
 1

Using Eclipse in building model-driven e-Learning supports

A. Natali, A. Del Cinque, E. Oliva

In this paper we discuss the role of
modelling and of EMF (Eclipse Modeling
Framework) and GMF (Eclipse Graphical
Modeling Framework) in the design and
development of supports for eLearning
applications. A model driven approach to
eLearning applications is presented, rooted
on the explicit representation of the model
of the didactic content, based on a
metamodel language expressed in Ecore.
Besides exploiting the integration of Java,
XML and UML provided by EMF, we
introduce a Prolog-based representation of
models as a more convenient way to
overcome the gap between the user level
and the technology level and as a mean to
reduce the cost of design and
implementation of learning strategies.
Working in a MDA perspective, the tool
exploits GMF and Jet (Java Emitter
Templates) to produce code for a
knowledge based, SCORM® compliant
Platform Specific Model. The content
model provides the Platform Independent
Model that allows to achieve the intended
behavioural semantics.

1 Introduction
Modelling represents a strategic issue in modern
eLearning applications, as regards both the
organizations of the didactic contents and the
architecture of the application itself. From the
point of view of content organization, the
specification of a model provides a formal and
high level representation of the building blocks
of a didactic unit and a mean to highlight the
logical relationships between the parts that
compose a course. From the application point of
view, the current vision of eLearning as an
evolutionary process is better supported by using

an explicit model as the basic artefact to control
and support the process itself.
Modelling can also promote discipline in design
and development of eLearning platforms and
tools, with particular reference to authoring tools
capable to interact with eLearning supports and
to be modified in a systematic way according to
the evolution of the eLearning field.
Moreover, the usage of models allows to make
explicit knowledge that usually remains implicit
into eLearning supports; such a knowledge can
be used as a powerful bridge between the design
phase of a course and the run time phase;
especially when the content views are to be
personalized and individualized according to the
characteristics of the reader,.
A systematic, model-driven approach to the
design and development of eLearning courses,
supports and tools has been tackled in the
AlmaTwo [1] project of the University of
Bologna, co-funded by the Region Emilia
Romagna. The main aim of AlmaTwo is to
integrate in a systematic and well-founded way
pedagogical approaches to eLearning with the
tools and supports that the technology makes
available. Our intent is to promote the vision of
eLearning as a process based on student
activities performed in the context of learning
plans and characterized by the cooperative work
of human and artificial agents. The current
logical model of AlmaTwo applications is
expressed in UML and is reported at the site
http://137.204.107.78/moodle/ (login as guest).
In this paper we concentrate the attention on the
part of the model related to the organizations of
eLearning contents and on the role of this model
to support advanced features at application level.

http://137.204.107.78/moodle/

 2

However, the focus of the work is not on
applicative features; it is on discussing the crucial
role played by Eclipse Modeling Framework
(EMF) [2] and Eclipse Graphical Modelling
Framework (GMF) [3] in supporting our vision;
moreover, we will discuss our choice to
introduce a new representation for models, based
on Prolog clauses.
Eclipse has been used not only as a powerful
production tool, but also as a conceptual
reference for the design and development of (a
new class of) authoring tools and possibly of run
time supports. eComposer is the tool we
developed with GMF to support the teacher in
defining the structural model of the content of a
course in a way systematically related to the
desired application model. The focal point was
to make explicit the representation of the
metamodel application language, and the
constant alignment with the actual application
code, according to the Model Driven
Architecture (MDA) [4] approach. By layering
over GMF, we naturally chose to satisfy
functional and non functional requirements
according to two basic strategies: MDA and
declarative programming.
The Prolog-based representation of models is
introduced to further enhance declarative
programming and to promote the interpretation
of a model as a knowledge base (modelKB) ; the
modelKB is exploited to overcome the gap
between the technology level (e.g. the XML
representation of the model) and the user level.
The work is structured as follows. In section 2
and 3 we introduce respectively an overview of
eLearning applications and an introduction of the
AlmaTwo approach. Section 4 is devoted to the
description of the metamodel language and the
role of EMF in producing an editor. Section 5
gives an example of the author workflow and a
view of the final result. In section 6 we discuss
the role of GMF in producing a user oriented
GUI interface for the editor and the possibility to
adopt a similar approach for the organizations of
the eLearning application itself. Section 7 is
devoted to conclusions.

2 Overview of the application field
A eLearning application system can be viewed,
in first approximation, as a client-server,
distributed Model-View-Controller (MVC)
application, in which the model, stored at the
server site, is related to a eLearning course made

of learning objects (LO) [5] that constitute the
didactic content and the views, running on the
client site, are provided with the support of a
browser.

2.1 The technologal view
ELearning applications run on platforms
provided by Learning Management Systems
(LMS). A modern LMS usually implements the
SCORM® (Sharable Content Object Reference
Model) [6] standard that defines rules to
represent the content structure (Content
Aggregation Model) and rules to handle the
information that can be exchanged between the
client and the server (Run Time Environment).
The aim of SCORM® is to enhance
interoperability, by assuring that the content can
be read and handled by any SCORM® compliant
LMS. The goal to promote a conceptual space for
eLearning design is out of the scope of SCORM®.
The SCORM® model of the content is expressed
in XML and stored in the imsmanifest.xml
file, which must be included in the (zip) file
used to deploy a course on the chosen LMS.
Such a deployment file must contain the
description of the learning objects, their metadata
and all the required learning resources. The
SCORM® model of the data that can be
dynamically exchanged between the client and
the LMS concur to form a lesson data model
which represents the student and the status of the
student activity with respect to a specific learning
object. The SCORM®2004 specification [7]
extends SCORM®1.2 with particular reference to
content navigation rules.
The run time behaviour of a eLearning
application is the combined result of the actions
performed by the student through the content
views (both the views provided by the LMS and
those provided by the content itself) together
with the behaviour embedded in each learning
object, under the constraints imposed by
SCORM® and by the planned navigation rules.
Since content (re)factoring implies the
production/modification of learning objects and
the definition of a new XML model of the content,
the teacher is usually assisted in the course
production phase by an instructional designer, in
order to overcome the gap between the design
level and the implementation level. This
approach however increases the costs (in money
and time) of eLearning production and
discourages teachers to directly control, exploit
and improve the potential benefits of eLearning.

 3

2.2 The logical view
The designer of eLearning applications can be
considered at first glance as a special kind of
software designer which writes “programs” not
only for machines but also for human beings. A
eLearning course and its composing LO should
represent the final products of a design process
devoted to promote learning by driving the
activities of students in synergy with the
behaviour planned for the machines. However
students cannot be reduced to machines and
student activities cannot be reduced to the
execution of simple commands or to the reading
of contents written in electronic form.
Since the programmed behaviour of machines
should be conceived to stimulate student actions
directly related to learning, great attention is
given to constructivist approaches [8] in which
students are viewed as co-creators of their own
knowledge. However, the methodology and the
support required to plan (predict), control and
validate “true” learning actions in a way closely
related to the structure of a course constitute still
an open problem.

3 The AlmaTwo approach
One of the goals of AlmaTwo is to support a
process of content production based on a
systematic, model-driven relationship between
the structure of a course intended as an eLearning
application and the expected behaviour at
application level.
To achieve this goal we adopt a MDA approach
by introducing a Platform Independent Model
(PIM) of a eLearning application and a
systematic relationship to a specific Platform
Specific Model (PSM). Actually the PSM of
reference is based on the SCORM® and Web
specification as implemented in an extension
(called AlmaLMS) of the Moodle 1.7
platform [9] .
The content production process is supported by
eComposer, a configuration tool built using
GMF and Jet [10] to perform automatic
generation of code for our target machine.
The vision supported by eComposer is that the
author should be mainly concerned with the
logical organization of the content of the course
(application), by leaving to the tool the task of
introducing the stuff necessary to support the
intended behavioural semantics. The intent is to
increase teacher’s control over the design of the
course, by limiting the role of the instructional
designer to very specific technological aspects.

The behavioural semantics associated to the
model of the content is rooted in the concept of
action performed by the student on the grounds
of the content itself within the support and the
constraints of the chosen LMS.
A course specification is viewed as the
specification of a working plan in a partially
known environment. At course design time, the
teacher acts as the planner of the actions that
students will perform by using the views of the
content provided by mechanical agents.
Relevant learning activities are usually directly
related to the actions promoted by specific LO; it
is for example the case of a LO embedding a
virtual lab or an interactive LO that stimulates the
student with questions, experiments, etc.
By recognizing these points, AlmaTwo
introduces a conceptual space including the
following concepts:
• the idea of learning artefact [11] - inspired

by the activity theory [12] - to denote a LO
properly designed to promote activities
(beyond simple select-open-read loop)
considered useful for learning;

• the concept of pedagogical type [13] to
characterize each LO or artefact in terms of
the learning strategies it can promote. A set
possible of pedagogical types is reported in
(Tab1);

• the concept of logical relations between LO,
in order to support the definition of
conceptual maps of the contents; possible
relations are discussed in section 4.1.1;

• the concept of learning path, intended as
planned proposals for navigation in the
content.

Table 1: Pedagogical types (provisory from [13])

These concepts constitute the basic building
blocks of the meta model discussed in section 4.
Educational metadata and lesson data model are
also introduced to improve the expressive power
of the metamodel and to create a pragmatic link
with SCORM® compliant platforms.
By modelling a course with these concepts, we
can interpret a structural specification - i.e. the
logical organization of a course - as a behaviour
plan. The logical organization of a course
expressed by using the metamodel language can
be considered itself as an artefact that can help
students in becoming co-creators of their own
knowledge. In particular, conceptual maps are
artefacts that eComposer is able to build in a

 4

personalized way, by taking into account the
values of the metadata and also of the lesson
model. At run time, a map gives to students the
capability to navigate with relative freedom into
the contents by providing a constant reference
point for orientation. The map is also an artefact
that can be build by the students themselves to
create a personal view of the body of knowledge.
The comparison between the map planned by the
teacher and the map built by the students can
provide useful feedbacks to validate the
pedagogical correctness of the course model and
to reduce the uncertain on the environment.

3.1 The author workflow
The workflow of design and production
supported by eComposer can be summarized
as follows:
• The author defines a Unit as an aggregate

of logical contents called Item and physical
resources called File. A File that can be
written in any format that can be handled by
a conventional browser (e.g. xml, html,
pdf, rtf, ..)

• The Items are organized in a hierarchical
tree having Unit as its root.

• Each Item can be associated to one or more
File that represent its content.

• Each Item can be associated to a (empty)
set of metadata, to one (and only one)
pedagogical type.

• Each Item can be associated to a pre-
condition and a post-condition.

• Each Item can participate to a (empty) set
of binary relations with other Items.

• The author can define one or more learning
paths (see section 4.1.2).

The intended semantics is that Unit represents a
course to be followed by a set of students. To
follow a course, each student must select an
Item (whose precondition is true) in the context
of one or more learning paths. The pedagogically
relevant actions performed by the students are
implicitly or explicitly related to the selected
Item in the context of the selected learning path.

4 The role of EMF
In our MDA approach, the PIM is mainly
represented by the course model, which is a
datamodel obtained as an instance of a meta
model defined by using Ecore [14]. Ecore is
the core metamodel implementation in EMF,
which is an implementation of the OMG Meta

Object Facility (MOF) specification [15].
Ecore allows us to express abstract language
syntax categories, their attributes, and relations
between them (associations, compositions and
generalizations). In our metamodel language we
express mainly relations and compositions of e-
learning content; Unit is the root of the
language abstract parse tree.

4.1 The metamodel
Since each Ecore sentence can be represented
as a kind of UML class diagram, the UML-like
representation of a simplified version of the
AlmaTwo metamodel language is shown in (Fig.
1) (shaded classes are abstract):

Figure 1: Language metamodel (subset);
The metamodel defines in a more formal way the
fact that a Unit is an aggregate of 1 or more
Item, 1 or more contents (ContentOfItem),
0 or more relations (ItemRelation) between
items and 1 or more LearningPath. Each
ContentOfItem makes reference to 1 or
more File. The information carried by an
instance of this meta model includes what can be
expressed in the manifest file of SCORM®1.2;
main extensions are the concepts of item relation,
learning path and pedagogical type.

4.1.1 Relations between items
The concept of relation between items has been
introduced mainly to allow a teacher to specify
logical relations betweens the parts of a course
and to allow a representation of the content in
terms of conceptual maps. The usage of
conceptual maps – instead of conventional tree-
based indexes – should help the reader in
capturing the logical organization of the course
and in providing support for semantic-based
navigation. The set of relation types is defined
by a set of classes that specialize the class
ItemRelation; if we denote with IT the item
of interest (source Item of the relation) and with
A another item (target Item) then possible
relations are:
• preknowledge: IT assumes that the

reader knows what is written in A
• clarification: A should make the

content of IT more clear;
• conceptualize: A presents the content

of IT is a more formal and conceptual way;
• widening: A is a study in depth of IT;

 5

• experiment: A is an experiment related
to IT;

• exercise: A is an exercise related to IT;
Other relations can be introduced by simply
adding new classes.
An ItemRelation can be associated with one
or more Condition involving item metadata
values and lesson model values; in other words
the concept of relation is not absolute, but can
depend on data values.

4.1.2 Learning paths
A learning path makes reference to 1 or more
Item; it is a reading sequence suggestion
related to some learning goal (e.g. achieving
theoretical background rather than practical
skill). By defining different learning paths the
teacher give to students the opportunity to follow
different, specialized workflows. This
specification is actually a placeholder, waiting
for the implementation of SCORM®2004-SN
navigation rules.

4.1.3 Pedagogical types
Pedagogical types are at the moment modelled as
enumeration types. Each pedagogical type
implicitly defines a set of learning strategies that
must be supported with the help of mechanical
agents. Since the definition of these strategies is
crucial for learning and requires the contribution
of pedagogists, learning strategies are expressed
as much as possible in a high level, declarative
language, as discussed in section 4.3

4.2 From the model to the editor
Once defined a metamodel specification, EMF
can take such a definition and produce a good,
easily customizable Java implementation for it.
Moreover, EMF.Edit allows us to produce an
editor that will display instances of the model
using standard Eclipse JFace viewers and a
property sheet, it provides also a set of generic
commands to modify EMF models, with
unlimited undo/redo.
EMF is not just a generator tool; it is also a
powerful runtime that unifies three important
technologies: Java, XML and UML. A EMF
model can be defined using either a XML schema
or a UML diagram or a set of Java interface;
regardless of how the EMF model is provided, the
power of the framework and generator will be
the same.

4.3 From the model to the application
The possibility to conceive Java, XML and UML
as different technologies to build a different
representation of the same model is very
important for the software developer. But the
usage of a (meta)model is not only a means to
improve the software production process; it is
also a way to enhance communication among
people and to highlight the conceptual space
underlying a software application.
For this reason we have introduced yet another
representation for a model: a textual
representation based on Prolog [16] syntax.
In fact, we believe that a teacher can better read
and understand a text written in clausal form
rather than a UML diagram. This does not exclude
the usage of graphical tools based on UML-like
notations; we ourselves have defined one of
them, discussed in section 6. The textual
representation should simply help teachers in
getting more involved in the definition of
pedagogical strategies and in sharing a more
conventional language with the instructional
designer (if still necessary).

4.3.1 Relations between models
eComposer exploits Jet to provide two
transformers: one (EcoreToKb) that builds the
Prolog representation by taking as input the
object Ecore internal representation; and one
(KbToEcore) that (re)builds the Ecore
representation from the Prolog representation.
In the MDA perspective, the usage of Jet is a
shortcut to avoid the explicit representation of a
platform specific meta model related to Prolog
clauses (PSPM) and an explicit mapping between
the PIM and PSPM. The drawback is of course
that the Jet-based transformers have to be
changed whenever the PIM changes.
Our feeling is that, as teachers become more
expert, they can give preference to the textual
representation, in particular to extend or modify
the model; in this case the KbToEcore
transformer will allow them to check the
correctness of the work and to automatically
produce the manifest imsmanifest.xml file
and all the other resources to be included in the
deployment file.

5. An example
We report here a simple example of a top-down
specification of the model of an introductive
course to AlmaTwo. The following figure

 6

shows the logical part the model built by using
eComposer:

Figure 2: A simple course model (logical part)
The model should be quite clear for a software
developer; however teachers of human
disciplines could feel more comfortable in
reading a text. In the textual representation that
follows each clause can be viewed as the
representation, in the concrete syntax of Prolog,
of a phrase of the abstract language defined by
the metamodel.
We start by giving to the course the name
LearningAlmaTwo and by specifying the
items that compose it.

courseName(“LearningAlmaTwo”).

item(intro, “Introduction”, loType1).
item(almaTwo, “AlmaTwo”, loType3).
item(elPaths,”Learning path”, loType2).
item(mmodel, “Metamodel”, loType3).

preCondition(almaTwo, 'intro=completed').

For each Item we specify a name (to be used as
an internal identifier), a label (to be used as a
visible name) and the related pedagogical type.
For the item AlmaTwo a precondition is
specified (in the SCORM® syntax) .
Now we associate to each item a non empty set
of standard educational metadata

meta(intro, ‘SCORM1.2’,
 educational, difficulty, ‘EASY’).
meta(intro, ‘SCORM1.2’,
 educational, semanticDensity, ‘LOW’).
meta(almaTwo, ‘SCORM1.2’,
 educational, difficulty, ‘VERY_EASY’).
meta(elPaths, ‘SCORM1.2’,
 educational, semanticDensity, ‘LOW’).
meta(mmodel, ‘SCORM1.2’, educational,
 difficulty, ‘VERY_DIFFICULT’).

In the next step, we state some logical relation
between the items.

itemRel(preknowledge, elPaths, almaTwo).
itemRel(widening, intro, mmodel) :-
 metaData(intro, semanticDensity,V),V<=2.
itemRel(conceptualize, almaTwo, mmodel).

The item almaTwo is considered as
preknowledge for the item elPaths; mmodel
is considered a conditioned widening for

intro; the condition is based on the value of
the metadata semanticDensity associated
to intro. The item mmodel conceptualizes
the item almaTwo .
To make thinks simple, we plan now a single
learning path, called book, since it should
provide a book-like reading of the content:

path(book).
path(book, intro, 1).
path(book, almaTwo, 2).
path(book, elPaths, 3).
path(book, mmodel, 4).

Now the specification of the logical organization
of the course is completed. At the end, we
introduce the specification of the files that store
the content:

itemContent(intro, “Intro1.html”).
itemContent(intro, “Intro2.html”).
itemContent(almaTwo, “almaTwo.html”).
itemContent(elPaths, “LearnPaths.html”).
itemContent(mmodel, “Metamodel.pdf”).

Note that to the item intro we have associated
two files written in html, while to the item
mmodel we associate a single pdf file.
From this input model, eComposer can build
the learning resources necessary to our PSM
machine, create the SCORM®1.2 manifest, and
the zip deployment file.

5.1 The visible result
In (Fig. 3) we report a view of the final
application running on a Moodle platform.

Figure 3: A moodle -based view
The figure shows (in the leftmost frame) the
index provided by the LMS; the item currently
selected is AlmaTwo (since the item intro has
been completed). The frame in the middle is built
by the envelope (see section 6.2) created by
eComposer for the pedagogical type
loType3; such an index shows that the current
learning path is Book and that the item is
composed of two pages (one for each content
file). The table represents the logical map related
to the item; the view (e.g. the map colour)
depends on the value of the metadata
difficulty. At the bottom of the frame there
are the buttons to give commands to change the
lesson status and to access to the internal indexes.

 7

6 Towards model driven run time support
To obtain the GUI of eComposer, (shown in
fig. 4) we followed the GMF workflow based on
the definition of two new models: a graphical
model that defines figures, nodes and links to
display and a tooling model that defines a palette
for the selection and drag of language constructs.
Because these models are independent of the
domain application model (and possibly reusable
for several domains) we defined also a mapping
model that realizes the mapping between the
business logic (the meta language of section 4)
and visual model (graphical and tooling
definition). After this mapping, GMF can build a
generator model from which an Eclipse plug-in
is produced through code generation and
compilation.

Figure 4: eComposer GUI
This model-driven approach promoted a smart
software development cycle that helped us to
face a critical aspect of any user-oriented tool:
identify variation points related to different
aspects, achieve immediate feedback from the
user, and build in a short time a different release
of the tool. But modifiability extendibility, rapid
prototyping, user feedback and re-factoring are
critical aspects for eLearning applications too
and they should not be limited to the production
of offline tools. The main problem in exporting
the model driven approach to the application
field is that the standardized part of LMS does not
provide a reference framework comparable with
the Eclipse framework.
Nevertheless we tried to follow the main
principles of the model driven approach also at
application level by looking at the Web as our
reference framework and by adopting an
interpreted approach instead of a compiled one.
The run time has been designed to support a
different form of editing (called extension-editor)
that provides personalized views of the model
defined by the author and allows a limited set of
editing actions only.

6 .1 Supporting maps and annotations
In conventional eLearning applications, the
course model - in the imsmanifest.xml
form - is used by the LMS to build a tree-based
index; such an index is the main course view and
allows students to navigate into the course
content, according to the preconditions, if any,
associated to each item.

From a technical point of view, each learning
path is a specialized form of this kind of index;
its implementation requires a strong relationship
with the specific eLearning platform. that we
provide trough a predefined LO (index.html)
which is automatically included in the content of
each course
Besides index-views, our run time support
provides also a map view for each LO whose
pedagogical type is not simply reproductive (i.e.
of level higher than loType1). Map views not
only situate each item into a semantic
perspective, but are also used as a mean to allow
students to build their personal logical
organization of the body of knowledge. No
modification to the original model defined by the
teacher is allowed; instead we allow the
constructions of news set of relations.
Strictly speaking in the MDA perspective, also
the creation of new relations should be forbidden,
since it involves a modification of the application
defined by the author. However the possibility
that students can act as co-editors of the course
model is essential to give them the role of co-
constructor of their knowledge; the important
point is that that model provided by the teacher
can always be used as a reference point and that
there is a common meta language.
In the same spirit, our run time supports the
creation/modification of content annotations.
All these features are provided by a run time
framework built around the model of the course
expressed in the Prolog form.
Rapid prototyping of critical aspects, such as the
implementation of learning strategies, is
supported by exploiting interpretation and
declarative programming in Prolog.

6.2 Usage of the Prolog model at run time
The Prolog representation of the content model
provides a knowledge base (modelKB) that
constitute the bridge between the design phase
and the run time support, i.e. the AlmaLMS
machine. While most of the (SCORM®
compliant) functionalities of AlmaLMS are
inherited from Moodle, the knowledge based
features of our platform are produced by the
EcoreToKb transformer.
These features are automatically added to the
content by eComposer; that embeds each
content file into a HTML envelope file (written in
automatic way) that acts an adapter between the
content and the run time support.

 8

The bridge between Prolog and the web
technologies is done by javascript with the
help of an Applet written in tuProlog.
tuProlog is an opensource project [17] of the
Alma Mater University of Bologna that provides
a Prolog interpreter, built in Java and
interoperable with Java (and therefore with
javascript). The modelKB representation
of the course model is downloaded on the client
by the HTML envelope each time an item is
selected. Any extension to the model is saved on
the server through HTTP requests with the
support of AJAX [18].

7 Conclusions
eLearning applications, that cannot exist without
ICT technologies, are actually requiring better
attention to pedagogical aspects and to the
suitable way to exploit technology to improve
learning and teaching. However, the cooperation
between pedagogists and engineers cannot be
based on a master-slave approach (whatever be
the master and the slave); rather a more deep
cooperation is necessary, based on common
goals, and a shared conceptual space.
In this perspective, the model driven approach to
application building can be strategic not only
form a software production point of view, but
also in order to create a common reference
language, usable both by experts in technology
and by experts in pedagogy.
In this paper we have discussed an approach of
this kind, in which EMF and GMF have proven to
be mature enough to support smart production
processes built around formal specifications, that
resulted useful also in a very pragmatic way.
Although GMF is still lacking in the
documentation, the usage of Eclipse framework
gave us the opportunity to build in a short time
not only a tool able to fully automate the
production process of a SCORM® compliant
course, but also to delineate and support a new
conceptual space. The possibility of refactoring
the tools by introducing changes at model level
rather than at code level, is fundamental, in this
evolutive phase of eLearning applications, not
only to improve the software production process,
but, and most importantly, to create an effective
operational bridge between two cultures.

References

1. ALMATWO, Documento tecnico di
dettaglio, 2002,

2. BUDISNSKY,F, STEINBERG D., MERKS E.,

ELLERSICK R., GROSE T., Eclipse
Modeling Framework,, Addison
Wesley 2004

3. ECLIPSE GMF
http://wiki.eclipse.org/GMF_Documen
tation_Index,

4. KLEPPE A., WARMER J., BAST W., MDA
explained, Addison Wesley. 2003

5. WILEY,D. A.: Learning object design
and sequencing theory
http://opencontent.org//docs/dissertatio
n.pdf

6. ADL, SCORM,
http://www.adlnet.gov/scorm/

7. ADL, SCORM2004,
http://www.adlnet.gov/scorm/20043E
D/Documentation.aspx

8. DUFFY,T. M. CUNNINGHAM,D. J. :
Constructivism: Implications for the
design and delivery of instruction., D.
H. Jonassen (Ed.), Handbook of
research for educational
communications and technology, 1996

9. MOODLE,
http://docs.moodle.org/en/Main_Page

10. JET,
http://www.ibm.com/developerworks/l
ibrary/os-ecemf2/

11. NATALI A., DE COI J., Learning
Artefacts, modello dei dati e di
elaborazione, AlmaTwo report, 2005

12. ACTIVITY theory,
http://carbon.cudenver.edu/~mryder/itc
_data/activity.html

13. GUERRA, L., PACETTI E., FABBRI M.,
Documento contenente le indicazioni
relative allo sviluppo di dei LO dal
punto di vista metodologico ed alla
loro implementazione in diversi setting
formativi, AlmaTwo report, 2005

14. ECORE,
http://www.eclipse.org/modeling/emf/?
project=emf

15. MOF,
http://www.omg.org/technology/docu
ments/formal/mof.htm

16. O’ KEEFE, R., The Craft of Prolog, The
MIT press, 1990

17. tuPROLOG user’s guide,
http://www.alice.unibo.it/tuProlog/

18. http://it.wikipedia.org/wiki/AJAX

http://wiki.eclipse.org/GMF_Documentation_Index
http://wiki.eclipse.org/GMF_Documentation_Index
http://docs.moodle.org/en/Main_Page
http://www.alice.unibo.it/tuProlog/

9

	2 Overview of the application field
	2.1 The technologal view
	2.2 The logical view
	3 The AlmaTwo approach
	3.1 The author workflow
	4 The role of EMF
	4.1 The metamodel
	4.1.1 Relations between items
	4.1.2 Learning paths
	4.1.3 Pedagogical types
	4.2 From the model to the editor
	4.3 From the model to the application
	4.3.1 Relations between models
	5. An example
	5.1 The visible result
	6 Towards model driven run time support
	6 .1 Supporting maps and annotations
	6.2 Usage of the Prolog model at run time

