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Abstract 
Context-awareness is starting to emerge as a key driving 
principle for the design and provisioning of pervasive ser-
vices in pervasive computing environments. Semantic lan-
guages seem to provide effective means to express, process 
and reason about context information and to facilitate 
knowledge sharing and interoperability among previously 
unknown entities. However, the exploitation of semantic 
languages for the design and deployment of context-aware 
applications requires to address several issues. In particu-
lar, semantic languages require complex and heavyweight 
support facilities, e.g., reasoning engines, ontology reposi-
tories and knowledge management tools, that may not fit 
the capabilities of portable devices, especially of resource-
limited ones. Novel middleware-level solutions are re-
quired to transparently and dynamically adapt semantic-
based service provisioning to the properties of different 
access devices. The paper proposes a novel middleware 
that exploits the visibility of two kinds of metadata, 
user/device/service profiles and policies, to tailor the con-
figuration of the semantic support functionalities needed to 
access semantic-based services, and that offers a wide set 
of mechanisms for making viable semantic-based service 
provisioning to resource-constrained portable devices. 

INTRODUCTION 
Advances in telecommunication and wireless systems to-
gether with the increasing diffusion of portable devices are 
enabling pervasive and ubiquitous service provisioning 
scenarios. Users expect to access the needed data from 
ubiquitous attachment points and even when changing 
physical locations, e.g., at their workplaces, at homes, at 
public Internet kiosks, and require context-aware services, 
i.e., services that can adapt provided results to changing 
context information, such as user relative position, user 
requirements, and locally available resources [3].  
However, the design, development and provisioning of 
context-aware services in pervasive computing scenarios 
poses several challenges. In particular, the support of con-
text-aware services requires appropriate models and 
mechanisms to gather, describe and reason about context 
information as users move among different environments. 
Semantic languages have recently gained considerable at-
tention within the pervasive research community as a suit-

able means to provide expressive context representation, 
querying and reasoning support [1, 2, 5]. Semantic lan-
guages permit to describe at a high level of abstraction in 
terms of metadata the structure and properties of the enti-
ties composing a pervasive system, e.g., users, devices and 
resources, and the desired management operations to gov-
ern and control entity behavior. This is especially needed in 
ubiquitous environments, where users move across differ-
ent localities, thus experiencing a high degree of dynamic-
ity in resource accessibility, whereas devices used to access 
services exhibit a high degree of heterogeneity in terms of 
technical properties. The adoption of Semantic Web tech-
niques to specify and manage metadata in pervasive com-
puting scenarios ensures that there is a common under-
standing between previously unknown entities about their 
capabilities and the current execution context and that there 
is no semantic gap when entities exchange context informa-
tion. Moreover, Semantic Web languages enable expres-
sive querying and automated reasoning about context rep-
resentation.  
However, the high degree of dynamicity and of heterogene-
ity of computing environments increases the complexity of 
exploiting Semantic Web techniques for the provisioning 
of semantic-based services. It is impossible to make a priori 
assumptions about the available users in one locality and 
about the semantic support functionalities, e.g., ontology 
repositories, inference engines and knowledge management 
tools, that are available on each access terminal and/or that 
are needed to exploit semantic-based applications. 
In addition, semantic support services typically require a 
large amount of computational/memory resources that may 
not fit resource-constrained devices. Possibly strict limita-
tions exist about the kind of semantic support facilities that 
can be hosted on devices. A large ontology base of, for 
instance, hundreds of KB is unlikely to be hosted on a 
PDA, which typically exhibits a memory (RAM) capacity 
that is significantly smaller. In addition, it is worth noting 
that semantic support facilities, e.g., ontology reasoning 
engines, tend to introduce a significant overhead that may 
be intolerable for portable devices. For instance, the Hp 
iPAQ Pocket Pc 5500, which is equipped with 128 MB of 
RAM, is unlikely to be able to execute a reasoning process 
on-board, not only because this task may be energy con-
suming, but also because it would probably monopolize all 



available memory resources, thus preventing any other 
application from executing on the device. 
We claim that the dynamicity and the heterogeneity of per-
vasive computing environments require novel middleware 
solutions capable of adapting the semantic service support 
facilities to the different user requirements, to the various 
device properties and to the rapidly changing environment 
conditions. This novel middleware should be able to con-
figure semantic support functionalities according to devices 
properties and user needs.  
Some initial research ideas are starting to emerge that aim 
to exploit semantic techniques for service provisioning in 
pervasive environments [1, 2, 4]. However, these solutions 
are generally designed for specific purpose, e.g., enabling 
smart spaces applications or adapting content to portable 
devices, and provide limited support forms of configurable 
semantic support [11]. None of them enables to adapt the 
configuration of semantic support facilities to the various 
capabilities of portable devices.  
This paper proposes a novel framework, called MASS 
(Middleware for Adaptive Semantic Support). for the pro-
visioning of configurable semantic support facilities to 
portable devices with possibly strict resource limitations. 
MASS focuses on two particular aspects. First, it exploits 
metadata not only to describe user/device properties, but 
also to describe the characteristics of semantic support ser-
vices and the management choices in their provisioning. 
On the basis of metadata information, MASS tailors seman-
tic support functionalities according to the various user 
preferences and device characteristics. In addition, MASS 
allows each portable device to discover and to exploit the 
semantic support facilities offered by other mobile devices. 
This is obtained through the propagation of the visibility of 
the semantic support functionalities provided by each de-
vice to other devices. The paper is organized as follows. 
Section 2 presents an overview of semantic support func-
tionalities with respect to the specific needs of pervasive 
applications. Section 3 illustrates MASS metadata model 
and middleware architecture. Section 4  describes a proto-
type implementation of the proposed middleware and a 
preliminary usage evaluation. Concluding remarks and 
future research directions follow. 

SEMANTIC WEB AND PERVASIVE COMPUTING 
Until now, research within the pervasive community has 
been mainly concerned with the design and development of 
semantic-enabled prototype applications that exploit the 
benefits of a semantic approach to context awareness. 
However, little attention have been paid to analyse and 
evaluate the feasibility issues deriving from the exploita-
tion of semantic technologies especially in pervasive com-
puting scenarios. In order to actually exploit semantic tech-
niques within pervasive applications, it is crucial to take 
into account semantic support management issues, which 
until now have been primarily addressed by the research 
community in the field of knowledge management, and 

reconsider them from the particular perspective of ubiqui-
tous environments.  
In particular, novel solutions are needed that are able to 
manage the ontological knowledge with respect to the char-
acterizing properties of pervasive environments, i.e., the 
high degree of distribution in computation and resources, 
the wide heterogeneity of involved devices and users, and 
the intrinsically dynamic nature of applications behavior.  
According to [10], a middleware supporting semantic tech-
nology should provide the infrastructure with the following 
features: 
• Support for ontology repositories providing at least the 
basic storage services in a scalable, reliable and distributed 
fashion. 
• Support for reasoning modules suitable for various do-
mains and applications. 
• Multi-protocol client access to allow different users and 
applications to use the system in the most appropriate and 
efficient way. 
• Knowledge control in order to make possible the man-
agement of ontologies with respect to their evolution and 
changes.    

Repository 
As far as repositories are concerned, various knowledge 
base systems (KBS) have been developed for processing 
Semantic Web information, with different characteristics 
[9]. Some of them are memory-based, e.g., OWLJessKB 
[15], while others use secondary storage to provide persis-
tence, e.g., DLDB-OWL [14], and some others support 
both, e.g., Sesame [13] and Jena [8]. Beside the traditional 
centralized model of KBS, new paradigms tend to emerge 
that rely on a completely distributed information model, 
like for instance P2P approaches for exchanging and stor-
ing ontological information [19], Semantic Web Services 
networks built over P2P networks [22], semantic-based 
topologies of P2P networks to facilitate service discovery 
[24] as well as Semantic Grids [23]. This kind of ap-
proaches are proposed as opposing to more traditional solu-
tions that rely on the centralized management of ontology.  

Reasoning Engines 
To enable the effective use and maintenance of knowledge 
repositories, it is important to define some functional inter-
faces [10], which simplify access to the repository and hide 
the implementation details behind the declaration of a well-
specified set of functionalities. In particular, tell interfaces 
enable to add knowledge to the repository or initiate some 
processing over it, delete interface enable to allow deletion 
of elements from the repository and ask interfaces enable to 
query the repository. As a drawback of this approach, a 
specific implementation of each interface is required for 
every possible support that needs to be integrated to the 
middleware. 
A knowledge base must be associated to a reasoning engine 
that is able to exploit the information included in it. In par-
ticular, in [10], authors outline two typical cases in which 



reasoning features are needed: ontology development and 
ontology use. Ontology development requires reasoning 
tasks that can be defined as terminological reasoning, e.g., 
checking whether a class definition is consistent with re-
spect to a given set of class descriptions, or verifying 
whether a class definition is more general than another. On 
the other hand, ontology use involves an already developed 
ontology and instances of data defined on that ontology, 
which typically consist of a higher magnitude, e.g., thou-
sands of instances. Examples of instance reasoning tasks 
are finding all individuals in a data set that are instances of 
a certain class or more complex queries involving more 
than one class. A basic rationale behind the choice of a 
particular reasoner for a specific application should be the 
reasoning efficiency in the typical usage cases.  
Depending on the application model and requirements, the 
appropriate reasoner must be chosen. Let us note that in 
pervasive applications time constraints may be very restric-
tive. If, for example, a user is looking for a list of nearby 
restaurants, the response of the semantic-enabled discovery 
process must be necessarily produced within a reasonable 
time limit, and an incomplete reasoner that is able to pro-
vide some correct answers, even if not all of them, may 
serve better than a complete one that requires too much 
time to perform its reasoning process. Moreover, as mobile 
devices typically experience problems of battery shortage, 
it is crucial that the semantic support is able to perform its 
task without introducing a too heavy overhead that could 
not be sustained by a portable device.  
Another key issue is concerned with the architectural 
choice of whether to separate or integrate ontology and 
data representation from the reasoning over them. Interme-
diate solutions may be adopted to best fit the application 
needs. For example, if the reasoner and the repository are 
co-located on a device that can host both of them, their 
integration may guarantee a good level of performance, 
thus avoiding the useless consumption of energy due to 
communication overhead and the waste of memory that 
data duplication would imply. On the other hand, if the 
repository and the reasoner reside on different hosts with 
limited memory resources, then it would be necessary to 
rely on a selective transfer mechanism, which allows for 
the exchanging of relevant, i.e., needed for reasoning, data 
sets and ontologies without introducing a too heavy com-
munication overhead. Let us note that communication con-
sumes energy and, as we have previously pointed out, en-
ergy saving is a crucial point for the efficient management 
of mobile devices. 

Client access 
In context-aware applications, access to knowledge, as well 
as its representation, has to be context-dependent [10]. Due 
to the high dynamicity of operating context conditions that 
is typical of pervasive environments, it is important to as-
sure that semantic support is accessible trough a variety of 
means and in different situations. This requirement holds 
both from a technology-centered and from a user-centered 

point of view, thus leading to the specification of the fol-
lowing features: 
• Support for different transport, communication and in-
teraction protocol - to allow various devices to access the 
available semantic resources. For instance, a query might 
be forwarded using a messaging service or via http. 
• Support for customizable access and presentation of 
information - to avoid information overload and to present 
information at the right level of granularity. This can be 
achieved by taking into account the experience, the prefer-
ences and the needs of the user. For example, the results of 
semantic-enabled search might be provided on a desktop 
with full details, while on a palmtop the knowledge infor-
mation must be restricted to the bare minimum.  

Ontology management 
As pervasive environments are intrinsically characterized 
by a high heterogeneity and dynamicity, we cannot expect 
related ontologies to be static. In fact, in real-world appli-
cations, ontologies are often developed by several persons 
and typically continue to evolve because of changes in the 
real world or adaptation to different tasks. According to 
[10], ontologies must have a network architecture and must 
be dynamic. Hence, ontology management for ubiquitous 
applications has to deal with both heterogeneity in space 
and heterogeneity in time. As far as the first issue is con-
cerned, there are two possible approaches: ontologies may 
be merged into a single new ontology or they can be kept 
separated. In both cases, the different ontologies must be 
aligned, i.e., they have to be brought to a mutual agree-
ment, by means of mapping techniques [11]. Moreover, it 
is essential to properly manage ontology evolution over 
time. Beside advanced versioning methods for the devel-
opment and maintenance of ontologies [20], configuration 
management is needed to identify, interpret and find rela-
tions between ontology versions.  
All these aspects may come together in integrated ontology 
library systems [10], which can help in the grouping and 
reorganizing ontologies for further reuse, integration, main-
tenance, mapping and versioning. In particular, we empha-
size the need of management functionalities, to support the 
efficient maintenance of existing ontologies, and adaptation 
functionalities, to support the integration of different exist-
ing ontologies. 
 

THE MASS FRAMEWORK 
MASS is a framework that enables the provisioning of se-
mantic-based services to portable devices by allowing the 
dynamic tailoring of semantic support services on the basis 
of users/devices characteristics and requirements. For ex-
ample, a resource-limited device can benefit from the pos-
sibility to download a specific reasoner only when needed 
and/or to exploit the most appropriate reasoner available in 
the nearby of its current point of attachment.  
Figure 1 shows MASS logical organization, which distin-
guishes metadata and services. Dynamic and heterogeneous 



sytems need an explicit description of their resources in 
order to make possible their management at run time. 
MASS adopts semantic metadata to describe users, devices 
and services properties and configuration management 
choices. MASS provides several tools and mechanisms to 
enable a portable device to share its knowledge base, to 
advertise its semantic capabilities and to discover locally 
available semantic support services, and to either download 
or remotely access needed semantic services depending on 
device properties and user requirements.  

MASS Metadata Model 
MASS adopts metadata for representing user, device and 
service characteristics, and management choices about the 
provisioning of semantic support services at a high level of 
abstraction, thus keeping a clean separation between se-
mantic support logic and its configuration management. 
MASS adopts three kinds of metadata: user/device profiles, 
semantic service profiles and configuration policies (Figure 
1a). 
User/device profiles are composed of two subsections: the 
preference section and the capabilities section. Preferences 
express the desired configuration settings for access to se-
mantic support services. For example, a user may request 
to be notified whenever new ontologies are advertised 
within the locality. Capabilities describe both the technical 
characteristics of the device (technical capabilities), e.g., 
the device storage space capacity, and the semantic func-
tionalities that the device is capable of providing, in terms 
of the semantic support services currently hosted on the 
device (semantic capabilities). Each semantic capability 
includes a reference to the profile of the corresponding 
semantic service, i.e., to the semantic service profile.  
Semantic service profiles are composed of the service ca-
pabilities part and the service requirements part. Service 
capabilities describe the properties of the support that a 
service is able to supply and they are specifically targeted 
to each semantic support service. For instance, a reasoner 
profile includes in its capabilities the kind of logic sup-
ported, e.g., logic programming or description logic, while 
an ontology repository profile contains a capability that 
quantifies the repository overall dimension. Similarly, ser-
vice requirements are specialized for the particular type of 
semantic support service and express the technical and/or 
trust requirements that a device must own to be enabled to 
access the service. For example, a reasoner may require to 
be forwarded only queries encoded in RDQL or a reposi-
tory may require authentication in order to allow access to 
its ontologies.  
MASS adopts Configuration Policies to regulate access to 
semantic support according to specific user/device proper-
ties. Policies are high-level directives that express man-
agement choices [12]. In particular, MASS distinguishes 
two kinds of policies. Authorization policies define what 
can or cannot be done on specific target resources if certain 
context conditions are met. For example, the transfer of a 
certain amount of ontologies on a mobile device is author-

ized if the device storage space has a minimum, predeter-
mined capacity and the manager in charge of ontology 
transmission is a trusted entity. Obligation policies specify 
configuration actions that have to be carried out at certain 
event occurrence, given that specific conditions are veri-
fied. For instance, if a mobile user has stated that she is 
interested in any update of a certain ontology, she must be 
informed whenever a newer version of that ontology is 
released. Configuration policies can be static or dynamic. 
Static configuration policies define conditions that can be 
evaluated at configuration time, e.g., the maximum storage 
capacity of a device, while dynamic configuration policies 
require to test conditions at service provisioning time. For 
example, a policy may authorize the download of a seman-
tic support service on a device only if the device battery 
level exceeds a certain threshold. Obviously, the battery 
level must be verified at the moment of actually start the 
download.  
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Figure 1. MASS Metadata Model and Middleware Facili-

ties 

MASS Middleware 
MASS middleware services provide the needed functional-
ities to enable customized access to semantic support ser-
vices (see Figure 1b). 
The Publish/Discovery Service (PDS) allows mobile de-
vices to advertise the semantic support services they host 
on their device, so that these services can be subsequently 
discovered and accessed by other devices. PDS receives 
discovery requests from mobile devices or from other mid-
dleware components that need to be provided with seman-
tic support in order to exploit semantic-based services.  
The Knowledge Management Service (KMS) is respon-
sible for the management and maintenance of the available 



knowledge sources distributed among the various portable 
devices. This includes grouping and reorganizing ontolo-
gies on the basis of their associated profile, integrating 
and/or aligning related ontologies, and versioning the ones 
that have evolved during time.  
The Semantic support Configuration Service (SCS) is 
responsible for adapting the semantic support services to 
user/device preferences and capabilities. For any user that 
needs to access semantic support services from her portable 
device, SCS parses the component profile and exploits the 
acquired information to take appropriate configuration de-
cisions, depending on holding configuration policies and 
on currently context conditions, e.g., battery level. There 
are several possible configuration settings depending on the 
device characteristics. A portable device, such as a PDA, 
may be able to carry only a small amount of knowledge (or 
even none) and may presumably be unable to host a power-
ful reasoning engine. The device should then be properly 
configurated to exploit an external reasoner and to access 
needed ontologies. On the other hand, a laptop is likely to 
be able to perform autonomous reasoning, but may still 
need to update its set of ontologies to include newly re-
leased ones, in the same way as updates and recent versions 
of common applications are normally downloaded from the 
Web. On the basis of user preferences, device technical 
properties and configuration policies imposed in the local-
ity, SCS selects the best configuration settings to apply to 
the device with respect to the various types of semantic 
support services. SCS identifies three configuration strate-
gies, which can be applied to each of the three semantic 
support services, i.e., the reasoner, the ontology repository, 
or the knowledge management service.  
• Remote Support. In this case, the user is provided with 
external semantic support that does not execute on her de-
vice, but on a remote host. This setting is particularly well-
suited to resource-constrained devices that cannot host se-
mantic support on-board. In particular, it is worth noting 
that: 
- The reasoning process does not occur on-board, but it is 
delegated to an external reasoning engine. This option may 
be useful not only in case a device cannot host a reasoner, 
but also in case a device prefers to delegate reasoning, e.g. 
for saving battery, notwithstanding it could have on board 
the needed reasoning capabilities.   
- If the reasoning process requires ontologies that are not 
available on user device, these ontologies are retrieved 
from an external repository but they are not downloaded on 
the device. Note that, in case reasoning is performed on-
board,  ontologies may be cached or stored in memory, but 
the storage will not persist after the completion of the on-
tology processing.  
- Knowledge management operations are remotely per-
formed and only the final result is provided to the user on 
her device. The user may provide (part of) the processable 
data and delegate data processing to an external compo-
nent.  

• Download Support. In this case, semantic support that 
is not available on user device is downloaded for subse-
quent usage. This setting can be applied only to those de-
vices whose technical characteristics, e.g., memory space, 
and current state, e.g., battery level, allow them to 
download and host semantic support services.  
• Embedded Support. In this case, the user only relies 
on the semantic support services that are hosted on her de-
vice, which has rich resources and management features to 
locally store all needed semantic support. Although this 
option reduces the dynamicity and variety of the provided 
semantic support, it may be appropriate in case the user 
prefers to avoid overhead and battery consumption due to 
communication activity, or in case of temporary disconnec-
tion from the network. 
- User semantic-enabled applications can exploit only the 
reasoner(s) hosted by the device. This option may also re-
sult appropriate if the on-board reasoner is optimized for 
the particular kind of logic used within the application. 
- The device hosts a local ontology repository, whose 
content is not altered through interaction with external 
knowledge sources. This self-contained approach can as-
sure consistency to the repository, thus simplifying knowl-
edge management operations. 
- Knowledge management tools, if needed, must be di-
rectly available on the device.  
The Semantic support Access Service (SAS) mediates 
access to semantic support services. SAS is responsible for 
the actual redirection of a semantic support request from a 
portable device to the appropriate semantic support device 
provider, according to the configuration choices made by 
SCS. SAS establishes and manages the communication 
session between the requesting application and the seman-
tic support service provider, acting as a bridge that enables 
interoperability at both application and communication 
level. Interoperability at communication may be achieved 
either by assuring that interacting parties support at least 
one common protocol or by directly managing communica-
tion, thus translating incoming requests to make them com-
pliant to the semantic service provider specifications. As 
far as the application level is concerned, SAS provides uni-
form access to semantic support services independently of 
the particular service instance being accessed, through a 
series of APIs that enable semantic-specific operations, 
such as retrieving an ontology or forwarding queries to a 
reasoning engine. 
The Metadata Management Service (MMS) supports 
metadata specification and management, by providing vari-
ous tools for metadata editing, checking for correctness, 
updating, removing, and browsing. In particular, MMS 
enables users to specify their profile, their device profile, 
and the profile of hosted semantic support services. More-
over, it allows the developer to specify configuration poli-
cies, which can be dynamically modified to better fit mo-
bile users and applications needs. In addition, MMS is in 
charge of retrieving profiles and policies whenever they are 



needed by other middleware components, namely SMS and 
SCS. 
 

IMPLEMENTATION DETAILS 
We have developed a prototype implementation of MASS 
middleware, to be deployed in a wireless Internet scenario, 
i.e., a computing environment where wireless solutions 
extend the accessibility of the fixed Internet infrastructure 
via access points, working as bridges between fixed and 
mobile devices. In the following, we use the term network 
locality to identify a LAN with 802.11b access points as a 
bridge between wired and wireless devices.  
As shown in Figure 2, MASS is built on top of the Java-
based CARMEN system that supports the provisioning of 
context-dependent services to portable devices [3]. 
CARMEN provides any portable device with a companion 
middleware proxy (shadow proxy) that autonomously acts 
on its behalf over the fixed network and follows 
user/device movements among network localities. 
CARMEN implements shadow proxies by exploiting the 
Mobile Agent programming paradigm [7]. In particular, 
CARMEN provides proxies with execution environments, 
called places, that typically model nodes. Places can be 
grouped into domains that correspond to network localities, 
e.g., either Ethernet-based LANs or IEEE 802.11b-based 
wireless LANs.  
In the MASS deployment scenario, mobile devices entering 
a locality can exploit MASS to properly access semantic 
support services. On the one hand, a device may need to be 
externally provided with semantic facilities, if it cannot or 
does not want to host these facilities on-board. On the other 
hand, portable devices with on-board semantic facilities 
may desire to act as servers and offer these facilities to 
other devices that are currently connected to the same net-
work. 

Prototype implementation 
MASS is designed to integrate with third-party semantic 
support systems, i.e., ontology repositories, reasoning en-
gines and knowledge management tools. These supports 
are often provided as integrated components, like for in-
stance ontology repositories that support basic reasoning 
facilities, such as Sesame, DLDB-OWL and Jena, or ontol-
ogy repositories that support knowledge management tools, 
e.g., SHOE [http://xml.coverpages.org/shoe.html] offering 
ontology versioning. Autonomous components providing 
semantic support services are also available. This is the 
case of most reasoners, such as the description logic infer-
ence engines OWLJessKB [15], FaCT [17] and Racer [18], 
and the Java Theorem Prover [16], which supports first 
order logic but also includes special purpose reasoners. An 
example of autonomous knowledge management tool is the 
web-based system OntoView [20].  
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Figure 2. MASS Prototype Middleware 

The current prototype implementation interoperates with 
semantic support integrated systems, e.g., Sesame and 
DLDB-OWL. These systems have been chosen considering 
the good level of performance they have exhibited in first 
benchmarking experiments [9]. As far as metadata specifi-
cation is concerned, MASS exploits Web Ontology Lan-
guage (OWL) [6] to express both profiles and policies. In 
particular, to express policies, MASS adopts the KAoS 
ontology [6]. An excerpt of user/device profile is shown in 
Figure 3. To describe device characteristics like available 
storage space, we rely on the hardware ontology developed 
at UMBC within the CoBrA framework [1]. 
The MASS middleware initiates a configuration process 
whenever a new user enters a CARMEN domain for the 
first time and wishes to be provided with semantic support. 
Profiles and policies, along with the reasoning abilities 
needed to interpret them, are used by the MASS middle-
ware during the configuration phase. In particular, when a 
user first enters the domain, her profile and her device’s 
profile are supplied to MASS. The information acquired 
through profile parsing and reasoning is exploited, together 
with the rules encoded in the configuration policies, to take 
appropriate decisions about the configuration of access to 
semantic support facilities. 
The Publish/Discovery Service is implemented as a registry 
that publishes semantic services profiles for subsequent 
discovery and retrieval. Users willing to share their seman-
tic support services with co-located mobile users can adver-
tise the services via PDS by publishing their profile. Users 
that need to be provided with semantic support can query 
PDS to find out if a service is locally available that fulfills 
their request. 
The Knowledge Management Service is designed to coor-
dinate with PDS to organize, classify and semantically 
characterize the advertised semantic services. Our current 
implementation of KMS is able to parse and reason about 
service profiles, e.g., to compare the capabilities listed in 
the profiles of two reasoning engines. KMS can perform its 
tasks on demand, i.e., whenever it receives an explicit re-
quest from a user or from PDS, or it can automatically exe-
cute tasks at the occurrence of certain events, e.g., every 
time a new repository is advertised. Although KMS is 



equipped with a dedicated set of knowledge management 
tools, it may also rely on tools provided by mobile devices, 
which are retrieved via PDS. 

<rdf:Description rdf:about="#UserA">
<profile:OntologyStrategyPreference

rdf:resource="#Embedded"/>
<profile:OntologySourcePreference

rdf:resource="#Web"/>
<profile:ReasoningStrategyPreference rdf:resource="#Embedded"/>

...

<rdf:RDF 
xmlns:dev  “http://daml.umbc.edu/ontologies/cobra/0.4/device#”
xmlns:xsd  “http://www.w3.org/2001/XMLSchema#”

>
<dev:DeviceMemory rdf:ID=“20GBMemory”>

<dev:amountOfMemory 
rdf:datatype=“&xsd;nonNegativeInteger”>20</amountOfMemory>

<dev:memorySizeUnit 

rdf:datatype=“&xsd;string”>Gigabyte</memorySizeUnit>

<rdf:Description rdf:about="#LaptopA">
<profile:techCapability

rdf:resource="#20GBMemory"/>
<profile:semanticCapability

rdf:resource="#JTPReasoner"/>
<profile:semanticCapability

rdf:resource="#PhotoOntology"/>

</rdf:Description> ...
</rdf:RDF>

 Figure 3. MASS Example Profile  

The Semantic support Configuration Service component 
acquires the profile of each user that enters the locality and 
parses it to determine user and device technical characteris-
tics. On the basis of profile information and currently hold-
ing configuration policies, SCS takes appropriate configu-
ration decisions. For instance, let us consider a configura-
tion policy that imposes to adopt the remote strategy for 
ontology provisioning if the device overall storage space 
capacity does not reach a minimum threshold. Let us sup-
pose that a user states in her profile that she would prefer to 
download updated ontologies on her device. SCS will 
evaluate both the policy and the profile and, if the device 
storage space dimension results to be under the predefined 
threshold, it will set a remote support strategy for ontology 
provisioning. The selected settings are then collected and 
stored by SCS within a user configuration profile that is 
maintained in a dedicated repository, the Configuration 
Settings Repository. In addition, if the user device hosts a 
semantic support service on-board that the user wishes to 
locally advertise, SCS automatically coordinates with PDS 
to publish this service.  
The Semantic support Access Service mediates user access 
to semantic resources by both exploiting the information 
recorded within the configuration profile and by enforcing 
the rules encoded in dynamic configuration policies. SAS 
is designed in two layers, the Decision Layer (SAS-DL) 
and the Interface Layer (SAS-IL). In particular, the SAS-
DL component reads the configuration profile to determine 
which type of support strategy, i.e., remote, download or 
embedded, has been chosen for the required support by 
SCS. In case semantic support must be externally provided 
to the user application, i.e., in case a remote or download 

strategy has been set by SCS, SAS-DL interacts with PDS 
to discover a candidate semantic service that fulfils the user 
application request. If dynamic configuration policies hold, 
SAS-DL is responsible for retrieving applicable policies 
and for testing their activating conditions to determine 
which actions has to be taken. For instance, a policy may 
allow the download of semantic support on a device only if 
the device battery level storage space exceeds a certain 
value. In this case, SAS-DL component will test the device 
battery level before allowing any support download. Once 
an appropriate semantic support service has been found, 
SAS-DL coordinates with SAS-IL in order to actually en-
able access to the semantic service functionalities. SAS-IL 
represents the interface between the middleware and the 
semantic support services supplied by third parties. There-
fore, it provides a set of APIs that allow some basic seman-
tic-specific operations such as adding/removing knowledge 
to/from repositories, forwarding queries to reasoners and 
asking for support to knowledge management elements. 
SAS-DL forwards the portable device request to the se-
lected semantic support service provider by exploiting the 
APIs offered by SAS-IL. Let us note that the APIs are in-
dependent from the particular semantic support component 
being accessed, in order to grant portability and interopera-
bility between MASS middleware and various externally 
provided semantic services. Therefore, whenever a new 
semantic support needs to be integrated to the middleware, 
a specific implementation of SAS-IL must be implemented. 
At present we have implemented a SAS-IL version for Ses-
ame.  
Finally, the Metadata Management Service is currently 
implemented as a graphical user interface that permits the 
specification of user/device profile and semantic support 
service profile according to the underlying semantic OWL 
profile ontologies. Another graphical tool is provided to 
specify static and dynamic configuration policies. Profiles 
and policies are stored in a LDAP-compliant Metadata Re-
pository managed by MMS, which is in charge of retriev-
ing them when needed by PDS. 

MASS at Work 
We have tested MASS in the design and implementation of 
a prototype semantic-based discovery application, which 
retrieves services available in the vicinity on the basis of 
semantic requirements specified by the user. Our testbed 
setting consists of a wireless network composed by several 
802.11 network localities, with each locality modeled as a 
CARMEN domain, as depicted in Figure 4. Each domain 
provides execution environments (places) for shadow prox-
ies on each physical node, offers MASS middleware facili-
ties and hosts third-party semantic support service provid-
ers. Resources, entities and services are described by means 
of semantic metadata. In this application prototype, each 
place hosts an instance of PDS, SCS, SAS and MMS, 
whereas KMS is implemented as a centralized element that 
reside only on one predefined place within the domain. In 
addition to this, each place is provided with a configuration 



settings repository and a metadata repository to store 
user/device profiles and configuration policies. MASS ser-
vice functionalities are accessible from wireless devices 
through several access points and users interact with the 
infrastructure via device-specific clients running on their 
wireless access devices.  
The clients allow users to subscribe to the MASS-based 
semantic discovery application, by filling in a form pro-
vided by MMS with user/device and semantic support ser-
vice profile, and to authenticate themselves to the service 
before starting any semantic discovery session. When a 
user first accesses the service, MASS instantiates a shadow 
proxy in the domain where the user is currently attached.  
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Figure 4. MASS Deployment Scenario 

Let us examine how MASS services interact by considering 
the case of a laptop that is equipped with an ontology re-
pository on-board, but hosts no reasoner. The user specifies 
her profile via the MMS local facility. In particular, in the 
preference section of the profile, the user states that she 
needs to access an external reasoner and that she prefers to 
use the repository hosted on her laptop. In case new on-
tologies are needed to deduce inference, she would like to 
download and store them in the laptop repository. In addi-
tion, she sets the Web as the default source for download-
ing ontologies. In the semantic capabilities part of the pro-
file, a semantic support service is listed, i.e., the ontology 
repository. After the specification phase, SCS initiates the 
configuration of the laptop, by parsing the information in-
cluded in user/device profile. In particular, following user 
preferences, SCS sets the remote support strategy and the 
embedded strategy for, respectively, reasoning and ontol-
ogy service provisioning. Then, it sets the download strat-
egy for ontology provisioning in case needed ontologies 
are not included in the laptop repository and indicates the 
Web as the first-choice source from which ontologies 
should be retrieved. In case the preferred source is not 
available, SCS decides that ontologies will be searched 
among the repositories hosted by portable devices in the 
locality. These configuration settings are recorded within a 
configuration profile that is stored at the current place. 
Subsequently, SCS sends to local PDS registry the profile 
of the semantic support service hosted by the laptop, i.e., 
the repository, so that PDS can publish it.  

Let us now suppose that the laptop user is looking for a 
local service providing digital photo printing. To this ex-
tent, the user wishes to exploit the semantic-enabled dis-
covery service that is available on her laptop to find an 
appropriate service. The semantic discovery application 
needs semantic facilities to execute a match between the 
functionalities required by the user, i.e., high quality photo 
printing, and the functionalities offered by locally available 
services, as expressed in the service profiles [21]. Let us 
note that this task requires both a reasoner and the ontolo-
gies that are used to express service properties within ser-
vice profile. 
  

 
Figure 5. Case study Interaction Flow 

Therefore, the semantic-enabled discovery application in-
teracts with MASS to obtain proper access to semantic sup-
port services, namely to a reasoner and to needed ontolo-
gies. The interaction flow between the discovery applica-
tion and the middleware components is shown in Figure 5.  
Let us now suppose that, during discovery, the reasoner 
occurs to be in need of some ontologies that are not avail-
able at the on-board repository. Hence, the reasoner re-
quests to MASS to be provided with missing ontologies, 
according to the configuration settings stored within the 
configuration profile (see Figure 5).  
 

CONCLUSIONS AND FUTURE WORK 
Semantic languages have recently gained attention as a 
means of expressing context-related metadata in pervasive 
computing applications. However, the exploitation of se-
mantic support requires a considerable amount of memory 
and computational resources that may not fit resource-
limited devices. We propose a novel middleware which is 
capable of adapting semantic support to the different char-
acteristics of mobile devices and provides mobile users 
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with the visibility on semantic functionalities hosted by 
nearby devices.  
Although the proposed middleware provides mobile de-
vices with enhanced capabilities to exploit heavyweight 
semantic support, it is responsible for introducing some 
overhead that may degrade system performance. This over-
head is partly due to the initial configuration phase and 
partly caused by the complexity of the semantic matching 
algorithms that are used to compare semantic support re-
quests and offers. We are analyzing the effect of such 
overhead by evaluating performance parameters of the pro-
totype discovery application, such as delay time for a dis-
covery request.   
We are currently testing MASS prototype in different sce-
narios to evaluate its applicability and usefulness. Current 
and future work is primarily concentrating on the analysis 
of various available semantic support services and tools for 
subsequent integration with our prototype middleware. We 
also believe that in such an open and dynamic scenario it 
will be necessary to deal with security issues. Therefore, 
we are planning to enhance the MASS framework with 
security features, e.g., access control features. 
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