
Green-DAM: a Power-Aware Self-Organizing Approach for Cloud
Infrastructure Management

Daniela Loreti1 and Anna Ciampolini1
1Department of Computer Science and Engineering, University of Bologna, Bologna, Italy

{daniela.loreti, anna.ciampolini}@unibo.it

Keywords: Green Computing, Distributed Cloud Infrastructure Management

Abstract: As the number of cloud users grows up, the rate of datacenter’s infrastructure complexity goes higher and
higher. For this reason a lot of efforts are now concentrated on providing the cloud paradigm with an autonomic
behavior, so that it can take decisions about virtual machine allocation and migration across the datacenter’s
nodes without human intervention. While the major part of these solutions is intrinsically centralized and
suffer of scalability and reliability problems, we want to investigate the possibility to provide the cloud with
a decentralized self-organizing behavior. We present a novel communication protocol to exchange status
informations between hosts and reach a decentralized reallocation plan. To test the protocol behavior, we
developed a simulator able to compare the performance of a given policy applied through a decentralized
approach with the correspondent centralized solution.

1 INTRODUCTION

The Cloud Computing paradigm experienced a signif-
icant diffusion during last few years thanks to its ca-
pability of relieving companies of the burden of man-
aging their IT infrastructure. At the same time the
demand for efficient yet scalable cloud architectures
makes the Green Computing area stronger, driven by
the pressing need for greater computational power
and for restraining economical and environmental ex-
penditures.

The challenge of efficiently managing a collec-
tion of physical servers avoiding bottlenecks and
power waste, is not solved at all by Cloud Computing
paradigm, but only partially moved from customers’s
IT infrastructure to provider’s big data centers. Since
cloud resources are often managed and offered to cus-
tomers through a collection of virtual machines, a lot
of efforts concerning Cloud Computing paradigm are
concentrating on finding the best virtual machine allo-
cation to obtain efficiency without compromising per-
formances.

Giving that an idle machine is demonstrated to
consume around 70% of it peak power (Fan et al.,
2007), packaging the virtual machines into the low-
est possible number of servers and switching off the
idle ones, can lead to a higher rate of power efficiency,
but can also cause performance degradation in cus-
tomers’s experience and Service Level Agreements

(SLAs) violations.
On the other hand, allocating virtual machines in a

way that the total cloud load is balanced across differ-
ent nodes, will result in a higher service reliability and
less SLAs violations, but forces the cloud provider to
maintain all the physical machines switched on and,
consequently, cause unbearable power consumption
and excessive costs.

In addition, we must take into account that such
a system is continuously evolving: demand of appli-
cation services, computational load and storage can
quickly increase or decrease during execution.

Due to these contrasting targets the virtual ma-
chine management in a Cloud Computing datacenter
is intrinsically very complex and can be hardly solved
by a human system administrator, making more and
more desirable to provide the infrastructure with the
ability to operate and react to dynamic changes with-
out human intervention.

The major part of the efforts in this field relays
on centralized solutions, in which a particular node
of the cloud is in charge of collecting informations
on the whole set of physical hosts, taking decisions
about virtual machine allocation or migration, and op-
erating to apply these changes on the infrastructure
(Jung, 2010; Lim et al., 2009). The advantages of
these centralized solution are well known: a single
node with complete knowledge of the infrastructure
can take better decisions and apply it through a re-

stricted number of migrations and communications.
However scalability and reliability problems of cen-
tralized solutions are known as well. Furthermore as
the number of physical servers and virtual machines
grows, solving the allocation problem and finding the
optimal solution can be time expensive, so typically
some other approximation algorithm is used to reach
a sub-optimal solution in a fair computation time (Be-
loglazov and Buyya, 2012).

In this work we investigate the possibility of
bringing allocation and migration decisions to a de-
centralized level allowing the datacenter’s physical
nodes to exchange informations about their current
virtual machine allocation and self-organize to reach
a common virtual machine reallocation plan.

Even if we know this kind of systems probably
cannot lead to a complete distributed solution due to
intrinsic centralized features of cloud infrastructure,
we believe that a higher rate of distribution in virtual
machine allocation can bring a reduction in system
administration complexity and lead to a more scalable
and reliable solution.

We propose a novel decentralized way to apply
a virtual machine migration policy to the cloud: we
imagine the datacenter as partitioned into a collection
of overlapping neighborhoods, in each of which a lo-
cal reallocation strategy is applied. Taking advantage
from the overlapping, the virtual machine redistribu-
tion plan propagates on the global cloud.

We analyze the effects of this approach by com-
paring them with the centralized application of the
same policy. In particular we focus on the definition
of the Distributed Autonomic Migration (DAM) pro-
tocol, used by cloud’s physical hosts to communicate
and get a common decision as regards the reallocation
of virtual machines, according to a predefined global
goal (e.g. power-saving, load balancing, etc.). In par-
ticular, in this work we adopt Green-DAM: a policy
whose goal is to save power, while maintaining the
load balanced across the physical server network.

We tested our approach with power saving objec-
tives, implementing Green-DAM by means of DAM-
Sim: a software to simulate the behavior of differ-
ent policies applied in a traditional centralized way or
through DAM protocol on a decentralized infrastruc-
ture.

The article is organized as follows: in section 2
we present the architecture of our solution, in sec-
tion 3 we show the experimental results obtained by
means of the DAM-Sim simulator, section 4 shows
the state-of-the-art of Cloud Computing infrastructure
management and section 5 illustrates our conclusions
and future works.

Figure 1: The three tier architecture of the Sim-DAM sim-
ulator.

2 ARCHITECTURAL
FRAMEWORK

We present a distributed solution for Cloud Comput-
ing infrastructure management, with a special focus
on virtual machine allocation and migration. Our ap-
proach is built on a model, which keeps separated the
server coordination protocol from the specific migra-
tion policy implemented. In this way different goals
can be followed by only changing the adopted policy
while the communication model remains the same.

As shown in figure 1, the framework is composed
of three main layers:

• the infrastructure layer, specifying a software rep-
resentation of the cloud’s entities (e.g. hosts, vir-
tual machines, etc...);

• the coordination layer implementing DAM pro-
tocol, which defines how physical hosts can ex-
change their status and coordinate their work;

• the policy layer, containing the rules that every
node must follow to decide where to possibly
move virtual machines.

We describe each layer in the following sessions.

2.1 Infrastructure Layer

The infrastructure layer defines which informations
must be collected about each host’s status. To this
purpose two basic structures are maintained:

• HostDescriptor,

• VmDescriptor.

As shown in figure 2 the VmDescriptor contains
the maximum MIPS value a virtual machine can re-
quest (Tvm), the percentage of these MIPS currently
in use (mvm) and the id of the node in which the vir-
tual machine is currently hosted (currentHostId). It
also includes a futureHostId value representing the id
of the node in which the virtual machine can be mi-
grated at the end of the protocol execution.

Figure 2: UML diagram of the host and virtual machine descriptors.

Each HostDescriptor includes the amount of total
CPU MIPS (see section 2.1.1) the node can execute
(Tvm) and two collections of VmDescriptors:

• currentVmMap indicates which virtual machines
are currently allocated on the host; while

• futureVmMap collects the virtual machines that
will be allocated on the host when a common de-
cision is reached by the distributed system.

The futureVmMap is a sort of temporary copy of
the status, exchanged through hosts according to the
DAM protocol. We will discuss the need for this copy
of the future status in section 2.2.

The HostDescriptor also includes a currentHost-
Status variable representing its current state. The pos-
sible values of currentHostStatus are listed below:

1. OFF: no operation running, because no virtual
machine is hosted. 1

2. UNDER: the host is switched on but executes too
few operations, so a probable energy waste is de-
tected. To simplify our model we consider host
in UNDER status when the amount of executed
MIPS is over a threshold we call THRES DOWN,
but other more complex conditions can be easily
implemented into the architecture (e.g: to detect
an underloaded condition of the host in a more
elaborate and predictive way).

3. OVER: the host is executing too much MIPS risk-
ing to run into SLAs violations. Similarly to
UNDER, the OVER status is detected when the
percentage of used MIPS goes over a threshold
(THRESH UP).

1Despite the name of this status, we imagine a host will
never be completely switched off in a real environment, oth-
erwise, when it turns out it is needed again, it will takes a
lot of time to switch it back on.

4. OK: the host is switched on and it is supposed to
work without power wastes or SLA violation.

Similarly to the collection of VmDescriptors, we
have two HostStatus stored into the HostDescriptor
to map the current status (currentHostStatus) and a
copy (futureHostStatus) representing the future status
assigned to the host by the distributed management
computation.

2.1.1 The CPU model

The amount Uh of CPU MIPS used by the host h is
calculated as follows:

Uh = ∑
vm∈currentV mMaph

mvm
Tvm

100
(1)

where currentV mMaph is the set of virtual ma-
chines currently allocated on host h, Tvm is the total
CPU MIPS vm can request and mvm is the percentage
of this total that vm is currently using.

Indeed we consider a simplified model in which
the total MIPS executed by the node can be seen as the
sum of MIPS used by each hosted virtual machine.

2.2 Coordination Layer

The coordination layer implements the DAM proto-
col, which defines the sequence of messages that hosts
must exchange in order to get a common migration
decision and realize the defined policy.

The protocol is based on the assumption that the
datacenter is divided into a predefined fixed collection
of overlapping subsets of hosts: we call every subset
a neighborhood.

We assume that no change involves the neighbor-
hood network during the protocol execution, so that in
every moment each host can only communicate with

Figure 3: Schema of two overlapping neighborhoods.

the same neighborhood of nodes. As shown in fig-
ure 3, we assume that each physical host executes a
demon process called SlaveServer, which has a copy
of the node’s status stored into an HostDescriptor and
can send it to every other node asking for that.

According to the chosen policy each node can
monitor its computational load and the amount of re-
sources used by each virtual machine it hosts and de-
cide either it is in a critical condition or not. In our im-
plementation a node can for example detect to be in
UNDER status when the sum of the MIPS executed
by the virtual machines hosted is not enough to ex-
ceed the THRESH DOWN threshold. If this happens,
the node starts another process, the MasterClient, to
actually make a protocol interaction begin. We call
rising condition the one that turns on a node’s Mas-
terClient.

Since there is a certain rate of overlapping be-
tween neighborhoods, the information about the mi-
gration of a virtual machine can be spread through
different neighborhoods.

To better explain the coordination between nodes,
figure 3 shows an example of two overlapping neigh-
borhoods. Each node has a SlaveServer always run-
ning to answer questions from other node’s Master-
Client, and optionally can also have a MasterClient
process started to handle a critical situation by start-
ing the DAM protocol. A virtual machine vm allo-
cated to an underloaded node N1 can be moved out of
it on N2 and, as a consequence of the execution of the
protocol in the adjacent neighborhood of N3, it can
be moved again from N2 to N3. It is worth to notice
that node N2, as each node of the datacenter, would
have its own fixed neighborhood, but it starts to inter-
act with it by means of a MasterClient only if a rising
condition is observed.

Note that N1’s MasterClient must have N2 in its
neighborhood to interact with it, but the SlaveServer
of N2 can answer to requests by any MasterClient
and, if a critical situation is detected and the Mas-
terClient of N2 is started, its neighborhood does not

necessarily include N1.
If as a consequence of the application of the policy

on a neighborhood, all the virtual machines on a host
can be migrated away; then, the node can be put in
sleep mode to save power.

As regards this environment we must remark that
the migration policy (and the rising condition) should
be chosen conveniently to prevent never-ending cy-
cles in the migration process. We will discuss the
characteristics the policy should have in section 2.3.1

2.2.1 Coordination details

The protocol must ensure that the neighbors’s states
the MasterClient obtain is consistent from the begin-
ning to the end of the interaction. Therefore the pro-
tocol is made of two phases we firstly illustrate from
the MasterClient point of view:

Listing 1: MasterClient code

1 //Input: int MAXround , Allocator
allocator

2 int round=0;
3 NodeList neighList;
4 HostDescriptor[] pastHDCollection;
5 HostDescriptor[] HDCollection;
6 while(true){
7 //Phase 1:
8 foreach ss in neigh{
9 send(ss,"lock");

10 HostDescriptor hd=receive(ss);
11 HDCollection.add(hd);
12 }
13 //Phase 2:
14 if(HDCollection==

pastHDCollection){
15 round++;
16 }else {
17 round=0;
18 pastHDCollection =

HDCollection.clone();
19 }
20 if (round <MAXround){
21 //Phase 2A:
22 allocator.optimize(

HDCollection); //policy
23 foreach ss in neigh{
24 send(ss,HDcollection.get(

ss)); //and unlock
25 }
26 }else{
27 //Phase 2B:
28 foreach ss in neigh{
29 send(ss,"update -current -

status"); //and unlock
30 }
31 break;
32 }
33 } //while

In phase 1 the MasterClient acquires the lock from
every SlaveServer neighbor sending a ”lock” mes-
sage to it (line 9 in listing 1). To prevent dead-
lock each host of the datacenter is marked with a nu-
meric identifier such that the MasterClient can lock
the SlaveServers (included the one on the machine
he runs on) by ID order. After each lock message
sent, the MasterClient waits for the SlaveServer to
send back a message containing its HostDescriptor.
The MasterClient stores the HostDescriptors from its
neighborhood into a collection (lines 10-11)

If a SlaveServer neighbor is held in another in-
teraction does not send its HostDescriptor until the
precedent protocol round is end and the MasterClient
is suspended waiting for the answer. This ensures that
the SlaveServer’s HostDescriptor is never changed
concurrently by two different MasterClients.

In phase 2 the MasterClient compares all the re-
ceived HostDescriptors in HDcollection with the pre-
vious copy in pastHDcollection. If they are all un-
changed, this means that probably no other Mas-
terClient is performing a round of the protocol in
the meanwhile, so a round counter is incremented
otherwise the received HDcollection is stored in the
pastHDcollection copy (line 18).

When MasterClient has collected informations
about all the SlaveServer neighbors, can start to com-
pute a virtual machine reallocation according to the
defined policy (Phase 2A). In order to do so the
MasterClient calls the optimize operation (line 22)
passing to the policy allocator object the collection
ofHostDescriptors of his neighbors. This mechanism
ensures a separation between the DAM protocol and
the policy so that the same communication model
can be used either to consolidate virtual machines on
servers and save power, or to balance the computation
load and preserve SLAs.

In phase 2A the MasterClient also sends back to
each SlaveServer neighbor the HostDescriptor mod-
ified according to the policy (line 24), always re-
specting the nodeID-order. The state is accepted pas-
sively, without contradictory. Migration decisions
performed by the optimize operation, only changes
the future copy of the host’s state and the collection
of future virtual machine’s descriptors (futureHost-
Status and futureVmMap in figure 2). To ensure that,
the SlaveServer overwrite his HostDescriptor without
performing changes into the real configuration. No
host switch on/off or virtual machine migration is per-
formed in this phase.

If the number of round with unchanged neigh-
bors configuration exceeds a defined maximum, phase
2B is executed: the MasterClient sends to all
SlaveServer a update-current-status request to notify

the SlaveServer that the informations on HostDescrip-
tor should be applied to the real system state. The
SlaveServer again execute it passively. In our Green-
DAM simulator this is implemented by coping the
HostDescriptor’s futureStatus into the currentStatus
and the collection of virtual machine descriptors fu-
tureVmMap into the currentVmMap. In this way we
simulate migrations physically performed.

Phase 2A and 2B alternatives comes from the need
for reducing the number of migration fiscally per-
formed. Looking at example in figure 3, if hosts only
exchanged and updated the current collection of vir-
tual machines, every MasterClient can only order a
real migration at each round, so that vmi on N1 would
be migrated on N2 at first, and later on N3. Using a
futureVmMap and a future state (initially copied from
the real ones) and performing all the reallocation pol-
icy on this abstract copy, real migration are executed
only when the N3’s MasterClient exceeds MAXround
and vmi can directly go from N1 to N3.

The corresponding code executed by a
SlaveServer is shown below.

Listing 2: SlaveServer code

1 //Input: RisingCondition rc,
HostDescriptor hd

2 if (rc.check())
3 startMasterClient();
4 while(true){
5 //Phase 1:
6 receive(masterClient , "lock");
7 lockMyState();
8 send(mc, hd);
9 //Phase 2:

10 receive(mc, element);
11 if (element!="update -current -

status"){
12 //Phase 2A:
13 hd = (HostDescriptor) element;
14 }else {
15 //Phase 2B:
16 updateCurrStatus(element);
17 }
18 unlockMyState();
19 if (rc.check())
20 startMasterClient();
21 } //while

The SlaveServer code mirrors the MasterClient
one, but starts with a rising condition check because
the first operation the SlaveServer must do is to check
its state: if detects a critical situation starts a Master-
Client itself to handle it (line 3).

In phase 1 the SlaveServer suspend itself on re-
ceiving a lock by any MasterClient (line 6). Note
that differently from the MasterClient, who can talk
only with its neighbors, the SlaveServer can answer

to every other node of the cloud. Indeed the neighbor-
hood’s structure is held only by the MasterClients.

When the SlaveServer receives a lock request,
locks itself (line 7) so that other MasterClients cannot
proceed until this SlaveServer is unlocked and then
send its HostDescriptor.

In phase 2 the SlaveServer waits for a message
back and control either it is an update of the HostDe-
scriptor just sent (phase 2A) or a request for a current
state update (phase 2B). In case 2An the HostDescrip-
tor is overwritten without contradictory. Remember
that, as a consequence of the MasterClient’s behavior,
this new HostDescriptor only changed the futureSta-
tus and futureVmMap, while in phase 2B this values
ace used to perform real migrations.

The VmDescriptor contains both the curren-
tHostId and the futureHostId precisely to allow dis-
tributed migration decisions: when a SlaveServer re-
ceives an update-current-status command, if the fu-
tureVmMap of its HostDescriptor contains a new vir-
tual machine (not currently hosted), the SlaveServer
can detect from the VmDescriptor’s currentHostId
where it is currently located.

After phase 2, the SlaveServer unlocks its strata
so that, of sums other MasterClient is waiting for the
SlaveServer’s HostDescriptor,it can be sent.

Finally, the SlaveServer checks if the changes in
his HostDescriptor brought the machine into a critical
situation, ad as before, if so, it starts a MasterClient.

2.3 Policy Layer

The Policy layer (see figure 1) has a main component
called Allocator which can be extended to implement
the specific policy.

To test the local protocol performance, we start
analyzing the results of a best fit policy properly cus-
tomized to define a strict order relation on hosts for
each virtual machine of the cloud. We call it Green-
DAM policy.

Listing 3: Green-DAM code

1
2 //Input: VmDescriptor[] vmList ,

HostDescriptor[] hostList.
3 vmList.sortDecrescent();
4 foreach vm in vmList{
5 bestHost = vm.getCurrentHost();
6 min = bestHost.getAvail(vm)
7 foreach host in hostList{
8 double mips = host.getAvail(vm);
9 if (mips <min || (mips==min &&

10 host.getId()<bestHost.getId())
){

11 min = mips;
12 bestHost = host;

13 }
14 }
15 bestHost.allocate(vm);
16 }

As in a common best fit policy, the virtual ma-
chines are ordered from the one that uses the higher
value of CPU MIPS to the lowest, then for each host
in the neighborhood we take into account the value
of getAvail(vm) (line 8), that is the amount of CPU
MIPS that remains available if we allocate the virtual
machine vm.

The unique variation in respect to a standard best
fit policy is in the criterion to select the host: for each
virtual machine vm, the host with the highest value
of getAvail(vm) is chosen as destination of the migra-
tion, but if there are two nodes with the same value,
the one with the lower id is chosen. Since no physi-
cal host is allowed to have the same id of another in
the cloud, this simple variation of the best fit policy
establishes a strict order relation on nodes at each vir-
tual machine allocation cycle.

This strict order peculiarity of Green-DAM comes
from the need to avoid loops in virtual machine mi-
gration. We explain the motivations in details in the
following subsection.

2.3.1 Policy implementation constraints

The protocol execution allows the system to take a de-
centralized decision about migrations, but is not able
to avoid by itself the possibility that a vm is never-
ending migrated through hosts because a node can
only have a local knowledge of the neighborhood.
The migration policy must be conveniently built to
avoid this unpleasant situation.

For example, we consider three partially overlap-
ping neighborhoods:

Ha = {ha,hb, . . . ,ht} (2)

Hb = {hb,hc, . . . ,hq} (3)

Hc = {ha,hc, . . . ,hs} (4)

where Ha in is the neighborhood of node ha, Hb is
the neighborhood of node hb and Hc is the neighbor-
hood of node hc.

As shown in figure 4, suppose that a protocol ex-
ecution by the MasterClient of hb decides to migrate
a virtual machine vmi currently allocated on hc to hb.
When the SlaveServer of hb is unlocked,the policy ex-
ecution on ha’s MasterClient can decide to put vmi
into ha. Now if hc has a MasterClient running, and
decides to migrate vmi back to hc, then hc can take
the same decision as before and a loop in vmi migra-
tion starts. If this happens the distributed system will

Figure 4: Example of three overlapping neighborhoods .

never converge to a common decision. Conversely in
the following we show that if for each virtual machine
the policy can define a chain on possible destination
hosts (from the best to migrate in, to the worst one),
the distributed execution will converge to a common
migration decision.

For each virtual machine, we consider the subset
of possible destination hosts H = {ha,hb, . . . ,hx}. If
the chosen policy defines a strict order relation on H,
we can define a ”better then” operator >β(vmi), such
that for virtual machine vmi, the following relation
holds:

ha >β(vmi) hb >β(vmi) hc >β(vmi) · · ·>β(vmi) hx (5)
This means that ha is the best host of the cloud in

which vmi can be placed. Furthermore we can observe
that >β(vmi) operator is transitive for the strict total
order definition.

If we consider 3 DAM neighborhoods 2.3.1,3 and
4, as subsets of H, a protocol execution on Hb can
migrate vmi, currently allocated on hc, to hb (because
hb >β(vmi) hc) the same on Ha can move it from hb
to ha (because ha >β(vmi) hb , but no execution on Hc
can decide the migration of vmi from ha back to hc
creating a migration loop, because ha >β(vmi) hc and
the policy only operate following the gradient of the
>β(vmi) relation.

Please note that to simplify the scenario we as-
sume a constant load for each virtual machine during
the whole simulation. Without this assumption even
the total order hypothesis on the policy can not pre-
vent migration cycles.

3 EXPERIMENTAL RESULTS

To understand the efficiency of the proposed model
we developed DAM-Sim: a simulator able to apply

a specific policy on a collection of neighborhoods
through DAM protocol and compare the performance
with a centralized implementation of the same policy.

We first tested our approach on a collection of 100
physical nodes hosting 3000 virtual machines (i.e. an
average value of 30 virtual machines on each host).
We firstly suppose that each node has the MIPS ca-
pacity (Th in section 2.1.1) while the amount of MIPS
requested by a virtual machine (mvm in section 2.1.1)
is generated random. We fixed the THRESH DOWN
threshold at 60% of computational load, while the
TRESH UP is not used because of our power-saving
purposes.

We always start from the worst situation for
power-saving purposes, i.e. all the servers are
switched on and have the same computational load
within the thresholds (OK status). To make the DAM
protocol start we forced one node to change its state
into UNDER.

In the following graphs, we compare the DAM
performance with nN=5, 10, 15, 20 and 25 nodes in
each neighborhood, with the application of the cen-
tralized policy (Global in figure 5, 6 and 7).

Figure 5 shows the number of servers remained
switched on at the end of the execution. As we ex-
pected, the DAM protocol cannot perform better than
a global algorithm. Indeed the Global best fit policy
can always switch off a higher rate of servers resulting
in the lower trend of figure 5.

Figure 6 shows the number of migration requested
at the end of the simulation. Since no information
about the current allocation of a virtual machine is
taken into account during the policy computation in
a global environment, the number of migrations can
be very high. Indeed is high the resulting trend of
migration shown by figure6 for Global series, while
DAM always outperforms it. This is mainly due to
the fact that DAM always ends up with a less power-
saving solution, switching off a lower rate of servers.
Nevertheless, for high value of computational load the
performance of DAM in terms of number of server
are comparable to those of the Global best fit policy,
while the number of migration requested is signifi-
cantly lower. Figure 7 shows the number of messages
exchanged between hosts during the computation. As
we expected it significantly increases as the number of
servers in each neighborhood grows. Figure 7 shows
that even if the number of message for low values of
nN is comparable to the one of the global solution,
when the neighborhood dimension grows up the num-
ber of messages exchanged significantly increases.

Figure 5: Number of servers switched on after computation

Figure 6: Number of requested migrations

Figure 7: Number of messages exchanged between cloud nodes

4 RELATED WORKS

Our work mainly concern low level infrastructural
support, in which the management of virtualized re-
sources is always a compromise between system per-
formance and energy-saving. Indeed in a cloud in-
frastructure there are usually well-defined SLAs to be
compliant to, and perhaps the simplest solution is to
use all the machines in the cloud. Nevertheless, if all
the hosts of the datacenter are switched on, the energy
waist increases leading to probably too high costs for
the cloud provider.

Around cloud environments, with their contrast-
ing targets of energy-saving versus performance and
SLAs compliance, a lot of work was done in order
to provide some kind of autonomy from human sys-
tem administration and reduce complexity. Some of
these works involves automatic control theory real-
izing an intrinsic centralized environment, in which
the rate of utilization of each host is sent to a collec-
tor node able to determine which physical machines
must be switched off or turned on (Kalyvianaki, 2009;
Jung, 2010; Lim et al., 2009). Some other solutions
concern centralized energy-aware optimization algo-
rithms (Beloglazov and Buyya, 2012; Jansen, 2011;
Younge, 2010), in particular extensions of the Bin
Packing Problem (Levine and Ducatelle, 2003; Za-
man and Grosu, 2010) to solve both virtual machines
allocation and migration problems (Beloglazov et al.,
2012). These approaches focus on finding the best
solution and minimizing the complexity of the algo-
rithm, without concerning the particular implementa-
tion, but assuming a solver aware of the whole system
state (in terms of load on each physical host and vir-
tual machine allocation). Thus they particularly lend

to a centralized implementation.
Finally, other approaches involve intelligent, op-

tionally bio-inspired (Giordanelli et al., 2012; Bala-
subramaniam et al., 2006), agent-based system, which
can give to the datacenter a certain rate of indepen-
dence from human administration, showing an in-
telligent self-organizing emergent behavior (Marzolla
et al., 2011; Vichos, 2011), and also provide the ben-
efits of a more distributed system structure.

As in (Marzolla et al., 2011) which is based on
Gossip protocol (Jelasity et al., 2005), we adopt a self-
organizing approach, where coordination of nodes in
small overlapping neighborhoods leads to a global re-
allocation of virtual machines, but differently from
that we created a more elaborate model of commu-
nication between physical hosts of the datacenter. In
particular while in (Marzolla et al., 2011) each migra-
tion decision is taken after a peer-to-peer interaction
comparing the states of the only two hosts involved, in
our approach the migration decisions are more accu-
rate because they comes from a valuation of the whole
neighborhood state.

5 CONCLUSIONS

We presented a distributed solution for cloud vir-
tual infrastructure management in which the hosts
of the datacenter are able to self-organize and reach
a global virtual machine reallocation according to a
given policy. To do so we developed a protocol of
communication and tested its behavior with a partic-
ular policy by means of a software simulator. We also
defined how policies should be built to ensure the pro-

tocol convergence. We showed that the protocol has
a good behavior in terms of number of migrations re-
quested varying the computational load and the num-
ber of server, while as regards power-saving, DAM is
still outperformed by a global optimization strategy.

In the near future we will investigate the behav-
ior of our approach with other more complex con-
figurations, where more than one node starts detect-
ing to be in a critical situation. We will also use
DAM-Sim to test different and more elaborate reallo-
cation policies, possibly introducing contrasting tar-
gets (e.g. power saving with a certain rate of load
balancing) and we will take into account other ris-
ing conditions, more complex than the simple ap-
plication of two fixed thresholds (THRESH UP and
TRESH DOWN).

Finally we would like to test our implementation
on a real cloud infrastructure and compare the time to
get a common distributed decision with the central-
ized implementation of the same reallocation policy.

REFERENCES

Balasubramaniam, S., Barrett, K., Donnelly, W., and Meer,
S. V. D. (2006). Bio-inspired policy based manage-
ment (biopbm) for autonomic communications sys-
tems. In 7th IEEE workshop on Policies for Dis-
tributed Systems and Networks.

Beloglazov, A., Abawajy, J., and Buyya, R. (2012). Energy-
aware resource allocation heuristics for efficient man-
agement of data centers for cloud computing. Future
Generation Computer Systems, 28.

Beloglazov, A. and Buyya, R. (2012). Optimal online de-
terministic algorithms and adaptive heuristics for en-
ergy and performance efficient dynamic consolidation
of virtual machines in cloud data centers. Concur-
rency Computat.: Pract. Exper.

Fan, X., Weber, W., and Barroso, L. (2007). Power pro-
visioning for a warehouse-sized computer. In Pro-
ceedings of the 34th Annual International Symposium
on Computer Architecture ((ISCA 2007). ACM New
York.

Giordanelli, R., Mastroianni, C., and Meo, M. (2012).
Bio-inspired p2p systems: The case of multidimen-
sional overlay. ACM Transactions on Autonomous and
Adaptive Systems (TAAS), 7.

Jansen, R. (2011). Energy efficient virtual machine allo-
cation in the cloud. In Green Computing Conference
and Workshops (IGCC), 2011 International. IEEE.

Jelasity, M., Montresor, A., and Babaoglu, O. (2005).
Gossip-based aggregation in large dinamic networks.
ACM Transaction on Computer Systems.

Jung (2010). Mistral: Dynamically managing power, per-
formance, and adaptation cost in cloud infrastructures.
In International Conference on Distributed Comput-
ing Systems.

Kalyvianaki, E. (2009). Self-adaptive and self-configured
cpu resource provisioning for virtualized servers using
kalman filters. In Proc. of International Conference on
Autonomic Computing.

Levine, J. and Ducatelle, F. (2003). Ant colony optimisa-
tion and local search for bin packing and cutting stock
problems. Journal of the Operational Research Soci-
ety.

Lim, H. C., Babu, S., and Chase, J. S. (2009). Automated
control in cloud computing challeges and opportuni-
ties. In ACDC ’09, Proceedings of the 1st workshop on
Automated control for datacenters and clouds, pages
13–18. ACM New York.

Marzolla, M., Babaoglu, O., and Panzieri, F. (2011). Server
consolidation in clouds through gossiping. Technical
Report UBLCS-2011-01.

Vichos, A. (2011). Agent-based management of Virtual Ma-
chines for Cloud infrastructure. PhD thesis, School of
Informatics, University of Edinburgh.

Younge, A. J. (2010). Efficient resource management for
cloud computing environments. In Green Computing
Conference, 2010 International. IEEE.

Zaman, S. and Grosu, D. (2010). Combinatorial auction-
based allocation of virtual machine instances in
clouds. In 2010 IEEE Second International Confer-
ence on Cloud Computing Technology and Science
(CloudCom).

