microsystems - Java Virtual Machine Profiler Interface (JVMPI),
http://java.sun.com/ products/jdk/1.3/docs/guide/jvmpi/jvmpi.html.

[Karmouch, 98] A. Karmouch (ed.), Special Section on Mobile Agents, IEEE
Communications Magazine, Vol. 36, No. 7, July 1998.

[Kassler, 99] A. Kassler, H. Christein and P. Schulthess, “A Generic API for Quality
of Service Networking Based on Java”, IEEE Int. Conf. On
Communications, Canada, June 1999.

[Kisielius, 97] V. Kisielius, “Applying Intelligence Makes E-commerce Pay Off”,
Electronic Commerce World, Vol. 7, No. 12, Dec. 1997.

[Kone, 98] M. T. Kone and T. Nakajima, “An Architecture for a QoS-based Mobile
Agent System”, 5th IEEE Int. Conf. on Real-Time Computing Systems
and Applications, 1998.

[Kotz, 00] D. Kotz, and F. Mattern (eds.), Agent Systems, Mobile Agents, and
Applications, 2nd Int. Symp. Agent Systems and Applications and 4th

Int. Symp. Mobile Agents (ASA/MA 2000), Switzerland, 2000.

[Kotz, 97] D. Kotz et al., “Agent TCL: Targeting the Needs of Mobile
Computers,” IEEE Internet Computing, Vol. 1, No. 4, July 1997.

[Kovacs, 98] E. Kovacs, K. Rohrle and M. Reich, “Integrating Mobile Agents into
the Mobile Middleware”, in [Rothermel, 98].

[Kumar, 00] A. Kumar, et al., “Nonintrusive TCP Connection Admission Control for
Bandwidth Management of an Internet Access Link”, IEEE
Communications Magazine, Vol. 38, No. 5, May 2000.

[Kumar, 96] A. Kumar, “Third Generation Personal Communication Systems”, IEEE
Int. Conf. Personal Wireless Communications, USA, 1996.

[Lange, 92] F. Lange, R. Kroeger and M. Gergeleit, “JEWEL: Design and
Implementation of a Distributed Measurement System”, IEEE
Transactions on Parallel and Distributed Systems, Vol. 3, No. 6, 1992.

[Lange, 98] D. Lange and M. Oshima, Programming and Deploying Java Mobile
Agents with Aglets, A-W Professional, Aug. 1998.

[Lazar, 98] S. Lazar, I. Weerakoon and D. Sidhu, “A Scalable Location Tracking
and Message Delivery Scheme for Mobile Agents”, IEEE Int.
Workshop Enabling Technologies, USA, 1998.

Mobile Agent-based Infrastructures for Internet Services

110

[Lee, 00] J. Lee, “Enabling Network Management Using Java Technologies”,
IEEE Communications, Vol. 38, No. 1, Jan. 2000.

[Lewis, 98] T. Lewis, “Information Appliances: Gadget Netopia”, IEEE Computer,
Vol. 31, No. 1, Jan. 1998.

[Li, 96] X. Li and M. H. Ammar, “Bandwidth Control for Replicated-Stream
Multicast Video Distribution”, IEEE Int. Conf. High Performance
Distributed Computing (HPDC), Aug. 1996.

[Li, 99] X. Li, M. H. Ammar and S. Paul, “Video Multicast over the Internet”,
IEEE Network Magazine, Vol. 13, No. 2, Mar. 1999.

[Liang, 99] Z. Liang, Y. Sun and C. Wang, “ClusterProbe: An Open, Flexible and
Scalable Cluster Monitoring Tool”, IEEE Int. Workshop on Cluster
Computing, 1999.

[Lipperts, 99] S. Lipperts and A. Park, “An Agent-based Middleware: a Solution for
Terminal and User Mobility,” Computer Networks, Vol. 31, Sep. 1999.

[Lupu, 97] E. C. Lupu and M. Sloman, “Towards A Role-based Framework for
Distributed Systems Management”, Journal of Network and Systems
Management, Vol. 5, No. 1, Mar. 1997.

[Magedanz, 96] T. Magedanz and R. Popescu-Zeletin (eds.), Intelligent Networks –
Basic Technology, Standards and Evolution, Int. Thomson Computer
Press, London, June 1996.

[Magedanz, 99] T. Magedanz (ed.), Special Issue on Agent Technologies within
Intelligent Networks and Mobile Communication Systems, Computer
Networks, Vol. 31, No. 19, 1999.

[Mazumdar, 96] S. Mazumdar and K. Swanson, “Web Based Management -
CORBA/SNMP Gateway Approach”, 7th IFIP/IEEE Int. Workshop on
Distributed Systems, Operations and Management (DSOM), Italy, Oct.
1996.

[McCanne, 96] S. McCanne, “Scalable Compression and Transmission of Internet
Multicast Video”, Ph.D. thesis, UC Berkeley, 1996.

[Meyers, 00] N. Meyers, “PerfAnal: A Performance Analysis Tool”, http://developer.
java.sun.com/developer/technicalArticles/GUI/perfanal/, 2000.

[MIDP] Sun Microsystems, Inc. - Mobile Information Device Profile (MIDP),
http://java.sun.com/products/midp/.

[Miller, 95] B. P. Miller, et al., “The Paradyn Parallel Performance Measurement
Tools”, IEEE Computer, Vol. 28, No. 11, Nov. 1995.

References

111

[Milojicic, 98] D. Milojicic, et al., “MASIF: the OMG Mobile Agent System
Interoperability Facility”, in [Rothermel, 98].

[Montanari, 01] R. Montanari, “Security Models for Mobile Agent Systems”, Ph.D.
Thesis in Computer Science Engineering, University of Bologna, Feb.
2001.

[Nemeth, 00] E. Nemeth, G. Snyder, T. R. Hein and S. Seebass, UNIX System
Administration Handbook, Third Edition, Prentice Hall, Sep. 2000.

[NGI] Center for Next Generation Internet (NGI), http://www.ngi.org/.

[Odyssey] General Magic – Odyssey, http://www.genmagic.com/.

[OMG, 98] Object Management Group, CORBA/IIOP Rev 2.2, OMG Document
formal/98-07-01, http://www.omg.org/library/c2indx.html, Feb. 1998.

[OMG, 99a] Object Management Group, The Portable Object Adapter, OMG
Document formal 99-07-15, http://www.omg.org/cgi-bin/doc?formal/
99-07-15, July 1999.

[OMG, 99b] Object Management Group, Proposal for a Migration Service,
http://www.omg.org/docs/ec/99-01-07, 1999.

[OMG, 99c] Object Management Group, Control and Management of Audio/Video
Streams, CORBAtelecoms (formal/99-07-12), http://www.omg.org/cgi-
bin/doc?formal/99-07-12, 1999.

[Oppliger, 98] R. Oppliger, “Security at the Internet Layer”, IEEE Computer
Magazine, Vol. 31, No. 9, Sep. 1998.

[Pennington, 00] G. Pennington and R. Watson, JProf - a JVMPI based profiler,
http://starship.python.net/crew/garyp/jProf.html, 2000.

[Perdikeas, 99] M. K. Perdikeas, F. G. Chatzipapadopoulos, I. S. Venieris and G.
Marino, “Mobile Agent Standards and Available Platforms”, Computer
Networks Journal, Special Issue on Mobile Agents in Intelligent
Networks and Mobile Communication Systems, Vol. 31, No. 10, 1999.

[Perkins, 99] C. Perkins (ed.), Special Section on Autoconfiguration, IEEE Internet
Computing, Vol. 3, No. 4, July 1999.

[Psounis, 99] K. Psounis, “Active Networks: Applications, Security, Safety, and
Architectures,” IEEE Communications Surveys, Vol. 1, No. 1, 1999.

[Redlich, 98] J. P. Redlich, M. Suzuki and S. Weinstein, “Distributed Object
Technology for Networking”, IEEE Communications Magazine, Vol.
36, No. 10, Oct. 1998.

Mobile Agent-based Infrastructures for Internet Services

112

[Rothermel, 98] K. Rothermel and F. Hohl (eds.), 2nd Int. Workshop on Mobile Agents
(MA), Springer-Verlag, Lecture Notes in Computer Science, Vol. 1477,
Sep. 1998.

[Russ, 99] S.H. Russ, et al., “Hector: an Agent-based Architecture for Dynamic
Resource Management”, IEEE Concurrency, Vol. 7, No. 2, Mar. 1999.

[Schmidt, 00] D. C. Schmidt, V. Kachroo, Y. Krisnamurthy and F. Kuhns,
“Developing Next-generation Distributed Applications with QoS-
enabled DPE Middleware”, IEEE Communications, Vol. 17, No. 10,
Oct. 2000.

[Schroeder, 95] B. A. Schroeder, “On-Line Monitoring: a Tutorial”, IEEE Computer,
Vol. 28, No. 6, June 1995.

[Sessions, 97] R. Sessions, COM and DCOM: Microsoft’s Vision for Distributed
Objects, John Wiley & Sons, Dec. 1997.

[SOMA] DEIS-LIA - Secure and Open Mobile Agents (SOMA),
http://lia.deis.unibo.it/Research/SOMA/.

[Staamann, 98] S. Staamann, et al., “Security in the Telecommunications Information
Networking Architecture –the CrySTINA Approach”, TINA ’97 -
Global Convergence of Telecommunications and Distributed Object
Computing, IEEE Computer Society Press, 1998.

[Stallings, 98] W. Stallings, SNMP, SNMPv2, SNMPv3, and RMON 1 and 2, Third
Edition, Addison Wesley, 1998.

[Stamos, 90] J. W. Stamos and D. K. Grifford, “Implementing Remote Evaluation”,
IEEE Transactions on Software Engineering, Vol.16, No.7, July 1990.

[SUN] Sun Microsystems, Inc. - Java 2 Platform, Micro Edition (J2ME),
http://java.sun.com/j2me/.

[Sventek, 00] J. Sventek and G. Coulson (eds.), IFIP/ACM Int. Conf. on Distributed
Systems Platforms (Middleware 2000), Lecture Notes in Computer
Science, Vol. 1795, Springer, USA, Apr. 2000.

[TACOMA] Tromso and Cornell Moving Agents (TACOMA),
http://www.tacoma.cs.uit.no/.

[Tennenhouse, 97] D. L. Tennenhouse, et al., “A Survey of Active Network Research”,
IEEE Communications Magazine, Vol. 35, No. 1, Jan. 1997.

[Thompson, 98] J. P. Thompson, “Web-Based Enterprise Management Architecture”,
IEEE Communications Magazine, Vol. 36, No. 3, Mar. 1998.

[Traw, 95] C. B. S. Traw and J. M. Smith, “Striping within the Network
Subsystem”, IEEE Network Magazine, Vol. 9, No. 4, July 1995.

References

113

[Tripathi, 00] A. Tripathi, T. Ahmed, V. Kakani and S. Jaman, “Distributed
Collaborations using Network Mobile Agents”, in [Kotz, 00].

[Tudor, 95] P. Tudor, “MPEG-2 Video Compression”, Electronics and
Communications Journal, http://www.bbc.co.uk/rd/pubs/papers/
paper_14/, Dec. 1995.

[UMTS] European Telecommunications Standards Institute (ETSI), Universal
Mobile Telecommunications Systems (UMTS) -
http://www.etsi.org/umts/.

[UPnP] Microsoft Corp., Universal Plug and Play Forum Resources,
http://www.upnp.org/re-sources.htm.

[Visibroker] Borland-Inprise – VisiBroker 4 for Java, http://www.inprise.com/
visibroker/.

[Voyager] ObjectSpace – Voyager, http://www.objectspace.com/.

[W3C CC/PP] W3 Consortium, Composite Capability/Preference Profiles (CC/PP) –
http://www.w3.org/TR/ NOTE-CCPP/.

[Waldbusser, 00] S. Waldbusser and P. Grillo, “Host Resources MIB”, RFC 2790,
http://www.ietf.org/rfc/, Mar. 2000.

[WAP] Wireless Application Protocol (WAP) – http://www.wapforum.org/.

[Weiming, 98] G. Weiming, G. Eisenhauer, K. Schwan and J. Vetter, “Falcon: On-line
Monitoring for Steering Parallel Programs”, Concurrency - Practice
and Experience, Vol. 10, No. 9, 1998.

[White, 94] J. E. White, “Telescript Technology: The Foundation for the Electronic
Marketplace”, General Magic White Paper, http://www.genmagic.com/,
1994.

[Zhang, 93] L. Zhang, S. Deering, D. Estrin, S. Shenker and D. Zappala, “RSVP: a
new resource ReSerVation Protocol”, IEEE Network, Vol. 7, No. 5,
Sep. 1993.

[Zhang, 98] T. Zhang, T. Magedanz and S. Covaci, “Mobile Agents vs. Intelligent
Agents - Interoperability and Integration Issues”, 4th Int. Symposium on
Interworking, Canada, 1998.

