
Standard Integration of Sensing and Opportunistic Diffusion for Urban
Monitoring in Vehicular Sensor Networks: the MobEyes Architecture

Paolo Bellavista, Eugenio Magistretti
Dip. Elettronica Informatica Sistemistica (DEIS

University of Bologna
Viale Risorgimento, 2 – 40136 Bologna – Italy

Phone: +39-051-2093001; Fax: +39-051-2093073
{pbellavista, emagistretti}@deis.unibo.it

Uichin Lee, Mario Gerla
Computer Science Department

UCLA
1010 Westwood Plaza - 90095 Los Angeles - USA
Phone: +1-310-825-4367; Fax: +1-310-825-2273

{uclee, gerla}@cs.ucla.edu

Abstract
The emerging industrial relevance of vehicular
sensor networks pushes towards their exploitation
for large-scale applications, from traffic routing
and relief to environmental monitoring and distrib-
uted surveillance. With homeland security issues in
mind, we have developed MobEyes, a fully distrib-
uted opportunistic harvesting system for urban
monitoring. In MobEyes, regular vehicles equipped
with sensors collect and locally store monitoring
data while moving on the streets. Sensors may gen-
erate a sheer data amount, especially in the case of
audio/video recording, thus making traditional
reporting unfeasible. MobEyes originally adopts
the guidelines of locally generating summaries of
sensed data and of exploiting vehicle mobility and
opportunistic one-hop communications to pump
summaries towards mobile collectors, with minimal
overhead, reasonable completeness, and limited
latency. To that purpose, it carefully considers
standard specifications to portably integrate with
heterogeneous sensors, in particular by exploiting
the Java Media Framework to interwork with cam-
eras, the JSR179 Location API to interface with
heterogeneous localization systems, and the Java
Communications API to access lower-layer envi-
ronmental sensors.

1. Introduction

Vehicular Sensor Networks (VSN) are emerging

as a new network paradigm for effectively monitor-
ing the physical world. In fact, vehicles, typically
not affected by strict energy constraints, can be
easily equipped with sensing devices (chemical
spill detectors, cameras, …), powerful processing
units, and wireless transmitters. That pushes to-
wards the VSN exploitation in different large-scale
applications, from traffic routing/relief to environ-
mental monitoring and distributed surveillance.

In particular with homeland security issues in
mind, we have recently developed MobEyes, a
fully distributed opportunistic harvesting system
for urban monitoring data, specifically designed for
post-facto crime scene investigation. In MobEyes,

regular vehicles of common people are equipped
with cameras (and possibly with additional sensors,
e.g., to detect chemical attacks and pollution indi-
cators). These vehicles collect and locally store
urban monitoring information while regularly mov-
ing on the streets. On-board sensors may generate a
sheer amount of data, especially in the case of re-
corded audio/video streams. Traditional sensor
network approaches for data reporting, e.g., to po-
lice agents, are unfeasible in this scenario [1, 2].
MobEyes originally adopts the guidelines of locally
generating summaries of sensed data and of ex-
ploiting vehicle mobility and opportunistic one-hop
communications to pump these summaries towards
police patrol cars, which may move during the har-
vesting process. The goals are i) to impose minimal
communication overhead on the limited bandwidth
available for car-to-car communications, ii) to
achieve reasonable completeness of harvested
summaries to cover the largest part of sensed data,
and iii) to obtain that reasonable coverage with a
limited latency, considered acceptable for the ad-
dressed application scenario.

To achieve these goals, we have designed and
implemented MobEyes according to an architecture
composed by two key modules: the MobEyes Dif-
fusion/Harvesting Processor (MDHP) and the
MobEyes Sensor Interface (MSI). On the one hand,
MSI provides an abstraction layer to uniformly
access sensed data independently of sensor imple-
mentations, thus leveraging the MobEyes adoption
in industrial large-scale applications. On the other
hand, MDHP implements our original opportunistic
summary dissemination/harvesting protocols porta-
bly and effectively over different wireless commu-
nication technologies.

In particular, in this paper, we will report our
experience in developing and deploying the Java-
based MSI and MDHP modules, which strongly
consider maximum portability and interoperability
as their crucial implementation requirements to
facilitate industrial adoption and rapid diffusion.
By delving into finer details, MSI has adopted the
choice of interfacing with the highly heterogeneous
world of sensing devices with standard and state-
of-the-art open specifications, such as the Java Me-
dia Framework for cameras, the JSR179 Location

API for possibly heterogeneous positioning sys-
tems, and the Java Communications API for inter-
facing with lower-layer environmental sensors. In
addition, MDHP has chosen to exploit the standard
Java connectivity support (.net package for sens-
ing nodes with Java 2 Standard Edition (J2SE) and
the Connection framework for limited nodes with
Java 2 Micro Edition – J2ME) to uniformly access
the possibly heterogeneous wireless connectivity
technologies available on different vehicles. The
experience made in the MobEyes design and im-
plementation points out the suitability of the Java
environment, extended with recent standard speci-
fications for specific goals such as JSR179, to ob-
tain a rapid and portable prototyping of urban
monitoring applications for vehicular networks.

The remainder of the paper is organized as fol-
lows. Section 2 clarifies background ideas and po-
sitions our novel approach with regard to the state-
of-the-art in the field. Section 3 rapidly sketches
the high-level architecture of MobEyes, while Sec-
tion 4 and Section 5 delve into finer design details
of MSI and MDHP, respectively. Some preliminary
tests have been accomplished to validate MobEyes
interfacing with heterogeneous sensors; the corre-
sponding experimental results are in Section 6.
Conclusive remarks and directions of future work
end the paper.

2. Background and Rapid Overview of

the MobEyes Architecture

Surveillance of critical areas, tracking of sus-

pect felons, and reconstruction of crime events are
all compelling cases for urban monitoring. An ex-
panding range of research projects is a clear proof
of the growing interest in the field. For example,
Intel Research IrisNet [3] addresses large-scale
monitoring environments based on statically de-
ployed PCs equipped with off-the-shelf cameras
and microphones. MIT CarTel [4] permits to inject
new queries on moving vehicles equipped with
sensing devices, by exploiting wireless connec-
tivity provided by open access points. Originally if
compared with these projects, MobEyes focuses on
a posteriori collection of information related to
events potentially monitored by distributed sensing
devices mounted on vehicles. This becomes the
problem of searching in a massive, mobile, and
completely decentralized storage of sensed data,
by establishing a distributed index via completely
decentralized cooperation.

To rapidly introduce MobEyes goals and solu-
tion guidelines, let us overview it while at work in
a futuristic operating scenario, i.e., urban surveil-
lance. Cars move on the streets collecting images
through cameras installed on rooftops. In that con-
text, MobEyes helps the police to build a distrib-
uted index upon the huge amount of information
collected by regular cars. If nodes diffused their

whole sensed data, the network would collapse
given the large size of collected multimedia con-
tents. MobEyes proposes that vehicles locally
process the sensed multimedia streams to extract
some summarizing features, such as license plates
of encountered cars. Only this smaller summariz-
ing information will be diffused in the VSN. In
particular, MobEyes uses opportunistic exchange
protocols, based only on 1-hop communications, to
spread summaries among cars. Police agents are
the only entities that can harvest summaries: they
maintain a local table representing the index (not
necessarily complete, since its contents depend on
the effectiveness and latency of harvesting proto-
cols, as detailed in Section 4) of the sensed data
currently stored on remote vehicles.

To support these tasks we have designed and
implemented MobEyes according to the compo-
nent-based architecture depicted in Figure 1. The
two key modules are MSI, which supports a port-
able and transparent access to heterogeneous sens-
ing devices, and MDHP, which implements oppor-
tunistic summary diffusion/harvesting protocols.
Both these facilities will be extensively described
in the following sections. The third MobEyes
component, less specific for the VSN research
area, is MDP, which periodically collects sensed
data from MSI, and extracts useful features, such
as license plate numbers of cars in sensed video
streams, through application filters. To create
summaries, these features are then combined with
relevant data read from other sensors and physi-
cally situated with corresponding timestamp and
geographic location. Finally, MDP stores raw
sensed data and summaries in the Raw Data Stor-
age and Summary Database, respectively, by ex-
ploiting standard functions for persistency and
database management.

MSI (Sensor Interface)

DSRC Compliant Driver

MDP (Data Processing)

J2SE

JMF API
Java Comm.

API
Java Loc .

API

GPS
Radio Transceiver

Bio/Chem

Sensors

A/V

Sensors

MDHP

(Diffusion/Harvesting)

Summary

Database

Raw Data

Storage

Figure 1. MobEyes Architecture

3. MobEyes Sensor Interface (MSI)

MSI aims to facilitate the access to possibly

heterogeneous sensor devices, by providing a high-
level interface that exposes generic functions. In
this way, MobEyes guarantees access transparency
and high adaptability to changes in the devices (and
in their driver implementations) available in the
deployment environment and possibly discovered
at runtime. For instance, if the sequence of opera-
tions to access a camera sensor changes, developers

working on top of MobEyes are completely hidden
from the modification. Let us rapidly observe that
this dynamicity is obtained by considering only the
limited and invariant set of operations needed to
MobEyes. In other words, MSI has been specifi-
cally designed for MobEyes and, thus, does not
permit general-purpose control operations and pa-
rameter settings on sensor devices.

MSI is built on top of the standard Java Virtual
Machine. This choice grants wide portability to our
implementation. At the same time, that design de-
cision has facilitated our development and de-
ployment work, by allowing us to adopt several
standard Java API that provide useful contributions
to supporting sensor communications, control, and
management. Some API, as detailed in the follow-
ing, are the result of the open Sun standardization
process (Java Community Process - JCP), which
warrants a widespread support for heterogeneous
platforms by involving all stakeholders, from de-
velopers to companies, in the definition of novel
Java specifications and extensions to increase con-
sensus on crucial design decisions [5].

MobEyes deployment scenarios call for the
support of a number of different sensing devices,
depending on the kind of data that police patrol
agents are going to retrieve from regular cars, e.g.,
audio/video streams or images of the streets, tem-
perature, weather, and road conditions, all to be
tagged with location information. We identified
three primary classes of sensors, corresponding to
three different standard Java API. MSI exploits the
Java Media Framework (JMF) API to access the
first class of sensed data, which is generated by
multimedia devices such as cameras and micro-
phones. JMF provides a widespread set of func-
tions to perform acquisition, control, and manage-
ment operations on multimedia sensors (e.g., to
capture images or video streams with digital web-
cams, or to command/transfer the recording of
audio streams with microphones) [6].

The second class includes all sensors (usually
monitoring lower-layer environmental information
if compared with audio/video sensors) that can be
connected through an RS-232 serial interface. RS-
232 can either provide access to an embedded
board where sensors report analog inputs or di-
rectly receive the output signal of a single sensor.
In both cases, the values made available on the
serial interface are retrieved by using the Java
Communications API [7]. This standard API per-
mits to operate with serial/parallel communication
ports, by hiding the details of low-level platform-
dependent drivers. The Java Communications API
supports both synchronous and asynchronous
(event-driven) programming models. In particular,
it is possible to automatically raise/receive notifi-
cations every time a signal overcomes a specified
threshold. For any different sensor type (tempera-
ture sensors, carbon-oxide detectors, …) of interest

for MobEyes, MSI currently implements an ad-hoc
module for specialized serial data parsing. We are
working on generalizing the parsing process so to
provide a single parser module, possibly instructed
by different XML-based descriptions of the data
format provided by specific types of sensors.
Mainly due to the proof-of-concept purpose of our
current MobEyes prototype and to the non-
negligible cost of pollution sensors, at the moment
MSI includes only two specific parsing modules
for temperature and hygrometer sensors.

Since in MobEyes any monitored data are use-
ful only if tagged with space/time coordinates of
the corresponding sensing location, the third cru-
cial class of sensors includes positioning systems,
i.e., “sensors” that can provide localization data.
MSI can obtain geographic location of sensors by
querying the positioning system hosted on board of
the car. To interface with heterogeneous position-
ing solutions (satellite-based, such as GPS, but
also signal-strength based, such as Ekahau [8]) in a
standard way, MSI exploits the Java Location API
(JSR 179) [9]. For instance, MSI invokes JSR 179
functions to select the positioning technique to use,
by simply specifying the desired location accuracy
and/or response time. Other JSR 179 functions are
used to get position updates either synchronously
or through an event-driven interface. The latter
permits either to specify periodic updating inter-
vals or to be notified when located in proximity of
a target. The exploitation of these standard API
allows MSI to be independent of the implementa-
tion of the specific localization system available in
the deployment environment.

In the following, the section specifically fo-
cuses on the main design choices behind our port-
able MSI realization, structured around the three
previously sketched classes of sensors. Figure 2
shows the overall MSI architecture with, from left
to right, the three subsystems supporting the three
sensor classes.

3.1. Standard Interfacing with Audio/

Video Sensors
The leftmost part of Figure 1 shows the

audio/video sensor interfacing subsystem. This
includes four components supporting access to
audio, video, synchronized audio/video, and image
data. A grabber module is responsible of the inter-
action with JMF functions. The grabber facilitates
design maintenance by decoupling high-level MSI
components from access procedures, which may
be specific of each device. In short, the grabber is
in charge of obtaining a JMF Player/Processor
from an abstract input device (Microphone or
Camera), and of connecting its output to a destina-
tion file where the sensed data will be stored.

Figure 2. The modular architecture of MobEyes MSI

MSI hides the details of actual data access op-
erations, by exposing high-level methods to grab
the currently sensed image and to save audio,
video, and audio/video streams. For image grab-
bing, MSI either returns an Image object or a file
of the taken picture. With regards to data streams,
MSI permits to command recording start/stop; the
stream is initially stored in an uncompressed for-
mat (RGB video and LINEAR audio) for effi-
ciency reasons as motivated in the experimental
result section, and encoded only offline.

MSI provides two main parameters to simply
control sensing processes: format and quality,
which affect occupied memory, processing time,
and reproduction accuracy. The suitable parameter
choice depends on application-level requirements.
For example, MDP may require high quality im-
ages for post-processing to extract license plate
numbers. In the case of video streams finally
watched by human operators, top quality is usually
not needed and it is possible to configure MSI with
less resource-consuming format/quality settings.

Through JMF, MSI can support many different
formats, including PCM, MPEG Layer 2 and GSM
for audio streams, MPEG-1, MJPEG and H.263 for
video streams. The choice of MSI quality value
(with a coarse granularity from 1 to 3) directly
influences the adopted encoding parameters (see
Section 5).

3.2. Standard Interfacing with Tempera-

ture Sensors
The rightmost part of Figure 1 shows the sen-

sor interfacing subsystem. Its flexible and modular
architecture is based on the Sensor abstraction rep-
resenting the actual device. Sensors export a ge-
neric method, getSensedData(), which returns an
object of abstract type Data. The MSI Dispatcher
rules the interaction between upper layers and Sen-
sors. The MSI Dispatcher API includes the method
Data getData(String sType) that, based on the re-
quested data type, returns a Data object with cur-
rent reading. In case the sensor does not properly
work, the method raises an exception.

MSI directly builds on the low-level Java
Communications API to access and collect sensed
data. The Java Communications API permit both
to synchronously read data from Sensors and to
register listeners to be invoked every time new
data are available on the communication port (se-
rial and parallel ports). Both modes are fully sup-
ported and integrated in MSI.

Since MSI will likely need to support a grow-
ing number of sensors, extensibility is a crucial
aspect for its design. To this purpose, the Dis-
patcher manages only Sensor and Data interfaces,
without the need of any modification if a new sen-
sor type is added. In that case, developers willing
to extend the MSI prototype should only imple-
ment the new device class as a subclass of Sensor.
The device-specific Sensor subclass is in charge of
actually reading, parsing, and verifying the raw
data present on the serial port.

3.3. Standard Interfacing with Position-

ing Systems
MSI permits to easily include in the set of

sensed data also the geographic coordinates of
sensors, in an open and standard way. Our Loca-
tion module provides a simplified view of JSR 179
functions to MobEyes developers, by aggregating
and composing API of the standard Java specifica-
tion. In particular, the Location module can syn-
chronously return the current <latitude, longitude,
and (optionally) altitude> car coordinates. Simi-
larly to the generic sensor case, the function either
creates an object encapsulating the coordinates or
raises an exception, e.g., in the case GPS is the
only available positioning technique and cannot
determine the position because the car is indoor in
an underground car park.

To the best of our knowledge, no free imple-
mentation of JSR 179 was available for J2SE at the
time of writing. Thus, two different design options
were possible: either implementing the JSR 179
specifications, or interfacing the GPS as if it was a
common sensing device, i.e., directly through the
Java Communications API. Given the relevance of
opening MSI via the extensive adoption of stan-

dard specifications, we decided to develop our
partial implementation of JSR 179. Our implemen-
tation of LocationProvider interfaces with GPS
equipment via a serial port by exploiting the Java
Communications API. Currently, we are working
on a portable extension of our LocationProvider to
support also USB-based GPS devices, by exploit-
ing the Java USB API (JSR 80) [10].

4. MobEyes Diffusion/Harvesting

Processor (MDHP)

After rapidly introducing the primary guide-
lines of the original MobEyes delay-tolerant proto-
cols for summary diffusion/harvesting, this section
focuses on the description of MDHP realization,
by pointing out the motivations behind our archi-
tectural choices and their impact on the solution
portability in industrial large-scale applications.

MobEyes aims at creating a distributed and
partially replicated opportunistic index of the in-
formation collected by moving vehicles. MDHP is
in charge of supporting fast and effective ways for
mobile police agents to harvest summaries from
mobile regular nodes. To that purpose, we have
designed two original protocols: the first for regu-
lar nodes to periodically spread summaries through
1-hop diffusion; the second for agents to query
opportunistically encountered cars to build an up-
dated and partial distributed index of sensed data.

More specifically, a regular node periodically
advertises newly generated summaries through 1-
hop broadcasts. Neighbors populate a local table
including copies of all the summaries received and
not delivered to agents yet. Then, neighbors can
either contribute to boost the diffusion by further
relaying or refrain. In the first case, the diffusion
speed of the summaries results dramatically im-
proved; however, this comes at the expense of
higher communication overhead and larger mem-
ory required for local summary storage. Depending
on the requirements of supported applications,
MDHP permits two operating modes: a basic one
(only the source advertises its packets to 1-hop
neighbors) and a passive k-hop (any packet travels
up to k hops as it is forwarded by j-hop neighbors,
with j<k). Strategies to further expedite summary
diffusion can be devised by allowing nodes to con-
tinuously advertise all the packets within their lo-
cal tables, also if generated by other nodes.

While regular nodes move and diffuse their
summaries, police agents roam with the goal of
building a distributed index by harvesting as many
summaries as possible. When required, e.g., after a
crime event or periodically, agents may query
neighbor regular nodes to obtain summaries they
have not collected yet. To this end, agents adver-
tise Bloom filters hashing the already harvested
summaries [11]. Every regular node tests its local
table entries against the received Bloom filter and

replies by delivering only non-matching items.
MDHP takes into consideration situations where
multiple regular nodes are simultaneously present:
in that case, MDHP exploits heuristic-based strate-
gies to properly schedule node communications in
order to avoid redundant summary deliveries [12].

Several agents will likely scour the urban area
concurrently in real deployment scenarios. MDHP
supports collaborative strategies to build a distrib-
uted and partially replicated index. Simple strate-
gies have been devised so far to combine the in-
formation carried by different agents: police agents
can exchange their Bloom filters through multi-
hop paths as soon as they have collected a speci-
fied number of new summaries. More effective
solutions based on controlling agent trajectories
are under investigation to further limit communica-
tion overhead and latency [13].

4.1. MDHP Architecture and Portability

MDHP manages communications for regular
nodes as well as for police agents. It is in charge of
extracting/storing summaries from/to the local
database and of implementing opportunistic proto-
cols for summary diffusion/harvesting. Figure 3
represents both regular node and police agent
MDHP components; obviously, only the suitable
ones will be installed on a single vehicle depend-
ing on its type.

Figure 3. MDHP component architecture

MDHP functions can be split in two different

layers. The upper layer (DB Interfacing Layer)
interworks with the summary database that main-
tains summaries either locally generated or ob-
tained from neighbors and not delivered to an
agent yet. The lower one (Network Management
Layer) consists of the components that actually
implement communication protocol operations.
While the DB Interfacing layer deals with in-
stances of the Java Summary class, the Network
Management layer marshals/unmarshals summa-
ries into packets. Any summary includes a license
plate number (6 bytes), additional sensed data (10
bytes, currently a 3-byte temperature/hygrometer
info and a 7-byte placeholder), timestamp (2
bytes), and vehicle location (8 bytes). Thus, each
1500-byte packet can pack up to 58 summaries,
without exploiting any additional aggregation or
size-optimizing encoding technique.

Periodically, the Diffusion Manager at regular
nodes advertises recently generated summaries
(one packet with the 58 last summaries provided
by the Local Summary DB Interface). In the cur-
rent MobEyes implementation, the diffusion period
is set to 5 seconds and new summaries are ex-
pected to be generated with a maximum rate of 0.4
Hz (so, each summary is advertised at least 29
times). As future work, we are considering: i) to
adapt the diffusion period to the changing rate of
neighbor set (detected by Neighbor Manager); and
ii) to combine summaries generated in different
epochs in the same packet. The guideline is to
maximize the usefulness of packets by advertising
them to new neighbors expected not to have al-
ready collected the included summaries.

Any time a regular node receives new summa-
ries, the Received Summary Persistence Manager
updates the local database. Summaries are main-
tained until a police agent query is received: in that
case, the Summary Selector component performs
Bloom filter matching [11], prepares the set of
summaries to send to the agent, ordered from the
least to the most recent ones (in fact, due to ran-
dom node trajectories, oldest summaries are likely
to be the rarest in the neighborhood and conse-
quently the higher priority ones), and then removes
those summaries from the local database.

Actual communications between agents and
regular cars are carried by the Harvester and the
Agent Interaction Manager. The Harvester coordi-
nates neighbor communications by exploiting uni-
cast messages for queries. The Agent Interaction
Manager, instead, handles summary delivery on
regular nodes. In the current prototype, as soon as
an agent encounters other agents (at 1-hop dis-
tance), the Multi-Agent Coordinator exchanges the
list of harvested summaries. We are now extending
the MobEyes architecture to support multi-hop
inter-agent communications by exploiting IETF
reactive routing protocols such as AODV [14, 15].

About low-layer communication support, we
built MDHP on the standard .net package for
sensing nodes equipped with J2SE. Limited nodes
with J2ME will benefit from a MobEyes prototype
version with a different implementation of the
Packet component of the Network Management
Layer, based on the standard Connection frame-
work included in the official Sun virtual machine.

5. Experimental Results

We developed current MSI and MDHP imple-

mentations on top of J2SEv1.5. We adopted: 1) the
official Sun release of JMF 2.1.1 with Windows
Performance Package (including enhanced
audio/video decoders/encoders for Microsoft plat-
forms); 2) our own implementation of JSR 179; 3)

the official Sun release of Java Communications
API v2.0.

To verify the feasibility of our approach, we
tested MobEyes components in real-world scenar-
ios. Due to the lack of space, here we present some
selected results. These refer to the performance of
the MSI audio/video capture functionality. Tests
were performed by capturing streams at a traf-
ficked intersection near the UCLA campus and
were run on Dell Latitude D610 laptops, equipped
with PentiumM2GHz, 512MB RAM, and Logitech
Quickcam Chats. We aimed at evaluating three
parameters: the size of generated files of sensed
data, mainly dependent on stream length and en-
coding type; the overhead time needed to capture
the stream, i.e., the gross amount of time needed to
start media processor and to close processor and
output file; and the conversion time to encode the
stream.

Table I, II, and III show the results obtained
while capturing audio and audio/video streams,
either in raw or encoded formats. For RGB video,
frame rate was set to 4 fps and resolution to
320x240; for LINEAR audio, sample rate was set
to 44100, 16 bits per sample. Table I shows the
average size of the files generated during our tests,
for different recording time lengths. Both com-
pression methods (audio/video MJPG, and audio
GSM) achieve a significant file size reduction.
MJPG permits to tune a “quality” parameter, influ-
encing the conversion time, as well as the output
file size. Table I shows only the results with a me-
dium quality value: this permits to reduce the file
size of about 5 times with regard to the raw ver-
sion. Similar results are obtained in the case of
streams including only the video track. Table II
shows the overhead time needed to start the JMF
processor capturing the stream and to terminate it.
Results prove that audio/video capturing overhead
is significantly greater than the one for a stream
with only the audio track. Finally, Table III reports
how long it takes to MSI to convert audio/video
streams to the MJPG encoded format, depending
on the chosen quality factor. Lower quality values
(MobEyes quality=1, equivalent to MJPG qual-
ity=10%) impose a stable conversion time, largely
compatible with typical MobEyes application re-
quirements.

Rec-
Time

A/V
RGB

A/V MJPG
(Medium)

Audio
LINEAR

Audio
GSM

5s 4907 934 439 9
20s 16280 3295 1747 33
60s 46518 8749 5180 95

Table I. Generated file size (in [kB])

RecTime A/V RGB Audio LINEAR
5s 4790 206

20s 4493 401
60s 7780 270
Table II. Overhead time (in [ms])

RecTime A/V MJPG
(Low)

A/V MJPG
(Medium)

A/V MJPG
(High)

5s 802 1432 2099
20s 1901 2198 11354
60s 6726 6523 37429

Table III. Conversion time (in [ms])

6. Conclusions and Future Work

Urban monitoring is becoming a research field
of growing interest. With the goal of supporting a
posteriori monitoring investigations, we proposed
MobEyes to address searching in a massive, mo-
bile, and decentralized storage of sensed data. In
this paper, we discussed and evaluated MSI and
MDHP, two key components of the MobEyes ar-
chitecture. Our MSI/MDHP design and implemen-
tation demonstrate that the integration with Java-
based standard solutions (JMF, JSR 179, Commu-
nications API, .net package) can allow to obtain
feasible performance results with a high degree of
openness, thus facilitating the adoption in large-
scale existing industrial deployment environments.

The encouraging experimental results already
obtained are stimulating further research work. In
addition to some directions already sketched in the
paper, we are currently investigating how the pro-
tocol for summary exchange among agents at
multi-hop distance works when implemented upon
ad-hoc routing solutions.

Acknowledgements
We would like to thank Antonio Corradi and Chiara
Chiappini, whose suggestions, help, and support were
crucial for the realization of this work.

References
[1] I. Akyildiz, W. Su, Y. Sankarasubramaniam, E.

Cayirci, “A Survey on Sensor Networks”, IEEE

Communications Magazine, Vol. 40, No. 8, Aug.
2002.

[2] C. Intanagonwiwat, R. Govindan, D. Estrin, “Di-
rected Diffusion: a Scalable and Robust Commu-
nication Paradigm for Sensor Networks”, ACM
Mobicom Conf., 2000.

[3] P. Gibbons, B. Karp, Y. Ke, S. Nath, S. Seshan,
“IrisNet: an Architecture for a Worldwide Sensor
Web”, IEEE Pervasive Computing, Vol. 2, No. 4,
Oct-Dec. 2003.

[4] B. Hull, V. Bychkovsky, Y. Zhang, K. Chen, M.
Goraczko, A. K. Miu, E. Shih, H. Balakrishnan, S.
Madden, “CarTel: a Distributed Mobile Sensor
Computing System”, ACM SenSys Conf., 2006.

[5] http://jcp.org
[6] http://java.sun.com/products/java-media/jmf/
[7] http://java.sun.com/products/javacomm/
[8] T. Manesis, N. Avouris “Survey of Position Loca-

tion Techniques in Mobile Systems”, ACM Conf.
Human Computer Interaction with Mobile Devices
and Services, 2005.

[9] http://jcp.org/en/jsr/detail?id=179
[10] http://jcp.org/en/jsr/detail?id=80
[11] L. Fan, P. Cao, J. Almeida, “Summary Cache: A

Scalable Wide-Area Web Cache Sharing Proto-
cols,” ACM SIGCOMM Conf., 1998.

[12] U. Lee, E. Magistretti, B. Zhou, M. Gerla, P. Bel-
lavista, A. Corradi, “MobEyes: Smart Mobs for
Urban Monitoring with a Vehicular Sensor Net-
work”, IEEE Wireless Communications, Vol. 13,
No. 5, Oct. 2006.

[13] U. Lee, E. Magistretti, B. Zhou, M. Gerla, P. Bel-
lavista, A. Corradi, “MobEyes: Smart Mobs for
Urban Monitoring with a Vehicular Sensor Net-
work”, UCLA CSD Tech. Report 060015, http://
netlab.cs.ucla.edu/wiki/files/mobeyestr06.pdf

[14] E.M. Royer, C.-K. Toh, “A Review of Current
Routing Protocols for Ad Hoc Mobile Wireless
Networks,” IEEE Personal Communications, Vol.
6, No. 2, April 1999.

[15] C.E. Perkins, E.M. Royer, “Ad Hoc On-Demand
Distance Vector Routing”, IEEE WMCSA Conf.,
1999.

