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A b s t r a c t .  The design, development and maintenance of multi-compo- 
nent software systems often suffer from the lack of suitable coordination 
abstractions. The aim of this paper is to show the benefits of coordination 
models based on global communication abstractions whose behaviour is 
not fixed, but is extensible so as to accomplish the intended behaviour of 
the whole system. Accordingly, we propose the notion of programmable 
coordination medium as an abstraction provided by the coordination 
model around which the global behaviour of a coordination architecture 
can be designed. As an example, we show how a Linda-based approach 
can be empowered by exploiting the notion of programmable tuple space, 
as supported by the AC£T coordination model. 

Keywords :  Coordination Models, Programmable Coordination Media, 
Reactions, Tuple Spaces, Multi-Agent Systems 

1 I n t r o d u c t i o n  

Component  technology is radically altering the way software systems are de- 
signed: for instance, today typical W W W  servers are built by simply assembling 
and extending existing components  like H T T P  servers, DB managers  and e-mail 
applications. Generally speaking, most  current mult i -component  systems are de- 
signed by mapping  each service to be provided into a single component ,  often 
adding new components  as soon as new functionalities are needed: the whole 
system is conceived to be nothing more than the sum of its parts.  

Correspondingly, current models for component  interaction (like C O M / O L E -  
ActiveX [3], CORBA [13], CGI  interface protocol) are usually based on message 
passing and point-to-point  communicat ion,  thus providing no real coordination. 
When designing composite  software system, these models lack the adequate ab- 
stractions needed to achieve an intelligent and flexible behaviour of the overall 
system. Whenever a change to the global system behaviour is needed, for in- 
stance, they require local modifications to (possibly all) the components  of the 
system. This  is why these systems are usually designed around special compo- 
nents (monitors,  coordinators) embodying  the core of the global behaviour of 
the overall system, so that  a change to one such a component  affects the whole 
system. 
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Coordination models like the blackboard based ones, instead, provide for a 
global, explicit communication abstraction (a blackboard, a tuple space), around 
which a multi-component system is naturally to be built. However, how these co- 
ordination media work is usually set once and for all by the coordination model, 
and cannot be modified or extended according to the intended overall system's 
behaviour. Thus, coordination entities have to take charge of the interaction 
protocol, and cannot abstract from the coordination policy. 

The main aim of this paper is to discuss the benefits of designing multi- 
component software systems around a global communication abstraction whose 
behaviour can be extended and tailored to the system needs. To this end, we 
suggest the notion of programmable coordination medium as a kernel for coor- 
dination models whose flexibility and expressive power lies in the extensibility 
of the coordination medium itself. In particular, we propose that extensibility 
be the result of embodying computational properties typically in charge of the 
components into the communication abstraction. 

As a case study, Section 2 shows how a shared communication device ~ la 
Linda can work as the core of a flexible coordination architecture in the Linda- 
based .ACE.T [14] coordination model. .4CET tuple spaces are enhanced so as 
to be reactive to communication events, rather than to communication state 
changes only. Reactions to communication events can be defined through a logic- 
based specification language, making .4C£T tuple spaces programmable. 

As a typical example of a coordination architecture designed around a pro- 
grammable coordination medium, we discuss a simple case of a multi-agent sys- 
tem based on the .ACE.T coordination model. As suggested in [8], it can be 
desirable to design the observable behaviour of agents of a multi-agent system 
according to a quite abstract and straightforward pattern, while most of the 
global properties of the system are naturally placed in the global communica- 
tion abstraction. In this way, a change to the coordination policy requires no 
modifications to the interaction protocol of a single component of the system. 
Correspondingly, Section 3 shows how a multi-agent architecture can be built 
around a programmable coordination medium by extending the behaviour of 
.4Cf..T tuple spaces through reaction programming. 

2 P r o g r a m m a b l e  t u p l e  s p a c e s  

In order to show the effectiveness of an approach to coordination based on the 
notion of programmable coordination medium, this Section discusses some pe- 
culiar aspects of the Linda-based .ACL~7- coordination model [14]. Linda [10] 
introduces the notion of generative communication and promotes the separa- 
tion between the computation model and the coordination model [12], based on 
a shared memory communication abstraction called tuple space. In this paper, 
we will take the Linda coordination model as known, as well as its most com- 
mon extensions (like the predicate, non-blocking inmoblock and rd_aoblock 
primitives). 
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The ,4C£7- coordination model (first presented in [14]) extends the basic 
Linda model with the notions of logic tuple space (see also [4,5]), multwle tuple 
spaces 1 [11], and reactive tuple space [7]. In the ACET model, communication 
takes place through a multiplicity of named logic tuple spaces, which are col- 
lections of first-order unitary clauses, uniquely identified by a ground term. In 
particular, a logic tuple space may be given a twofold interpretation, either as a 
simple communication device, or or as a knowledge repository. According to the 
latter reading, a logic tuple space can be used as a logic theory, where deduc- 
tive activities over the communication state can be performed. For this purpose, 
ACET provides for a family of demo primitives, along with a coherent notion of 
logic consequence in a t ime-dependent environment [14]. 

What  is relevant here is the ACI:T notion of programmable tuple space. The 
first idea is to raise observability at the system level from tuples to (communica- 
tion) operations over tuples. Correspondingly, ACf .T  tuple spaces are reactive, 
since they are provided with the capability to react to communication events 
rather than just to the communication state changes only, as in standard Linda 
[7]. 

A simple specification language allows communication events to be associated 
to reactions, which are sequences of operations executed atomically in response 
to specific communication primitives performed over tuple spaces. In other terms, 
a reaction can be thought as an event-handler catching communication events, 
and having full access to both the whole information concerning the specific 
communication event, and the current communication state, as represented by 
the tuple space. 

By programming reactions, the effect of the execution of a communication 
operation can be extended as needed. Moreover, thanks to the reaction execution 
model, all the results due to a single communication operation (its own effect, 
and the effects of all the reactions associated to it) are made visible to the 
coordination entities as a single transition of the state of the communication 
abstraction. As a consequence, the behaviour of the coordination medium can 
be made as complex as desired at the component 's  perception level. 

In principle, since the specification language is founded on the same commu- 
nication pattern exploited for agent interaction (that is, logic tuples and basic 
operations over tuple spaces), components may be allowed to manipulate the 
communication abstraction behaviour. Along with the chance of performing de- 
ductions on the current coordination state provided by the .AC£T notion of 
tuple space as a full-fledged logic theory, this opens the way to systems able to 
reason about themselves, and possibly self-modify their behaviour dynamically, 
according to the system goals. 

1 Although AgET exploits multiple tuple spaces, we will henceforth leave this feature 
aside, since it is not relevant in the context of this work. Thus, we will always refer 
any communication primitive to a sort of "default tuple space", without specifying 
any tuple space name. 
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2.1 T h e  r e a c t i o n  m o d e l  

ACZT (Linda-like) primitives have the same semantics as Linda ones. However, 
the behaviour of an .AC£.T tuple space can be extended by exploiting reactions 
to add new effects to communication events. 

The .ACET reaction model is based on the idea of making communication 
events observable at the system level. For this purpose, any physical (communi- 
cation) event can be associated with one or more logical events, each denoted by 
a unique name. Multiple logical events can be connected to the same physical 
event, as well as multiple physical events can correspond to the same logical 
event. The association between communication events and logical events is set 
by a special tuple of the form map(Operation, Event), which captures the 
idea that  each time Operation is performed on the tuple space, a logical Event 
OCCURS. 

The .4C£T tuple space's programming model is based on the notion of re- 
action, triggered in response to logical events' occurrence, and specified through 
tuples of the form react(Event,Body).  The reaction body Body is the collection 
of the primitive operations to be executed when the logical Event occurs, and is 
syntactically defined as a conjunction of reaction goals. A reaction goal is either 
a state primitive ( c u r r e n t _ a g e n t / i ,  cu r r en t_op /1 ,  . . .  ), a term predicate (term 
equality/inequality, term unifiability/non-unifiability, . . .  ), or a communication 
primitive (out_r,  in_r, rd_r) 2. In the special but frequent case that  a single 
physical event is mapped onto a single logical event, a simplified shortcut syntax 
can be used, avoiding the map/2 clause and expressing the reaction by means of 
a single r e a c t  ion  (Opera t  i on, Body ) tuple. 3 

Reactions are executed only after the corresponding logical event has actu- 
ally occurred: so, in particular, when a reaction to an out  ( T u p l e )  primitive is 
triggered, the emitted Tuple is already in the tuple space. Instead, in  and rd  
communication primitives can be seen as made of two distinct communication 
events: the first query phase, when a tuple template is provided (the pre phase), 
and the subsequent answer phase, when a unifying tuple is eventually returned 
to the querying agent (the post phase). 4 According to that,  ACI:T allows differ- 
ent reactions to be associated to each of these two phases [7], by means of the 
p r e / 0  and p o s t / 0  predicates, which succeed only in the corresponding phase. 
So, for instance, when the reactions possibly associated to the the post phase 
of an in (Tap  l e )  primitive are executed, the returned tuple (i.e., the one uni- 

2 These are the only communication primitives which can occur inside a reaction: out_r 
works as a conventional out, while in_r and .rd_r correspond to in_noblock and 
rdmoblock, respectively. Consequently, blocking primitives are not allowed inside 
reaction goals. 

3 Although in the following examples we will exploit only the simplified r eac t i on /2  
syntax, the map/2 -F r e a c t / 2  syntax may come to be useful whenever the same 
reaction body ought to be repeated as a response to many different physical events, 
as in the case of the tracer presented in [7]. 

4 Correspondingly, the current_tuple  primitive returns the tuple template in the first 
phase, and the unified tuple in the answer phase. 



278 

fying with Tuple) is no longer in the tuple space, while it is still there during 
the execution of reactions possibly associated to the the pre phase of the in  
primitive. 

Because reaction goals are actually executed sequentially, their relative order 
may influence the result of the reaction [8]. Since multiple r e a c t / 2  tuples can 
be specified for a given logical event - as well as multiple r e a c t i o n / 2  for the 
same communication primitive -, multiple reactions may be triggered at the same 
time: in principle, such reactions are executed as mutually-independent actions, 
in a non-deterministic order. 

2 .2  R e a c t i o n s  as  t r a n s a c t i o n s  

A successful reaction is one whose reaction goals are all executed successfully. 
Instead, if even one reaction goal fails, the reaction aborts. Only successful reac- 
tions produce effects, while failed reactions yield no results at all. If, for instance, 
the default tuple space contains no v a l u e / 1  tuple, the reaction body 

in_r (value (X)), out_r (value ( i ) ) , out_r (value (s (X)) ) 

fails and produces no effect, while the reaction body 

out_r (value ( 1 ) ) , iu_r (value (X)), out_.r (value (s (X)) ) 

succeeds, and eventually adds the tuple v a l u e  (s ( l ) )  to the default tuple space. 
At the system level, Ag fT-  reactions are executed atomically with a trans- 

action semantics: the (potentially multiple) effects of a successful reaction are 
carried out in a single transition of the tuple space state. Consequently, outside a 
reaction there is no way to perceive the multiplicity of effects possibly produced 
by the sequential execution of the reaction itself. So, in the case the reaction suc- 
ceeds, all its side-effect operations are realised simultaneously, leading to a single 
observable state transition. Instead, a failed reaction is virtually cancelled, as if 
it had never been executed, and yields no effect at all. Consider, for instance, 
the following reaction: 

map (out, event). 

react (event, ( current_tuple (p (_)) , 

in_r(p(a) ) , in_r(p(X) ) , out_r(pp(a,X)) ) ) . 

which could have been expressed, more concisely, also as: 

r e a c t i o n ( o u t ( p ( _ ) ) ,  ( i n _ r ( p ( a ) ) ,  in_r(p(X)) ,  out_r(pp(a ,X))  )) 

Each time a new tuple is inserted in the tuple space with an out ,  this reaction 
checks for the presence of two p/1  tuples (whose one should be p ( a ) )  and, in 
the case they are found, it replaces them with one single pp /2  tuple. If some 
reaction goal fails (possibly because there is only one p /1  tuple instead of the 
two required), no tuples are actually removed from the tuple space, nor are 
any other side-effects ever produced. If the reaction succeeds, instead, all its 
associated side-effects (removal of two tuples, and addition of a third) are realised 
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altogether: so, the simultaneous presence of the two p/1 tuples is perceived by 
the system as a single pp/2 tuple. 

As shown in Subsection 2.1, a multiplicity of reactions can be triggered in 
response to the same communication event, both because the latter has been 
mapped onto multiple logical events, or because multiple reactions have been 
specified for the same logical event. In addition, further reactions may be trig- 
gered as a consequence of the successful completion of another reaction, as a 
reaction body can contain communication primitives in its turn. In order to 
guarantee the transaction semantics, all such further reactions are executed only 
after the triggering reaction has been successfully completed: accordingly, reac- 
tion nesting is not permitted. 

In any case, all reactions following an agent-triggered communication event 
- both triggered directly by the event and indirectly by other reactions produced 
by the event - are actually executed before serving any other agent-triggered 
communication event. As a result, agents can only perceive the final result of 
the execution of the communication event and the set of all the reactions it 
triggered (directly and indirectly). For instance, if the following reaction has 
been defined: 

reaction(out(p(s(X))), (in_r(p(s(X))), out-r(p(X)) )) 

a component suspended on an i n ( p ( s ( 0 ) ) )  operation will not be waked up, 
as normally expected, by an out (p (s (0)))  operation, as this reaction will first 
replace the p ( s (0 ) )  tuple with a p(0) tuple. As a result, only the p(0) tuple 
is visible at the component 's perception level, while the p (s (0) )  tuple is not 
perceived. 

This behaviour introduces a new kind of tuple space state transition at the 
component's perception level, and enhances the expressive power of the coordina- 
tion model. In fact, thanks to the execution model of .ACI:T reactions described 
above, coordination entities still perceive the response of a tuple space to a com- 
munication event as a single-step transition of the tuple space state. However, 
such a transition is no longer bounded to be simple (adding/deleting one tuple) 
and fixed by the model, like in Linda, but can be made as complex as desired. 
/,From a component perspective, for instance, the previous reaction 

react ion(out(p(_)) ,  ( in_r(p(a) ) ,  in_r(p(X)), out_r(pp(a,X)) )) 

has the effect of making the simultaneous presence of the two p/1 tuples unper- 
ceivable, and of leading a single out operation to result both in the removal of 
a tuple and in the insertion of another. In addition, the inserted tuple is not the 
one specified in the out operation, but is related both to that one and to the 
tuple space state. 

An .ACf.T tuple space is then an example of a programmable coordination 
medium, since its observable behaviour in response to communication events can 
be modified through reaction programming. By freeing the components from the 
charge of explicitly handling a (possibly complex) interaction protocol, a pro- 
grammable coordination medium allows coordination entities to be designed ac- 
cording to a straightforward communication protocol, while charging the medium 
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of most of the low-level coordination details. Next Section discusses the benefits 
of this approach in the context of multi-agent systems. 

3 Building multi-agent systems around a programmable 
coordination medium 

Being intrinsically interactive [15], multi-agent systems are naturally charac- 
terised by the model of component interaction, as well as by the observable 
behaviour of their components, rather than by the rules of agent inner computa- 
tion [8]. As a result, agent architectures can be designed independently of agent 
internal models, focussing on agent observable behaviour. Due to this shifting 
focus from agents to agent interaction, the communication abstraction is asked 
to play a major role within the coordination model of choice. In particular, once 
the coordination model for the multi-agent system is given, the choice of the 
interaction policy should not affect the single agent architecture, which could 
then concentrate on agent observable behaviour and on its interface towards 
the outside. In fact, it seems desirable that agents are designed according to a 
quite abstract model, so as to delegate the required interaction protocol to the 
communication abstraction behaviour. From a conceptual viewpoint, this makes 
coordination media [6], where interaction actually takes place, be in charge of 
the interaction policy, instead of the single coordination entities, which are not 
required to have a view of the system as a whole. In practice, this is partic- 
ularly useful because agents of a multi-agent system may often be difficult or 
even impossible to modify, especially when dealing with legacy software compo- 
nents, whose observable behaviour could not be easy to accommodate so as to 
accomplish the interaction strategy of choice. 

In order to show how a programmable coordination medium could be ex- 
ploited in a multi-agent system, in the rest of this Section we discuss three 
examples of simple multi-agent systems based on Ag£T. The first one (Subsec- 
tion 3.1), the classical dining philosopher problem [9], shows how some global 
properties of a multi-agent system (like deadlock avoidance) can be embodied 
into the communication abstraction. The second one (Subsection 3.2), a slight 
variation of the previous problem, is meant to show how a more complex interac- 
tion policy can be achieved by simply re-defining how the communication device 
works, with no changes to the interaction protocols of the philosopher agents. 
The last one (Subsection 3.3) generalises the previous example, discussing how 
the interaction policy can be handled and modified by an agent, possibly as a re- 
sult of an inferential process on the current coordination state of the multi-agent 
system. 

3.1 The  d in ing  phi losophers  

As an example of the flexibility provided by the extensibility of the communi- 
cation abstraction to the .AC£T model, we discuss an implementation of the 
classical dining philosopher problem, based on reactions. A characteristic of this 
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problem is that, in order to avoid deadlock situations, a philosopher should ei- 
ther get the two forks he needs to eat, or get none. This means that the two forks 
should be obtained through a transaction. In order to ensure fairness, moreover, 
fork release should be performed atomically. In fact, if both the left and the right 
neighbour of the currently-eating philosopher are waiting to eat, releasing one 
fork before the other would result in privileging one philosopher with respect to 
its colleague, which should be avoided. 

When trying to express the solution to this problem in Linda, the main prob- 
lem is that the natural choice of modelling the fork acquisition as a sequence of 
two in operations is not transactional, thus yielding a potential risk of deadlock. 
Similarly, a sequence of two out operations would not be atomic, thus not ensur- 
ing fairness. In such a framework, a safe solution requires that the user explicitly 
handles a locking mechanism, thus affecting the agent behaviour. Using ,4C£T 
reactions, instead, transactionality is guaranteed by suitably programming the 
tuple space behaviour, with no need for a more complex agent protocol. Thus, 
deadlock avoidance and fairness are obtained through the programmable coor- 
dination medium. 

Philosopher agents are designed according to a very straightforward inter- 
action protocol: when a philosopher wants to eat, he tries to acquire the two 
forks through an in( forks(F1,F2))  operation; when he is satiated, and wants 
to start thinking, he gives the forks back by means of an o u t ( f o r k s ( F / , F 2 ) )  
operation. So, all the charge of the interaction policy is up to the communication 
abstraction. 

While resources are actually available singly in the tuple space (each fork is 
represented by a fo rk (F )  tuple), philosophers view resources as pairs of forks 
(tuples forks  (F1,F2)):the tuple space is then programmed so as to bridge the 
two different perceptions - the system level (fork/1 tuples, representing single 
forks) and the agent level ( forks /2  tuples, representing pairs of forks). 

For instance, the forks  (F1,1:2) tuple emitted by a philosopher agent when 
releasing forks is not perceived by the other agents, as it is immediately replaced 
with the two f o r k ( F / ) ,  fo rk (F2)  tuples by the following reaction: 

r e a c t i o n (  out ( forks (F1,F2)),  ( (1) 
in_r( forks(F1,F2)) ,  ou t .x ( fo rk (F1) ) ,  out. .r(fork(F2)) ) ) .  

Handling fork requests, instead, is more complex, because the desired forks may 
not be immediately available. In this case, the i n ( fo rks (F1 ,F2) )  operation 
suspends, and the request should be recorded in the tuple space, so that it may 
be served later. Consequently, fork requests will be recorded in the tuple space 
by means of a reaction associated to the pre phase of the in( forks(F1,F2))  
operation. Such a tuple will then be retracted, by means of another appropriate 
reaction associated to the post phase of the same operation, when the philosopher 
has been served (after the proper forks have become available) and can start 
eating: 

reaction(in(forks(FI,F2)), ( pre, out_r(required(FI,F2)) )). (2) 

reaction(in(forks(FI,F2)) , ( post, in_r(required(Fi,F2)) )) . 
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Whenever a new fork request is recorded as a requ i red  (F I, F2) tuple, the tuple 
space is programmed so as to check whether the desired forks are immediately 
available, in what case it conquers the pair of resources by replacing the two 
f o r k ( F / ) ,  fo rk (F2)  tuples with one single forks(F1,F2) tuple: 

reaction(out_r(required(FI,F2)), ( 
in_r(fork(Fl)), in_r(fork(F2)), out_r(forks(FI,F2)) )). 

(s) 

Obviously, if the two forks are not available, this reaction fails, the philosopher 
agent stays suspended, and the r equ i red /2  tuple remains in the tuple space. 

However, waiting philosophers will be served later, when new single forks are 
made available as a consequence of a fork release performed by other agents. For 
this reason, the fork-release event has to be intercepted, and handled trying to 
group the pairs of forks needed by still-waiting philosophers. Since each fork may 
be requested, in principle, by two distinct philosophers, two reactions are needed 
- one for the left agent, and another one for the right agent. Each reaction checks 
whether there is a corresponding dangling fork request, and tries to serve it if 
this is the case: 

reaction(out_r(fork(F)) ,  (rd_r(required(F1,F)), 
in_r(fork(Fl)), in_r(fork(F)), out_r(forks(FI,F)) )). 

reaction(out_r(fork(F)), (rd_r(required(F,F2)), 
in_r(fork(F)) , in_r (fork(F2)), out_r (forks (F,F2))) ). 

(4) 

Since reactions are executed transactionally, forks are reserved only in pairs when 
they are both available and needed by some agent: so, no deadlock can occur. 

Notice that the agent model does not need to be specialised in order to 
accomplish the competition protocol: a philosopher simply asks for forks when 
hungry, and sets them free when satiated. Agent design can then concentrate on 
modelling agent internal architecture, while agent interaction model results quite 
simple and intuitive. A good deal of the intelligence of the system lays then in the 
interaction protocol, which is only of little concern for the single agent. Thus, the 
communication abstraction is specialised through suitable reaction programming 
so that it makes the system behave correctly, independently of the agent internal 
model: the only requirement is that the emerging behaviour of philosopher agents 
(their interaction model) accomplishes the very straightforward acquire/release 
protocol. 

3.2 Ph i losophers  dining wi th  label led forks 

In order to show how an interaction policy can be modified and made more com- 
plex by changing the behaviour of the coordination medium, without affecting 
the interaction protocol of the coordination entities, we discuss a slight variation 
of the Dining Philosopher example. The basic problem is changed in that now 
there are three forks for each position on the table, labelled differently according 
to the kind of meal for which it has to be used: breakfast, lunch, or dinner. At 
any time in the multi-agent system, it is either breakfast, lunch, or dinner time. 
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When it is lunch time, for instance, only lunch forks can be used to start eating: 
however, a slowly-eating philosopher is allowed to keep on having his meal as 
long as he needs. So, if he starts eating at dinner time, he will be given dinner 
forks, and will be allowed to keep them for eating even when breakfast time 
comes around. 

Since philosophers are supposed to be totally unaware of this enhancement, 
the philosopher protocol is exactly the same as in the previous example: in par- 
ticular, they still t ry to get their pair of forks through an in(forks(F1,F2)) 
operation, and still give them back by means of an out  ( f o r k s  (F1,F2)) oper- 
ation. Here, however, two contiguous philosophers, sharing a fork position, can 
eat at the same time (using, obviously, different forks obtained at different meal 
times), thus exploiting the extra resources - three forks instead of one. Take for 
instance the case of a two-philosopher system, where both agents get hungry at 
breakfast time. Only one of them (the lucky philosopher) will be assigned the 
breakfast forks, while the other (the unlucky philosopher) will be forced to wait. 
But when lunch time comes, the unlucky philosopher may be allowed to start 
eating even though the lucky one is still eating, because the lucky philosopher 
is using breakfast forks, and the lunch forks are free. 

In order to achieve this new behaviour, we just have to slightly modify the 
internal representation of forks in the tuple space, adding a representation of 
the meal time concept, and updating the reactions of Subsection 3.1 accord- 
ingly. More precisely, the tuple space representation of the forks is changed from 
fork(Fo~'k) to fork(Mea~,Fo~'~), representing the fork Fo,~ which can be 
used at t4eaZ time. Moreover, a t imefor(MeaZ)  tuple is assumed to be always 
in the tuple space, indicating which forks to allocate to hungry philosophers at 
any time. Reactions, in their turn, should be modified so that:  

- the reaction handling fork requests as required(F1,F2) tuples takes the 
meal time into account; 

- the two reactions serving dangling fork requests take the meal time into 
account, too; 

- an extra reaction takes care of serving dangling fork requests when the meal 
time changes and, therefore, new forks can be used. 

So, reactions (2) remain untouched, 

r e a c t i o n ( i n ( f o r k s ( F 1 , F 2 ) ) ,  ( pre,  out_r(required(F1,F2)) )) .  (5) 
r e a c t i o n ( i n ( f o r k s ( F 1 , F 2 ) ) ,  ( post ,  in_r(required(F1,F2)) )) .  

while reaction (1) becomes 

reac t ion(  out (forks(F1,F2)) , ( in_r(used(M,F1,F2)), (6) 
in_t-(forks(F1 ,F2) ) , out.-r (fork (M,FI)), out_.r(fork (M,F2)) ) ).  

The used /3  tuple is needed to track which forks are currently being used, given 
that,  as discussed above, different types of forks may be used at the same time. 
Correspondingly, reaction (3) becomes 
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reac t ion(out~(requi red(F1,F2)) ,  (rd_r(timefor(M)), 
in_r(fork(M,F1)), in_r(fork(M,F2)), 
out_x'(forks(F1,F2)), out_r(used(M,F1,F2)) )) .  

(~) 

and reactions (4) become 

r e a c t i o n ( o u t ~ ( f o r k ( M , F ) ) ,  ( r d_ r ( r equ i r ed (F 1 ,F ) ) ,  
rd_r (t imefor(M)),  i n ~ ( f o r k  (M,F1)), in_r (fork (M , F) ),  
out_r(used(M,F1,F) ) ,  out_.r (forks (F1 ,F) ) ) ).  

r eac t ion (  out_r(fork(M,F)) ,  ( rd_x(required(F,F2)) ,  
rd_r(timefor(M) ) ,  in__v(fork(M,F) ) ,  in_r(fork(M,F2) ) ,  
out_r(used(M,F,F2)),  out_r(forks(F,F2))  ) ) .  

(s) 

The new reaction needed to handle meal time changes does basically the same, 
serving a dangling fork request when the new meal time allows new forks to be 
used: 

reaction(out_r(t imefor(M)),  (rd_v(required(F1,F2)),  
in_r(fork(M,F1)),  in_v(fork(M,F2)),  
ou t - r ( fo rks (F1 ,F2) ) ,  out_r(used(M,F1,F2)) ) ) .  

As a result, new notions (like meal time and meal forks) are introduced in the 
system, new resources are made available (more forks), a new policy for resource 
assignment is adopted, but the philosopher agents can keep on using the same 
straightforward acquire~release forks protocol defined in the example of Subsec- 
tion 3.1. So, reaction programming makes it possible for agents to maintain the 
same perception of the resource space as in the previous example, even though 
such a space has changed and made more complex. This feature is achieved 
by properly programming the communication abstraction so as to encapsulate 
changes and hide them from agents, actually embodying the new coordination 
policy into the coordination medium. 

3.3 A g e n t s  r e q u i r i n g  l a b e l l e d  r e s o u r c e s  

In the previous example, a new interaction policy is achieved by properly re- 
programming the communication abstraction. How such a re-programming is 
performed is not specified, so one could think that the designer has to deal 
with this. However, , 4C£T support  for logic agents with inferential capabilities 
suggests that a specific agent may be charged of such a task. This example shows 
how the modification of the interaction policy can be achieved dynamically, likely 
as a result of a reasoning over the current state of the coordination medium 
performed by a logic agent, working as a meta-level "supervisor". 

For this purpose, the example of Subsection 3.2 is generalised by replacing the 
notion of meal t ime (and meal-labelled forks) with a general resource labelling 
scheme. Resources are now grouped in classes, and represented by tuples of 
the form r e  s (Type,  flame), where Type represents the resource class and flame 
the resource name. Generatising the meal time notion of the previous example, 
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represented there by the tuple t i m e f o r ( M e a l  ), we no longer suppose tha t  only 
one class of resources is made available at one given time. So, the tuple space may  
contain more than one c l a s s ( T y p e )  tuple at the same time, each representing 
one class Type of available resources. 

Agents require groups of n homogeneous (i.e., of the same class) resources 
through i n ( r e s o u r c e s  (A, R1 . . . . .  Rn) ) operations, then release them by means 
of out  ( r e s o u r c e s  (,4, R1 . . . . .  Rn) ) operations, where A is the agent identifier. 
Agents are free to ask for as many  resources as they need (< max) ,  so tha t  agent 
a l  may  ask for two resources r l ,  r2  through an i n ( a l , r l , r 2 ) ,  while agent a2 
may  ask for three resources r l ,  r3,  r4  through an i n ( a 2 , r l , r 3 , r 4 ) .  

While the agents perceive resources as groups of unlabelled i tems R1, . . . ,  
an ,  the system handles single labelled i tems in form of r e s  (Type,  Res ) tuples. 
For this purpose, reactions (10-11) are defined, handling requests for groups 
of resources, and recording them as r e q ( A , R i  . . . . .  Rn) tuples. In particular,  
the agent protocol allows now agents to ask for resources in either a blocking 
(reaction (10)) or a non-blocking way (reaction (11)). 

reaction(in(resources(A,Rl)), ( pre, 
out_r(req(A,Rl)) )). 

reaction( in(resources(A,Rl ..... Rn)), ( pre, 
out_r(req(A,Rl,...,Rn)) ) ) .  

(lO) 

reaction(in_noblock(resources(A,Rl)) , ( pre, 
out_r(req(A,Rl)) )) . 

reaction(in_noblock(resources(A,Rl)), ( post, failure, 
in_r(req(A,Rl) ) )) . 

reaction( in_noblock (resources (A,RI ..... Rn) ), ( pre, 
out_r(req(A,Rl ..... Rn)) )) . 

reaction( in_noblock (resources (A,RI ..... Rn)), ( post, failure 
in_r(req(A,Rl ..... Rn)) )) . 

(11) 

Resource release is handled by reaction (12), which is in charge of making re- 
sources released (as a group) by one agent available as single resources to all 
agents. 

reaction(out(resources(A,Rl)), ( 
out_r(res(T,Rl)), 
in_r(used(A,T,Rl)), in_r(resources(A,Rl)) )). 

reaction(out(resources(A,Rl,...,Rn)), ( 
out_r(res(T,R1))  . . . . .  ou t_r ( res (T,Rn)) ,  
in_r(used(A,T,R1 . . . . .  Rn)), in_r(resources(A,R1 . . . .  ,Rn)) ) ) .  

(12) 

A new agent request can be served when either a new request is performed and 
all needed resources are free (reaction (13)), or one resource is released (in which 
case - reaction (14) - all permuta t ions  are to be considered), or a new class of 
resources is made  available (in which case - reaction (15) - all pending requests 
are to be checked). 
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react ion(out_r(req(A,R1)) ,  ( rd_al l_v(class(T),TL),  
out_r(lreserve(req(h,R1),TL)) )) .  

react ion(  out_r(req(R1 . . . . .  Rn)), ( rd_al l_r(c lass(T) ,TL) ,  
out-r(lreserve(req(A,R1 . . . . .  Rn),TL)) )) .  

(is) 

r eac t ion (ou t - r ( r e s (T ,R) ) ,  ( rd_ r (c l a s s (T) ) ,  
rd_all-r(req(A,R),ReqL), 
out-r(lreserve(ReqL,class(T))) ) ) .  

, . .  

reac t ion(ou t_r ( res (T ,R) ) ,  ( r d - r ( c l a s s ( T ) ) ,  
rd_all-r(req(A,R,. . . ,Rn),ReqL), 
out-r(lreserve(ReqL,class(T)))  ) ) .  

r eac t ion(ou t_r ( res (T ,R) ) ,  ( rd_ r ( c l a s s (T) ) ,  
rd_all-r(req(A,R1 . . . . .  R . . . . .  Rn),ReqL), 
out-r(lreserve(ReqL,class(T))) ) ) .  

react ion(  out-r(res(T,R)) ,  ( rd_r(class(T)) ,  
rd_all-r (req(h,RI, . . .  ,R), ReqL), 
out-r(Ireserve(ReqL,class(T))) )). 

(1~) 

react ion(  out (class(T)) ,  (rd_all2(req(A,R1),ReqL),  
out_r(lreserve(ReqL,class(T))) ) ) .  

r e a c t i o n ( o u t ( c l a s s ( T ) ) ,  ( rd_al l - r ( req(h,R1, . . . ,Rn) ,ReqL),  
out-r(lreserve(ReqL,class(T))) ) ) .  

(15) 

In any case, a r e se rve (Req ,  Type) tuple is produced through reaction (16) for 
any possible match between the available resources and the pending requests, 
and is then handled by reaction (17)). 

reac t ion(out - r ( l rese rve(Req ,T) ) ,  ( in- r ( l reserve(Req,T))  )) .  
reaction(out_r(ireserve(Req,[T[WL])), (out_r(reserve(Req,T)) 

out_r(ireserve(Req,TL)) )) .... (16) 
reaction(out-r(ireserve([Req[ReqL],T)), (out_r(reserve(Req,T)) 

out-r(ireserve(ReqL,T)) )). 

reac t ion(out - r ( reserve(Req,T)) ,  ( in_r(reserve(Req,T))  )) .  
reac t ion(out - r ( reserve(req(h ,R1) ,c lass(W))) ,  ( 

in_r(res(T,R1)), 
out-r(resources(A,R1)) 
out-r(used(A,T,R1)), in_r(req(A,R1)) ) ) .  

. , ,  

reaction( out-r(reserve(req(A,Rl ..... Rn),class(T))), ( 
in-r(res(T,Rl)) ..... in_r(res(T,Rn)), 
out_r(resources(A,Rl)) 
out_r(used(A,T,Rl .... ,Rn)), in_r(req(A,Rl ..... ILl)) )). 

Finally, reactions (18-20) handle the deletion of a class of resources, performed 
through either a blocking or a non-blocking in operation. 

r e a c t i o n ( i n ( c l a s s ( T ) )  , ( post,  (18) 
out-r(noctass(T) ) ) ). 
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reaction(in-noblock(class(T)) ,  ( post, success, 
out_r(noclass(T)) )).  

(/9) 

reaction(out_r(noclass(T)) ,  (in_r(noclass(T)) )).  

react ion(out_r(noclass(T)) ,  ( in_r(c lass(T)) ,  
out_r(noclass(T)) )).  

(2o) 

In this example, many sets of resources can be made available at the same 
time through the simultaneous presence of many c lass (Type)  tuples in the 
tuple space. Classes of resources can then be added and removed by inserting 
(reaction (15)) and removing (reaction (18)) c lass (Type)  tuples. This allows 
resources to be allocated according to arbitrarily complex strategies, possibly 
driven by the reasoning of a logic agent on the content of the tuple space. For 
instance, the supervisor may realise that the system load is too heavy, checking 
the number of pending resource requests (represented by req(/l,R1 . . . . .  Rn) 
tuples) by properly combining ,4Clot demo primitives with side-effect commu- 
nication primitives. Thus, it may decide to add a new resource set to the system 
through a set of res(NewType,Name) tuples, and make them available to the 
agents by simply adding a single c lass  (NewType) tuple. 

4 R e l a t e d  w o r k s  a n d  c o n c l u s i o n s  

The particular instantiation of the notion of programmable coordination medium 
presented here (the .AC£T programmable tuple space) deeply relies on the con- 
cept of reaction, like many other different coordination models. For instance, 
the chemical metaphor of Gamma [1] uses reactions to specify very general co- 
ordination laws in terms of reaction conditions and consequent actions, but no 
communication abstraction is provided, nor is any agent interaction protocol. As 
it can be argued from the Dining Philosopher example shown in [2], reactions 
are the only means for the evolution of a multi-agent system based on Gamma, 
since the model does not account for agent deliberative activity. 

Also the ESP coordination language [5] is based on the notion of multiple 
logic tuple space, and exploits reactiveness of the tuple space. However, the 
computational shift from the agents to the communication abstraction is even 
stronger than in .ACf:7", as ESP reduces the notion of agent to a purely reactive 
execution thread. 

According to our perception, coordination architectures may actually take 
advantage from being based on a programmable coordination medium, that is a 
communication abstraction whose behaviour is not fixed, but can be extended 
and tailored to accomplish the overall system goals. In this work, we have ex- 
plored the benefits of this approach in the context of the Linda-based .AC£T 
coordination model, where the Linda tuple space communication abstraction 
is enhanced through reaction programming. Indeed, we suggest that the same 
approach may also be successfully exploited in typical multi-coordinated archi- 
tectures based on message passing and peer-to-peer communication, like World 
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Wide Web servers, where no global communicat ion abstract ion is a-priori avail- 
able. This is part icularly true when considering the increasing request for value- 
added services, calling for more flexible and intelligent system behaviours. By 
combining a p rogrammable  coordination medium with the agent capabil i ty of 
performing inferential activities over the state of the coordination, one could 
build mult i -component  software systems able to intelligently drive their own evo- 
lution by dynamical ly  self-modifying the communicat ion abstract ion behaviour.  
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