
0HUJLQJ�/RJLF�3URJUDPPLQJ�LQWR�:HE�EDVHG�WHFKQRORJ\�
D�&RRUGLQDWLRQ�EDVHG�DSSURDFK

Enrico Denti*, Antonio Natali**, Andrea Omicini*

Dipartimento di Elettronica, Informatica e Sistemistica
Università di Bologna - Viale Risorgimento, 2 - I-40136 Bologna, Italy

Tel. + 39 51 6443087* / 644 3021** - Fax + 39 51 6443073
E-mail: {edenti,anatali,aomicini}@deis.unibo.it

WWW: http://www-lia.deis.unibo.it/Staff/

Abstract. Current WWW technology is becoming the de-facto standard platform for groupware
applications, yet it provides virtually no effective coordination capabilities. New applications, instead,
demand higher-level middleware services, with intelligent behaviours, deductive capabilities, and
effective coordination. In this work we discuss an extension to the current Web-based architectures
whose aim is to provide a support to the integration between logic-based and conventional
components, and to introduce the concept of programmable communication abstraction. Declarative
(logic) programming is adopted, within the current Java-based architectural framework, as the main
tool to exploit coordination models, to overcome some problems related to point-to-point interaction
and to introduce reasoning and introspection capabilities within middleware software systems.

Keywords: World-Wide-Web, Internet, Java, Multi-Agent Systems, Agents, Interaction,
Coordination, Tuple Spaces, Programmable Coordination Media, Extensible Coordination
Abstractions

��� ,QWURGXFWLRQ

Both in the industry and in the academic realities there is a growing demand for groupware and
co-operative distributed-work applications, such as videoconferencing, remote work, remote
people training and education, whose needs are far beyond simple document exchange. By
“providing the resulting illusion of several cooperating applications working together” [1], the
World-Wide Web and the Internet “are rapidly becoming the de facto standard and hardware
platform” for such geographically distributed groupware applications [1,2].

The success of the WWW as a support environment is mainly due to the simplicity of its three
basic support mechanisms - the HTTP protocol for data access, the HTML mark-up language for
page description, and the URL global naming scheme - and to its open architecture, which
provides a way to integrate further technologies - such as CGI scripts [4,5], the Java language
[8,9] with its Abstract Window Toolkit, browser scripting languages like Javascript [6], MIME-
types and browser helper applications - in the basic framework.

However, the forthcoming application areas are much more demanding then the current
WWW implementation can provide. In fact, new added-value interactive services such as remote
banking, insurance, health care, revenue tellers, and public information access systems (for
cultural events, train and flight schedules, on-line reservations, hotel booking, road condition
inquiry, etc.) require higher-level services (sometimes referred to as middleware) offering new
abstractions so as to compose new and old programs in more complex software ensembles -
including, in particular, facilities to easily access geographically distributed information spaces,
personal communication tools, and to interoperate with heterogeneous Data Base Management
Systems (DBMS).

For all these reasons, solutions are emerging trying to extend the current WWW middleware
capabilities so as to support the integration between WWW and other technologies. Component

2

technology is dramatically altering the way software systems are built: in particular, Java is
becoming an architectural model, rather than just a language, for Internet-based applications,
providing the WWW with the architectural reference which is currently lacking. In addition, its
role is becoming central in supporting the rapid development of new, hybrid applications, where
very heterogeneous (Java-based, Visual Basic-based [13]) components may be asked to
cooperate within the same ensemble. With respect to this issue, the JavaBeans technology [10],
currently under definition, is likely becoming the de facto standard for dynamic, distributed
component-based applications, as shown by the development of bridge software allowing Visual
Basic ActiveX controls to interoperate with JavaBeans components [11] and by the embodiment
of the CORBA/OpenDoc architecture [5].

Despite its intrinsically distributed nature, however, the WWW as we know it now lacks both
the coherent conceptual framework and the coordination capabilities ([3]) which are essential to
create an effective platform for groupware and co-operative information systems. In its current
definition, also Java lacks a general coordination model intended as (quoting [3]) “the glue that
binds separate activities into an ensemble”, although efforts are being made to define global
communication abstractions and models - the Javaspaces [26-30] - based on Linda-like [7] tuple
spaces, so as to help filling this gap. In fact, the Remote Method Invocation (RMI) package [14],
available to support remote object method invocation on objects executing on the name space of
a remote host, still relies on a basic point-to-point communication protocol, thus providing no
real higher-level coordination abstractions. The same applies to CORBA [5], another widely-
adopted distributed object model platform. Actually, it seems that most approaches currently
used to extend middleware capabilities1 are aimed more to reuse existing metaphors,
technologies and tools to quickly port applications to the Internet platform, rather than to
introduce really innovative abstractions specifically designed for the features of this platform.

On the other hand, many forthcoming application areas will require built-in mechanisms to
perform inferential activities. Reasoning capabilities would be clearly welcome, for instance, in
remote banking applications (to provide extra information to the customers, and to monitor the
system state and/or consistency), in the health care field (where expert-systems features are often
used to support diagnoses), in train/flight schedule services (to find connections respecting
customer-defined constraints, to infer customer habit information to be used to improve the
service, etc.), in on-line reservation systems (to suggest alternatives, to find best price/service
combinations, etc.), in road-condition monitoring systems (here again, to suggest alternatives
routes, to check for expected critical conditions), and so on.

Due to its well-known features with respect to knowledge representation and handling, Logic
Programming is quite a natural choice to provide the extra intelligence demanded by such
situations: the question is under what form it may be integrated and properly exploited in the
WWW framework. In fact, it is very unlikely that the current WWW technology and architecture
may radically change their reference models, languages and tools as a consequence of the
integration with Logic Programming. Rather, Logic Programming will provide, at least in the
short time, a contribution only if properly integrated within the current WWW architecture.
Moreover, deductive capabilities alone would not suffice to make such an integration really
useful and effective: coordination capabilities are - for the reasons outlined above - at least as
important as deductive features.

Coherently, two main approaches can be followed. The first one consists of providing the
logic-based support as a “backstage” service, adding intelligence to the system without changing
the existing architecture, by inserting an ad-hoc component. The other one, instead, is based on
the idea of exploiting coordination models to introduce an architecture providing a bridge

1 For a deeper categorisation, see [1].

3

between components with inferential capabilities (henceforth, logic-based components) and
conventional components.

Since the second alternative is more general than the first, our choice is to start from the
component model, and to introduce a new software layer, acting both as a high-level
communication device (from the viewpoint of conventional components) an as a knowledge base
(from the viewpoint of logic components). The main goal is to extend the current WWW
architectures with a new (abstract) component which offers a higher abstraction level for object
interaction, in order to overcome the low-level, point-to-point, event-based programming model
of the Web while providing a more appropriate support for inferential activities.

However, the introduction of a new component providing a common reference language as
well as interaction capabilities between logic-based and conventional components is not enough.
The software component supporting the new layer should also be dynamically “programmable”
in order to embed the logic of interaction, which is usually spread among the agents interacting
through conventional point-to-point protocols, into the coordination medium. As already shown
elsewhere [19,20] this choice can greatly improve the design and maintenance of Web-based
systems.

In short, the desired software layer should be designed according to a reference coordination
model which allows logic-agent to reason over the available, private or common, knowledge and
non-logic agents to access such a knowledge as conventional messages. From the application
viewpoint it should provide a program interface making it possible for logic-based components
to perform deductions in a time-dependent environment while offering at the same time an
extendible behaviour in order to accommodate any required coordination policy.

A suitable starting point to achieve these goals is represented by the ACLT coordination
model [16,17,18,19,20] which already meets several of these requirements. Moving from the
observation that an interactive systems is (or should be) something more than the simple sum of
its parts [24], ACLT adopts Linda[7]-like tuple spaces as its basic communication devices, but
enhances them under several aspects.

First, the global (distributed) communication medium is structured in such a way that it can
directly constitute the knowledge-base for logic-components. Named, logic tuple spaces are used
as communication channels, allowing deductive activities to be performed through a set of demo
primitives, defined according a coherent notion of logic consequence in a time-dependent
environment [16,17]. However, non-logic components (i.e., components written in C, C++, Java,
or other imperative languages) can still access the communication channels in a traditional way,
viewing them as conventional tuple spaces with no extra features. So, each component (agent in
ACLT terminology) can access the communication channels at its own perception level.

Second, ACLT raises observability from tuples to operations on tuples, thus shifting the
observability level from simple state observability (also provided in Javaspaces by the
notification concept [26]) to communication operations observability, which provides the
dynamic view of the system required in distributed, complex systems (for instance, for
monitoring and debugging purposes) [31,32] and also constitutes a powerful mechanism to build
the heterogeneous, coordinated, introspective component-based systems which are in the aims of
the Web-based technology.

By allowing user-defined reactions to be triggered upon the occurrence of some given
communication event(s) [18,19,20], ACLT makes it possible to extend of the execution of a
communication operation (in, out, read, ...) in a non-intrusive way (i.e., leaving the semantics of
the basic communication primitive untouched). Thanks to its reaction execution model, ACLT
can make agents perceive all the effects of a single communication operation as a single-step
transition of the communication abstraction state, so that the behaviour of the coordination
medium can be made (to appear) as complex as desired.

4

Since ACLT is not just a reference model, but also a working system (currently implemented
on top of Sicstus Prolog [15]), our new software layer can be introduced, at least initially, as a
proper set of interface components, which exploit the already-available system while providing
the abstraction layers and the necessary technological bridges.

In the following of this work, we will discuss how such a hybrid technology can be exploited
to provide Web-based application with both deductive and real coordination capabilities. To this
end, next Section briefly summarises the current WWW technology from the coordination and
the component-based technology viewpoints, Section 3 summarises the basics of the ACLT
model, and Section 4 discusses our approach more deeply, also describing some possible
application scenarios. Conclusions and final remarks are reported in Section 5.

��� &XUUHQW�:::�WHFKQRORJ\

Currently, a Web server can be seen as a multi-coordinated application, which exploits several,
different communication protocols to coordinate itself with the other entities. Basic Internet
browser requests are handled using (only) the HTTP protocol, but this provides a fixed behaviour
which allows only static pages to be consulted, and is therefore insufficient for many purposes.
In fact, people often require specific information, which has to be selected dynamically based on
some input data inserted by means of HTML forms. In this case, form data are issued to the Web
server via other protocols (POST or GET) [4], that the Web server must be able to handle, too.

Moreover, the requested information often requires that the server queries an external
database, which implies using still other protocols. On many platforms, this interaction is
achieved using operating-system facilities and communication models, such as ActiveX controls,
OLE [25], or AppleEvent. In order to process input data and dynamically build the response
page, the Web server must be equipped with an ad-hoc program: typically, this interacts with the
Web server through the CGI (Common Gateway Interface) [4,5] interface protocol and is a script
executed by an ad-hoc interpreter, which depends on the selected language (Perl [12], Visual
Basic Script [13], Tcl/Tk [33] or platform-specific shell languages). One more protocol is then
needed to communicate with the Webmaster - a case where, once again, operating-systems
models are typically adopted, but are often extended with proper extensions (such as the
Microsoft Frontpage Extensions) so as to allow higher-level interaction based on more
sophisticated site administration tools. Moreover, the Web server cannot maintain state
information from one request to another (unless by using tricks such as writing it to some HTML
page), as each request is translated into a single HTTP transaction: so, no information is available
over the global coordination state.

Obviously, this basic scheme introduces a clear bottleneck in the architecture, as it puts all the
computational load onto the Web server. In particular, possible errors in HTML input forms
would be discovered only after the form has been completely filled in by the user and analysed at
the server side, consuming both server and user time and generating extra network traffic. As a
further consequence, no active behaviours (animations, calculations,...) could be coded in HTML
pages, since all activities would be always performed by the Web server.

So, the trend in current WWW technology is to move as much of the computational load as
possible to the client side, helping to reduce the Web server load and response times, and to
avoid any unnecessary task centralisation.

In the Java [8,9] approach, Internet-based applications (applets in Java terminology) are
provided as separate Java programs, whose code is referenced inside HTML pages using a
specific <APPLET> tag. So, HTML pages continue to describe the page appearance only, while
the behaviour description is defined by the external applets: these are then executed by the Java
Virtual Machine (JVM), which is available as an extension (Netscape Navigator’s plug-in,

5

Internet Explorer’s ActiveX control, etc.) to most of the widely-used Internet browsers. Although
the JVM is often so deeply integrated in the browser environment that the user may hardly
distinguish it from the browser itself, it remains - both conceptually and physically - a separate
component, which interacts with the browser according to the protocol defined for applet
handling. Consequently, no special extension is required to the browser, except for the capability
of handling the new <APPLET> tag by downloading the applet classes and passing them to the
JVM for execution.

In the script language approach, instead, behaviours to be executed in response to user events
are interleaved with conventional HTML code, so that pages describe other than just the page
appearance and content. This is done either by defining separate logical sections of the HTML
page (delimited by the <SCRIPT> tag), inside which behaviours are encoded by means of script
programs written - in principle - using any adequate script language (Javascript, Visual Basic
Script,...), or by embedding simple event handlers directly in most HTML tags. In any case, the
browser must be incorporate an interpreter for the selected script language(s): this means that no
further issues are introduced from the interaction viewpoint, as all the extra work is performed by
the browser component itself.

So, despite “script” programs and languages are used here, too, coordination issues are
inherently different in this approach with respect to using script programs at the server side,
where scripts are executed by separate interpreters interfaced to the Web server via the CGI
protocol, involving a completely different interaction scheme.

��� 7KH�EDVLFV�RI�WKH�$&/7�PRGHO

The ACLT coordination model [16,17,18,19,20] is founded on the Linda [7] model, which
introduces the notion of generative communication and promotes the separation between the
computation model and the coordination model [3], based on a shared memory communication
abstraction called tuple space. Here we will assume the Linda model as known, together with its
most common extensions (like the non-blocking, predicate-version in_noblock - or inp - and
rd_noblock - or rdp - primitives).

ACLT extends the basic Linda with the notion of multiple, logic tuple spaces [21,22,23]. A
logic tuple space is a collection of first-order unitary clauses, which can be interpreted either as a
simple communication device, or as a knowledge repository: the latter reading suggests that it
can be used as a logic theory, where deductive activities can be performed over the current
communication state. ACLT also introduces the notion of reactive tuple space [18,19,20], i.e. of
a programmable communication channel, which can be dynamically extended to support
arbitrarily complex behaviours while keeping the semantics of the basic communication
primitives untouched.

���� 'HGXFWLRQV�RYHU�HYROYLQJ�ORJLF�WKHRULHV

The twofold nature of ACLT communication devices - as conventional tuple spaces and as logic
theories - first induces a categorisation of agents. In particular, logic agents (for instance, Prolog
agents) are aware of the nature of ACLT tuple spaces as logic theories and can perform logic
proofs on them, while non-logic agents (for instance, C or Java agents) consider ACLT tuple
spaces just as conventional communication channels, and can access them only in a traditional
way.2

Even limiting the scope to logic agents only, the fundamental issue is how to provide a notion
of logic consequence which lets the logic view of clauses as immutable truths coexist with the

2 Of course, unification is available to logic agents only, while non-logic agents are restricted to pattern-matching, as
imperative languages provide no notion of variable binding.

6

intrinsically transient nature of knowledge in tuple spaces [16,17]. More precisely, the question
is how to ensure correctness and completeness of the proof process.

Basically, ACLT addresses the correctness issue by introduces a knowledge classification
scheme, distinguishing between persistent knowledge (which refers to the time-independent
elements of the application domain) and transient knowledge (which refers to that part of the
world which may evolve during agent life), and allowing logic proofs to be performed over
persistent knowledge only. As a result, transient knowledge can be retracted but, for this very
same reason, not taken as a base for deductions, while persistent knowledge can be used for logic
inferences, but, consequently, cannot be retracted. Since ACLT exploits predicates as modularity
sources, each predicate in a tuple space is labelled - either implicitly or explicitly - to represent
either transient or persistent knowledge. The completeness issue, instead, is less critical, and is
faced by providing a special set of logic proof primitives which are able to keep the new
knowledge into account upon backtracking [16,17,18]. ACLT also addresses the synchronisation
issue, which captures the idea that sometimes it may be “too early to deduce”, so logic proof
operations might need to be properly synchronised before actually starting deduction [16,17,18].
Here again, a special set of hybrid logic proof primitives is provided, which wait (synchronise) if
no suitable knowledge is available when the logic proof starts.

���� 7KH�UHDFWLRQ�PRGHO

ACLT reaction model is aimed to provide a simple yet powerful way to make the communication
abstraction programmable and dynamically extensible, while keeping the semantics of the basic
communication primitives untouched. The basic idea is to define a communication channel
where communication events are made observable at the system level, thus raising the
observability level from state changes observability (as in the case of conventional tuple spaces3),
to communication event observability - that is, from tuples to communication operations over
tuples. Tuple spaces are then given the capability of triggering activities (reactions) when some
specified communication events occur [18,19,20].

To this end, any physical communication event can be associated with one or more logical
events (each denoted by a unique name) by means of the special tuple map(2SHUDWLRQ, (YHQW).
Multiple logical events can be associated to the same physical event, and multiple physical
events can correspond to the same logical event.

Reactions are specified through tuples like react((YHQW, *RDO), where Goal is a conjunction
of term predicates, state primitives (current_op/1, current_tuple/1, ...), and basic (non-
blocking) communication primitives: the abstraction behaviour model ensures that the proper
reactions are triggered in response to logical events’ occurrence.

If multiple react/2 refer to the same logical Event, the corresponding Goals are all executed
as mutually-independent atomic actions, in a non-deterministic order [18,19,20], with a
transaction semantics: so, a reaction succeeds only if all its subgoals are executed successfully,
and aborts otherwise. Of course, only successful reactions produce effects. When a reaction
succeeds, all the side-effects associated to it are carried out simultaneously, as a single transition
of the tuple space state. Due to this transaction semantics, reaction nesting is not allowed, and
reactions triggered by another (successful) reaction4 are executed only after the first one has been
successfully completed.

However, the model ensures that all such reactions are executed before serving any other
agent-triggered communication event, so that agents can perceive only the final result of the
execution of both the communication event and all its related reactions. In this way, agents

3 A conventional tuple space is inherently reactive to its state changes, as it must at least be able to wake up
suspended agents when new suitable knowledge becomes eventually available.
4 This may happen because a reaction can contain communication primitives, too.

7

perceive the response of a tuple space to a communication event as a single computational step
(i.e., a single transition of the tuple space state), yet it is no longer forced to be simple and fixed
by the model like in standard Linda, but can be as complex as required by the coordination
policy.

Finally, since the reaction specification language is founded on the same communication
pattern exploited for agent interaction (logic tuples and basic operations over tuple spaces),
agents can in principle dynamically manipulate the communication abstraction behaviour,
possibly as a result of deductions on the current coordination state and according to the overall
system goals.

��� 0HUJLQJ�/RJLF�3URJUDPPLQJ�LQWR�,QWHUQHW�EDVHG�DSSOLFDWLRQV

���� 3URJUDPPDEOH�ORJLF�WXSOH�VSDFHV�DV�VRIWZDUH�FRPSRQHQWV

Basically, our proposal is based on the idea of using a programmable, logic tuple space as a
software component within a Java-based Web architecture, exploiting ACLT both as a reference
model and as the first kernel for the software layer itself.

By adding a tuple space component, all the coordination features of the Linda model become
available to Web-based applications. So, a higher abstraction level for object interaction, with
generative communication, can be exploited, as well as Linda’s well known properties such as
time uncoupling and space uncoupling between the communicating agents. In this way, the low-
level, point-to-point interaction model of the Web can be overcome, helping to provide for the
coordination weaknesses of the Web platform.

Moreover, adopting a logic tuple space (instead of a conventional one) makes it possible to
interpret the communication channel both as a high-level communication device and as a
knowledge base, thus allowing heterogeneous (logic and non-logic) components to coexist and
fruitfully interoperate. This chance opens new perspectives to Web-based applications, as
intelligent components can be added with no impact on the overall system architecture.

Since there can be no reasonings without a proper representation of the relevant information
(i.e., communication events) as logic tuples in the tuple space, at least some application
components will have to be made aware of the existence of the logic tuple space component, and
exploit it by inserting there any relevant knowledge. This is the (obvious) unavoidable drawback
of the architectural restructuring implied by the insertion of a coordination medium in the
existing architecture.

For instance, in order to insert the logic tuple space component on a Web server, so that logic
inferences can be done on its activity (and subsequent actions be taken), each communication
event of the HTTP protocol should be made observable by generating a tuple in the tuple space.
This requires that the Web server is slightly extended, so as to output such a tuple in
correspondence to each relevant HTTP protocol event: however, the (HTTP) interaction protocol
remains untouched, and, therefore, any application based on such a server will continue to work
normally. The next step will be to define the number and the role of logic agents, which,
depending on the desired purposes - network traffic monitoring, page download statistics,
automatic mirroring, etc. - will exploit the available coordination state to perform the required
reasonings (some of these case studies are outlined in more detail below).

Although a logic tuple space already provides many interesting features, the availability of a
programmable (and dynamically extensible) tuple space makes it possible to implement
coordination policies around this global coordination medium. This feature is particularly
relevant in a component-based architecture such as the Web platform, as it implies that the global
system behaviour may be changed without intervening on the single components.

8

In [19,20], for instance, several agents behave as Dining Philosophers [34] coordinating
themselves by means of an ACLT programmable, logic tuple space. Each philosopher agent
interacts with the communication abstraction according to a very simple protocol (acquire/release
forks), while all the related low-level handling is put onto the programmable tuple space. In this
way, subsequent changes to the basic problem structure (e.g., introducing a concept of meal time
- breakfast, lunch, dinner - and corresponding specific forks) can be dealt with by simply re-
programming the extensible logic tuple space, with no change at all to the basic agent interaction
protocol. In a Web-based platform, philosophers could easily be Java components, possibly
distributed over the Internet, coordinating themselves through the programmable software
component discussed above.

More generally, components spread over the Internet may become aware of the existence of
our logic-based programmable component, and decide to exploit its services simply by
downloading the “bridge” software component, which may be an applet or a Java Bean, from a
conventional Web or FTP server. In this way each browser, software component, operating
system or application could become ipso facto able to interoperate with any other component
across the net, using our programmable, logic-based component as a coordination support.

���� 6RPH�:HE�EDVHG�FDVH�VWXGLHV

As a first case study, consider the case of the management of a large Web server (such as the one
used in many large companies to deliver information and software to their customers), physically
made of several computers, all mapped to the same URL. Since traffic has peaks at some hours,
but is much lower at other times, a different number of servers could be running at different
times of the day. In addition, extra communication channels may be reserved for this company
(by the telecommunication company) in some range of hours, and paid correspondingly.
Moreover, some servers may be disconnected from time to time for maintenance or failures. In
all these cases, a dynamic, adaptive behaviour of the overall system would be welcome. In
particular, the company may not like to hire extra communication channels unless in presence of
a very high traffic volume, nor may it like to keep many servers uselessly working at off times.
On the other hand, should a server be down for maintenance or failure, it would be desirable that
all its requests could be diverted to another server or to a backup computer.

Another interesting case study could be a dynamic mirror service, once again aimed to reduce
the overall network traffic. A highly requested page (or file) could be detected and backed up to
another (possibly geographically closer) server, rerouting subsequent requests to the new server.
Or, conversely, a local copy of a remote highly requested page (or file) could be made if certain
conditions hold, thus achieving a proxy-like, but more intelligent, behaviour.

The first service could be delegated to a “resource manager” logic agent, while the second one
could be assigned to a “mirror manager” logic agent. Since the resource manager is asked to keep
the traffic under control, it may be triggered by each new connection request.

For this purpose, the coordination component should be programmed so as to translate the
occurrence of such an HTTP event into an observable tuple of the form expected by the
“resource manager” logic component. This should reason over the current connections (and
possibly on their origin), applying its rules to decide whether to activate (and pay for) new lines,
and/or new servers - or, conversely, whether it is the case to disable some of them if traffic is
getting lower. During this monitoring activity, it may notice that some server is out of service, in
which case an interesting behaviour would be to patch the situation by re-programming “on the
fly” the coordination component, so that all requests to that server are dynamically redirected to
another backup computer.

This further degree of flexibility, however, requires a re-design of the Web server architecture,
so that its actions can be influenced by the knowledge currently available in the tuple space,

9

instead of being a-priori defined. This means that the existing interaction protocol - and the
corresponding slight extension of the Web server code discussed above, consisting of “reflecting
into the tuple space” all relevant HTTP events - is no longer sufficient: instead, all the
communication must occur through the tuple space, so that its coordination power can be fully
exploited. To this end, the two main components of the Web server - the one receiving client
requests, and the one replying to those requests -, currently embedded into a single component
and interacting with their own protocol, should be uncoupled and coordinated through the
coordination medium, too, thus achieving an effective flexibility in changing interaction policies,
while leaving things unmodified at the external perception level.

Obviously, the “mirror manager” could be structured in a similar way, too: in this case,
however, the relevant HTTP event would be the single page (or file) request, rather than the
opening of a new connection. Correspondingly, the tuple space should be programmed
differently, so as to translate each page request into an observable tuple of a proper form, which
would activate another proper intelligent component. This agent should check the situation, and
once again, based on its rules, decide whether to back up the page to another server, or (in a
proxy-like behaviour) evaluate if the request number is worth a local mirror, etc.

��� &RQFOXVLRQV

The World Wide Web and Internet are not only offering a standard support for the development
of middleware services; they are also demanding an effective integration of several concepts,
methodologies and mechanisms, by focusing the attention upon architectural issues rather than
on the algorithmic aspects of computation. Unsurprisingly, the Object-Oriented Programming
model is adopted as the reference model and no attention seems to be given to Logic
Programming. However, the intrinsic complexity of middleware software and the ever-growing
functionality requested to the underlying systems demand higher abstraction levels. In fact, as it
usually happens, the current WWW architectural model is the result of an abstraction process
performed upon low-level mechanisms. From the programmer’s viewpoint, this means dealing
with concepts such as messages, events, event handlers, and so on, while the need for
knowledge-based programming concepts, reflective capabilities and declarative computational
models are gradually emerging.

So, the problem is how to exploit Logic Programming without having to radically change
systems which not only are already available, but are also rapidly growing according to the
incremental methodology provided by the Object-Oriented Programming paradigm.

In this work, we propose the use of the software component model itself as a way to introduce
in the short time logic-based agents in the context of Web-based systems. The key-point consists
of providing a new kind of communication abstraction that can be used both by conventional
agents and by logic-based components. Our intent is to provide a usable tool allowing Prolog
agents to run together and to interact with Java agents, in the conviction that this can get the
benefits of logic programming to be concretely perceived and spread into a large and interested
community. Of course, there is a price to be paid, which is to adapt the Logic Programming
model to the notion of a modifiable theory: but perhaps this is one of the most critical points to
be faced in order to merge Logic Programming within the current Internet technology.

��� 5HIHUHQFHV

[1] P.Ciancarini, R.Tolksdorf, F.Vitali. Weaving the Web Using Coordination. In
Coordination Languages and Models (First International Conference Coordination ’96 -
Cesena, Italy, April 1996), P. Ciancarini and C. Hankin (Eds), Lecture Notes in Computer

10

Science No. 1061, Springer Verlag, Berlin-Heidelberg, Germany, 1996, pp. 411-415. ISBN
3-540-61052-9.

[2] P.Ciancarini. Coordination Models as Software Integrators. ACM Computing Surveys,
28(2), June 1996.

[3] D.Gelertner, N.Carriero. Coordination Languages and Their Significance.
Communications of the ACM, 35(2), February 1992.

[4] The Common Gateway Interface. Internet reference.
ttp://www.pricecostco.com/exchange/irf/cgi-spec.html

[5] Object Management Group. The Common Object Request Broker Architecture:
specification. Technical Report, OMG, July 1995. Revision 2.0.

[6] Sun Microsystems. The JavaScript Language. Internet reference
http://java.sun.com/pr/1995/pr951204-03.html

[7] D.Gelertner. Generative Communication in Linda. ACM Transactions on Programming
Languages and Systems, 7(1), January 1985.

[8] M.Campione, K.Walrath. The Java Tutorial - Object-oriented programming for the
Internet. The Java Series, Addison-Wesley, 1996. ISBN 0-201-63454-6

[9] K. Arnold, J. Gosling. The Java Programming Language. The Java Series, Addison-
Wesley, 1996. ISBN 0-201-63455-4.

[10] Sun Microsystems. The JavaBeans technology. Internet Reference
http://splash.javasoft.com/beans/

[11] Sun Microsystems. The JavaBeans bridge for ActiveX. Internet Reference
http://splash.javasoft.com/beans/bridge/

[12] The Perl Language v. 5.001 documentation. Internet reference.
http://www.cheque.uq.edu.au/misc/perl-5.001m/perl.html

[13] Jinjer L. Simon.VBScript SuperBible. Waite Publishers.
[14] Sun Microsystems. Remote Method Invocation specification. Internet reference

http://chatsubo.javasoft.com/current/doc/rmi-spec/rmi-intro.doc.html

[15] Swedish Institute of Computer Science. Sicstus Prolog User’s Manual. Kista, Sweden.
Internet Reference http://www.sics.se/isl/sicstus.html

[16] E.Denti, A.Natali, A.Omicini,M.Venuti. Agent Communication and Control through Logic
Theories. In Topics in Artificial Intelligence (Proceedings of the Fourth Congress of the
Italian Association for Artificial Intelligence AI*IA '95 - Florence, Italy, October 1995),
M. Gori e G. Soda (Eds), Lecture Notes in Artificial Intelligence No. 992, Springer Verlag,
Heidelberg, Germany, 1995, pp. 439-450. ISBN 3-540-60437-5

[17] E.Denti, A.Natali, A.Omicini,M.Venuti. Logic Tuple Spaces for the Coordination of
Heterogeneous Agents. In Frontiers of Combining Systems (Proceedings of the First
International Workshop on Combining Systems FroCoS '96 - München, Germany, 26-29
March 1996), F. Baader e K. U. Schulz (Eds.), Applied Logic Series 3, Kluwer Academic
Publishers, Boston, USA, 1996, pp. 147-160. ISBN 0-7923-4271-2

[18] E.Denti, A.Natali, A.Omicini, M.Venuti. An Extensible Framework for the Development of
Coordinated Applications. In Coordination Languages and Models (First International
Conference Coordination '96 - Cesena, Italy, April 1996), P. Ciancarini and C. Hankin
(Eds), Lecture Notes in Computer Science No. 1061, Springer Verlag, Berlin-Heidelberg,
Germany, 1996, pp. 305-320. ISBN 3-540-61052-9

[19] E.Denti, A.Omicini. Designing Multi-Agent Systems around an Extensible Communication
Abstraction. Proceedings of the 4th ModelAge workshop on Formal Models of Agents -
Certosa di Pontignano, Italy, January 15-17, 1997. A. Cesta and P.Y. Schoebbens (Eds),
Istituto di Psicologia del CNR, Rome, Italy, pp. 87-98, ISBN 88-85059-07-4.
To appear also in the Lecture Notes in Artificial Intelligence, Springer Verlag (2nd quarter
1997).

11

[20] E.Denti, A.Natali, A.Omicini. Programmable Coordination Media. Proceedings of
Coordination ’97 (Berlin, Germany, 1-3 September 1997). Lecture Notes in Computer
Science, Springer Verlag, Berlin-Heidelberg, Germany, 1997. To appear.

[21] D.Gelertner. Multiple tuple spaces in Linda. Proceedings of PARLE, Lecture Notes in
Computer Science No. 365, Springer Verlag,1989.

[22] P.Ciancarini. Distributed Programming with Logic Tuple Spaces. New Generation
Computing, 12, 1994.

[23] A. Brogi, P.Ciancarini. The concurrent language Shared Prolog. ACM Transactions on
Programming Languages and Systems, 13(1), January 1991.

[24] P.Wegner. Interactive foundations of computing. Technical Report, Brown University,
Providence (RI), August 1996.

[25] Kraig Brockschmidt. Inside OLE. Microsoft Press, 1995, 2nd Edition
[26] Sun Microsystems. Introduction to the Javaspace Model and Terms. Internet Reference

http://chatsubo.javasoft.com/javaspaces/js-spec/js-intro.doc.html

[27] Sun Microsystems. The Javaspace Specifications. Internet Reference
http://chatsubo.javasoft.com/javaspaces/js-spec/js-ops.doc.html

[28] Sun Microsystems. Javaspace Transactions. Internet Reference
http://chatsubo.javasoft.com/javaspaces/js-spec/js-txns.doc.html

[29] Sun Microsystems. Javaspace Utilities. Internet Reference
http://chatsubo.javasoft.com/javaspaces/js-spec/js-util.doc.html

[30] Sun Microsystems. Administering Javaspaces. Internet Reference
http://chatsubo.javasoft.com/javaspaces/js-spec/js-admin.doc.html

[31] T.J. LeBlanc, J.M. Mellor-Crummey, R.J. Fowler. Analyzing parallel program executions
using multiple views. Journal of Parallel and Distributed Computing, No 9, pp. 203-217,
1990.

[32] D.C. Marinescu, J.E. Lumpp, T.L. Casavant, H.J. Siegel. Models for monitoring and
debugging tools for parallel and distributed software. Journal of Parallel and Distributed
Computing, No 9, pp. 171-184, 1990.

[33] The Tcl/Tk interface. Internet Reference. http://www.tcl-tk.com
[34] E.W.Dijkstra. Co-operating sequential processes. Academic press, London, 1965.

