
The TuCSoN Coordination Infrastructure for Virtual Enterprises

Alessandro Ricci Andrea Omicini Enrico Denti

DEIS, Universitil di Bologna, Italy
E-mail: { aricci , aomicini , edenti }@deis .unibo .i t

aged and governed in order to reach global system goals.
Such dependencies concern sharing and exchanging het-
erogeneous information resources, task assignments for
YE business processes, and temporal and prerequisite con-
straints among the several, heterogeneous activities that
characterise a YE workflow. Since managing and governing
interaction involves the field of coordination [14], the above
issues can be understood as coordination problems. So, a
coordination infrastructure providing both suitably expres-
sive coordination abstractions and an easily-deployable co-
ordination technology fits well the needs of WFMS in YEs.

Such an infrastructure should (i) help to integrate YE's
existing services and resources in a shared environment,
minimising the impact and the requirement of resources on
the local structures, and (ii) allow WFMS information and
activities to be captured within a uniform conceptual frame-
work, representing workflow rules as coordination laws,
embodying them at run-time in coordination media.

In this paper we show how a coordination model [9] like
TuCSoN [19] and the corresponding infrastructure [28]
may be exploited to support YEs, and how coordination
media like tuple centres [18] may be effectively used as
workflow engines in the design and development ofWFMS.
The TuCSoN model promotes a clean separation among
autonomous interacting activities, which can be effectively
modelled as dynamic sets of (possibly mobile) agents, gov-
erned by social laws that rule interaction and manage inter-
agent dependencies. There, WFMS rules can be expressed
as coordination rules, and embodied within tuple centres as
behaviour specifications. The combined effect of the agent
paradigm [30] and the uncoupling properties of generative
communication -lifted by tuple centres from the language
level up to the design level [18] -provide the expressive
power and flexibility to face the issues of WFMS in YE.

The remainder of this paper is organised as follows. Sec-
tion 2 focuses on the main challenges and requirements
raised by YE and distributed WFMS development. In Sec-
tion 3, we introduce the notion of objective coordination
[17], and show how WFMS problems in the YE field may
be solved by adopting a coordination infrastructure like
TuCSoN, outlining the advantages of this approach with

Abstract

Virtual Enterprises (YE) and Workflow Management Sys-

tems (WFMS) require deployable and flexible infrastruc-
tures, promoting the integration of heterogenous resources

and services, as well as the development of new YE's busi-

ness processes in terms of workflow (WF) rules coordinat-

ing the activities of YE's component enterprises. In this pa-

pel; we argue that a suitable general-purpose coordination
infrastructure may well fit the needs of YE management in

a highly dynamic and unpredictable environment like the

Internet, by providing engineers with the abstractions and

run-time support to address heterogeneity of different sorts,
and to represent WF rules as coordination laws. We discuss

the requirements for YE infrastructures, and suggest why

YE management and WFMS may be seen as coordination

problems. Then, we introduce the TuCSoN coordination
model and technology, and show, both in principle and in

a simple case study, how such a coordination infrastructure
can support the design and development of YE's WFMS.

I. Virtual Enterprise management as a coordi-
nation problem

Two main issues arise when building a Virtual Enter-
prise (VE henceforth). The first is the integration of the
existing services and infrastructures provided by the VE's
component enterprises, which may range from passive in-
formation sources to activities such as services and busi-
ness processes. The main problem, here, is heterogeneity,
coming out at many different levels -from the technology
level, to the information and the process levels. The sec-
ond relevant issue is the development of the VE's distributed
workflow management system (WFMS henceforth). On the
one hand, the WFMS should integrate the different business
processes featured by the VE's component enterprises. On
the other hand, it should enable the specification, execution,
and monitoring of the VE's specific business processes.

Both issues involve autonomous and heterogeneous ac-
tivities, whose inter-dependencies should be properly man-

Proceedings of the 10th International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WET ICE �01)
1080-1383/01 $10.00 © 2001 IEEE

respect to other agent-based approaches that offer no sup-
port for objective coordination. Finally, in Section 4 we

sketch an example of a TuCSoN-based WFMS application

representing a virtual bookshop built as a YE.

2. Infrastructure Requirements

Electronic Markets and Virtual Enterprises are the most
relevant economical structures emerged from e-commerce.
A VE is a temporary aggregation of autonomous and inde-
pendent enterprises connected through a network, brought
together to deliver a product or service in response to the
customer needs [23]. So, VEs typically mean to combine
the core competence of several autonomous and heteroge-
neous enterprises in a new agile and flexible enterprise, ad-
dressing original industrial/ business targets [23].

An infrastructure supporting YE management has to ad-
dress two main issues: (i) the integration of selected hetero-
geneous resources provided by single participants, and (ii)
the execution of VE specific business processes that feature
their own dynamics while exploiting as many resources,
services, and processes from the component enterprises as
possible. Since both aspects involve a multiplicity of au-
tOnomous interacting entities and the management and gov-
ernment of their interactions and inter-dependencies, they
can be understood as coordination issues [14].

Heterogeneity comes out at the technology, information,
and process levels. Technological heterogeneity is due to
the different software environments (operating system, mid-
dleware) used as infrastructure for the distributed comput-
ing environment [15], while information can be heteroge-
neous because of differences in syntax, semantics, and on-
tology. At the process level, heterogeneous activities and
business processes have to interact despite the differences in
the nature of the involved entities -humans, software ser-
vices, software agents of various computational paradigms,
etc. -and in interaction protocols and languages.

So, the first requirement for a YE infrastructure is to pro-
mote a conceptual homogeneity of resources, information,
and activities. Working as the organisational glue, a VE in-
frastructure should support consistent interactions both with
shared services and among processes, while minimising the
impact of the VE on participants' local systems [31]. In
this context, security and trust issues are particularly rele-
vant, in that a VE infrastructure should provide abstractions
and mechanisms to ensure security, safety and privacy, pro-
tecting the YE from the outside world, while taking into
account the mutual requirements of the individual YE com-
ponents. An infrastructure for YE management should help
to govern the dependencies that characterise the execution
of VE business processes, such as task assignments, pre-
requisite and temporal constraints [14], which require the
development of a WFMS [11].

Currently, workflow systems are the most important
model used by organisations to automate their business pro-
cesses, supporting their specification, execution and moni-
toring. A business process is precisely a workflow -that
is, a set of activities to be executed in some order, involv-
ing multiple collaborating entities in a distributed environ-
ment to accomplish a given task [11]. A workflow system is
meant to improve the process throughput, to promote a bet-
ter use of resources, and to enable efficient process track-
ing [24]. Moreover, since workflow applications are subject
to frequent changes caused by the business environments
[6], flexibility and adaptability are required in different di-
rections, from dynamic evolution of existing coordination
policies to proper reactions to unpredictable situations [13] .

In the YE case, WFMS have typically to face the issue of
distribution- that is, to coordinate a multiplicity of hetero-
geneous activities spread over the network. As explicitly
stated in the definition of requirements for a WFMS stan-
dard [24, 29], a distributed workflow infrastructure should
be based on the principle of loose-coupling between hetero-
geneous workflow backends -i.e., WF engines or coordi-
nators, where coordination takes place -and heterogeneous
workflow participants/service providers.

Accordingly, an infrastructure for WFMS should pro-
vide support for (i) communication among participants and
backends with no need to agree on point-to-point protocols,
as well as (ii) for flexible and scalable workflow participa-
tion, allowing participants to adopt both traditional devices
(such as desktop PC) and non-traditional devices (such as
thin clients, or PDA), requiring no a-priori information on
backends, nor dedicated connections to the backends [24].
Moreover, such an infrastructure should support (iii) dis-
connected operation, allowing WF participants to be mo-
bile, location-independent, and non-frequently connected to
the network [24]; finally, it should enable (iv) traceability of
the business process state [15].

In addition, inter-organisational workflow systems [5]
for use in the YE context should be able to cope both with
the openness and distribution of the Web environment, and
with heterogeneity at several levels (see Section I).

In order to face such requirements, the YE infrastructure
should promote a clean separation between the conceptual
places where the workflow rules are specified and enforced,
and the workflow participants, by uncoupling the coordina-
tion activity and the coordinated activities. Also, workflow
rules should be explicitly represented, inspectable and mod-
ifiable, possibly in a dynamic way.

3. VE, WFMS, and Coordination in TuCSoN

TuCSoN is an infrastructure for the coordination of In-
ternet agents, particularly suitable to mobile information
agents [19]. The TuCSoN coordination model is based on

Proceedings of the 10th International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WET ICE �01)
1080-1383/01 $10.00 © 2001 IEEE

tween heterogeneous infonnation sources. Its tuple-based
coordination model naturally supports uncoupled interac-
tions, thanks to generative communication (communication
data that survive communication acts) [8], which provides
agent uncoupling, from both the space and time viewpoints
-that is, agents can interact needing neither to know each
other nor where they are (space uncoupling), and inde-
pendently of their contemporaneous existence (time uncou-
piing). These are key aspects for a peer-to-peer interaction
model between YE backends and participants, and make it
possible to go beyond point-to-pointcommunication proto-
cols, supporting location-independent, disconnected work-
flow participation.

TuCSoN tuple centres are more powerful coordina-
tion abstractions than tuple spaces, since they can be pro-
grammed so as to react to communication events, thus defin-
ing the coordination laws to rule agent interactions. As
discussed in [17], this allows logic tuple centres to act as
intelligent infonnation mediators, mapping knowledge to
knowledge. So, even in a YE open environment, partici-
pants are not required to change their model for knowledge
representation, and dynamic integration of new participants
is easily supported with no responsibilities or accommoda-
tion (changes) for present and future interacting agents.

Tuple centres' dynamic behaviour specification is also
the key property that allows TuCSoN to fully support het-
erogeneity at the process level and, more generally, to face
the coordination of dynamic aspects inside the YE. In fact,
TuCSoN supports a fonn of uncoupled coordination [27],
or objective coordination [25], where coordination rules are
embodied outside interacting entities, and can effectively
govern their interaction in a predictable way. This is a key
aspect both to provide the clean separation between work-
flow participants and backends and to enforce prescriptive
coordination, two important requirements illustrated in the
previous Section, not easily fulfilled by an infrastructure
that supports subjective coordination only.

Coordination rules in TuCSoN are expressed as pro-
grams in the ReSpecT specification language [4], which
is embodied within tuple centres: as a Turing equivalent
language, ReSpecT ensures that any computable coordi-
nation rule can be enforced. As a consequence, workflow
rules can be defined in TuCSoN as coordination laws de-
coupled from interacting agents, and embedded into prop-
erly defined coordination abstractions, so as to keep WF co-
ordinators and participants distinct at design, development,
and run-time. ReSpecT can be considered as a sort of an
assembly language for interaction, with strong fonnal basis,
yet general and powerful enough to support the develop-
ment of higher-Ievel specification language, tuned for spe-
cific applications. For these reasons, future investigations
are planned to design and implement classic workflow lan-
guages, including the visual ones, on top of ReSpecT.

the notion of (logic) tuple centre [18], which is a Linda tuple
space [8] empowered with the ability to define its behaviour
in response to communication events according to the spe-
cific coordination needs.

It has been argued [1, 21, 22] that the openness and
the wideness of the Internet scenario make it suitable to
conceive the Internet as a multiplicity of independent en-
vironments (e.g. Internet nodes or administrative domain of
nodes), and to design applications in terms of agents that
explicitly locate and access resources in this environment.
The TuCSoN support for such an approach to application
design is based on a multiplicity of independent interaction
spaces, namely tuple centres, that abstract the role of the en-
vironment. (Mobile) agents access tuple centres by name,
either locally in a transparent way, or globally on the Inter-
net in a network-aware fashion [19].

A local interaction space can be used by agents to ac-
cess the local resources of an environment and as an agora
where to meet other agents and coordinate activities with
them. This is why tuple centres, as fully distributed interac-
tion media, can be understood as social abstractions [10],
which allow to constrain agent interactions explicitly and
to enforce the coordination and cooperation activities that
define the agent aggregation as a society. Interaction pro-
tocols can then be designed and distributed among agents
and media, adopting the balance that is most adequate to
the specific application goals.

One first advantage is the enhancement of agent au-
tonomy: agents can be designed focusing only on their
own goals and tasks, disregarding dependencies from other
agents and without having to track (open) environment
evolution. Moreover, prescriptive coordination can be
achieved, getting the capability to constrain agent interac-
tions so that they reflect sound behaviours, according to
the social goals defined for the agent organisation. Decen-
tralisation is enhanced, too, since tuple centres are spread
over the network, living in infrastructure nodes visited by
rambling agents migrating from node to node. Finally, the
topological nature of the TuCSoN global interaction spaces
[19] makes it possible to deal with the typical issues of dis-
tributed systems [3] -in particular, to enforce flexible se-
curity policies, workload allocation policies, fault tolerance

policies.
Heterogeneity is addressed in TuCSoN both at the

model and infrastructure level. From the technology view-
point, TuCSoN has been developed in Java, thus guaran-
teeing portability among platforms. Its architecture is based
on a light-weight core, designed to support different sorts
of middleware -from sockets to Java RMI, CORBA, and
proprietary solutions. This minimises the impact on hosting
environments and enables a wide range of hardware devices
(desktops, PDAs , etc) to exploit the infrastructure.

The TuCSoN model directly supports the integration be-

Proceedings of the 10th International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WET ICE �01)
1080-1383/01 $10.00 © 2001 IEEE

Finally, coordination laws specified in tuple centre in
TuCSoN are dynamically inspectable. Since a ReSpecT
behaviour specification is structured as a multi-set of logic
tuples, an intelligent agent can in principle retrieve it and
reason about current rules governing the interactions -in
particular, about workflow rules. Moreover, since a tu-
ple centre's behaviour specification can be dynamically
changed, an intelligent agent could monitor the evolution
of a YE, and pro-actively adapt WF rules in order to im-
prove YE behaviour and performances. This would indeed
provide a TuCSoN-based WFMS with the flexibility and
adaptability required to face rapid changes in business envi-
ronments, as well as to react to unpredicted situations.

4. A Case Study

This event triggers the first reaction of Table 1: a new
transaction ID is generated, the information about the or-
der is saved (tuple order-info) and the state of the order
is registered (tuple order-state). The order state may
be ordering (the book is not yet available at the book-
seller's), ready (the book is ready at the bookseller's but
not yet collected by the carrier), dispatching (the book
has been collected by the carrier, but not yet delivered to the
customer), deli vered (the book has been delivered to the
customer, and payment is going on) or closed (payment
has been successfully brought to end). A new agent, mon -

i torAgent, is then spawned: its tasks is to monitor the
business process and provide the customer with informa-
tion about the order state upon request. The actual book
order at the bookseller's is performed by a mobile agent
(buyerAgent) moving to the seller's node.

When the book is ready at the bookseller's, the buyer
mobile agent comes back home and outputs a new
book-Ieady tuple. This event triggers the second reac-
tion of Table I, which updates the order state and dele-
gates book delivery to the mobile agent carrierAgent,
which goes to the selected carrier's node and interacts with
the local services as appropriate. From the carrier's node,
carrierAgent notifies the YE about the delivery sta-
tus by producing a book-dispatched tuple in the home
tuple centre when the book is picked up from the book-
seller's, and a book-delivered tuple when the book is
successfully delivered to the customer. The payment ac-
tivity is then started (agent paymentAgent, spawned by
the fourth reaction of Table 1): when it succeeds, a log-
ging agent (loggingAgent, fifth reaction) is spawned to
backup the business process history on a safe storage.

In order to experiment with the effectiveness of the
TuCSoN technology for YE and WFMS, we set up a vir-
tual bookshop case study. The virtual bookshop is a YE that
aggregates several companies of different sorts working to-
gether to sell books on the Internet: there are the book seller ,
the carrier (dispatching books from sellers to clients), the
interbank service, the book publisher, and the Internet ser-
vice provider. Any individual enterprise wishing to playa
role in this YE can dynamically join it at any time by en-
abling the TuCSoN infrastructure and suitably configuring
it so as to accomplish the simple YE's requirements.

In the following, we sketch the execution of a simple
business process: the on-line purchase of a single book (first
case) and of a book set (second case). In the first case, a
single book is bought from a selected bookseller, and must
be delivered to the customer by a specific carrier: this ex-
ample shows a workflow rule enforcing the sequence of
autonomous and heterogeneous activities (book order, dis-
patching, payment). The second case involves the purchase
of a set of books, each from (possibly) a different book-
seller, again having all them delivered by a single, specific
carrier. This example illustrates the AND-branching and
AND-join workflow rules that enforce the concurrent exe-
cution of the ordering activities, whose results are then col-
lected and provided to the dispatching activity.

4.2. Purchase of a book set

This example shows how to manage a set of activities to
be executed concurrently, whose results must be collected
and synchronised, according to the SPLIT(BRANCH) and
AND-JOIN workflow rules. Again, the business process
starts when a new order tuple is placed; here, the tuple de-
scribes the purchase of a multiplicity of books, possibly
from different booksellers. In this case, one buyer mo-
bile agents is spawned for each book to be ordered, re-
flecting a branching of activities (first three reactions of Ta-
ble 2). For each concurrent activity, a suborder-state
tuple describes the state of the specific sub-order. When a
buyer agent communicates the success of a sub-order ac-
tivity (placing a tuple bookxeady) the sub-order state is
updated, and a check about order completion is done (fourth
to sixth reaction of Table 2). When all sub-orders have been
processed successfully (AND-join workflow rule) the car-
rierAgent mobile agent is spawned, and everything pro-
ceeds as in the single book case (last reactions of Table 2).

4.1. Purchase of a single book

This first example shows a possible way to manage a set
of activities to be executed in sequence, facing coordination
issues about synchronisation and information flow among
the involved activities. The business process starts when a
buyer interface agent places a tuple describing a new order
in the proper tuple centre at the Internet ponal node, which
is programmed with the ReSpecT specification illustrated
in Table 1: let us suppose it is called vbs.

Proceedings of the 10th International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WET ICE �01)
1080-1383/01 $10.00 © 2001 IEEE

.laboration and infonnation management clearly emerges.
Table 1. Purchase of a single book TuCSoN is meant to play this role, since it is general-

t a new order is placed purpose enough to support distributed workflow manage-
reaction(out (new-order(Customer , [(Book, Seller)] , Carrier)) , (ment as well as interaction coordination and collaboration

in-r(new-order(Customer,[(Book,Seller)],Carrier», ' ,

t generate a new transaction ID among heterogeneous {both human and software) agents.
in-r (tra.ns-id-counter (ID)) , Some approaches support YE management using mobile
NextID 1S ID + 1,
out-r (trans-id.counter (NextID)) , and intelligent agent technologies [31, 7, 12], while oth-
t set up order info ers support YE management through WFMS using a multi-
out-r(order-info(ID, Customer, [(Book,Seller)],Carrier», ...
out-r(order-state(ID,ordering)) , agent system with mob1le agents [2, 15]. Wh1le the first do
t spawn a'!!ent monitoring the business process not provide an explicit model for WFMS the second sup-
spawn(mon1torAgent(ID)), ,

t execute book order from specified seller port business processes execution with subjective coordina-
spawn(buyerAgent(ID,.BOok,S~ller)) >) .ti on that is encapsulating the social rules into agents. Wet book ready, execute d~spatch1ng , .' reaction (out (book-ready(ID)) , (found obJect1ve coordmation more effective than subJective

in-r(book-ready(ID)) , coordination for WFMS because of the engineering prob-t change order status. ' in-r(order-state(ID, ordering)) , 1erns endorsed by subJective coordmation w1th respect to

out-r (.order-state (:D, read~)) , dynamism flexibility heterogeneity and traceability issues.
t act~vate book d~spatch~ng , ,

rd.r(order-info(ID, Customer) , [(Book,Seller)] ,Carrier» ,
spawn(carrierAgent(

ID,Carrier, [(Book,Sel1er,Customer)]»))) .References
t book has been collected from sender (seller)
reaction(out(book-dispatched(ID», (

in-r (book-dispatched(ID)) , [1] G. Cabri, L. Leonardi, and F. Zambonelli. Mobile-agent co-
t change order status to dispatching. in-r(order-state(ID, ready)) , ordlnatlon models for Internet applIcatIons. IEEE Computer,

out-r(order-state (ID, dispatching))) > .33(2):82-89, February 2000.
t boo~ delivered to c.ustomer, execute payment [2] P. K. Chrysanthis, T. Znati S. Baneljee and S.-K. Chang.
react1on(out(book-de11vered(ID» , (, ,

in-r(book-de1ivered(ID) > , Establishing virtual enterprises by means of mobile agents.
t change order status to delivered In Workshop on Research Issues in Data Engineering (RIDE
in-r(order-state(ID,dispatching)), 1999

) 116-125 IEEECS M h1999out-r(order-state(ID,delivered» , ,pages. , arc .

t execute payment activity [3] M. Cremonini, A. Omicini, and F. Zambonelli. Ruling agent
spawn (paymentAgent(ID)))) .motion in structured environments. In High Performance

t payment successful: backup transaction. .
reaction (out (payment-ok (ID)) , (ComputIng and NetworkIng, volume 1823 of LNCS, pages

in-r (payment-ok (ID)) , 187-196. Springer- Verlag, 2000.
~ change order status to closed [4] E. Denti, A. Natali, and A. Omicini. On the expressive
1n-r(order-state(ID,-> > ,
out-r(order-state (ID, closed)) , power of a language for programming coordination media.
% execute transaction backup activity In 1998 ACM Symposium on Applied Computing (SAC'98),
in-r(order-.info(ID, Customer, BookList,Carrier>) , 169-177- Atl t (GA) 27F b -I M 1998 ACM

spawn(logg1ngAgent(order(ID,Customer, pages, ana, e. ar. ..

BookList, Carrier)))) > .[5] M. Divitini, C. Hanachi, and C. Sibertin-Blanc. Inter-

organizational work flows for enterprise coordination. In Co-

ordination of Internet Agents: Models, Technologies, and

Applications, chapter 15, pages 369-398. Springer-Verlag,

Mar.2001.

[6] C. Ellis, K. Keddara, and G. Rozenberg. Dynamic change

within workflow systems. In ACM Conference on Organi-

zational Computing Systems, pages 10-21. ACM, 1995.

[7] K. Fischer, J. Muller, I. Heimig, arid A.-W. Scheer. Intelli-

gent agents in virtual enterprises. In PAAM96 [20].

[8] D. Gelemter. Generative communication in Linda. ACM

Transactions on Programming Languages and Systems,

7(1):80-112,1985.
[9] D. Gelemter and N. Carriero. Coordination languages and

their significance. Communic. of the ACM, 35(2), 1992.

[10] M. Huns and M. Singh. Social abstractions for lnforma-

tion agents. In Intelligent Information Agents: Agemt-Based

Information Discovery and Management on the Internet.

Springer-Verlag,1999.
[11] S. Jablonski and C. Bussler. Workflow-Management: Mod-

elling Concepts, Architecture and Implementation. Interna-

tional Thomson Computer Press, 1996.

5. Related Works

Several types of workflow systems have been developed
both at the research level (for instance WIDE, Regatta,
APM, MILANO, TriOS) and the commercial level (An Ac-
tion Workflow, XSoft InConcert, TeamWARE Flow). The
above systems face the requirements for classic Workflow
Managements, but do not easily fit Inter-Organisational
Workflow systems and Web-based workflow management
systems [5]. As discussed in this article, these requirements
seem to be properly manageable by a general-purpose agent
coordination infrastructure like TuCSoN. The METEOR2
system [16] goes beyond the classic workflow systems, to-
wards Web-based workflow, workflow adaptation and inte-
gral support for collaboration. In [26], the need for higher
level forms of middleware that support coordination, col-

Proceedings of the 10th International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WET ICE �01)
1080-1383/01 $10.00 © 2001 IEEE

[12] N. R. jennings, P. Farantin, P. johnson, M.j. O'Brien, and
M. Wiegand. Using intelligent agents to manage business
processes. In PAAM96 [20], pages 345-360.

[13] G. Kappel, S. Rausch-Scott, and W. Retschitzegger. A
framework for workflow management systems based on ob-
jects, rules and roles. ACM Computing Surveys, 32(1), 2000.

[14] T. Malone and K. Crowstone. The interdisciplinary study of
coordination. ACM Computing Surveys, 26(1), 1994.

[15] M. Merz, B. Liberman, and W. Lamersdorf. Using
mobile agents to support interorganizational workflow-

management. Applied Artificial Intelligence, 6(11), 1997.
[16] j. A. Miller, D. Palaniswami, K. j. Sheth, Amit P. Kochut,

and H. Singh. Webwork: Meteor2's web-based workflow

management system. Journal of Intelligent Information Sys-
tems, 10(2):185-215, 1998.

[17] A. Omicini. Hybrid coordination models for handling in-
formation exchange among Internet agents. In AI*IA 2000
Workshop "Agenti intelligenti e Internet: teorie, strumenti e
applicazioni", pages 1-4, Milano (Italy), 13 Sept. 2000.

[18] A. Omicini and E. Denti. From tuple spaces to tuple centres.
Science of Computer Programming, 2001.

[19] A. Omicini and F. Zambonelli. Coordination for Internet

application development. Autonomous Agents and Multi-
Agent Systems, 2(3):251-269, Sept. 1999.

[20] Practical Application of Intelligent Agents and Multi-Agent

Technology(PAAM 96), Apr. 1996.
[21] G. Picco, A. Fuggetta, and G. Vigna. Understanding code

mobility. IEEE Trans. Soft. Eng., 24(5), May 1998.
[22] G. Picco, A. Murphy, and G. C. Roman. LIME: Linda meets

mobility. In 21st International Conference on Software En-
gineering (ICSE'99), Los Angeles, May 1999. ACM Press.

[23] A. P. Rocha and E. Oliveira. An electronic market architec-
ture for the formation of virtual enterprises. In PRO- VE 99
IFIP/PRODNET Conference on Infrastructures for Indus-
trial Virtual Enterprises, October 1999.

[24] P. Santanu, P. Edwin, and C. jarir. Essential requirements
for a workflow standard. In Proceeding of OOPSlA 1997 -
Business Object Workshop III. ACM, October 1997.

[25] M. Schumacher. Objective Coordination in Multi-Agent

System Engineering -Design and Implementation, volume
2039 of lNAI. Springer-Verlag, Apr. 2001.

[26] A. P. Sheth and K. j. Kochut. Workflow applications to re-
search agenda: Scalable and dynamic work co-ordination
and collaborative systems. In Adv. in Workflow Management
Systems and Interoperabilily, Istanbul (Turkey), 1997.

[27] R. Tolksdorf. Models of coordination. In Engineering So-
cieties in the Agents World, volume 1972 of lNAI, pages
78-92. Springer-Verlag, Dec. 2000.

[28] TuCSoN.

http://lia.deis.unibo.it/rsrc/tucson/.
[29] The Workflow Management Coalition.

http://www.wfmc.org.
[30] M. j. Wooldridge and N. R. jennings. Intelligent agents:

Theory and practice. The Knowledge Engineering Review,

10(2):115-152, 1995.
(31] H. Wortmann, A. Aerts, N. Szirbik, D. Hammer, and

I. GoosSenaerts. On the design of a mobile agent web for

supporting virtual enterprises. In WET ICE 2000, 2000.

Table 2. Book set case

% new order is placed

reaction(out(new-order(Custorner,BookList,Carrier») , (
iTLI(new-order(Custorner,BookList,Carrier») ,
% generate a new transaction ID
in-I(trans-id-counter(ID)), NextID is ID + 1,
out-I(trans-id-counter(NextID)),
% setup order info

out-r(order-info(ID,Custorner,BookList,Carrier)),
out-I(order-state(ID,ordering)),
% spawning monitoring agent

spawn(rnonitorAgent(ID») ,
% execute parallel buying activities

out-r(order-all(ID,BookList»,
out-r(suborder-counter(ID,O»)) .

% execute buying activity for each sub order

reaction(out-r(order-all(ID, [(Book,Seller) ILl», (
in-I(order-all(ID,-)) ,
% execute sub-order activity with C as sub ID

in-r(suborder-counter(ID,C)) ,
out-I(suborder-state(ID,C,ordering)),
spawn(buyerAgent(ID,C,Book,Seller) ,
% iterate for next sub-order
Cl is C+l,

out-I(suborder-counter(ID,Cl»,
out-I(order-all(ID,L)))) .

% no more sub-order to process
reaction(out-r(order-all(ID, [I» , (

in-r(order-all(ID,[]),
in-I(suborder-counter(ID,-)))) .

% a book is ready at a seller

reaction(out(book-ready(ID,SubCode)) , (
in-r(book-ready(ID,SubCode» ,
% update sub-order state

in-r(suborder-state(ID,SubCode,ordering),
out-r(suborder-state(ID,SubCode,ready») ,
% waiting for other sub-orders?

out-r(check-order-cornplete(ID)))) .
% not all sub-orders have been completed

reaction(out-r(check-order-cornplete(ID)), (
in-r(check-order-cornplete(ID)) ,
rdLr(suborder-state(ID,-,ordering)))) .

% all sub-orders processed: prepare dispatching

reaction(out-r(check-order-cornplete(ID»), (
in-r(check-order-cornplete(ID)) ,
no-r(suborder-state (ID, -, ordering)) ,
out-r(clear-suborder(ID)) .

% clean information on closed sub-orders

reaction(out-r(clear-suborder(ID), (
in-r(clear-suborder(ID)),
iTLI(suborder-state(ID,-,-»,
out-I(clear-suborder(ID)))).

reaction(out-r(clear-suborder(ID»), (
iTLI(clear-suborder(ID)),
no-I(suborder-state(ID,-,-») ,
out-r(list-for-carrier(ID, [I)) ,
rd-r(order-info(ID,Custorner,Order,-),
out-r(collect-info-for-carrier(ID,Customer, Order)))).

% prepare information for dispatching
reaction (out-r(collect-info-for-carrier(ID, CUstomer,

[(Book,Seller)IL]),(
in-r(collect-info-for-carrier(ID,-,-) ,
iTLI(list-for-carrier(ID,List) ,
out-I(list-for-carrier(ID,

[(Book,Seller,Custorner) IList])),
out-r(collect-info-for-carrier(ID,Custorner,L»)) .

% execute dispatching with collected information

reaction(out-r(collect-info-for-carrier(ID,-, [])), (
in-r(collect-info-for-carrier(ID,-, [J),
% update order status

in-I(order-state(ID,ordering)),
out-I(order-state(ID,ordered» ,
% execute dispatching activity

in-r(list-for-carrier(ID,OrderList),
rd-r(order-info(ID,-,-,Carrier) ,
spawn(carrierAgent(ID,Carrier,OrderList)))) .

Proceedings of the 10th International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WET ICE �01)
1080-1383/01 $10.00 © 2001 IEEE

