
Programmable Coordination Media

Enrico Denti, Antonio Natali, Andrea Omicini

LIA - DEIS - Universith di Bologna
Viale Risorgimento, 2 - 40136, Bologna (Italy)

Ph.: +39 51 6443087 - Fax: +39 51 6443073
mailt o : {edent i, anat ali, aomicini} @de is. unibo, it

http ://www-lia. deis. unibo, it/Staff/

A b s t r a c t . The design, development and maintenance of multi-compo-
nent software systems often suffer from the lack of suitable coordination
abstractions. The aim of this paper is to show the benefits of coordination
models based on global communication abstractions whose behaviour is
not fixed, but is extensible so as to accomplish the intended behaviour of
the whole system. Accordingly, we propose the notion of programmable
coordination medium as an abstraction provided by the coordination
model around which the global behaviour of a coordination architecture
can be designed. As an example, we show how a Linda-based approach
can be empowered by exploiting the notion of programmable tuple space,
as supported by the AC£T coordination model.

Keywords : Coordination Models, Programmable Coordination Media,
Reactions, Tuple Spaces, Multi-Agent Systems

1 I n t r o d u c t i o n

Component technology is radically altering the way software systems are de-
signed: for instance, today typical W W W servers are built by simply assembling
and extending existing components like H T T P servers, DB managers and e-mail
applications. Generally speaking, most current mult i -component systems are de-
signed by mapping each service to be provided into a single component , often
adding new components as soon as new functionalities are needed: the whole
system is conceived to be nothing more than the sum of its parts.

Correspondingly, current models for component interaction (like C O M / O L E -
ActiveX [3], CORBA [13], CGI interface protocol) are usually based on message
passing and point-to-point communicat ion, thus providing no real coordination.
When designing composite software system, these models lack the adequate ab-
stractions needed to achieve an intelligent and flexible behaviour of the overall
system. Whenever a change to the global system behaviour is needed, for in-
stance, they require local modifications to (possibly all) the components of the
system. This is why these systems are usually designed around special compo-
nents (monitors, coordinators) embodying the core of the global behaviour of
the overall system, so that a change to one such a component affects the whole
system.

275

Coordination models like the blackboard based ones, instead, provide for a
global, explicit communication abstraction (a blackboard, a tuple space), around
which a multi-component system is naturally to be built. However, how these co-
ordination media work is usually set once and for all by the coordination model,
and cannot be modified or extended according to the intended overall system's
behaviour. Thus, coordination entities have to take charge of the interaction
protocol, and cannot abstract from the coordination policy.

The main aim of this paper is to discuss the benefits of designing multi-
component software systems around a global communication abstraction whose
behaviour can be extended and tailored to the system needs. To this end, we
suggest the notion of programmable coordination medium as a kernel for coor-
dination models whose flexibility and expressive power lies in the extensibility
of the coordination medium itself. In particular, we propose that extensibility
be the result of embodying computational properties typically in charge of the
components into the communication abstraction.

As a case study, Section 2 shows how a shared communication device ~ la
Linda can work as the core of a flexible coordination architecture in the Linda-
based .ACE.T [14] coordination model. .4CET tuple spaces are enhanced so as
to be reactive to communication events, rather than to communication state
changes only. Reactions to communication events can be defined through a logic-
based specification language, making .4C£T tuple spaces programmable.

As a typical example of a coordination architecture designed around a pro-
grammable coordination medium, we discuss a simple case of a multi-agent sys-
tem based on the .ACE.T coordination model. As suggested in [8], it can be
desirable to design the observable behaviour of agents of a multi-agent system
according to a quite abstract and straightforward pattern, while most of the
global properties of the system are naturally placed in the global communica-
tion abstraction. In this way, a change to the coordination policy requires no
modifications to the interaction protocol of a single component of the system.
Correspondingly, Section 3 shows how a multi-agent architecture can be built
around a programmable coordination medium by extending the behaviour of
.4Cf..T tuple spaces through reaction programming.

2 P r o g r a m m a b l e t u p l e s p a c e s

In order to show the effectiveness of an approach to coordination based on the
notion of programmable coordination medium, this Section discusses some pe-
culiar aspects of the Linda-based .ACL~7- coordination model [14]. Linda [10]
introduces the notion of generative communication and promotes the separa-
tion between the computation model and the coordination model [12], based on
a shared memory communication abstraction called tuple space. In this paper,
we will take the Linda coordination model as known, as well as its most com-
mon extensions (like the predicate, non-blocking inmoblock and rd_aoblock
primitives).

276

The ,4C£7- coordination model (first presented in [14]) extends the basic
Linda model with the notions of logic tuple space (see also [4,5]), multwle tuple
spaces 1 [11], and reactive tuple space [7]. In the ACET model, communication
takes place through a multiplicity of named logic tuple spaces, which are col-
lections of first-order unitary clauses, uniquely identified by a ground term. In
particular, a logic tuple space may be given a twofold interpretation, either as a
simple communication device, or or as a knowledge repository. According to the
latter reading, a logic tuple space can be used as a logic theory, where deduc-
tive activities over the communication state can be performed. For this purpose,
ACET provides for a family of demo primitives, along with a coherent notion of
logic consequence in a t ime-dependent environment [14].

What is relevant here is the ACI:T notion of programmable tuple space. The
first idea is to raise observability at the system level from tuples to (communica-
tion) operations over tuples. Correspondingly, ACf .T tuple spaces are reactive,
since they are provided with the capability to react to communication events
rather than just to the communication state changes only, as in standard Linda
[7].

A simple specification language allows communication events to be associated
to reactions, which are sequences of operations executed atomically in response
to specific communication primitives performed over tuple spaces. In other terms,
a reaction can be thought as an event-handler catching communication events,
and having full access to both the whole information concerning the specific
communication event, and the current communication state, as represented by
the tuple space.

By programming reactions, the effect of the execution of a communication
operation can be extended as needed. Moreover, thanks to the reaction execution
model, all the results due to a single communication operation (its own effect,
and the effects of all the reactions associated to it) are made visible to the
coordination entities as a single transition of the state of the communication
abstraction. As a consequence, the behaviour of the coordination medium can
be made as complex as desired at the component 's perception level.

In principle, since the specification language is founded on the same commu-
nication pattern exploited for agent interaction (that is, logic tuples and basic
operations over tuple spaces), components may be allowed to manipulate the
communication abstraction behaviour. Along with the chance of performing de-
ductions on the current coordination state provided by the .AC£T notion of
tuple space as a full-fledged logic theory, this opens the way to systems able to
reason about themselves, and possibly self-modify their behaviour dynamically,
according to the system goals.

1 Although AgET exploits multiple tuple spaces, we will henceforth leave this feature
aside, since it is not relevant in the context of this work. Thus, we will always refer
any communication primitive to a sort of "default tuple space", without specifying
any tuple space name.

277

2.1 T h e r e a c t i o n m o d e l

ACZT (Linda-like) primitives have the same semantics as Linda ones. However,
the behaviour of an .AC£.T tuple space can be extended by exploiting reactions
to add new effects to communication events.

The .ACET reaction model is based on the idea of making communication
events observable at the system level. For this purpose, any physical (communi-
cation) event can be associated with one or more logical events, each denoted by
a unique name. Multiple logical events can be connected to the same physical
event, as well as multiple physical events can correspond to the same logical
event. The association between communication events and logical events is set
by a special tuple of the form map(Operation, Event), which captures the
idea that each time Operation is performed on the tuple space, a logical Event
OCCURS.

The .4C£T tuple space's programming model is based on the notion of re-
action, triggered in response to logical events' occurrence, and specified through
tuples of the form react(Event,Body). The reaction body Body is the collection
of the primitive operations to be executed when the logical Event occurs, and is
syntactically defined as a conjunction of reaction goals. A reaction goal is either
a state primitive (c u r r e n t _ a g e n t / i , cu r r en t_op /1 , . . .), a term predicate (term
equality/inequality, term unifiability/non-unifiability, . . .), or a communication
primitive (out_r, in_r, rd_r) 2. In the special but frequent case that a single
physical event is mapped onto a single logical event, a simplified shortcut syntax
can be used, avoiding the map/2 clause and expressing the reaction by means of
a single r e a c t ion (Opera t i on, Body) tuple. 3

Reactions are executed only after the corresponding logical event has actu-
ally occurred: so, in particular, when a reaction to an out (T u p l e) primitive is
triggered, the emitted Tuple is already in the tuple space. Instead, in and rd
communication primitives can be seen as made of two distinct communication
events: the first query phase, when a tuple template is provided (the pre phase),
and the subsequent answer phase, when a unifying tuple is eventually returned
to the querying agent (the post phase). 4 According to that, ACI:T allows differ-
ent reactions to be associated to each of these two phases [7], by means of the
p r e / 0 and p o s t / 0 predicates, which succeed only in the corresponding phase.
So, for instance, when the reactions possibly associated to the the post phase
of an in (Tap l e) primitive are executed, the returned tuple (i.e., the one uni-

2 These are the only communication primitives which can occur inside a reaction: out_r
works as a conventional out, while in_r and .rd_r correspond to in_noblock and
rdmoblock, respectively. Consequently, blocking primitives are not allowed inside
reaction goals.

3 Although in the following examples we will exploit only the simplified r eac t i on /2
syntax, the map/2 -F r e a c t / 2 syntax may come to be useful whenever the same
reaction body ought to be repeated as a response to many different physical events,
as in the case of the tracer presented in [7].

4 Correspondingly, the current_tuple primitive returns the tuple template in the first
phase, and the unified tuple in the answer phase.

278

fying with Tuple) is no longer in the tuple space, while it is still there during
the execution of reactions possibly associated to the the pre phase of the in
primitive.

Because reaction goals are actually executed sequentially, their relative order
may influence the result of the reaction [8]. Since multiple r e a c t / 2 tuples can
be specified for a given logical event - as well as multiple r e a c t i o n / 2 for the
same communication primitive -, multiple reactions may be triggered at the same
time: in principle, such reactions are executed as mutually-independent actions,
in a non-deterministic order.

2 .2 R e a c t i o n s as t r a n s a c t i o n s

A successful reaction is one whose reaction goals are all executed successfully.
Instead, if even one reaction goal fails, the reaction aborts. Only successful reac-
tions produce effects, while failed reactions yield no results at all. If, for instance,
the default tuple space contains no v a l u e / 1 tuple, the reaction body

in_r (value (X)), out_r (value (i)) , out_r (value (s (X)))

fails and produces no effect, while the reaction body

out_r (value (1)) , iu_r (value (X)), out_.r (value (s (X)))

succeeds, and eventually adds the tuple v a l u e (s (l)) to the default tuple space.
At the system level, Ag fT- reactions are executed atomically with a trans-

action semantics: the (potentially multiple) effects of a successful reaction are
carried out in a single transition of the tuple space state. Consequently, outside a
reaction there is no way to perceive the multiplicity of effects possibly produced
by the sequential execution of the reaction itself. So, in the case the reaction suc-
ceeds, all its side-effect operations are realised simultaneously, leading to a single
observable state transition. Instead, a failed reaction is virtually cancelled, as if
it had never been executed, and yields no effect at all. Consider, for instance,
the following reaction:

map (out, event).

react (event, (current_tuple (p (_)) ,

in_r(p(a)) , in_r(p(X)) , out_r(pp(a,X)))) .

which could have been expressed, more concisely, also as:

r e a c t i o n (o u t (p (_)) , (i n _ r (p (a)) , in_r(p(X)) , out_r(pp(a ,X))))

Each time a new tuple is inserted in the tuple space with an out , this reaction
checks for the presence of two p/1 tuples (whose one should be p (a)) and, in
the case they are found, it replaces them with one single pp /2 tuple. If some
reaction goal fails (possibly because there is only one p /1 tuple instead of the
two required), no tuples are actually removed from the tuple space, nor are
any other side-effects ever produced. If the reaction succeeds, instead, all its
associated side-effects (removal of two tuples, and addition of a third) are realised

279

altogether: so, the simultaneous presence of the two p/1 tuples is perceived by
the system as a single pp/2 tuple.

As shown in Subsection 2.1, a multiplicity of reactions can be triggered in
response to the same communication event, both because the latter has been
mapped onto multiple logical events, or because multiple reactions have been
specified for the same logical event. In addition, further reactions may be trig-
gered as a consequence of the successful completion of another reaction, as a
reaction body can contain communication primitives in its turn. In order to
guarantee the transaction semantics, all such further reactions are executed only
after the triggering reaction has been successfully completed: accordingly, reac-
tion nesting is not permitted.

In any case, all reactions following an agent-triggered communication event
- both triggered directly by the event and indirectly by other reactions produced
by the event - are actually executed before serving any other agent-triggered
communication event. As a result, agents can only perceive the final result of
the execution of the communication event and the set of all the reactions it
triggered (directly and indirectly). For instance, if the following reaction has
been defined:

reaction(out(p(s(X))), (in_r(p(s(X))), out-r(p(X))))

a component suspended on an i n (p (s (0))) operation will not be waked up,
as normally expected, by an out (p (s (0))) operation, as this reaction will first
replace the p (s (0)) tuple with a p(0) tuple. As a result, only the p(0) tuple
is visible at the component 's perception level, while the p (s (0)) tuple is not
perceived.

This behaviour introduces a new kind of tuple space state transition at the
component's perception level, and enhances the expressive power of the coordina-
tion model. In fact, thanks to the execution model of .ACI:T reactions described
above, coordination entities still perceive the response of a tuple space to a com-
munication event as a single-step transition of the tuple space state. However,
such a transition is no longer bounded to be simple (adding/deleting one tuple)
and fixed by the model, like in Linda, but can be made as complex as desired.
/,From a component perspective, for instance, the previous reaction

react ion(out(p(_)) , (in_r(p(a)) , in_r(p(X)), out_r(pp(a,X))))

has the effect of making the simultaneous presence of the two p/1 tuples unper-
ceivable, and of leading a single out operation to result both in the removal of
a tuple and in the insertion of another. In addition, the inserted tuple is not the
one specified in the out operation, but is related both to that one and to the
tuple space state.

An .ACf.T tuple space is then an example of a programmable coordination
medium, since its observable behaviour in response to communication events can
be modified through reaction programming. By freeing the components from the
charge of explicitly handling a (possibly complex) interaction protocol, a pro-
grammable coordination medium allows coordination entities to be designed ac-
cording to a straightforward communication protocol, while charging the medium

280

of most of the low-level coordination details. Next Section discusses the benefits
of this approach in the context of multi-agent systems.

3 Building multi-agent systems around a programmable
coordination medium

Being intrinsically interactive [15], multi-agent systems are naturally charac-
terised by the model of component interaction, as well as by the observable
behaviour of their components, rather than by the rules of agent inner computa-
tion [8]. As a result, agent architectures can be designed independently of agent
internal models, focussing on agent observable behaviour. Due to this shifting
focus from agents to agent interaction, the communication abstraction is asked
to play a major role within the coordination model of choice. In particular, once
the coordination model for the multi-agent system is given, the choice of the
interaction policy should not affect the single agent architecture, which could
then concentrate on agent observable behaviour and on its interface towards
the outside. In fact, it seems desirable that agents are designed according to a
quite abstract model, so as to delegate the required interaction protocol to the
communication abstraction behaviour. From a conceptual viewpoint, this makes
coordination media [6], where interaction actually takes place, be in charge of
the interaction policy, instead of the single coordination entities, which are not
required to have a view of the system as a whole. In practice, this is partic-
ularly useful because agents of a multi-agent system may often be difficult or
even impossible to modify, especially when dealing with legacy software compo-
nents, whose observable behaviour could not be easy to accommodate so as to
accomplish the interaction strategy of choice.

In order to show how a programmable coordination medium could be ex-
ploited in a multi-agent system, in the rest of this Section we discuss three
examples of simple multi-agent systems based on Ag£T. The first one (Subsec-
tion 3.1), the classical dining philosopher problem [9], shows how some global
properties of a multi-agent system (like deadlock avoidance) can be embodied
into the communication abstraction. The second one (Subsection 3.2), a slight
variation of the previous problem, is meant to show how a more complex interac-
tion policy can be achieved by simply re-defining how the communication device
works, with no changes to the interaction protocols of the philosopher agents.
The last one (Subsection 3.3) generalises the previous example, discussing how
the interaction policy can be handled and modified by an agent, possibly as a re-
sult of an inferential process on the current coordination state of the multi-agent
system.

3.1 The d in ing phi losophers

As an example of the flexibility provided by the extensibility of the communi-
cation abstraction to the .AC£T model, we discuss an implementation of the
classical dining philosopher problem, based on reactions. A characteristic of this

281

problem is that, in order to avoid deadlock situations, a philosopher should ei-
ther get the two forks he needs to eat, or get none. This means that the two forks
should be obtained through a transaction. In order to ensure fairness, moreover,
fork release should be performed atomically. In fact, if both the left and the right
neighbour of the currently-eating philosopher are waiting to eat, releasing one
fork before the other would result in privileging one philosopher with respect to
its colleague, which should be avoided.

When trying to express the solution to this problem in Linda, the main prob-
lem is that the natural choice of modelling the fork acquisition as a sequence of
two in operations is not transactional, thus yielding a potential risk of deadlock.
Similarly, a sequence of two out operations would not be atomic, thus not ensur-
ing fairness. In such a framework, a safe solution requires that the user explicitly
handles a locking mechanism, thus affecting the agent behaviour. Using ,4C£T
reactions, instead, transactionality is guaranteed by suitably programming the
tuple space behaviour, with no need for a more complex agent protocol. Thus,
deadlock avoidance and fairness are obtained through the programmable coor-
dination medium.

Philosopher agents are designed according to a very straightforward inter-
action protocol: when a philosopher wants to eat, he tries to acquire the two
forks through an in(forks(F1,F2)) operation; when he is satiated, and wants
to start thinking, he gives the forks back by means of an o u t (f o r k s (F / , F 2))
operation. So, all the charge of the interaction policy is up to the communication
abstraction.

While resources are actually available singly in the tuple space (each fork is
represented by a fo rk (F) tuple), philosophers view resources as pairs of forks
(tuples forks (F1,F2)):the tuple space is then programmed so as to bridge the
two different perceptions - the system level (fork/1 tuples, representing single
forks) and the agent level (forks /2 tuples, representing pairs of forks).

For instance, the forks (F1,1:2) tuple emitted by a philosopher agent when
releasing forks is not perceived by the other agents, as it is immediately replaced
with the two f o r k (F /) , fo rk (F2) tuples by the following reaction:

r e a c t i o n (out (forks (F1,F2)), ((1)
in_r(forks(F1,F2)) , ou t .x (fo rk (F1)) , out. .r(fork(F2)))) .

Handling fork requests, instead, is more complex, because the desired forks may
not be immediately available. In this case, the i n (fo rks (F1 ,F2)) operation
suspends, and the request should be recorded in the tuple space, so that it may
be served later. Consequently, fork requests will be recorded in the tuple space
by means of a reaction associated to the pre phase of the in(forks(F1,F2))
operation. Such a tuple will then be retracted, by means of another appropriate
reaction associated to the post phase of the same operation, when the philosopher
has been served (after the proper forks have become available) and can start
eating:

reaction(in(forks(FI,F2)), (pre, out_r(required(FI,F2)))). (2)

reaction(in(forks(FI,F2)) , (post, in_r(required(Fi,F2)))) .

282

Whenever a new fork request is recorded as a requ i red (F I, F2) tuple, the tuple
space is programmed so as to check whether the desired forks are immediately
available, in what case it conquers the pair of resources by replacing the two
f o r k (F /) , fo rk (F2) tuples with one single forks(F1,F2) tuple:

reaction(out_r(required(FI,F2)), (
in_r(fork(Fl)), in_r(fork(F2)), out_r(forks(FI,F2)))).

(s)

Obviously, if the two forks are not available, this reaction fails, the philosopher
agent stays suspended, and the r equ i red /2 tuple remains in the tuple space.

However, waiting philosophers will be served later, when new single forks are
made available as a consequence of a fork release performed by other agents. For
this reason, the fork-release event has to be intercepted, and handled trying to
group the pairs of forks needed by still-waiting philosophers. Since each fork may
be requested, in principle, by two distinct philosophers, two reactions are needed
- one for the left agent, and another one for the right agent. Each reaction checks
whether there is a corresponding dangling fork request, and tries to serve it if
this is the case:

reaction(out_r(fork(F)) , (rd_r(required(F1,F)),
in_r(fork(Fl)), in_r(fork(F)), out_r(forks(FI,F)))).

reaction(out_r(fork(F)), (rd_r(required(F,F2)),
in_r(fork(F)) , in_r (fork(F2)), out_r (forks (F,F2)))).

(4)

Since reactions are executed transactionally, forks are reserved only in pairs when
they are both available and needed by some agent: so, no deadlock can occur.

Notice that the agent model does not need to be specialised in order to
accomplish the competition protocol: a philosopher simply asks for forks when
hungry, and sets them free when satiated. Agent design can then concentrate on
modelling agent internal architecture, while agent interaction model results quite
simple and intuitive. A good deal of the intelligence of the system lays then in the
interaction protocol, which is only of little concern for the single agent. Thus, the
communication abstraction is specialised through suitable reaction programming
so that it makes the system behave correctly, independently of the agent internal
model: the only requirement is that the emerging behaviour of philosopher agents
(their interaction model) accomplishes the very straightforward acquire/release
protocol.

3.2 Ph i losophers dining wi th label led forks

In order to show how an interaction policy can be modified and made more com-
plex by changing the behaviour of the coordination medium, without affecting
the interaction protocol of the coordination entities, we discuss a slight variation
of the Dining Philosopher example. The basic problem is changed in that now
there are three forks for each position on the table, labelled differently according
to the kind of meal for which it has to be used: breakfast, lunch, or dinner. At
any time in the multi-agent system, it is either breakfast, lunch, or dinner time.

283

When it is lunch time, for instance, only lunch forks can be used to start eating:
however, a slowly-eating philosopher is allowed to keep on having his meal as
long as he needs. So, if he starts eating at dinner time, he will be given dinner
forks, and will be allowed to keep them for eating even when breakfast time
comes around.

Since philosophers are supposed to be totally unaware of this enhancement,
the philosopher protocol is exactly the same as in the previous example: in par-
ticular, they still t ry to get their pair of forks through an in(forks(F1,F2))
operation, and still give them back by means of an out (f o r k s (F1,F2)) oper-
ation. Here, however, two contiguous philosophers, sharing a fork position, can
eat at the same time (using, obviously, different forks obtained at different meal
times), thus exploiting the extra resources - three forks instead of one. Take for
instance the case of a two-philosopher system, where both agents get hungry at
breakfast time. Only one of them (the lucky philosopher) will be assigned the
breakfast forks, while the other (the unlucky philosopher) will be forced to wait.
But when lunch time comes, the unlucky philosopher may be allowed to start
eating even though the lucky one is still eating, because the lucky philosopher
is using breakfast forks, and the lunch forks are free.

In order to achieve this new behaviour, we just have to slightly modify the
internal representation of forks in the tuple space, adding a representation of
the meal time concept, and updating the reactions of Subsection 3.1 accord-
ingly. More precisely, the tuple space representation of the forks is changed from
fork(Fo~'k) to fork(Mea~,Fo~'~), representing the fork Fo,~ which can be
used at t4eaZ time. Moreover, a t imefor(MeaZ) tuple is assumed to be always
in the tuple space, indicating which forks to allocate to hungry philosophers at
any time. Reactions, in their turn, should be modified so that:

- the reaction handling fork requests as required(F1,F2) tuples takes the
meal time into account;

- the two reactions serving dangling fork requests take the meal time into
account, too;

- an extra reaction takes care of serving dangling fork requests when the meal
time changes and, therefore, new forks can be used.

So, reactions (2) remain untouched,

r e a c t i o n (i n (f o r k s (F 1 , F 2)) , (pre, out_r(required(F1,F2)))) . (5)
r e a c t i o n (i n (f o r k s (F 1 , F 2)) , (post , in_r(required(F1,F2)))) .

while reaction (1) becomes

reac t ion(out (forks(F1,F2)) , (in_r(used(M,F1,F2)), (6)
in_t-(forks(F1 ,F2)) , out.-r (fork (M,FI)), out_.r(fork (M,F2)))).

The used /3 tuple is needed to track which forks are currently being used, given
that, as discussed above, different types of forks may be used at the same time.
Correspondingly, reaction (3) becomes

284

reac t ion(out~(requi red(F1,F2)) , (rd_r(timefor(M)),
in_r(fork(M,F1)), in_r(fork(M,F2)),
out_x'(forks(F1,F2)), out_r(used(M,F1,F2)))) .

(~)

and reactions (4) become

r e a c t i o n (o u t ~ (f o r k (M , F)) , (r d_ r (r equ i r ed (F 1 ,F)) ,
rd_r (t imefor(M)), i n ~ (f o r k (M,F1)), in_r (fork (M , F)),
out_r(used(M,F1,F)) , out_.r (forks (F1 ,F)))).

r eac t ion (out_r(fork(M,F)) , (rd_x(required(F,F2)) ,
rd_r(timefor(M)) , in__v(fork(M,F)) , in_r(fork(M,F2)) ,
out_r(used(M,F,F2)), out_r(forks(F,F2)))) .

(s)

The new reaction needed to handle meal time changes does basically the same,
serving a dangling fork request when the new meal time allows new forks to be
used:

reaction(out_r(t imefor(M)), (rd_v(required(F1,F2)),
in_r(fork(M,F1)), in_v(fork(M,F2)),
ou t - r (fo rks (F1 ,F2)) , out_r(used(M,F1,F2)))) .

As a result, new notions (like meal time and meal forks) are introduced in the
system, new resources are made available (more forks), a new policy for resource
assignment is adopted, but the philosopher agents can keep on using the same
straightforward acquire~release forks protocol defined in the example of Subsec-
tion 3.1. So, reaction programming makes it possible for agents to maintain the
same perception of the resource space as in the previous example, even though
such a space has changed and made more complex. This feature is achieved
by properly programming the communication abstraction so as to encapsulate
changes and hide them from agents, actually embodying the new coordination
policy into the coordination medium.

3.3 A g e n t s r e q u i r i n g l a b e l l e d r e s o u r c e s

In the previous example, a new interaction policy is achieved by properly re-
programming the communication abstraction. How such a re-programming is
performed is not specified, so one could think that the designer has to deal
with this. However, , 4C£T support for logic agents with inferential capabilities
suggests that a specific agent may be charged of such a task. This example shows
how the modification of the interaction policy can be achieved dynamically, likely
as a result of a reasoning over the current state of the coordination medium
performed by a logic agent, working as a meta-level "supervisor".

For this purpose, the example of Subsection 3.2 is generalised by replacing the
notion of meal t ime (and meal-labelled forks) with a general resource labelling
scheme. Resources are now grouped in classes, and represented by tuples of
the form r e s (Type, flame), where Type represents the resource class and flame
the resource name. Generatising the meal time notion of the previous example,

285

represented there by the tuple t i m e f o r (M e a l), we no longer suppose tha t only
one class of resources is made available at one given time. So, the tuple space may
contain more than one c l a s s (T y p e) tuple at the same time, each representing
one class Type of available resources.

Agents require groups of n homogeneous (i.e., of the same class) resources
through i n (r e s o u r c e s (A, R1 Rn)) operations, then release them by means
of out (r e s o u r c e s (,4, R1 Rn)) operations, where A is the agent identifier.
Agents are free to ask for as many resources as they need (< max) , so tha t agent
a l may ask for two resources r l , r2 through an i n (a l , r l , r 2) , while agent a2
may ask for three resources r l , r3, r4 through an i n (a 2 , r l , r 3 , r 4) .

While the agents perceive resources as groups of unlabelled i tems R1, . . . ,
an , the system handles single labelled i tems in form of r e s (Type, Res) tuples.
For this purpose, reactions (10-11) are defined, handling requests for groups
of resources, and recording them as r e q (A , R i Rn) tuples. In particular,
the agent protocol allows now agents to ask for resources in either a blocking
(reaction (10)) or a non-blocking way (reaction (11)).

reaction(in(resources(A,Rl)), (pre,
out_r(req(A,Rl)))).

reaction(in(resources(A,Rl Rn)), (pre,
out_r(req(A,Rl,...,Rn)))) .

(lO)

reaction(in_noblock(resources(A,Rl)) , (pre,
out_r(req(A,Rl)))) .

reaction(in_noblock(resources(A,Rl)), (post, failure,
in_r(req(A,Rl)))) .

reaction(in_noblock (resources (A,RI Rn)), (pre,
out_r(req(A,Rl Rn)))) .

reaction(in_noblock (resources (A,RI Rn)), (post, failure
in_r(req(A,Rl Rn)))) .

(11)

Resource release is handled by reaction (12), which is in charge of making re-
sources released (as a group) by one agent available as single resources to all
agents.

reaction(out(resources(A,Rl)), (
out_r(res(T,Rl)),
in_r(used(A,T,Rl)), in_r(resources(A,Rl)))).

reaction(out(resources(A,Rl,...,Rn)), (
out_r(res(T,R1)) ou t_r (res (T,Rn)) ,
in_r(used(A,T,R1 Rn)), in_r(resources(A,R1 ,Rn)))) .

(12)

A new agent request can be served when either a new request is performed and
all needed resources are free (reaction (13)), or one resource is released (in which
case - reaction (14) - all permuta t ions are to be considered), or a new class of
resources is made available (in which case - reaction (15) - all pending requests
are to be checked).

286

react ion(out_r(req(A,R1)) , (rd_al l_v(class(T),TL),
out_r(lreserve(req(h,R1),TL)))) .

react ion(out_r(req(R1 Rn)), (rd_al l_r(c lass(T) ,TL) ,
out-r(lreserve(req(A,R1 Rn),TL)))) .

(is)

r eac t ion (ou t - r (r e s (T ,R)) , (rd_ r (c l a s s (T)) ,
rd_all-r(req(A,R),ReqL),
out-r(lreserve(ReqL,class(T))))) .

, . .

reac t ion(ou t_r (res (T ,R)) , (r d - r (c l a s s (T)) ,
rd_all-r(req(A,R,. . . ,Rn),ReqL),
out-r(lreserve(ReqL,class(T))))) .

r eac t ion(ou t_r (res (T ,R)) , (rd_ r (c l a s s (T)) ,
rd_all-r(req(A,R1 R Rn),ReqL),
out-r(lreserve(ReqL,class(T))))) .

react ion(out-r(res(T,R)) , (rd_r(class(T)) ,
rd_all-r (req(h,RI, . . . ,R), ReqL),
out-r(Ireserve(ReqL,class(T))))).

(1~)

react ion(out (class(T)) , (rd_all2(req(A,R1),ReqL),
out_r(lreserve(ReqL,class(T))))) .

r e a c t i o n (o u t (c l a s s (T)) , (rd_al l - r (req(h,R1, . . . ,Rn) ,ReqL),
out-r(lreserve(ReqL,class(T))))) .

(15)

In any case, a r e se rve (Req , Type) tuple is produced through reaction (16) for
any possible match between the available resources and the pending requests,
and is then handled by reaction (17)).

reac t ion(out - r (l rese rve(Req ,T)) , (in- r (l reserve(Req,T)))) .
reaction(out_r(ireserve(Req,[T[WL])), (out_r(reserve(Req,T))

out_r(ireserve(Req,TL)))) (16)
reaction(out-r(ireserve([Req[ReqL],T)), (out_r(reserve(Req,T))

out-r(ireserve(ReqL,T)))).

reac t ion(out - r (reserve(Req,T)) , (in_r(reserve(Req,T)))) .
reac t ion(out - r (reserve(req(h ,R1) ,c lass(W))) , (

in_r(res(T,R1)),
out-r(resources(A,R1))
out-r(used(A,T,R1)), in_r(req(A,R1)))) .

. , ,

reaction(out-r(reserve(req(A,Rl Rn),class(T))), (
in-r(res(T,Rl)) in_r(res(T,Rn)),
out_r(resources(A,Rl))
out_r(used(A,T,Rl ,Rn)), in_r(req(A,Rl ILl)))).

Finally, reactions (18-20) handle the deletion of a class of resources, performed
through either a blocking or a non-blocking in operation.

r e a c t i o n (i n (c l a s s (T)) , (post, (18)
out-r(noctass(T)))).

287

reaction(in-noblock(class(T)) , (post, success,
out_r(noclass(T)))).

(/9)

reaction(out_r(noclass(T)) , (in_r(noclass(T)))).

react ion(out_r(noclass(T)) , (in_r(c lass(T)) ,
out_r(noclass(T)))).

(2o)

In this example, many sets of resources can be made available at the same
time through the simultaneous presence of many c lass (Type) tuples in the
tuple space. Classes of resources can then be added and removed by inserting
(reaction (15)) and removing (reaction (18)) c lass (Type) tuples. This allows
resources to be allocated according to arbitrarily complex strategies, possibly
driven by the reasoning of a logic agent on the content of the tuple space. For
instance, the supervisor may realise that the system load is too heavy, checking
the number of pending resource requests (represented by req(/l,R1 Rn)
tuples) by properly combining ,4Clot demo primitives with side-effect commu-
nication primitives. Thus, it may decide to add a new resource set to the system
through a set of res(NewType,Name) tuples, and make them available to the
agents by simply adding a single c lass (NewType) tuple.

4 R e l a t e d w o r k s a n d c o n c l u s i o n s

The particular instantiation of the notion of programmable coordination medium
presented here (the .AC£T programmable tuple space) deeply relies on the con-
cept of reaction, like many other different coordination models. For instance,
the chemical metaphor of Gamma [1] uses reactions to specify very general co-
ordination laws in terms of reaction conditions and consequent actions, but no
communication abstraction is provided, nor is any agent interaction protocol. As
it can be argued from the Dining Philosopher example shown in [2], reactions
are the only means for the evolution of a multi-agent system based on Gamma,
since the model does not account for agent deliberative activity.

Also the ESP coordination language [5] is based on the notion of multiple
logic tuple space, and exploits reactiveness of the tuple space. However, the
computational shift from the agents to the communication abstraction is even
stronger than in .ACf:7", as ESP reduces the notion of agent to a purely reactive
execution thread.

According to our perception, coordination architectures may actually take
advantage from being based on a programmable coordination medium, that is a
communication abstraction whose behaviour is not fixed, but can be extended
and tailored to accomplish the overall system goals. In this work, we have ex-
plored the benefits of this approach in the context of the Linda-based .AC£T
coordination model, where the Linda tuple space communication abstraction
is enhanced through reaction programming. Indeed, we suggest that the same
approach may also be successfully exploited in typical multi-coordinated archi-
tectures based on message passing and peer-to-peer communication, like World

288

Wide Web servers, where no global communicat ion abstract ion is a-priori avail-
able. This is part icularly true when considering the increasing request for value-
added services, calling for more flexible and intelligent system behaviours. By
combining a p rogrammable coordination medium with the agent capabil i ty of
performing inferential activities over the state of the coordination, one could
build mult i -component software systems able to intelligently drive their own evo-
lution by dynamical ly self-modifying the communicat ion abstract ion behaviour.

References

1. J.-P. Bangtre and D. le M~tayer. The Gamma model and its discipline of program-
ming. Science of Computer Programming, 15(1):55-77, November 1990.

2. J.-P. Ban£tre and D. le M6tayer. Programming by multiset transformation. Com-
munications of the ACM, 36(1):98-111, January 1993.

3. Kraig Brockschmidt. Inside OLE. Microsoft Press, 1995. 2nd ed.
4. A. Brogi and P. Ciancarini. The concurrent language, Shared Prolog. A CM Trans-

actions on Programming Languages and Systems, 13(1), January 1991.
5. P. Ciancarini. Distributed programming with logic tuple spaces. New Generation

Computing, 12, 1994.
6. P. Ciancarini. Coordination models and languages as software integrators. A CM

Computing Surveys, 28(2), June 1996.
7. E. Denti, A. Natali, A. Omicini, and M. Venuti. An extensible framework for the

development of coordinated applications, 1996. First International Conference,
COORDINATION'96, Cesena, Italy, April 15-17, 1996.

8. E. Denti and A. Omicini. Designing multi-agent systems around an extensible com-
munication abstraction. In A. Cesta and P.-Y. Schobbens, editors, Proceedings of
the 4th ModelAge Workshop on Formal Models of Agents, Certosa di Pontignano,
Italy, January 15-18, 1997, pages 87-97. National Research Council of Italy, 1997.
To be published by Springer-Verlag in the LNAI Series.

9. E.W. Dijkstra. Co-operating sequentialprocesses. Academic Press, London, 1965.
10. D. Gelernter. Generative communication in Linda. ACM Transactions on Pro-

gramming Languages and Systems, 7(1), January 1985.
11. D. Gelernter. Multiple tuple spaces in Linda. In Proceedings of PARLE, volume

365 of LNCS, 1989.
12. D. Gelernter and N. Carriero. Coordination languages and their significance. Com-

munications of the ACM, 35(2):97-107, February 1992.
13. Object Management Group. The common object request broker: Architecture and

specification. Technical report, OMG, July 1995. Rev. 2.0.
14. A. Omicini, E. Denti, and A. Natali. Agent coordination and control through

logic theories. In Topics in Artificial Intelligence - 4th Congress of the Italian
Association for Artificial Intelligence, AI*IA '95, volume 992 of LNAI, pages 439-
450, Firenze, Italy, October 11-13 1995. Springer-Verlag.

15. P. Wegner. Interactive foundations of computing. Technical report, Brown Uni-
versity, Providence (RI), August 1996.

