Building an Agent Methodology from Fragments: the MEnSA experience

Mariachiara Puviani & Massimo Cossentino
Giacomo Cabri & Ambra Molesini

Dipartimento di Ingegneria dell’Informazione, Università di Modena e Reggio Emilia,
ICAR, Consiglio Nazionale delle Ricerche – Palermo,
Alma Mater Studiorum—Università di Bologna

AOMIP@SAC 2010, Sierre, Switzerland, 25th March 2010
1. The MEnSA Process Requirements

2. The New MEnSA Process

3. Results Assessment

4. Conclusions and Future Works
The objective of this paper

- Our work is aimed at building a new methodology in order to fill the existing gap between agent-oriented methodologies and MAS infrastructures.
Our work is aimed at building a new methodology in order to fill the existing gap between agent-oriented methodologies and MAS infrastructures.

This was the objective of the MEnSA (Methodologies for the Engineering of complex software Systems: Agent-based approach) project, where we studied how to build a new methodology that takes into consideration the infrastructures’ features.
The objective of this paper

- Our work is aimed at building a new methodology in order to fill the existing gap between agent-oriented *methodologies* and MAS *infrastructures*

- This was the objective of the MEnSA (Methodologies for the Engineering of complex software Systems: Agent-based approach) project, where we studied how to build a new methodology that takes into consideration the infrastructures’ features
 - MEnSA aim was not to create a new-brand methodology...
The objective of this paper

- Our work is aimed at building a new methodology in order to fill the existing gap between agent-oriented methodologies and MAS infrastructures.
- This was the objective of the MEnSA (Methodologies for the Engineering of complex software Systems: Agent-based approach) project, where we studied how to build a new methodology that takes into consideration the infrastructures’ features.
 - MEnSA aim was not to create a new-brand methodology...
 - …but to reuse “fragments” of existing methodologies (PASSI, Tropos, Gaia and SODA) by composing them through the Situational Method Engineering approach.
The objective of this paper

- Our work is aimed at building a new methodology in order to fill the existing gap between agent-oriented methodologies and MAS infrastructures.

- This was the objective of the MEnSA (Methodologies for the Engineering of complex software Systems: Agent-based approach) project, where we studied how to build a new methodology that takes into consideration the infrastructures’ features.
 - MEnSA aim was not to create a new-brand methodology...
 - …but to reuse “fragments” of existing methodologies (PASSI, Tropos, Gaia and SODA) by composing them through the Situational Method Engineering approach.

- In order to do this we...
The objective of this paper

- Our work is aimed at building a new methodology in order to fill the existing gap between agent-oriented *methodologies* and MAS *infrastructures*.

- This was the objective of the MEnSA (Methodologies for the Engineering of complex software Systems: Agent-based approach) project, where we studied how to build a new methodology that takes into consideration the infrastructures’ features.
 - MEnSA aim was not to create a new-brand methodology…
 - …but to reuse “fragments” of existing methodologies (PASSI, Tropos, Gaia and SODA) by composing them through the Situational Method Engineering approach.

- In order to do this we
 - define the methodology’s requirements.
The objective of this paper

- Our work is aimed at building a new methodology in order to fill the existing gap between agent-oriented *methodologies* and MAS *infrastructures*.

- This was the objective of the ME\textsubscript{n}SA (Methodologies for the Engineering of complex software Systems: Agent-based approach) project, where we studied how to build a new methodology that takes into consideration the infrastructures’ features.

 - ME\textsubscript{n}SA aim was not to create a new-brand methodology . . .
 - . . . but to reuse “fragments” of existing methodologies (PASSI, Tropos, Gaia and SODA) by composing them through the Situational Method Engineering approach.

- In order to do this we
 - define the methodology’s requirements
 - select the more suitable fragments
The objective of this paper

- Our work is aimed at building a new methodology in order to fill the existing gap between agent-oriented methodologies and MAS infrastructures

- This was the objective of the MEnSA (Methodologies for the Engineering of complex software Systems: Agent-based approach) project, where we studied how to build a new methodology that takes into consideration the infrastructures’ features
 - MEnSA aim was not to create a new-brand methodology...
 - …but to reuse “fragments” of existing methodologies (PASSI, Tropos, Gaia and SODA) by composing them through the Situational Method Engineering approach

- In order to do this we
 - define the methodology’s requirements
 - select the more suitable fragments
 - assemble fragments for creating a new methodology
Situational method engineering

- Each methodology can be decomposed into reusable method fragments
- A designer can re-use and re-assemble fragments in order to create a new methodology [Cossentino et al., 2007]
- First step: extraction and storing of method fragments in the method base
- Second step: selection of the suitable fragments from the method base
- Third step: fragments assembly
Outline

1. The MEnSA Process Requirements
2. The New MEnSA Process
3. Results Assessment
4. Conclusions and Future Works
Initial requirements

1. To fill the gap between design and implementation:
 - a support for traceability
 - the abstractions adopted in the design phase should be
 ⭐ powerful enough for properly design the system
 ⭐ “near” to the abstractions supported by MAS infrastructures
Initial requirements

1. To fill the gap between design and implementation:
 - a support for *traceability*
 - the *abstractions* adopted in the design phase should be
 - powerful enough for properly design the system
 - “near” to the abstractions supported by MAS infrastructures

2. To adopt a complete requirements analysis phase
Initial requirements

1. To fill the gap between design and implementation:
 - a support for traceability
 - the abstractions adopted in the design phase should be
 - powerful enough for properly design the system
 - “near” to the abstractions supported by MAS infrastructures

2. To adopt a complete requirements analysis phase

3. To adopt proper levels of abstraction in order to deal with complex problems
Initial requirements

1. To fill the gap between design and implementation:
 ▶ a support for *traceability*
 ▶ the *abstractions* adopted in the design phase should be
 ★ powerful enough for properly design the system
 ★ “near” to the abstractions supported by MAS infrastructures

2. To adopt a complete requirements analysis phase

3. To adopt proper levels of abstraction in order to deal with complex problems

4. To enable an easy transition towards the new methodology to designers fluent with one or more of the “source” methodologies
Extended requirements

5. Domains list (req. 1 and 3): problem, agency and solution domains
Extended requirements

5 Domains list (req. 1 and 3): problem, agency and solution domains
6 The layering principle (req. 3) coming from SODA will help in dealing with complexity
Extended requirements

5. Domains list (req. 1 and 3): problem, agency and solution domains

6. The layering principle (req. 3) coming from SODA will help in dealing with complexity

7. Tropos experiences: goal-oriented analysis should be performed before functional-oriented analysis
Extended requirements

5. Domains list (req. 1 and 3): problem, agency and solution domains
6. The layering principle (req. 3) coming from SODA will help in dealing with complexity
7. Tropos experiences: goal-oriented analysis should be performed before functional-oriented analysis
8. Interactions should include semantic communications
Extended requirements

- Domains list (req. 1 and 3): problem, agency and solution domains
- The layering principle (req. 3) coming from SODA will help in dealing with complexity
- Tropos experiences: goal-oriented analysis should be performed before functional-oriented analysis
- Interactions should include semantic communications
- An ontology should be used to model agents’ knowledge
Extended requirements

5 Domains list (req. 1 and 3): problem, agency and solution domains
6 The layering principle (req. 3) coming from SODA will help in dealing with complexity
7 Tropos experiences: goal-oriented analysis should be performed before functional-oriented analysis
8 Interactions should include semantic communications
9 An ontology should be used to model agents’ knowledge
10 FIPA-compliance is advisable at least at the communication level
Extended requirements

5. Domains list (req. 1 and 3): problem, agency and solution domains
6. The layering principle (req. 3) coming from SODA will help in dealing with complexity
7. Tropos experiences: goal-oriented analysis should be performed before functional-oriented analysis
8. Interactions should include semantic communications
9. An ontology should be used to model agents’ knowledge
10. FIPA-compliance is advisable at least at the communication level
11. Gaia’s organisational rules: interesting approach for modelling some social aspects
Extended requirements

5. Domains list (req. 1 and 3): problem, agency and solution domains
6. The layering principle (req. 3) coming from SODA will help in dealing with complexity
7. Tropos experiences: goal-oriented analysis should be performed before functional-oriented analysis
8. Interactions should include semantic communications
9. An ontology should be used to model agents’ knowledge
10. FIPA-compliance is advisable at least at the communication level
11. Gaia’s organisational rules: interesting approach for modelling some social aspects
12. Modelling the environment is important and could be done by adopting abstractions from SODA
Extended requirements

5. Domains list (req. 1 and 3): problem, agency and solution domains
6. The layering principle (req. 3) coming from SODA will help in dealing with complexity
7. Tropos experiences: goal-oriented analysis should be performed before functional-oriented analysis
8. Interactions should include semantic communications
9. An ontology should be used to model agents’ knowledge
10. FIPA-compliance is advisable at least at the communication level
11. Gaia’s organisational rules: interesting approach for modelling some social aspects
12. Modelling the environment is important and could be done by adopting abstractions from SODA
13. The concept of service as proposed in Gaia or PASSI should be included in the methodology
Extended requirements

5 Domains list (req. 1 and 3): problem, agency and solution domains
6 The layering principle (req. 3) coming from SODA will help in dealing with complexity
7 Tropos experiences: goal-oriented analysis should be performed before functional-oriented analysis
8 Interactions should include semantic communications
9 An ontology should be used to model agents’ knowledge
10 FIPA-compliance is advisable at least at the communication level
11 Gaia’s organisational rules: interesting approach for modelling some social aspects
12 Modelling the environment is important and could be done by adopting abstractions from SODA
13 The concept of service as proposed in Gaia or PASSI should be included in the methodology
14 Non functional requirements should be explicitly modelled (req. 2)
Outline

1. The MEnSA Process Requirements
2. The New MEnSA Process
3. Results Assessment
4. Conclusions and Future Works
Our approach was inspired by PRoDe (PRocess for the Design of Design PRocesses) [Seidita et al., 2009]
The ME\text{NSA}'s process composition

Our approach was inspired by PR\text{oDe} (PR\text{ocess for the Design of Design PR\text{ocesses}) [Seidita et al., 2009]

We proposed some improvements during the fragments selection phase...
Our approach was inspired by PRoDe (PRocess for the Design of Design Processes) [Seidita et al., 2009]

We proposed some improvements during the fragments selection phase...

Our version combines the possibility of retrieving fragments directly on the basis of the
- process requirements
- metamodel as prescribed by PRoDe
The MEnSA’s process composition

- The first step: collecting process requirements mainly from MEnSA project goals and team meetings
The MEnSA’s process composition

- The first step: collecting process requirements mainly from MEnSA project goals and team meetings
- Fragments selection activity made available the set of fragments used to produce a first draft of the MAS metamodel
The MEnSA’s process composition

- The first step: collecting process requirements mainly from MEnSA project goals and team meetings
- Fragments selection activity made available the set of fragments used to produce a first draft of the MAS metamodel
 - fragments had been retrieved from the repository according to the requirements they contribute to fulfill
The ME\textsc{en}SA’s process composition

- The first step: collecting process requirements mainly from ME\textsc{en}SA project goals and team meetings
- Fragments selection activity made available the set of fragments used to produce a first draft of the MAS metamodel
 - fragments had been retrieved from the repository according to the requirements they contribute to fulfill
- Once the metamodel had been polished, the initial set of fragments was positioned in a proper life-cycle
The MEnSA’s process composition

- The first step: collecting process requirements mainly from MEnSA project goals and team meetings
- Fragments selection activity made available the set of fragments used to produce a first draft of the MAS metamodel
 - fragments had been retrieved from the repository according to the requirements they contribute to fulfill
- Once the metamodel had been polished, the initial set of fragments was positioned in a proper life-cycle
- Therefore a proper process model had to be chosen
The MEnSA’s process composition

- Fragment Assembly activity: the fragments had been positioned in the life-cycle place holders
The MEnSA’s process composition

- Fragment Assembly activity: the fragments had been positioned in the life-cycle place holders
- Fragments Adaptation: solving incompatibility issues arising from the assembly of fragments coming from different processes
The MEnSA’s process composition

- Fragment Assembly activity: the fragments had been positioned in the life-cycle place holders
- Fragments Adaptation: solving incompatibility issues arising from the assembly of fragments coming from different processes
 - the fragments had been adapted to
 - properly support the new MAS metamodel
 - comply with all input/output constraints
The MEnSA’s process composition

- Fragment Assembly activity: the fragments had been positioned in the life-cycle place holders
- Fragments Adaptation: solving incompatibility issues arising from the assembly of fragments coming from different processes
 - the fragments had been adapted to
 - properly support the new MAS metamodel
 - comply with all input/output constraints
- An initial version of the process had been available: this could be complete or not according to the refinements of the initial process requirements
The process component diagram
Outline

1. The MEnSA Process Requirements
2. The New MEnSA Process
3. Results Assessment
4. Conclusions and Future Works
Process evaluation

- We have built a methodology that aims at filling the gap between existing AO methodologies and MAS infrastructures.
Process evaluation

- We have built a methodology that aims at filling the gap between existing AO methodologies and MAS infrastructures.
- The sole creation of a new methodology by itself is not sufficient, also the MAS infrastructure needs to be re-conceived.
Process evaluation

- We have built a methodology that aims at filling the gap between existing AO methodologies and MAS infrastructures.
- The sole creation of a new methodology by itself is not sufficient, also the MAS infrastructure needs to be re-conceived.
- The methodology needs to be flexible and to accord its abstractions with the infrastructure’s ones.

Looking at the created methodology,

- it well satisfies the project requirements.
- in the Design phase all the abstractions that are more "infrastructure-like" (e.g. artifacts) have been adopted.
Process evaluation

- We have built a methodology that aims at filling the gap between existing AO methodologies and MAS infrastructures.
- The sole creation of a new methodology by itself is not sufficient, also the MAS infrastructure needs to be re-conceived.
- The methodology needs to be flexible and to accord its abstractions with the infrastructure’s ones.
- The work on the infrastructure is today going on, so at the moment is not possible to evaluate the all development process.
Process evaluation

- We have built a methodology that aims at filling the gap between existing AO methodologies and MAS infrastructures.
- The sole creation of a new methodology by itself is not sufficient, also the MAS infrastructure needs to be re-conceived.
- The methodology needs to be flexible and to accord its abstractions with the infrastructure’s ones.
- The work on the infrastructure is today going on, so at the moment is not possible to evaluate the all development process.
- Looking at the created methodology,
 - it well satisfies the project requirements,
 - in the Design phase all the abstractions that are more “infrastructure-like” (e.g. artifacts) have been adopted.
Comparison regarding process-related criteria [Tran and Low, 2005]

<table>
<thead>
<tr>
<th></th>
<th>MEEnSA</th>
<th>Gaia</th>
<th>PASSI</th>
<th>Tropos</th>
<th>SODA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Development lifecycle</td>
<td>Iterative and incremental</td>
<td>Iterative within each phase but sequential between phases</td>
<td>Iterative across and within all phases (except for coding and deployment)</td>
<td>Iterative and incremental</td>
<td>Iterative and incremental</td>
</tr>
<tr>
<td>Coverage of lifecycle</td>
<td>Analysis and Design (and Implementation)</td>
<td>Analysis and Design</td>
<td>Analysis, Design and Implementation</td>
<td>Analysis and Design</td>
<td>Analysis and Design</td>
</tr>
<tr>
<td>Development perspective</td>
<td>Middle-out</td>
<td>Top-down</td>
<td>Top-Down/Bottom-up (for pattern reuse)</td>
<td>Top-down</td>
<td>Middle-out</td>
</tr>
<tr>
<td>Application domain</td>
<td>Independent</td>
<td>Independent</td>
<td>Independent</td>
<td>Independent</td>
<td>Independent</td>
</tr>
<tr>
<td>Size of MAS</td>
<td>Not specified</td>
<td>≤ 100 agent classes</td>
<td>Not specified</td>
<td>Not specified</td>
<td>Not specified</td>
</tr>
<tr>
<td>Agent nature</td>
<td>Heterogeneous</td>
<td>Heterogeneous</td>
<td>Heterogeneous</td>
<td>BDI-like agents</td>
<td>Heterogeneous</td>
</tr>
<tr>
<td>Support for verification-validation</td>
<td>Ongoing work</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Ongoing work</td>
</tr>
<tr>
<td>Ease of understanding of the process steps</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Usability of the methodology</td>
<td>Medium (guidelines not complete)</td>
<td>Medium</td>
<td>High</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>Refinability</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Approach towards MAS development</td>
<td>a. i* framework and OO b. RO (GO)</td>
<td>a. OO b. RO (OrO)</td>
<td>a. OO b. RO</td>
<td>a. i* framework b. NRO</td>
<td>a. NOO b. RO</td>
</tr>
</tbody>
</table>
Lessons learned

- The new methodology is the result of the collaboration of four different research groups bringing their own experiences and expectations in the project.
Lessons learned

- The new methodology is the result of the collaboration of four different research groups bringing their own experiences and expectations in the project.
- This is probably one of the largest SME experiments and probably its collaborative and distribution features make it unique.
Lessons learned

- The new methodology is the result of the collaboration of four different research groups bringing their own experiences and expectations in the project.
- This is probably one of the largest SME experiments and probably its collaborative and distribution features make it unique.
- It proved that several research groups can:
 - converge in defining a common project that aims at the definition of a unique new methodology.
 - realise this project with a good degree of success by means of a novel approach.
Lessons learned

- The new methodology is the result of the collaboration of four different research groups bringing their own experiences and expectations in the project.
- This is probably one of the largest SME experiments and probably its collaborative and distribution features make it unique.
- It proved that several research groups can
 - converge in defining a common project that aims at the definition of a unique new methodology.
 - realise this project with a good degree of success by means of a novel approach.
- One of the major difficulties in ME:nSA was the lack of automatic tools to compose the fragments.
Lessons learned

- The new methodology is the result of the collaboration of four different research groups bringing their own experiences and expectations in the project.
- This is probably one of the largest SME experiments and probably its collaborative and distribution features make it unique.
- It proved that several research groups can
 - converge in defining a common project that aims at the definition of a unique new methodology
 - realise this project with a good degree of success by means of a novel approach.
- One of the major difficulties in MEnSA was the lack of automatic tools to compose the fragments.
- An higher-level tool which enables the composition of fragments and the production of new methodologies would be deserved.
Lessons learned

- The new methodology is the result of the collaboration of four different research groups bringing their own experiences and expectations in the project.
- This is probably one of the largest SME experiments and probably its collaborative and distribution features make it unique.
- It proved that several research groups can
 - converge in defining a common project that aims at the definition of a unique new methodology,
 - realise this project with a good degree of success by means of a novel approach.
- One of the major difficulties in MEntSA was the lack of automatic tools to compose the fragments.
- An higher-level tool which enables the composition of fragments and the production of new methodologies would be deserved.
- Such a “meta-tool” could also produce some “development tool” for the created methodology.
Outline

1. The MEnSA Process Requirements
2. The New MEnSA Process
3. Results Assessment
4. Conclusions and Future Works
Conclusions

- In this paper we have presented how we built a new methodology starting from the defined requirements and reusing fragments of existing methodologies.
Conclusions

- In this paper we have presented how we built a new methodology starting from the defined requirements and reusing fragments of existing methodologies.
- Our approach for creating a new methodology started from PRoDe, but added some changes that permits to be more flexible in the process composition and in the fragments assembly.
Conclusions

- In this paper we have presented how we built a new methodology starting from the defined requirements and reusing fragments of existing methodologies.
- Our approach for creating a new methodology started from PRoDe, but added some changes that permits to be more flexible in the process composition and in the fragments assembly.
- In the paper we reported also how the created methodology meets the proposed requirements.
Conclusions

- In this paper we have presented how we built a new methodology starting from the defined requirements and reusing fragments of existing methodologies.
- Our approach for creating a new methodology started from PRoDe, but added some changes that permits to be more flexible in the process composition and in the fragments assembly.
- In the paper we reported also how the created methodology meets the proposed requirements.
- We compared it with other methodologies, pointing out the advantages of the proposed new process in connection with the requirements.
Future works

- Even if we presented an almost completed methodology, a lot of work has still to be done for refining both the process and its metamodel.
Future works

Even if we presented an almost completed methodology, a lot of work has still to be done for refining both the process and its metamodel
 ➤ defining of a standard process to assemble and adapt the different fragments that now are analysed and assembled one-by-one in term of single inputs and outputs
Future works

Even if we presented an almost completed methodology, a lot of work has still to be done for refining both the process and its metamodel:

- defining of a standard process to assemble and adapt the different fragments that now are analysed and assembled one-by-one in term of single inputs and outputs
- completing our evaluation of the methodology
Future works

- Even if we presented an almost completed methodology, a lot of work has still to be done for refining both the process and its metamodel
 - defining of a standard process to assemble and adapt the different fragments that now are analysed and assembled one-by-one in term of single inputs and outputs
 - completing our evaluation of the methodology
 - working on a supporting tool
Future works

Even if we presented an almost completed methodology, a lot of work has still to be done for refining both the process and its metamodel:

▶ defining of a standard process to assemble and adapt the different fragments that now are analysed and assembled one-by-one in term of single inputs and outputs
▶ completing our evaluation of the methodology
▶ working on a supporting tool
▶ continuing the test and evaluation of the methodology by using a case study: the Bioinformatic Framework

Building an Agent Methodology from Fragments: the MEnSA experience

Mariachiara Puviani & Massimo Cossentino
Giacomo Cabri & Ambra Molesini

Dipartimento di Ingegneria dell’Informazione, Università di Modena e Reggio Emilia, ICAR, Consiglio Nazionale delle Ricerche – Palermo, Alma Mater Studiorum—Università di Bologna

AOMIP®SAC 2010, Sierre, Switzerland, 25th March 2010