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Abstract 
The emerging industrial relevance of vehicular 
sensor networks pushes towards their exploitation 
for large-scale applications, from traffic routing 
and relief to environmental monitoring and distrib-
uted surveillance. With homeland security issues in 
mind, we have developed MobEyes, a fully distrib-
uted opportunistic harvesting system for urban 
monitoring. In MobEyes, regular vehicles equipped 
with sensors collect and locally store monitoring 
data while moving on the streets. Sensors may gen-
erate a sheer data amount, especially in the case of 
audio/video recording, thus making traditional 
reporting unfeasible. MobEyes originally adopts 
the guidelines of locally generating summaries of 
sensed data and of exploiting vehicle mobility and 
opportunistic one-hop communications to pump 
summaries towards mobile collectors, with minimal 
overhead, reasonable completeness, and limited 
latency. To that purpose, it carefully considers 
standard specifications to portably integrate with 
heterogeneous sensors, in particular by exploiting 
the Java Media Framework to interwork with cam-
eras, the JSR179 Location API to interface with 
heterogeneous localization systems, and the Java 
Communications API to access lower-layer envi-
ronmental sensors.  
 
 
1. Introduction 

 
Vehicular Sensor Networks (VSN) are emerging 

as a new network paradigm for effectively monitor-
ing the physical world. In fact, vehicles, typically 
not affected by strict energy constraints, can be 
easily equipped with sensing devices (chemical 
spill detectors, cameras, …), powerful processing 
units, and wireless transmitters. That pushes to-
wards the VSN exploitation in different large-scale 
applications, from traffic routing/relief to environ-
mental monitoring and distributed surveillance.  

In particular with homeland security issues in 
mind, we have recently developed MobEyes, a 
fully distributed opportunistic harvesting system 
for urban monitoring data, specifically designed for 
post-facto crime scene investigation. In MobEyes, 

regular vehicles of common people are equipped 
with cameras (and possibly with additional sensors, 
e.g., to detect chemical attacks and pollution indi-
cators). These vehicles collect and locally store 
urban monitoring information while regularly mov-
ing on the streets. On-board sensors may generate a 
sheer amount of data, especially in the case of re-
corded audio/video streams. Traditional sensor 
network approaches for data reporting, e.g., to po-
lice agents, are unfeasible in this scenario [1, 2]. 
MobEyes originally adopts the guidelines of locally 
generating summaries of sensed data and of ex-
ploiting vehicle mobility and opportunistic one-hop 
communications to pump these summaries towards 
police patrol cars, which may move during the har-
vesting process. The goals are i) to impose minimal 
communication overhead on the limited bandwidth 
available for car-to-car communications, ii) to 
achieve reasonable completeness of harvested 
summaries to cover the largest part of sensed data, 
and iii) to obtain that reasonable coverage with a 
limited latency, considered acceptable for the ad-
dressed application scenario.  

To achieve these goals, we have designed and 
implemented MobEyes according to an architecture 
composed by two key modules: the MobEyes Dif-
fusion/Harvesting Processor (MDHP) and the 
MobEyes Sensor Interface (MSI). On the one hand, 
MSI provides an abstraction layer to uniformly 
access sensed data independently of sensor imple-
mentations, thus leveraging the MobEyes adoption 
in industrial large-scale applications. On the other 
hand, MDHP implements our original opportunistic 
summary dissemination/harvesting protocols porta-
bly and effectively over different wireless commu-
nication technologies.  

In particular, in this paper, we will report our 
experience in developing and deploying the Java-
based MSI and MDHP modules, which strongly 
consider maximum portability and interoperability 
as their crucial implementation requirements to 
facilitate industrial adoption and rapid diffusion. 
By delving into finer details, MSI has adopted the 
choice of interfacing with the highly heterogeneous 
world of sensing devices with standard and state-
of-the-art open specifications, such as the Java Me-
dia Framework for cameras, the JSR179 Location 



API for possibly heterogeneous positioning sys-
tems, and the Java Communications API for inter-
facing with lower-layer environmental sensors. In 
addition, MDHP has chosen to exploit the standard 
Java connectivity support (.net package for sens-
ing nodes with Java 2 Standard Edition (J2SE) and 
the Connection framework for limited nodes with 
Java 2 Micro Edition – J2ME) to uniformly access 
the possibly heterogeneous wireless connectivity 
technologies available on different vehicles. The 
experience made in the MobEyes design and im-
plementation points out the suitability of the Java 
environment, extended with recent standard speci-
fications for specific goals such as JSR179, to ob-
tain a rapid and portable prototyping of urban 
monitoring applications for vehicular networks. 

The remainder of the paper is organized as fol-
lows. Section 2 clarifies background ideas and po-
sitions our novel approach with regard to the state-
of-the-art in the field. Section 3 rapidly sketches 
the high-level architecture of MobEyes, while Sec-
tion 4 and Section 5 delve into finer design details 
of MSI and MDHP, respectively. Some preliminary 
tests have been accomplished to validate MobEyes 
interfacing with heterogeneous sensors; the corre-
sponding experimental results are in Section 6. 
Conclusive remarks and directions of future work 
end the paper. 

 
2.  Background and Rapid Overview of 

the MobEyes Architecture 
 
Surveillance of critical areas, tracking of sus-

pect felons, and reconstruction of crime events are 
all compelling cases for urban monitoring. An ex-
panding range of research projects is a clear proof 
of the growing interest in the field. For example, 
Intel Research IrisNet [3] addresses large-scale 
monitoring environments based on statically de-
ployed PCs equipped with off-the-shelf cameras 
and microphones. MIT CarTel [4] permits to inject 
new queries on moving vehicles equipped with 
sensing devices, by exploiting wireless connec-
tivity provided by open access points. Originally if 
compared with these projects, MobEyes focuses on 
a posteriori collection of information related to 
events potentially monitored by distributed sensing 
devices mounted on vehicles. This becomes the 
problem of searching in a massive, mobile, and 
completely decentralized storage of sensed data, 
by establishing a distributed index via completely 
decentralized cooperation.     

To rapidly introduce MobEyes goals and solu-
tion guidelines, let us overview it while at work in 
a futuristic operating scenario, i.e., urban surveil-
lance. Cars move on the streets collecting images 
through cameras installed on rooftops. In that con-
text, MobEyes helps the police to build a distrib-
uted index upon the huge amount of information 
collected by regular cars. If nodes diffused their 

whole sensed data, the network would collapse 
given the large size of collected multimedia con-
tents. MobEyes proposes that vehicles locally 
process the sensed multimedia streams to extract 
some summarizing features, such as license plates 
of encountered cars. Only this smaller summariz-
ing information will be diffused in the VSN. In 
particular, MobEyes uses opportunistic exchange 
protocols, based only on 1-hop communications, to 
spread summaries among cars. Police agents are 
the only entities that can harvest summaries: they 
maintain a local table representing the index (not 
necessarily complete, since its contents depend on 
the effectiveness and latency of harvesting proto-
cols, as detailed in Section 4) of the sensed data 
currently stored on remote vehicles. 

To support these tasks we have designed and 
implemented MobEyes according to the compo-
nent-based architecture depicted in Figure 1. The 
two key modules are MSI, which supports a port-
able and transparent access to heterogeneous sens-
ing devices, and MDHP, which implements oppor-
tunistic summary diffusion/harvesting protocols. 
Both these facilities will be extensively described 
in the following sections. The third MobEyes 
component, less specific for the VSN research 
area, is MDP, which periodically collects sensed 
data  from MSI, and extracts useful features, such 
as license plate numbers of cars in sensed video 
streams, through application filters. To create 
summaries, these features are then combined with 
relevant data read from other sensors and physi-
cally situated with corresponding timestamp and 
geographic location. Finally, MDP stores raw 
sensed data and summaries in the Raw Data Stor-
age and Summary Database, respectively, by ex-
ploiting standard functions for persistency and 
database management.  
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Figure 1. MobEyes Architecture 

 
3. MobEyes Sensor Interface (MSI) 

 
MSI aims to facilitate the access to possibly 

heterogeneous sensor devices, by providing a high-
level interface that exposes generic functions. In 
this way, MobEyes guarantees access transparency 
and high adaptability to changes in the devices (and 
in their driver implementations) available in the 
deployment environment and possibly discovered 
at runtime. For instance, if the sequence of opera-
tions to access a camera sensor changes, developers 



working on top of MobEyes are completely hidden 
from the modification. Let us rapidly observe that 
this dynamicity is obtained by considering only the 
limited and invariant set of operations needed to 
MobEyes. In other words, MSI has been specifi-
cally designed for MobEyes and, thus, does not 
permit general-purpose control operations and pa-
rameter settings on sensor devices.  

MSI is built on top of the standard Java Virtual 
Machine. This choice grants wide portability to our 
implementation. At the same time, that design de-
cision has facilitated our development and de-
ployment work, by allowing us to adopt several 
standard Java API that provide useful contributions 
to supporting sensor communications, control, and 
management. Some API, as detailed in the follow-
ing, are the result of the open Sun standardization 
process (Java Community Process - JCP), which 
warrants a widespread support for heterogeneous 
platforms by involving all stakeholders, from de-
velopers to companies, in the definition of novel 
Java specifications and extensions to increase con-
sensus on crucial design decisions [5].  

MobEyes deployment scenarios call for the 
support of a number of different sensing devices, 
depending on the kind of data that police patrol 
agents are going to retrieve from regular cars, e.g., 
audio/video streams or images of the streets, tem-
perature, weather, and road conditions, all to be 
tagged with location information. We identified 
three primary classes of sensors, corresponding to 
three different standard Java API. MSI exploits the 
Java Media Framework (JMF) API to access the 
first class of sensed data, which is generated by 
multimedia devices such as cameras and micro-
phones. JMF provides a widespread set of func-
tions to perform acquisition, control, and manage-
ment operations on multimedia sensors (e.g., to 
capture images or video streams with digital web-
cams, or to command/transfer the recording of 
audio streams with microphones) [6].  

The second class includes all sensors (usually 
monitoring lower-layer environmental information 
if compared with audio/video sensors) that can be 
connected through an RS-232 serial interface. RS-
232 can either provide access to an embedded 
board where sensors report analog inputs or di-
rectly receive the output signal of a single sensor. 
In both cases, the values made available on the 
serial interface are retrieved by using the Java 
Communications API [7]. This standard API per-
mits to operate with serial/parallel communication 
ports, by hiding the details of low-level platform-
dependent drivers. The Java Communications API 
supports both synchronous and asynchronous 
(event-driven) programming models. In particular, 
it is possible to automatically raise/receive notifi-
cations every time a signal overcomes a specified 
threshold. For any different sensor type (tempera-
ture sensors, carbon-oxide detectors, …) of interest 

for MobEyes, MSI currently implements an ad-hoc 
module for specialized serial data parsing. We are 
working on generalizing the parsing process so to 
provide a single parser module, possibly instructed 
by different XML-based descriptions of the data 
format provided by specific types of sensors. 
Mainly due to the proof-of-concept purpose of our 
current MobEyes prototype and to the non-
negligible cost of pollution sensors, at the moment 
MSI includes only two specific parsing modules 
for temperature and hygrometer sensors.  

Since in MobEyes any monitored data are use-
ful only if tagged with space/time coordinates of 
the corresponding sensing location, the third cru-
cial class of sensors includes positioning systems, 
i.e., “sensors” that can provide localization data. 
MSI can obtain geographic location of sensors by 
querying the positioning system hosted on board of 
the car. To interface with heterogeneous position-
ing solutions (satellite-based, such as GPS, but 
also signal-strength based, such as Ekahau [8]) in a 
standard way, MSI exploits the Java Location API 
(JSR 179) [9]. For instance, MSI invokes JSR 179 
functions to select the positioning technique to use, 
by simply specifying the desired location accuracy 
and/or response time. Other JSR 179 functions are 
used to get position updates either synchronously 
or through an event-driven interface. The latter 
permits either to specify periodic updating inter-
vals or to be notified when located in proximity of 
a target. The exploitation of these standard API 
allows MSI to be independent of the implementa-
tion of the specific localization system available in 
the deployment environment. 

In the following, the section specifically fo-
cuses on the main design choices behind our port-
able MSI realization, structured around the three 
previously sketched classes of sensors. Figure 2 
shows the overall MSI architecture with, from left 
to right, the three subsystems supporting the three 
sensor classes.  

 
3.1. Standard Interfacing with Audio/ 

Video Sensors 
The leftmost part of Figure 1 shows the 

audio/video sensor interfacing subsystem. This 
includes four components supporting access to 
audio, video, synchronized audio/video, and image 
data. A grabber module is responsible of the inter-
action with JMF functions. The grabber facilitates 
design maintenance by decoupling high-level MSI 
components from access procedures, which may 
be specific of each device. In short, the grabber is 
in charge of obtaining a JMF Player/Processor 
from an abstract input device (Microphone or 
Camera), and of connecting its output to a destina-
tion file where the sensed data will be stored.  

 
 



 

Figure 2. The modular architecture of MobEyes MSI  
 

MSI hides the details of actual data access op-
erations, by exposing high-level methods to grab 
the currently sensed image and to save audio, 
video, and audio/video streams. For image grab-
bing, MSI either returns an Image object or a file 
of the taken picture. With regards to data streams, 
MSI permits to command recording start/stop; the 
stream is initially stored in an uncompressed for-
mat (RGB video and LINEAR audio) for effi-
ciency reasons as motivated in the experimental 
result section, and encoded only offline. 

MSI provides two main parameters to simply 
control sensing processes: format and quality, 
which affect occupied memory, processing time, 
and reproduction accuracy. The suitable parameter 
choice depends on application-level requirements. 
For example, MDP may require high quality im-
ages for post-processing to extract license plate 
numbers. In the case of video streams finally 
watched by human operators, top quality is usually 
not needed and it is possible to configure MSI with 
less resource-consuming format/quality settings. 

Through JMF, MSI can support many different 
formats, including PCM, MPEG Layer 2 and GSM 
for audio streams, MPEG-1, MJPEG and H.263 for 
video streams. The choice of MSI quality value 
(with a coarse granularity from 1 to 3) directly 
influences the adopted encoding parameters (see 
Section 5).  
 
3.2. Standard Interfacing with Tempera-

ture Sensors 
The rightmost part of Figure 1 shows the sen-

sor interfacing subsystem. Its flexible and modular 
architecture is based on the Sensor abstraction rep-
resenting the actual device. Sensors export a ge-
neric method, getSensedData(), which returns an 
object of abstract type Data. The MSI Dispatcher 
rules the interaction between upper layers and Sen-
sors. The MSI Dispatcher API includes the method 
Data getData(String sType) that, based on the re-
quested data type, returns a Data object with cur-
rent reading. In case the sensor does not properly 
work, the method raises an exception. 

MSI directly builds on the low-level Java 
Communications API to access and collect sensed 
data. The Java Communications API permit both 
to synchronously read data from Sensors and to 
register listeners to be invoked every time new 
data are available on the communication port (se-
rial and parallel ports). Both modes are fully sup-
ported and integrated in MSI. 

Since MSI will likely need to support a grow-
ing number of sensors, extensibility is a crucial 
aspect for its design. To this purpose, the Dis-
patcher manages only Sensor and Data interfaces, 
without the need of any modification if a new sen-
sor type is added. In that case, developers willing 
to extend the MSI prototype should only imple-
ment the new device class as a subclass of Sensor. 
The device-specific Sensor subclass is in charge of 
actually reading, parsing, and verifying the raw 
data present on the serial port.  

 
3.3.  Standard Interfacing with Position-

ing Systems 
MSI permits to easily include in the set of 

sensed data also the geographic coordinates of 
sensors, in an open and standard way. Our Loca-
tion module provides a simplified view of JSR 179 
functions to MobEyes developers, by aggregating 
and composing API of the standard Java specifica-
tion. In particular, the Location module can syn-
chronously return the current <latitude, longitude, 
and (optionally) altitude> car coordinates. Simi-
larly to the generic sensor case, the function either 
creates an object encapsulating the coordinates or 
raises an exception, e.g., in the case GPS is the 
only available positioning technique and cannot 
determine the position because the car is indoor in 
an underground car park.  

To the best of our knowledge, no free imple-
mentation of JSR 179 was available for J2SE at the 
time of writing. Thus, two different design options 
were possible: either implementing the JSR 179 
specifications, or interfacing the GPS as if it was a 
common sensing device, i.e., directly through the 
Java Communications API. Given the relevance of 
opening MSI via the extensive adoption of stan-

 



dard specifications, we decided to develop our 
partial implementation of JSR 179. Our implemen-
tation of LocationProvider interfaces with GPS 
equipment via a serial port by exploiting the Java 
Communications API. Currently, we are working 
on a portable extension of our LocationProvider to 
support also USB-based GPS devices, by exploit-
ing the Java USB API (JSR 80) [10]. 

  
4.  MobEyes Diffusion/Harvesting 

Processor (MDHP) 
 

After rapidly introducing the primary guide-
lines of the original MobEyes delay-tolerant proto-
cols for summary diffusion/harvesting, this section 
focuses on the description of MDHP realization, 
by pointing out the motivations behind our archi-
tectural choices and their impact on the solution 
portability in industrial large-scale applications. 

MobEyes aims at creating a distributed and 
partially replicated opportunistic index of the in-
formation collected by moving vehicles. MDHP is 
in charge of supporting fast and effective ways for 
mobile police agents to harvest summaries from 
mobile regular nodes. To that purpose, we have 
designed two original protocols: the first for regu-
lar nodes to periodically spread summaries through 
1-hop diffusion; the second for agents to query 
opportunistically encountered cars to build an up-
dated and partial distributed index of sensed data. 

More specifically, a regular node periodically 
advertises newly generated summaries through 1-
hop broadcasts. Neighbors populate a local table 
including copies of all the summaries received and 
not delivered to agents yet. Then, neighbors can 
either contribute to boost the diffusion by further 
relaying or refrain. In the first case, the diffusion 
speed of the summaries results dramatically im-
proved; however, this comes at the expense of 
higher communication overhead and larger mem-
ory required for local summary storage. Depending 
on the requirements of supported applications, 
MDHP permits two operating modes: a basic one 
(only the source advertises its packets to 1-hop 
neighbors) and a passive k-hop (any packet travels 
up to k hops as it is forwarded by j-hop neighbors, 
with j<k). Strategies to further expedite summary 
diffusion can be devised by allowing nodes to con-
tinuously advertise all the packets within their lo-
cal tables, also if generated by other nodes.  

While regular nodes move and diffuse their 
summaries, police agents roam with the goal of 
building a distributed index by harvesting as many 
summaries as possible. When required, e.g., after a 
crime event or periodically, agents may query 
neighbor regular nodes to obtain summaries they 
have not collected yet. To this end, agents adver-
tise Bloom filters hashing the already harvested 
summaries [11]. Every regular node tests its local 
table entries against the received Bloom filter and 

replies by delivering only non-matching items. 
MDHP takes into consideration situations where 
multiple regular nodes are simultaneously present: 
in that case, MDHP exploits heuristic-based strate-
gies to properly schedule node communications in 
order to avoid redundant summary deliveries [12].  

Several agents will likely scour the urban area 
concurrently in real deployment scenarios. MDHP 
supports collaborative strategies to build a distrib-
uted and partially replicated index. Simple strate-
gies have been devised so far to combine the in-
formation carried by different agents: police agents 
can exchange their Bloom filters through multi-
hop paths as soon as they have collected a speci-
fied number of new summaries. More effective 
solutions based on controlling agent trajectories 
are under investigation to further limit communica-
tion overhead and latency [13]. 

 
4.1.  MDHP Architecture and Portability  

MDHP manages communications for regular 
nodes as well as for police agents. It is in charge of 
extracting/storing summaries from/to the local 
database and of implementing opportunistic proto-
cols for summary diffusion/harvesting. Figure 3 
represents both regular node and police agent 
MDHP components; obviously, only the suitable 
ones will be installed on a single vehicle depend-
ing on its type. 

Figure 3. MDHP component architecture 
 
MDHP functions can be split in two different 

layers. The upper layer (DB Interfacing Layer) 
interworks with the summary database that main-
tains summaries either locally generated or ob-
tained from neighbors and not delivered to an 
agent yet. The lower one (Network Management 
Layer) consists of the components that actually 
implement communication protocol operations. 
While the DB Interfacing layer deals with in-
stances of the Java Summary class, the Network 
Management layer marshals/unmarshals summa-
ries into packets. Any summary includes a license 
plate number (6 bytes), additional sensed data (10 
bytes, currently a 3-byte temperature/hygrometer 
info and a 7-byte placeholder), timestamp (2 
bytes), and vehicle location (8 bytes). Thus, each 
1500-byte packet can pack up to 58 summaries, 
without exploiting any additional aggregation or 
size-optimizing encoding technique. 

 



Periodically, the Diffusion Manager at regular 
nodes advertises recently generated summaries 
(one packet with the 58 last summaries provided 
by the Local Summary DB Interface). In the cur-
rent MobEyes implementation, the diffusion period 
is set to 5 seconds and new summaries are ex-
pected to be generated with a maximum rate of 0.4 
Hz (so, each summary is advertised at least 29 
times). As future work, we are considering: i) to 
adapt the diffusion period to the changing rate of 
neighbor set (detected by Neighbor Manager); and 
ii) to combine summaries generated in different 
epochs in the same packet. The guideline is to 
maximize the usefulness of packets by advertising 
them to new neighbors expected not to have al-
ready collected the included summaries. 

Any time a regular node receives new summa-
ries, the Received Summary Persistence Manager 
updates the local database. Summaries are main-
tained until a police agent query is received: in that 
case, the Summary Selector component performs 
Bloom filter matching [11], prepares the set of 
summaries to send to the agent, ordered from the 
least to the most recent ones (in fact, due to ran-
dom node trajectories, oldest summaries are likely 
to be the rarest in the neighborhood and conse-
quently the higher priority ones), and then removes 
those summaries from the local database.  

Actual communications between agents and 
regular cars are carried by the Harvester and the 
Agent Interaction Manager. The Harvester coordi-
nates neighbor communications by exploiting uni-
cast messages for queries. The Agent Interaction 
Manager, instead, handles summary delivery on 
regular nodes.  In the current prototype, as soon as 
an agent encounters other agents (at 1-hop dis-
tance), the Multi-Agent Coordinator exchanges the 
list of harvested summaries. We are now extending 
the MobEyes architecture to support multi-hop 
inter-agent communications by exploiting IETF 
reactive routing protocols such as AODV [14, 15]. 

About low-layer communication support, we 
built MDHP on the standard .net package for 
sensing nodes equipped with J2SE. Limited nodes 
with J2ME will benefit from a MobEyes prototype 
version with a different implementation of the 
Packet component of the Network Management 
Layer, based on the standard Connection frame-
work included in the official Sun virtual machine. 
 
 
5. Experimental Results 

 
We developed current MSI and MDHP imple-

mentations on top of J2SEv1.5. We adopted: 1) the 
official Sun release of JMF 2.1.1 with Windows 
Performance Package (including enhanced 
audio/video decoders/encoders for Microsoft plat-
forms); 2) our own implementation of JSR 179; 3) 

the official Sun release of Java Communications 
API v2.0.  

To verify the feasibility of our approach, we 
tested MobEyes components in real-world scenar-
ios. Due to the lack of space, here we present some 
selected results. These refer to the performance of 
the MSI audio/video capture functionality. Tests 
were performed by capturing streams at a traf-
ficked intersection near the UCLA campus and 
were run on Dell Latitude D610 laptops, equipped 
with PentiumM2GHz, 512MB RAM, and Logitech 
Quickcam Chats. We aimed at evaluating three 
parameters: the size of generated files of sensed 
data, mainly dependent on stream length and en-
coding type; the overhead time needed to capture 
the stream, i.e., the gross amount of time needed to 
start media processor and to close processor and 
output file; and the conversion time to encode the 
stream.  

Table I, II, and III show the results obtained 
while capturing audio and audio/video streams, 
either in raw or encoded formats. For RGB video, 
frame rate was set to 4 fps and resolution to 
320x240; for LINEAR audio, sample rate was set 
to 44100, 16 bits per sample. Table I shows the 
average size of the files generated during our tests, 
for different recording time lengths. Both com-
pression methods (audio/video MJPG, and audio 
GSM) achieve a significant file size reduction. 
MJPG permits to tune a “quality” parameter, influ-
encing the conversion time, as well as the output 
file size. Table I shows only the results with a me-
dium quality value: this permits to reduce the file 
size of about 5 times with regard to the raw ver-
sion. Similar results are obtained in the case of 
streams including only the video track. Table II 
shows the overhead time needed to start the JMF 
processor capturing the stream and to terminate it. 
Results prove that audio/video capturing overhead 
is significantly greater than the one for a stream 
with only the audio track. Finally, Table III reports 
how long it takes to MSI to convert audio/video 
streams to the MJPG encoded format, depending 
on the chosen quality factor. Lower quality values 
(MobEyes quality=1, equivalent to MJPG qual-
ity=10%) impose a stable conversion time, largely 
compatible with typical MobEyes application re-
quirements.  

 
Rec-
Time 

A/V 
RGB 

A/V MJPG 
(Medium) 

Audio 
LINEAR 

Audio 
GSM 

5s 4907 934 439 9 
20s 16280 3295 1747 33 
60s 46518 8749 5180 95 

Table I. Generated file size (in [kB]) 
 

RecTime A/V RGB Audio LINEAR 
5s 4790 206 

20s 4493 401 
60s 7780 270 
Table II. Overhead time (in [ms]) 



RecTime A/V MJPG 
(Low) 

A/V MJPG 
(Medium) 

A/V MJPG 
(High) 

5s 802 1432 2099 
20s 1901 2198 11354 
60s 6726 6523 37429 

Table III. Conversion time (in [ms]) 
 

6. Conclusions and Future Work 
 

Urban monitoring is becoming a research field 
of growing interest. With the goal of supporting a 
posteriori monitoring investigations, we proposed 
MobEyes to address searching in a massive, mo-
bile, and decentralized storage of sensed data. In 
this paper, we discussed and evaluated MSI and 
MDHP, two key components of the MobEyes ar-
chitecture. Our MSI/MDHP design and implemen-
tation demonstrate that the integration with Java-
based standard solutions (JMF, JSR 179, Commu-
nications API, .net package) can allow to obtain 
feasible performance results with a high degree of 
openness, thus facilitating the adoption in large-
scale existing industrial deployment environments.  

The encouraging experimental results already 
obtained are stimulating further research work. In 
addition to some directions already sketched in the 
paper, we are currently investigating how the pro-
tocol for summary exchange among agents at 
multi-hop distance works when implemented upon 
ad-hoc routing solutions.  
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