
Web Services
Choreography

Ing. Enrico Oliva

PhD Student

{eoliva@deis.unibo.it}

mailto:{eoliva@deis.unibo.it}

22/12/2005 Web Services - Choreography Description Language 2

Outline

• Choreography & Orchestration

• Orchestration with WS-BPEL

• Choreography with WS-CDL
– Why WS-CDL?
– What is WS-CDL?
– Where is WS-CDL?

• An example of choreography between buyer, seller, credit agency and
shipper

– Bubble and stick, Sequence Diagrams and WS-CDL

• WS-CDL Approach
– Why it is based on Pi-Calculus?

• WS-CDL tool: Pi4SOA

• STIL project
– Design with WS-CDL the service decomposition realized by SATA

• Some pictures and ideas taken from presentation of Steve Ross Talbot
- Pi4 Technologies

22/12/2005 Web Services - Choreography Description Language 3

Choreography & Orchestration

• Choreography is a peer to peer interaction in a
global model, it does not depend on a centralized
controller

– It is about describing and guiding a global model
– You can derive the single viewpoint model from the global

model by a projection

• Orchestration is a hierarchical request/provider
model, it implies a centralized control mechanism

– It defines what and when the services should be called but
it does not define a collaboration among multi parties

– It is about describing and executing a single viewpoint
model

22/12/2005 Web Services - Choreography Description Language 4

Orchestration

PDA

Agenzia

Compagnia
Posti

Prezzo

Internet

Intranet

Agenzia

Compagnia1

PostiPrezzo

22/12/2005 Web Services - Choreography Description Language 5

Choreography

PDA

Agenzia

Compagnia
Posti

Prezzo

Internet

Intranet

Agenzia

Compagnia1

Utente

Compagnia2

Choreography

22/12/2005 Web Services - Choreography Description Language 6

Orchestration with WS-BPEL
• Web Services – Business Process Execution Language (BPEL or

WS-BPEL) is a process-oriented composition language for Web
services

– It relies on WSDL
– Structures: sequence, fork, join, parallel threads, computation
– A BPEL process is a Web service with WSDL interface
– Implies a centralized control mechanism

• A BPEL process executes the necessary
WSDL calls by effecting message
exchange between services

• A BPEL process can invoke another
BPEL process and it can call itself
recursively

22/12/2005 Web Services - Choreography Description Language 7

Why a Choreography Language?

• Each service can be described using WSDL or some
other interface languages (ex. Java)

– But this specification does not provide the sequence and
the conditions of the calls

• A language for the business activity that involves
different organizations is necessary, describing the
collaboration between the processes in a scalable
and unambiguous way

22/12/2005 Web Services - Choreography Description Language 8

What is WS-CDL?
• WS-CDL is the Web Services Choreography Description

Language (CDL for short)
• It is a language that can be used to describe collaboration

protocols of cooperating [Web] Service participants in which
• Services act as peers
• Interactions may be long-lived and statefull

• A CDL-based description is a multi-participant contract that
describes, from a neutral or global viewpoint, the common
observable behavior (ex. WSDL, Java interface) of the
collaborating Service participants
• The observable behavior is the behavior of a service which

can be observed without looking inside to see how the
service is doing things

22/12/2005 Web Services - Choreography Description Language 9

Where is WS-CDL?

SOAP

WSDL

HTTP

TCP/IP

U
D

D
I

PO
LIC

Y

WS-Addressing

WS-BPEL

M
A

N
A

G
M

EN
T

Other Languages
(i.e. Java, C#, C++, etc)

WS-CDL

Legacy
Available
Nascent
Missing

• CDL sits on top of the WS architecture stack
• It can be used to formally guide the behavior
of peers
• It applies to any service created using Java,
C#, WS-BPEL

22/12/2005 Web Services - Choreography Description Language 10

Emerging Web Services platform

By Nick Kavantzas, Oracle

22/12/2005 Web Services - Choreography Description Language 11

WS-CDL vs WS-BPEL

• WS-BPEL
• Executable language (also for abstract processes)
• Recursive Web Service Composition
• Centralised control by orchestration service
• Based on BPEL4WS1.1

• WS-CDL
• Description language
• Multi-party contracts (blueprints) for services as peers
• No centralized control, control is shared between domains
• Does not need Web Services but is targeted to deliver over them
• WS-CDL doesn’t see WS-BPEL is unique or different to any other

end-point language target

22/12/2005 Web Services - Choreography Description Language 12

Why would I use CDL?

• To ensure effective interoperability of Services is
guaranteed because Services will have to conform to a
common behavioral multi-party contract specified in the
CDL

• To create more robust Services because they can be
validated statically and at runtime against a choreography
description

• To reduce the cost of implementing Services by ensuring
conformance to expected behaviour

• To ensures that collaborative development can delivery

22/12/2005 Web Services - Choreography Description Language 13

How would I use it?

Behavioral
Skeleton

WSDL,
Java, C#,
WS-BPEL

Behavioral
Monitor

Java, C#

fpML CDL

Behavioral
Tester

http://www.fpml.org Eclipse plug-in

WS-CDL Structure

Information, Roles, Relationships, Channels

Choreography, Interaction

WorkUnits, Structured composition

Non Observable Conditionals

Observable Conditionals

State Mgmt
No State Mgmt

Package

Excepti ons , Final izer s

These are the types need to define
a choreography

Choreographies which are based
on Interactions between roles
based on declared relationships
that are realised on the channels

Choreographies include structured
composition such as sequence,
parallel and distributed choice as
well as what we call work-units.

22/12/2005 Web Services - Choreography Description Language 15

An Example
• Actors

– Buyer, Seller, Credit Agency, Shipper

• Actions
– Buyer barters with the Seller to get a price
– Buyer accepts a price and places an order
– Seller checks Buyers credit worthiness
– Seller requests delivery from Shipper
– Shipper sends delivery details to Seller and to Buyer

• Bubble and stick
• Sequence diagrams
• Activity diagrams

• Interaction Overview diagrams (UML 2.0)
CDL

22/12/2005 Web Services - Choreography Description Language 16

Buyer Seller

Shipper

Credit
Agency

Bubble and Stick

22/12/2005 Web Services - Choreography Description Language 17

Buyer Seller

• Buyer request a quote from
the seller.

• Seller responds with a quote.

• Quotes may timeout.

• Buyer MAY update quote and
request the update from the
seller.

• Seller MAY respond with the
update quote.

• Buyer MAY accept the quote.

Bubble and Stick

Web Services - Choreography Description Language 18

Buyer Seller

Shipper

Credit
Agency

• Seller checks credit worthiness.

• Seller requests delivery from Shipper.
• Shipper sends delivery details back to

Seller and to Buyer.

• If Buyer accepts the quote.

• If Credit worthiness is okay

Bubble and Stick

22/12/2005 Web Services - Choreography Description Language 19

Sequence Diagrams

22/12/2005 Web Services - Choreography Description Language 20

Sequence Diagrams

22/12/2005 Web Services - Choreography Description Language 21

Sequence Diagrams

22/12/2005 Web Services - Choreography Description Language 22

Activity Diagrams

22/12/2005 Web Services - Choreography Description Language 23

WS-CDL

22/12/2005 Web Services - Choreography Description Language 24

WS-CDL Approach

• Based on simple contract-like mechanisms
– Deadlock-freedom (Kobayashi, 99, 00)
– Liveness (Kobayashi, 01; Yoshida, et al, 02)
– Security (Abadi et al; Cardelli and Gordon; Berger, Honda, Yoshida)
– Resource management (Tofte; Kobayashi; Gordon and Dal Zilio;

Yoshida, et al)
– Race-condition detection (refs)

• Which are extensions to CCS/CSP and π-calulus (Milner)

22/12/2005 Web Services - Choreography Description Language 25

WS-CDL Approach

Model Completeness Compositionality Parallelism Resources

Turing
Machines

Lambda

Petri Nets

CCS

π

22/12/2005 Web Services - Choreography Description Language 26

WS-CDL and the Pi-Calculus

• Pi-calculus is a language used to define concurrent
processes that interact with one another
dynamically

– The most distinct feature is mobility
• The topology of communicating processes changes

dynamically in response to channel passing

• Choreography has to build global collaborative
contracts requiring a conceptual framework that can
express dynamic communicating processes precisely
and concisely

– WS-CDL based its constructs on the Pi Calculus

22/12/2005 Web Services - Choreography Description Language 27

WS-CDL and the Pi-Calculus
Operation Notation Meaning

Prefix π.P Sequence

Action a(y), a(y) Communication

Summation a(y).P + b(x).Q

∑ πi(Pi

Choice

Recursion P={…..}.P Repetition

Replication !P Repetition

Composition P | Q Concurrency

Restriction (vx)P Encapsulation

Collapse send and
receive into an

interact on channels

22/12/2005 Web Services - Choreography Description Language 28

WS-CDL Concepts & Pi-Calculus

• Central concepts in WS-CDL are interaction, channel
and guarded workUnit

– A channel represents a pair of “ports” in pi-calculus
• They represent a declared name binding of ports between

process
– A interaction is a message exchange that occurs in a

channel
• The message may be represented in pi-calculus as a polyadic

message
• The channel and their interaction enable a bi-directional

communication, modelling a request and response pair
• The type of messages exchange can be represented as

“sorts” in pi-calculus
– A guarded workUnit waits until a condition is met

• The workUnit may be represented in pi-calculus as a process
or collection of process where each component in the
condition is a port with a condition attached

22/12/2005 Web Services - Choreography Description Language 29

WS-CDL Formalisms

• Global Model Formalisms [Nickolaos kavantzas, work in progress]
– Based on the variant of pi-calculus [R.Milner, J.Parrow, D.Wlker], the Explicit Solos

calculus [P.Gardner, C.Laneve, L.Wischik] allows modeling a system from global
viewpoint

Syntax:

Inf set N of names x,y,u and literals, x means x1 .. xn (n>=0), loc means locations

Process P, Q, E, F ::=

0 ; inaction

|?g !h P ; globalized trigger, replicated

| loc:x.#l > u > loc’:y.#r ;globalized interaction: paried out||in, with only
fusion continuations-reduces to loc:#l || loc:#r || loc:loc’: x # y

| (loc:x) P ; visibility

| P||Q ; parallel composition

| loc: x # y ; explicit composition

| P& Q ; globalized selection between alternative

| loc >> P ; projection of a process at a location

| P @ E @ F ; choreography of P normal, E exception, F finalizer

Guard g,h ::=

loc:u | loc: u # v | g + g | g g | h + h | h h

22/12/2005 Web Services - Choreography Description Language 30

Outline
• Choreography & Orchestration

• Orchestration with WS-BPEL

• Choreography with WS-CDL

• An example of choreography between buyer, seller,
credit agency and shipper

– Bubble and stick, Sequence Diagrams and WS-CDL

• WS-CDL Approach
– Why it is based on Pi-Calculus?

WS-CDL in Detail
Syntax
Implementation

WS-CDL tool: Pi4SOA

22/12/2005 Web Services - Choreography Description Language 31

Sequence Diagrams

22/12/2005 Web Services - Choreography Description Language 32

Typing

• Information type
– Aliases WSDL type, XSD

type/element
– Supports other type systems

• Token type
– Specify name and type as an

alias to a piece of information
within a document

• Token Locater type
– Specify rules for selecting a

piece of information within a
document

<informationType name="ncname"
type="qname"?|element="qname"?

exceptionType="true"|"false"?/>

<token name="ncname"
informationType="qname" />

<token name="ncname"
informationType="qname"
query=“XPath-expression”? />

22/12/2005 Web Services - Choreography Description Language 33

Information Types
<informationType name="BooleanType" type="xsd:boolean" />

<informationType name="StringType" type="xsd:string" />

<informationType name="RequestForQuoteType" type="bs:RequestForQuote">

<description type="documentation">Request for quote message</description>

</informationType>

<informationType name="QuoteType" type="bs:Quote">

<description type="documentation">Quote message</description>

</informationType>

<informationType name="QuoteUpdateType" type="bs:QuoteUpdate">

<description type="documentation">Quote Update Message</description>

</informationType>

<informationType name="QuoteAcceptType" type="bs:QuoteAccept">

<description type="documentation">Quote Accept Message</description>

</informationType>

<informationType name="CreditCheckType" type="bs:CreditCheckRequest">

<description type="documentation">Credit Check Message</description>

</informationType>

<informationType name="CreditAcceptType" type="bs:CreditAccept">

<description type="documentation">Credit Accept Message</description>

</informationType>

• It describe the type of information used within a Choreography
• The information is described as a WSDL or XML Schema

22/12/2005 Web Services - Choreography Description Language 34

Token Types

<token name="BuyerRef" informationType="StringType" />

<token name="SellerRef" informationType="StringType" />

<token name="CreditCheckRef" informationType="StringType" />

<token name="ShipperRef" informationType="StringType" />

22/12/2005 Web Services - Choreography Description Language 35

Interactions
• Enable collaborating participant to communicate

and align the information

• Describe the messages exchange between two roles
within a relationship along a channel istance
– Request & Accept of an operation through a common channel

• One way interaction single message is sent
• Request/response interaction two message are exchanged

– Information flow
• request/response direction

– State recording at roles
• Create new, modify existing variables at a Role

– Information Alignment
• State changes of variables that reside in one Role with the state

changes of variables that reside in the other Role
• Value of the exchanged messages

• Interactions dependecies
– Define our roleTypes, relationshipTypes, informationTypes, tokenType and

channelTypes

22/12/2005 Web Services - Choreography Description Language 36

Interaction Syntax

<interaction name="NCName" channelVariable="QName" operation="NCName"
align="true"|"false"? initiate="true"|"false"? >

<participate relationshipType="QName" fromRoleTypeRef="QName"
toRoleTypeRef="QName“ /> <exchange name="NCName" faultName="QName"?
informationType="QName"?|channelType="QName"? action="request"|"respond" >

<send variable="XPath-expression"? recordReference="list of NCName"?
causeException="QName"? />
<receive variable="XPath-expression"? recordReference="list of NCName"?

causeException="QName"? />
</exchange>*
<timeout time-to-complete="XPath-expression" fromRoleTypeRecordRef="list of

NCName"? toRoleTypeRecordRef="list of NCName"? />?
<record name="NCName" when="before"|"after"|"timeout" causeException="QName"?

> <source variable="XPath-expression"? | expression="XPath-expression"? />
<target variable="XPath-expression" />

</record>*

</interaction>

22/12/2005 Web Services - Choreography Description Language 37

Interactions
<interaction name="Buyer send channel to seller to enable callback behavior"

operation="sendChannel" channelVariable="Buyer2SellerC">

<description type="description">Buyer sends new channel to pass on to
shipper</description>

<participate relationshipType="BuyerSeller" fromRole="BuyerRoleType"
toRole="SellerRoleType" />

<exchange name="sendChannel" channelType="2BuyerChannelType"
action="request">

<send variable="cdl:getVariable('DeliveryDetailsC','','')" />

<receive variable="cdl:getVariable('DeliveryDetailsC','','')" />

</exchange>

</interaction>

• This interaction describes the passing of another channel instance, called
“DeliveryDetailsC”. The channel is instantiated and it resides in a variable of the
same name at the Buyer role.
• What the interaction does is passing the details through a channel, called
“Buyer2SellerC” that enables the Shipper role to create an exact copy of it in a
variable called “DeliveryDetailsC” that is passed onto the Shipper later on in the
last interaction.

22/12/2005 Web Services - Choreography Description Language 38

Interactions

<interaction name="Buyer accepts the quote and engages in the act of buying"
operation="quoteAccept” channelVariable="Buyer2SellerC">

<description type="description">Quote Accept</description>

<participate relationshipType="BuyerSeller" fromRole="BuyerRoleType"
toRole="SellerRoleType" />

<exchange name="Accept Quote" informationType="QuoteAcceptType"
action="request"></exchange>

</interaction>

<interaction name="Seller requests delivery details - passing channel for buyer and
shipper to interact" operation="requestShipping”
channelVariable="Seller2ShipperC">

<description type="description">Request delivery from the shipper</description>

<participate relationshipType="SellerShipper" fromRole="SellerRoleType"
toRole="ShipperRoleType" />

<exchange name="sellerRequestsDelivery" informationType="RequestDeliveryType"
action="request"></exchange>

<exchange name="sellerReturnsDelivery" informationType="DeliveryDetailsType"
action="respond"></exchange>

</interaction>

• This interactions are broadly similar except they do not pass channels, they pass
InformationMessages such as “QuoteAcceptType”

22/12/2005 Web Services - Choreography Description Language 39

Interactions

<interaction name="Seller forward channel to shipper" operation="sendChannel"
channelVariable="Seller2ShipperC">

<description type="description">Pass channel from buyer to shipper</description>

<participate relationshipType="SellerShipper" fromRole="SellerRoleType"
toRole="ShipperRoleType" />

<exchange name="forwardChannel" channelType="2BuyerChannelType"
action="request">

<send variable="cdl:getVariable('DeliveryDetailsC','','')" />

<receive variable="cdl:getVariable('DeliveryDetailsC','','')" />

</exchange>

</interaction>

22/12/2005 Web Services - Choreography Description Language 40

Role Types
<roleType name="BuyerRoleType">

<description type="documentation">The
Behavior embodied by a
buyer</description>

<behavior name="BuyerBehavior" />

</roleType>

<roleType name="SellerRoleType">

<description type="documentation">The
behavior embodied by a seller</description>

<behavior name="SellerBehavior" />

</roleType>

<roleType name="CreditCheckerRoleType">

<description type="documentation">The
behavior embodied by a credit checker
</description>

<behavior name="CreditCheckerBehavior" />

</roleType>

<roleType name="ShipperRoleType">

<description type="documentation">The
behavior embodied by a shipper
service</description>

<behavior name="ShipperBehavior" />

</roleType>

<roleType name="ncname">

<description type=” documentation”
</description>?

<behavior name="ncname"
interface="qname"? />+

</roleType>

• Enumerate the observable behavior that a collaborating participant exhibits
• Behavior type specifies the operations supported

• Optional WSDL interface

22/12/2005 Web Services - Choreography Description Language 41

<relationshipType name="BuyerSeller">

<role type="BuyerRoleType" />

<role type="SellerRoleType" />

</relationshipType>

<relationshipType name="SellerCreditCheck">

<role type="SellerRoleType" />

<role type="CreditCheckerRoleType" />

</relationshipType>

<relationshipType name="SellerShipper">

<role type="SellerRoleType" />

<role type="ShipperRoleType" />

</relationshipType>

<relationshipType name="ShipperBuyer">

<role type="ShipperRoleType" />

<role type="BuyerRoleType" />

</relationshipType>

Relationship Types

<relationshipType name="ncname">

<role type="qname" behavior="list of
ncname"? />

<role type="qname" behavior="list of
ncname"? />

</relationshipType>

• Specify the mutual commitments, in terms of Roles/Behavior types, two
collaborating participant are required to provide

22/12/2005 Web Services - Choreography Description Language 42

Channel Types

• Realizes a dynamic point of collaboration, through
which collaborating participant interact

– Where and how communicate a message
• Specify the Role/Behavior and reference of a collaborating

participant
• Identify an Instance of Role

• One o more channel(s) may be passed around from
a Role to one or more other Role(s)

– A channel types may restrict the types of channel allowed
to be exchanged

– A channel types may restrict its usage, by specifying the
number of times channel can be used

22/12/2005 Web Services - Choreography Description Language 43

Channel Types

<channelType
name="Buyer2SellerChannelType">

<passing channel="2BuyerChannelType"
new="true">

<description type="description">Able to
pass channel to enable shipper to talk to
</description>

</passing>

<role type="SellerRoleType" />

<reference>

<token name="SellerRef" />

</reference>

</channelType>

<channelType name="ncname"

usage="once"|"unlimited"?

action="request-respond"|"request"|"respond"?
>

<passing channel="qname"

action="request-
respond"|"request"|"respond"?

new="true"|"false"? />*

<role type="qname" behavior="ncname"? />

<reference>

<token name="qname"/>

</reference>

<identity>

<token name="qname"/>+

</identity>?

</channelType>

• In this example we allow to the instances of channel to pass other channels of
type “2BuyerChannelType” (this is the type for our “DeliveryDetailsC” channel
instance)

22/12/2005 Web Services - Choreography Description Language 44

Channel Types
<channelType name="Seller2CreditCheckChannelType">

<role type="CreditCheckerRoleType" />

<reference>

<token name="CreditCheckRef" />

</reference>

</channelType>

<channelType name="2BuyerChannelType" action="request">

<role type="BuyerRoleType" />

<reference>

<token name="BuyerRef" />

</reference>

</channelType>

<channelType name="Seller2ShipperChannelType">

<passing channel="2BuyerChannelType">

<description type="description">Pass channel through to shipper </description>

</passing>

<role type="ShipperRoleType" />

<reference>

<token name="ShipperRef" />

</reference>

</channelType>

22/12/2005 Web Services - Choreography Description Language 45

Variables

• Capture instance information about objects in a
collaboration

• Variable types
– Information Exchange Variables: define instances of

exchanged documents between Roles in an interaction
– State Variables: define instances of state information at a

Role
– Channel Variables: define instances of channel types

• Their definitions
– Specify the type of value a variable contains using

informationType, channelType
– Specify the Role of the collaboration participant a variable

resides in

22/12/2005 Web Services - Choreography Description Language 46

Choreography

• It defines re-usable common
rules, that govern the ordering
of exchanged messages and the
provisioning patterns of
collaborative behavior

– Enumerating the observable
behavior

– Localize the visibility of
variables

• Using variable definitions
– Prescribe alternative patterns

of behavior
– Enable recovery

• Choreography dependencies
– Declare our variables
– Declare our relationship types

<choreography name="ncname“
complete="xsd:boolean XPath-
expression"? isolation="dirty-write"|
"dirty-read"|"serializable"?
root="true"|"false"? >

<relationship type="qname" />+

variableDefinitions?

Choreography-Notation*

Activity-Notation

<exception name="ncname">

WorkUnit-Notation+

</exception>?

<finalizer name="ncname">
WorkUnit-Notation

</finalizer>?

</choreography>

22/12/2005 Web Services - Choreography Description Language 47

<choreography name="Main" root="true">

<description type="description">Collaboration between buyer, seller, shipper, credit chk</description>

<relationship type="BuyerSeller" />

<relationship type="SellerCreditCheck" />

<relationship type="SellerShipper" />

<relationship type="ShipperBuyer" />

<variableDefinitions>

<variable name="Buyer2SellerC" channelType="Buyer2SellerChannelType” roleTypes="BuyerRoleType">

<description type="description">

Principle channel used to enable interaction between buyer

and seller for price requests, price confirms and orders

</description>

</variable>

<variable name="Seller2ShipperC” channelType="Seller2ShipperChannelType” roleTypes="SellerRoleType">

<description type="description">

Seller to shipper channel - used to pass a channel to effect

interaction with the buyer

</description>

</variable>

<variable name="Seller2CreditChkC" channelType="Seller2CreditCheckChannelType" roleTypes="SellerRoleType">

<description type="description">

Seller to Credit Check Channel used to check credit for buyers to

determine if we do business with them

</description>

</variable>

<variable name="DeliveryDetailsC” channelType="2BuyerChannelType" roleTypes="BuyerRoleType SellerRoleType
ShipperRoleType" />

<description type="description">

Channel created by the buyer to pass to third parties so that

They can communicate with the buyer without have linkage

</description>

</variable>
<variable name="barteringDone" informationType="BooleanType" roleTypes="BuyerRoleType SellerRoleType">

<description type="description">Has Bartering Finished flag</description>

</variable>

</variableDefinitions>

Choreography

• Here are the variables and relationships definition
• We define some channel instances and a boolean variable

48

<?xml version="1.0" encoding="UTF-8" ?>

<package name="BuyerSellerCDL" author="Steve Ross-Talbot"

version="1.0" targetNamespace="www.pi4tech.com/cdl/BuyerSeller"

xmlns="http://www.w3.org/2004/12/ws-chor/cdl"

xmlns:bs="http://www.pi4tech.com/cdl/BuyerSellerExample-1">

<description type="description">This is the basic BuyerSeller Choreography Description</description>

…………

<choreography name="Main" root="true">

<description type="description">Collaboration between buyer, seller, shipper, credit chk</description>

…………

<sequence>

<interaction name="Buyer requests a Quote - this is the initiator" operation="requestForQuote"
channelVariable="Buyer2SellerC" initiate="true">

<description type="description">Request for Quote</description>

<participate relationshipType="BuyerSeller" fromRole="BuyerRoleType" toRole="SellerRoleType" />

<exchange name="request" informationType="RequestForQuoteType" action="request">

<description type="description">Requesting Quote</description>

</exchange>

<exchange name="response" informationType="QuoteType" action="respond">

<description type="description">Quote returned</description>

</exchange>

</interaction>

…………

</sequence>

</choreography>

</package>

Choreography

• Defining a choreography
• Interaction: Buyer requesting a price from the Seller

• it is modeled with two exchanges (request/responce)

22/12/2005 Web Services - Choreography Description Language 49

WorkUnit

• Information driven model,
reaction rule guards a set of
activities, by prescribing the
constraints on information that
need

• Reaction Guard expresses
interest on the availability of
one or more variable
information

• When the variable is/becomes
available and the guard
condition evaluates to true, the
enclosed activities are enabled

<workunit name="ncname"
guard="xsd:boolean XPath-
expression"?

repeat="xsd:boolean XPath-
expression"? block="true|false" >

Activity-Notation

</workunit>

22/12/2005 Web Services - Choreography Description Language 50

WorkUnit
• WorkUnit explanation with imperative language principles

– Workunit (G) (R) (B is True) Body
• G => guard condition,
• R => repeat condition,
• B => blocking attribute,
• Body => CDL activities within the work unit

– A typical order of evaluation is as follows
• (G) Body (R G) Body (R G) Body

IF G is unavailable or evaluates to False THEN it equates to:
when (G) { Body } until (!R)

IF G is always True THEN it equates to:
repeat { Body } until (!R)

IF R is always False THEN it equates to:
when (G) { Body }

22/12/2005 51

Batering Process

<workunit name="Repeat until bartering has been completed" repeat="barteringDone = false">

<choice>

<silentAction roleType="BuyerRoleType">

<description type="description">Do nothing - let the quote timeout</description>

</silentAction>

<sequence>

<interaction name="Buyer accepts the quote and engages in the act of buying" operation="quoteAccept"
channelVariable="Buyer2SellerC">

<description type="description">Quote Accept</description>

<participate relationshipType="BuyerSeller" fromRole="BuyerRoleType" toRole="SellerRoleType" />

<exchange name="Accept Quote" informationType="QuoteAcceptType" action="request">

</exchange>

</interaction>

<interaction name="Buyer send channel to seller to enable callback behavior" operation="sendChannel"
channelVariable="Buyer2SellerC">

<description type="description">Buyer sends channel to pass to shipper</description>

<participate relationshipType="BuyerSeller" fromRole="BuyerRoleType" toRole="SellerRoleType" />

<exchange name="sendChannel" channelType="2BuyerChannelType" action="request">

<send variable="cdl:getVariable('DeliveryDetailsC','','')" />

<receive variable="cdl:getVariable('DeliveryDetailsC','','')" />

</exchange>

</interaction>
• Bartering process

• Interaction between Buyer and Seller
• Interaction to pass call back details

22/12/2005 Web Services - Choreography Description Language 52

Batering Process

<assign roleType="BuyerRoleType">

<copy name="copy">

<source expression="true" />

<target variable="cdl:getVariable('barteringDone','','')" />

</copy>

</assign>

</sequence>

<sequence>

<interaction name="Buyer updates the Quote - in effect requesting a new price" operation="quoteUpdate"
channelVariable="Buyer2SellerC">

<description type="documentation">Quot Update</description>

<participate relationshipType="BuyerSeller" fromRole="BuyerRoleType" toRole="SellerRoleType" />

<exchange name="updateQuote" informationType="QuoteUpdateType" action="request">

</exchange>

<exchange name="acceptUpdatedQuote" informationType="QuoteAcceptType" action="respond">

<description type="documentation">Accept Updated Quote</description>

</exchange>

</interaction>

</sequence>

</choice>

</workunit>

• Bartering process
• Set out “bateringDone” variable to “true”
• Buyer updates the quote and gets a
response back from the Seller

22/12/2005 Web Services - Choreography Description Language 53

WS-CDL Tool – Pi4SOA

• WS-CDL editor Pi4SOA
– www.pi4tech.com

• Plug-in Eclipse
• Distributed by source forge with Apache 2.0 licence

– Tree based editor based on structural clarity (see workunit
explanation)

– Testing a choreography by simulating messages that make up
interactions.

– Testing correct set of messages
• Incorrect set of messages - results in a “SEVERE” error warning

– Generate the code skeleton
• WS-CDL to Java or WS-BPEL

http://www.pi4tech.com/

Thank you!

	Web Services Choreography
	Outline
	Choreography & Orchestration
	Orchestration
	Choreography
	Orchestration with WS-BPEL
	Why a Choreography Language?
	What is WS-CDL?
	Where is WS-CDL?
	Emerging Web Services platform
	WS-CDL vs WS-BPEL
	Why would I use CDL?
	How would I use it?
	WS-CDL Structure
	An Example
	Bubble and Stick
	Bubble and Stick
	Bubble and Stick
	Sequence Diagrams
	Sequence Diagrams
	Sequence Diagrams
	Activity Diagrams
	WS-CDL
	WS-CDL Approach
	WS-CDL Approach
	WS-CDL and the Pi-Calculus
	WS-CDL and the Pi-Calculus
	WS-CDL Concepts & Pi-Calculus
	WS-CDL Formalisms
	Outline
	Sequence Diagrams
	Typing
	Information Types
	Token Types
	Interactions
	Interaction Syntax
	Interactions
	Interactions
	Interactions
	Role Types
	Relationship Types
	Channel Types
	Channel Types
	Channel Types
	Variables
	Choreography
	Choreography
	Choreography
	WorkUnit
	WorkUnit
	Batering Process
	Batering Process
	WS-CDL Tool – Pi4SOA
	Thank you!

