
Engineering Agent Societies:
A Case Study in Smart Environments∗

Alessandro Ricci
DEIS, Università di Bologna

Via Rasi e Spinelli 176
47023 Cesena (FC), Italy

aricci@deis.unibo.it

Andrea Omicini
DEIS, Università di Bologna

Via Rasi e Spinelli 176
47023 Cesena (FC), Italy

aomicini@deis.unibo.it

Enrico Denti
DEIS, Università di Bologna

Via Risorgimento 2
40136 Bologna, Italy

edenti@deis.unibo.it

Categories and Subject Descriptors
D.2.2 [SOFTWARE ENGINEERING]: Design Tools and
Techniques; I.2.11 [ARTIFICIAL INTELLIGENCE]: Dis-
tributed Artificial Intelligence—Multiagent systems, Coher-
ence and coordination

General Terms
Design

1. MAS FOR PERVASIVE COMPUTING
The technological progress – concerning chip density, pro-

cessor speed and network bandwidth, to cite some – makes
it possible to conceive new classes of applications and sys-
tems, which can be generally referred as pervasive comput-
ing. Intelligent / Smart Environments are prominent cases
of pervasive computing, whose aim is to remodel the en-
vironments where people live and act, considering the new
services (such as energy management, health care, enter-
tainment) that can be provided by embedding (intelligent)
software in network-enabled subsystems, such as sensors, ac-
tuators, mobile devices and general-purpose computers. In
this way, some of the tasks currently performed by humans
can be automated – possibly with improvements in efficiency
or quality of service [2]. Pervasive computing scenarios ac-
count for two forms of intelligence: intelligence of the indi-
vidual parts, which must autonomously execute their own
specific tasks despite the openness and unpredictability of
the environment; and social/collective intelligence, required
to provide services that necessarily involve the coordinated
interaction of the autonomous parts.
Since traditional software engineering approaches are known

to be inadequate to face the complexity of such scenarios,
new paradigms and models are required. Accordingly, ap-
proaches based on the multiagent system (MAS) paradigm

∗This work has been partially supported by MIUR, and by
Nokia Research Center, Burlington, MA, USA.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’02 July 15-19, 2002, Bologna, Italy.
Copyright 2002 ACM 1-58113-480-0/02/0007 ...$5.00.

provide the means to support the engineering process at the
proper abstraction level, from analysis to deployment. In
particular, the notion of agent provides the characteristics
in terms of autonomy and pro-active behaviour to design
and develop effectively individual parts; then, the notion of
society of agents – which distinguishes multi-agent systems
from simple aggregation of agents – is fundamental to engi-
neer the social aspects, which concern social tasks, account-
ing for agent coordination and cooperation (the collective
intelligence), organisational rules (norms) and environmen-
tal constraints.
The case study considered in this paper – the manage-

ment of lights inside a building – is taken here as a simple
representative of the aforementioned scenarios: our aim is to
show the benefits of adopting methodologies and infrastruc-
tures based on the MAS paradigm that explicitly account
for the social aspects as first class entities.
As a methodology, we adopt SODA [3], which provides a

coherent conceptual framework and a comprehensive soft-
ware engineering procedure that account for the analysis
and design of agent societies and agent environments. As
a coordination infrastructure, we adopt TuCSoN [5], which
provides a run-time support and related IDE-tools to sup-
port the development and deployment stages. Both SODA
and TuCSoN focus on inter-agent issues, and deeply rely on
the notion of coordination model for this purpose. In the
SODA design stage, coordination models and languages are
taken as the sources of the abstractions and mechanisms re-
quired to engineer agent societies: social rules are designed
as coordination laws and embedded into coordination me-
dia, and social infrastructures are built upon coordination
systems. At the development stage, TuCSoN provides tu-
ple centres [4] as coordination media, and the ReSpecT logic
language to specify coordination laws, embedded in tuple
centres for ruling agent interactions. At the deployment
stage, tuple centres live in the TuCSoN infrastructure run-
time, which provides (agent and human) tools to support
their management, such as the dynamic re-programming of
the behaviour to change coordination policies.

2. THE LIGHT MANAGEMENT CASE STUDY
The case study discussed here, inspired by [1], concerns

the intelligent management of lights in a building. Despite
its simplicity, this represents a broad class of applications,
where autonomous and (possibly) mobile agents interact in
an open environment, like the Internet. The intended sce-
nario assumes that visitors of the building move from room

1064

to room, and have each his/her own preference about the
light intensity in each room. The application goal is to man-
age the room lights so as to automatically adapt their inten-
sities to the visitors’ preferences while respecting the existing
constraints – and more generally to apply light policies that
could change over the time. Such policies also reflect rules
concerning the specific room interaction context – accord-
ing to the room purposes –, as well as the global (building)
rules – here related to energy saving. So, the intelligent
environment is asked to mediate between the various light
preferences when multiple visitors visit the same room, en-
forcing light management policies.
Both individual and social tasks must be explicitly mod-

elled and designed: visitors have private goals – getting the
best light setting according to their preferences – that they
try to pursue by their individual tasks. In order to provide
a valuable service to the whole society of visitors, an intel-
ligent environment requires that the individual behaviours
are coordinated.

3. ENGINEERING WITH SODA AND
TuCSoN

Using the SODA methodology, individual and social tasks
are explicitly described, identifying individual roles and group.
As individual roles, we identify the Visitor, the Light Master,
and the Light Installer. The Visitor role represents visitors
moving from a room to another: its only task (responsi-
bility) is to express a preference about the light intensity
of a room. The task of the Light Master role is to change
the light policies of the rooms when needed, while the role
of Light Installer is to install / remove room lights when
requested. As a social abstraction, we identify the Room
Group, which is composed by all the Visitors currently in a
room: its social task is to set the room light intensity ac-
cording both to the current light policy of the room, and
to the preferences of the current room Visitors. With re-
spect to the resource model, the following types of resources
can be identified: the Building, the Rooms, and the Light
Sources. The main interaction protocol enables visitors to
express their current preference about the desired light in-
tensity in the point of the room where they are currently
situated. The interaction rule for the Room Group takes
care of setting the light intensity according to the current
light management policy of the room. This involves collect-
ing visitor preferences, applying the light policy currently
associated to the room, and then accessing the correspond-
ing light sources so as to set the light intensity.
At the design stage, individual and social tasks are as-

signed as responsibilities of agent classes and societies, onto
which individual roles and group are mapped, respectively.
Visitor, Light Master and Light Installer agent classes
are identified directly from the related roles. The individ-
ual tasks identified in the analysis stage drive the design
of the structure and behaviour of the agent classes. The
Room Group is mapped onto the Room society abstraction,
which is designed around the Light coordination medium.
The Light coordination medium embeds the interaction rule
about light management policies and enables the interaction
protocols of the agent classes.
Application development and deployment are then made

on a mobile agent platform based on the TuCSoN coordi-
nation infrastructure. TuCSoN allows the developer to keep

the concerns about individual and social aspects separated
also in the development stage: individual tasks and aspects
assigned to agent classes in the design stage drive the devel-
opment of single agents, while social tasks assigned to coor-
dination abstractions drive the development of tuple centre
behaviours.
From the topology viewpoint, one distinct TuCSoN node

is provided for each room of the building. Agent classes
are mapped onto TuCSoN mobile agents (such as Visitor,
LightManager, and LightInstaller): there are different
kinds of visitor agents, according to different ways of explor-
ing the building. The Light coordination medium of each
room is mapped directly onto a tuple centre named Light,
located at the TuCSoN node of the corresponding room. The
interaction rules associated to Light, which represent light
management policies and agent coordination rules, are en-
coded in the ReSpecT language and used to program the
behaviour of the Light tuple centre. The Light tuple cen-
tre enables and mediates also the interaction between agents
and resources such as LightSource and Room, wrapped in
components: this approach emphasises the role of local in-
teraction spaces as agent interfaces to local resources, thus
outlining the relevance of coordination media as the middle-
ware enabling interactions, whatever they are.
Both (i) the uncoupled blackboard based communication

model, and (ii) the ability of encapsulating social laws and
constraints in coordination media (objective coordination)
gave us several benefits: among the others, light policies
and coordination laws could be easily changed and adapted
at runtime, and new constraints added dynamically, accord-
ing to the need, by changing Light tuple centres behaviour,
supporting the openness of the system; Visitors interactions
could be easily observed by inspecting Light tuple centres,
enabling intelligent agents to reason about society evolution
and to adapt light management policies accordingly; light
policies and social rules governing Visitors’ interactions are
enforced prescriptively, despite of agent autonomy.
Future investigations will be devoted to the deployment

of the SODA methodology and TuCSoN infrastructure in the
design and development of more complete and demanding
applications in the pervasive computing context, in partic-
ular based on wireless technology.

4. REFERENCES
[1] R. Gustavsson. Agents with power. Communications of

the ACM, 42(3):41–47, Mar. 1999.

[2] V. Lesser, M. Atighetchi, B. Benyo, B. Horling,
A. Raja, R. Vincent, T. Wagner, P. Xuan, and
S. Zhang. The UMASS intelligent home project. In 3rd
International Conference on Autonomous Agents
(Agents ’99), pages 291–298. ACM Press, 1999.

[3] A. Omicini. SODA: Societies and infrastructures in the
analysis and design of agent-based systems. In
P. Ciancarini and M. J. Wooldridge, editors,
Agent-Oriented Software Engineering, volume 1957 of
LNCS, pages 185–193. Springer-Verlag, 2001.

[4] A. Omicini and E. Denti. From tuple spaces to tuple
centres. Science of Computer Programming,
41(3):277–294, Nov. 2001.

[5] A. Omicini and F. Zambonelli. Coordination for
Internet application development. Autonomous Agents
and Multi-Agent Systems, 2(3):251–269, Sept. 1999.

1065

