
Dynamic Configuration of Semantic-based Service Provisioning
to Portable Devices

Antonio Corradi

Rebecca Montanari

Alessandra Toninelli

Dipartimento di Elettronica, Informatica e Sistemistica (DEIS)
University of Bologna

Viale Risorgimento 2, 40136 Bologna, Italy
{acorradi, rmontanari, atoninelli}@deis.unibo.it

Abstract
Context-awareness is starting to emerge as a key driving
principle for the design and provisioning of pervasive ser-
vices in pervasive computing environments. Semantic lan-
guages seem to provide effective means to express, process
and reason about context information and to facilitate
knowledge sharing and interoperability among previously
unknown entities. However, the exploitation of semantic
languages for the design and deployment of context-aware
applications requires to address several issues. In particu-
lar, semantic languages require complex and heavyweight
support facilities, e.g., reasoning engines, ontology reposi-
tories and knowledge management tools, that may not fit
the capabilities of portable devices, especially of resource-
limited ones. Novel middleware-level solutions are re-
quired to transparently and dynamically adapt semantic-
based service provisioning to the properties of different
access devices. The paper proposes a novel middleware
that exploits the visibility of two kinds of metadata,
user/device/service profiles and policies, to tailor the con-
figuration of the semantic support functionalities needed to
access semantic-based services, and that offers a wide set
of mechanisms for making viable semantic-based service
provisioning to resource-constrained portable devices.

INTRODUCTION
Advances in telecommunication and wireless systems to-
gether with the increasing diffusion of portable devices are
enabling pervasive and ubiquitous service provisioning
scenarios. Users expect to access the needed data from
ubiquitous attachment points and even when changing
physical locations, e.g., at their workplaces, at homes, at
public Internet kiosks, and require context-aware services,
i.e., services that can adapt provided results to changing
context information, such as user relative position, user
requirements, and locally available resources [3].
However, the design, development and provisioning of
context-aware services in pervasive computing scenarios
poses several challenges. In particular, the support of con-
text-aware services requires appropriate models and
mechanisms to gather, describe and reason about context
information as users move among different environments.
Semantic languages have recently gained considerable at-
tention within the pervasive research community as a suit-

able means to provide expressive context representation,
querying and reasoning support [1, 2, 5]. Semantic lan-
guages permit to describe at a high level of abstraction in
terms of metadata the structure and properties of the enti-
ties composing a pervasive system, e.g., users, devices and
resources, and the desired management operations to gov-
ern and control entity behavior. This is especially needed in
ubiquitous environments, where users move across differ-
ent localities, thus experiencing a high degree of dynamic-
ity in resource accessibility, whereas devices used to access
services exhibit a high degree of heterogeneity in terms of
technical properties. The adoption of Semantic Web tech-
niques to specify and manage metadata in pervasive com-
puting scenarios ensures that there is a common under-
standing between previously unknown entities about their
capabilities and the current execution context and that there
is no semantic gap when entities exchange context informa-
tion. Moreover, Semantic Web languages enable expres-
sive querying and automated reasoning about context rep-
resentation.
However, the high degree of dynamicity and of heterogene-
ity of computing environments increases the complexity of
exploiting Semantic Web techniques for the provisioning
of semantic-based services. It is impossible to make a priori
assumptions about the available users in one locality and
about the semantic support functionalities, e.g., ontology
repositories, inference engines and knowledge management
tools, that are available on each access terminal and/or that
are needed to exploit semantic-based applications.
In addition, semantic support services typically require a
large amount of computational/memory resources that may
not fit resource-constrained devices. Possibly strict limita-
tions exist about the kind of semantic support facilities that
can be hosted on devices. A large ontology base of, for
instance, hundreds of KB is unlikely to be hosted on a
PDA, which typically exhibits a memory (RAM) capacity
that is significantly smaller. In addition, it is worth noting
that semantic support facilities, e.g., ontology reasoning
engines, tend to introduce a significant overhead that may
be intolerable for portable devices. For instance, the Hp
iPAQ Pocket Pc 5500, which is equipped with 128 MB of
RAM, is unlikely to be able to execute a reasoning process
on-board, not only because this task may be energy con-
suming, but also because it would probably monopolize all

available memory resources, thus preventing any other
application from executing on the device.
We claim that the dynamicity and the heterogeneity of per-
vasive computing environments require novel middleware
solutions capable of adapting the semantic service support
facilities to the different user requirements, to the various
device properties and to the rapidly changing environment
conditions. This novel middleware should be able to con-
figure semantic support functionalities according to devices
properties and user needs.
Some initial research ideas are starting to emerge that aim
to exploit semantic techniques for service provisioning in
pervasive environments [1, 2, 4]. However, these solutions
are generally designed for specific purpose, e.g., enabling
smart spaces applications or adapting content to portable
devices, and provide limited support forms of configurable
semantic support [11]. None of them enables to adapt the
configuration of semantic support facilities to the various
capabilities of portable devices.
This paper proposes a novel framework, called MASS
(Middleware for Adaptive Semantic Support). for the pro-
visioning of configurable semantic support facilities to
portable devices with possibly strict resource limitations.
MASS focuses on two particular aspects. First, it exploits
metadata not only to describe user/device properties, but
also to describe the characteristics of semantic support ser-
vices and the management choices in their provisioning.
On the basis of metadata information, MASS tailors seman-
tic support functionalities according to the various user
preferences and device characteristics. In addition, MASS
allows each portable device to discover and to exploit the
semantic support facilities offered by other mobile devices.
This is obtained through the propagation of the visibility of
the semantic support functionalities provided by each de-
vice to other devices. The paper is organized as follows.
Section 2 presents an overview of semantic support func-
tionalities with respect to the specific needs of pervasive
applications. Section 3 illustrates MASS metadata model
and middleware architecture. Section 4 describes a proto-
type implementation of the proposed middleware and a
preliminary usage evaluation. Concluding remarks and
future research directions follow.

SEMANTIC WEB AND PERVASIVE COMPUTING
Until now, research within the pervasive community has
been mainly concerned with the design and development of
semantic-enabled prototype applications that exploit the
benefits of a semantic approach to context awareness.
However, little attention have been paid to analyse and
evaluate the feasibility issues deriving from the exploita-
tion of semantic technologies especially in pervasive com-
puting scenarios. In order to actually exploit semantic tech-
niques within pervasive applications, it is crucial to take
into account semantic support management issues, which
until now have been primarily addressed by the research
community in the field of knowledge management, and

reconsider them from the particular perspective of ubiqui-
tous environments.
In particular, novel solutions are needed that are able to
manage the ontological knowledge with respect to the char-
acterizing properties of pervasive environments, i.e., the
high degree of distribution in computation and resources,
the wide heterogeneity of involved devices and users, and
the intrinsically dynamic nature of applications behavior.
According to [10], a middleware supporting semantic tech-
nology should provide the infrastructure with the following
features:
• Support for ontology repositories providing at least the
basic storage services in a scalable, reliable and distributed
fashion.
• Support for reasoning modules suitable for various do-
mains and applications.
• Multi-protocol client access to allow different users and
applications to use the system in the most appropriate and
efficient way.
• Knowledge control in order to make possible the man-
agement of ontologies with respect to their evolution and
changes.

Repository
As far as repositories are concerned, various knowledge
base systems (KBS) have been developed for processing
Semantic Web information, with different characteristics
[9]. Some of them are memory-based, e.g., OWLJessKB
[15], while others use secondary storage to provide persis-
tence, e.g., DLDB-OWL [14], and some others support
both, e.g., Sesame [13] and Jena [8]. Beside the traditional
centralized model of KBS, new paradigms tend to emerge
that rely on a completely distributed information model,
like for instance P2P approaches for exchanging and stor-
ing ontological information [19], Semantic Web Services
networks built over P2P networks [22], semantic-based
topologies of P2P networks to facilitate service discovery
[24] as well as Semantic Grids [23]. This kind of ap-
proaches are proposed as opposing to more traditional solu-
tions that rely on the centralized management of ontology.

Reasoning Engines
To enable the effective use and maintenance of knowledge
repositories, it is important to define some functional inter-
faces [10], which simplify access to the repository and hide
the implementation details behind the declaration of a well-
specified set of functionalities. In particular, tell interfaces
enable to add knowledge to the repository or initiate some
processing over it, delete interface enable to allow deletion
of elements from the repository and ask interfaces enable to
query the repository. As a drawback of this approach, a
specific implementation of each interface is required for
every possible support that needs to be integrated to the
middleware.
A knowledge base must be associated to a reasoning engine
that is able to exploit the information included in it. In par-
ticular, in [10], authors outline two typical cases in which

reasoning features are needed: ontology development and
ontology use. Ontology development requires reasoning
tasks that can be defined as terminological reasoning, e.g.,
checking whether a class definition is consistent with re-
spect to a given set of class descriptions, or verifying
whether a class definition is more general than another. On
the other hand, ontology use involves an already developed
ontology and instances of data defined on that ontology,
which typically consist of a higher magnitude, e.g., thou-
sands of instances. Examples of instance reasoning tasks
are finding all individuals in a data set that are instances of
a certain class or more complex queries involving more
than one class. A basic rationale behind the choice of a
particular reasoner for a specific application should be the
reasoning efficiency in the typical usage cases.
Depending on the application model and requirements, the
appropriate reasoner must be chosen. Let us note that in
pervasive applications time constraints may be very restric-
tive. If, for example, a user is looking for a list of nearby
restaurants, the response of the semantic-enabled discovery
process must be necessarily produced within a reasonable
time limit, and an incomplete reasoner that is able to pro-
vide some correct answers, even if not all of them, may
serve better than a complete one that requires too much
time to perform its reasoning process. Moreover, as mobile
devices typically experience problems of battery shortage,
it is crucial that the semantic support is able to perform its
task without introducing a too heavy overhead that could
not be sustained by a portable device.
Another key issue is concerned with the architectural
choice of whether to separate or integrate ontology and
data representation from the reasoning over them. Interme-
diate solutions may be adopted to best fit the application
needs. For example, if the reasoner and the repository are
co-located on a device that can host both of them, their
integration may guarantee a good level of performance,
thus avoiding the useless consumption of energy due to
communication overhead and the waste of memory that
data duplication would imply. On the other hand, if the
repository and the reasoner reside on different hosts with
limited memory resources, then it would be necessary to
rely on a selective transfer mechanism, which allows for
the exchanging of relevant, i.e., needed for reasoning, data
sets and ontologies without introducing a too heavy com-
munication overhead. Let us note that communication con-
sumes energy and, as we have previously pointed out, en-
ergy saving is a crucial point for the efficient management
of mobile devices.

Client access
In context-aware applications, access to knowledge, as well
as its representation, has to be context-dependent [10]. Due
to the high dynamicity of operating context conditions that
is typical of pervasive environments, it is important to as-
sure that semantic support is accessible trough a variety of
means and in different situations. This requirement holds
both from a technology-centered and from a user-centered

point of view, thus leading to the specification of the fol-
lowing features:
• Support for different transport, communication and in-
teraction protocol - to allow various devices to access the
available semantic resources. For instance, a query might
be forwarded using a messaging service or via http.
• Support for customizable access and presentation of
information - to avoid information overload and to present
information at the right level of granularity. This can be
achieved by taking into account the experience, the prefer-
ences and the needs of the user. For example, the results of
semantic-enabled search might be provided on a desktop
with full details, while on a palmtop the knowledge infor-
mation must be restricted to the bare minimum.

Ontology management
As pervasive environments are intrinsically characterized
by a high heterogeneity and dynamicity, we cannot expect
related ontologies to be static. In fact, in real-world appli-
cations, ontologies are often developed by several persons
and typically continue to evolve because of changes in the
real world or adaptation to different tasks. According to
[10], ontologies must have a network architecture and must
be dynamic. Hence, ontology management for ubiquitous
applications has to deal with both heterogeneity in space
and heterogeneity in time. As far as the first issue is con-
cerned, there are two possible approaches: ontologies may
be merged into a single new ontology or they can be kept
separated. In both cases, the different ontologies must be
aligned, i.e., they have to be brought to a mutual agree-
ment, by means of mapping techniques [11]. Moreover, it
is essential to properly manage ontology evolution over
time. Beside advanced versioning methods for the devel-
opment and maintenance of ontologies [20], configuration
management is needed to identify, interpret and find rela-
tions between ontology versions.
All these aspects may come together in integrated ontology
library systems [10], which can help in the grouping and
reorganizing ontologies for further reuse, integration, main-
tenance, mapping and versioning. In particular, we empha-
size the need of management functionalities, to support the
efficient maintenance of existing ontologies, and adaptation
functionalities, to support the integration of different exist-
ing ontologies.

THE MASS FRAMEWORK
MASS is a framework that enables the provisioning of se-
mantic-based services to portable devices by allowing the
dynamic tailoring of semantic support services on the basis
of users/devices characteristics and requirements. For ex-
ample, a resource-limited device can benefit from the pos-
sibility to download a specific reasoner only when needed
and/or to exploit the most appropriate reasoner available in
the nearby of its current point of attachment.
Figure 1 shows MASS logical organization, which distin-
guishes metadata and services. Dynamic and heterogeneous

sytems need an explicit description of their resources in
order to make possible their management at run time.
MASS adopts semantic metadata to describe users, devices
and services properties and configuration management
choices. MASS provides several tools and mechanisms to
enable a portable device to share its knowledge base, to
advertise its semantic capabilities and to discover locally
available semantic support services, and to either download
or remotely access needed semantic services depending on
device properties and user requirements.

MASS Metadata Model
MASS adopts metadata for representing user, device and
service characteristics, and management choices about the
provisioning of semantic support services at a high level of
abstraction, thus keeping a clean separation between se-
mantic support logic and its configuration management.
MASS adopts three kinds of metadata: user/device profiles,
semantic service profiles and configuration policies (Figure
1a).
User/device profiles are composed of two subsections: the
preference section and the capabilities section. Preferences
express the desired configuration settings for access to se-
mantic support services. For example, a user may request
to be notified whenever new ontologies are advertised
within the locality. Capabilities describe both the technical
characteristics of the device (technical capabilities), e.g.,
the device storage space capacity, and the semantic func-
tionalities that the device is capable of providing, in terms
of the semantic support services currently hosted on the
device (semantic capabilities). Each semantic capability
includes a reference to the profile of the corresponding
semantic service, i.e., to the semantic service profile.
Semantic service profiles are composed of the service ca-
pabilities part and the service requirements part. Service
capabilities describe the properties of the support that a
service is able to supply and they are specifically targeted
to each semantic support service. For instance, a reasoner
profile includes in its capabilities the kind of logic sup-
ported, e.g., logic programming or description logic, while
an ontology repository profile contains a capability that
quantifies the repository overall dimension. Similarly, ser-
vice requirements are specialized for the particular type of
semantic support service and express the technical and/or
trust requirements that a device must own to be enabled to
access the service. For example, a reasoner may require to
be forwarded only queries encoded in RDQL or a reposi-
tory may require authentication in order to allow access to
its ontologies.
MASS adopts Configuration Policies to regulate access to
semantic support according to specific user/device proper-
ties. Policies are high-level directives that express man-
agement choices [12]. In particular, MASS distinguishes
two kinds of policies. Authorization policies define what
can or cannot be done on specific target resources if certain
context conditions are met. For example, the transfer of a
certain amount of ontologies on a mobile device is author-

ized if the device storage space has a minimum, predeter-
mined capacity and the manager in charge of ontology
transmission is a trusted entity. Obligation policies specify
configuration actions that have to be carried out at certain
event occurrence, given that specific conditions are veri-
fied. For instance, if a mobile user has stated that she is
interested in any update of a certain ontology, she must be
informed whenever a newer version of that ontology is
released. Configuration policies can be static or dynamic.
Static configuration policies define conditions that can be
evaluated at configuration time, e.g., the maximum storage
capacity of a device, while dynamic configuration policies
require to test conditions at service provisioning time. For
example, a policy may authorize the download of a seman-
tic support service on a device only if the device battery
level exceeds a certain threshold. Obviously, the battery
level must be verified at the moment of actually start the
download.

Metadata

Component Profiles Configuration Policies

Semantic
Service Profiles

User/device
Profiles

ObligationAutorization

Publish/Discovery
Service Metadata Management

Service

Semantic support
Configuration Service

Knowledge Management
Service

Semantic support
Access Service

MASS Middleware Facilities

Publish/Discovery
Service Metadata Management

Service

Semantic support
Configuration Service

Knowledge Management
Service

Semantic support
Access Service

MASS Middleware Facilities

a)

b)

• User preferences

• Technical Capabilities

• Semantic Capabilities

• Capabilities

• Requirements

static

dynamic

static

dynamic

Figure 1. MASS Metadata Model and Middleware Facili-

ties

MASS Middleware
MASS middleware services provide the needed functional-
ities to enable customized access to semantic support ser-
vices (see Figure 1b).
The Publish/Discovery Service (PDS) allows mobile de-
vices to advertise the semantic support services they host
on their device, so that these services can be subsequently
discovered and accessed by other devices. PDS receives
discovery requests from mobile devices or from other mid-
dleware components that need to be provided with seman-
tic support in order to exploit semantic-based services.
The Knowledge Management Service (KMS) is respon-
sible for the management and maintenance of the available

knowledge sources distributed among the various portable
devices. This includes grouping and reorganizing ontolo-
gies on the basis of their associated profile, integrating
and/or aligning related ontologies, and versioning the ones
that have evolved during time.
The Semantic support Configuration Service (SCS) is
responsible for adapting the semantic support services to
user/device preferences and capabilities. For any user that
needs to access semantic support services from her portable
device, SCS parses the component profile and exploits the
acquired information to take appropriate configuration de-
cisions, depending on holding configuration policies and
on currently context conditions, e.g., battery level. There
are several possible configuration settings depending on the
device characteristics. A portable device, such as a PDA,
may be able to carry only a small amount of knowledge (or
even none) and may presumably be unable to host a power-
ful reasoning engine. The device should then be properly
configurated to exploit an external reasoner and to access
needed ontologies. On the other hand, a laptop is likely to
be able to perform autonomous reasoning, but may still
need to update its set of ontologies to include newly re-
leased ones, in the same way as updates and recent versions
of common applications are normally downloaded from the
Web. On the basis of user preferences, device technical
properties and configuration policies imposed in the local-
ity, SCS selects the best configuration settings to apply to
the device with respect to the various types of semantic
support services. SCS identifies three configuration strate-
gies, which can be applied to each of the three semantic
support services, i.e., the reasoner, the ontology repository,
or the knowledge management service.
• Remote Support. In this case, the user is provided with
external semantic support that does not execute on her de-
vice, but on a remote host. This setting is particularly well-
suited to resource-constrained devices that cannot host se-
mantic support on-board. In particular, it is worth noting
that:
- The reasoning process does not occur on-board, but it is
delegated to an external reasoning engine. This option may
be useful not only in case a device cannot host a reasoner,
but also in case a device prefers to delegate reasoning, e.g.
for saving battery, notwithstanding it could have on board
the needed reasoning capabilities.
- If the reasoning process requires ontologies that are not
available on user device, these ontologies are retrieved
from an external repository but they are not downloaded on
the device. Note that, in case reasoning is performed on-
board, ontologies may be cached or stored in memory, but
the storage will not persist after the completion of the on-
tology processing.
- Knowledge management operations are remotely per-
formed and only the final result is provided to the user on
her device. The user may provide (part of) the processable
data and delegate data processing to an external compo-
nent.

• Download Support. In this case, semantic support that
is not available on user device is downloaded for subse-
quent usage. This setting can be applied only to those de-
vices whose technical characteristics, e.g., memory space,
and current state, e.g., battery level, allow them to
download and host semantic support services.
• Embedded Support. In this case, the user only relies
on the semantic support services that are hosted on her de-
vice, which has rich resources and management features to
locally store all needed semantic support. Although this
option reduces the dynamicity and variety of the provided
semantic support, it may be appropriate in case the user
prefers to avoid overhead and battery consumption due to
communication activity, or in case of temporary disconnec-
tion from the network.
- User semantic-enabled applications can exploit only the
reasoner(s) hosted by the device. This option may also re-
sult appropriate if the on-board reasoner is optimized for
the particular kind of logic used within the application.
- The device hosts a local ontology repository, whose
content is not altered through interaction with external
knowledge sources. This self-contained approach can as-
sure consistency to the repository, thus simplifying knowl-
edge management operations.
- Knowledge management tools, if needed, must be di-
rectly available on the device.
The Semantic support Access Service (SAS) mediates
access to semantic support services. SAS is responsible for
the actual redirection of a semantic support request from a
portable device to the appropriate semantic support device
provider, according to the configuration choices made by
SCS. SAS establishes and manages the communication
session between the requesting application and the seman-
tic support service provider, acting as a bridge that enables
interoperability at both application and communication
level. Interoperability at communication may be achieved
either by assuring that interacting parties support at least
one common protocol or by directly managing communica-
tion, thus translating incoming requests to make them com-
pliant to the semantic service provider specifications. As
far as the application level is concerned, SAS provides uni-
form access to semantic support services independently of
the particular service instance being accessed, through a
series of APIs that enable semantic-specific operations,
such as retrieving an ontology or forwarding queries to a
reasoning engine.
The Metadata Management Service (MMS) supports
metadata specification and management, by providing vari-
ous tools for metadata editing, checking for correctness,
updating, removing, and browsing. In particular, MMS
enables users to specify their profile, their device profile,
and the profile of hosted semantic support services. More-
over, it allows the developer to specify configuration poli-
cies, which can be dynamically modified to better fit mo-
bile users and applications needs. In addition, MMS is in
charge of retrieving profiles and policies whenever they are

needed by other middleware components, namely SMS and
SCS.

IMPLEMENTATION DETAILS
We have developed a prototype implementation of MASS
middleware, to be deployed in a wireless Internet scenario,
i.e., a computing environment where wireless solutions
extend the accessibility of the fixed Internet infrastructure
via access points, working as bridges between fixed and
mobile devices. In the following, we use the term network
locality to identify a LAN with 802.11b access points as a
bridge between wired and wireless devices.
As shown in Figure 2, MASS is built on top of the Java-
based CARMEN system that supports the provisioning of
context-dependent services to portable devices [3].
CARMEN provides any portable device with a companion
middleware proxy (shadow proxy) that autonomously acts
on its behalf over the fixed network and follows
user/device movements among network localities.
CARMEN implements shadow proxies by exploiting the
Mobile Agent programming paradigm [7]. In particular,
CARMEN provides proxies with execution environments,
called places, that typically model nodes. Places can be
grouped into domains that correspond to network localities,
e.g., either Ethernet-based LANs or IEEE 802.11b-based
wireless LANs.
In the MASS deployment scenario, mobile devices entering
a locality can exploit MASS to properly access semantic
support services. On the one hand, a device may need to be
externally provided with semantic facilities, if it cannot or
does not want to host these facilities on-board. On the other
hand, portable devices with on-board semantic facilities
may desire to act as servers and offer these facilities to
other devices that are currently connected to the same net-
work.

Prototype implementation
MASS is designed to integrate with third-party semantic
support systems, i.e., ontology repositories, reasoning en-
gines and knowledge management tools. These supports
are often provided as integrated components, like for in-
stance ontology repositories that support basic reasoning
facilities, such as Sesame, DLDB-OWL and Jena, or ontol-
ogy repositories that support knowledge management tools,
e.g., SHOE [http://xml.coverpages.org/shoe.html] offering
ontology versioning. Autonomous components providing
semantic support services are also available. This is the
case of most reasoners, such as the description logic infer-
ence engines OWLJessKB [15], FaCT [17] and Racer [18],
and the Java Theorem Prover [16], which supports first
order logic but also includes special purpose reasoners. An
example of autonomous knowledge management tool is the
web-based system OntoView [20].

Heterogeneous Distributed System

Java Virtual Machine

Directory Discovery Interoperability Event

Identification Communication MonitoringMigration

Heterogeneous Distributed System

Java Virtual Machine

Directory Monitoring Event

Identification Communication

Interoperability

Migration

Semantic Support
Functionalities

CARMEN Facilities

Knowledge MgtKnowledge Mgt

Reasoning Engines

Ontology Rep.Ontology Rep.

Publish/Discovery
Service

Metadata Management
Service

Semantic support
Configuration Service

Knowledge Management
Service

MASS Facilities

Semantic support Access
Service

Decision Layer
Interface Layer

Semantic support Access
Service

Decision Layer
Interface Layer

Discovery

Figure 2. MASS Prototype Middleware

The current prototype implementation interoperates with
semantic support integrated systems, e.g., Sesame and
DLDB-OWL. These systems have been chosen considering
the good level of performance they have exhibited in first
benchmarking experiments [9]. As far as metadata specifi-
cation is concerned, MASS exploits Web Ontology Lan-
guage (OWL) [6] to express both profiles and policies. In
particular, to express policies, MASS adopts the KAoS
ontology [6]. An excerpt of user/device profile is shown in
Figure 3. To describe device characteristics like available
storage space, we rely on the hardware ontology developed
at UMBC within the CoBrA framework [1].
The MASS middleware initiates a configuration process
whenever a new user enters a CARMEN domain for the
first time and wishes to be provided with semantic support.
Profiles and policies, along with the reasoning abilities
needed to interpret them, are used by the MASS middle-
ware during the configuration phase. In particular, when a
user first enters the domain, her profile and her device’s
profile are supplied to MASS. The information acquired
through profile parsing and reasoning is exploited, together
with the rules encoded in the configuration policies, to take
appropriate decisions about the configuration of access to
semantic support facilities.
The Publish/Discovery Service is implemented as a registry
that publishes semantic services profiles for subsequent
discovery and retrieval. Users willing to share their seman-
tic support services with co-located mobile users can adver-
tise the services via PDS by publishing their profile. Users
that need to be provided with semantic support can query
PDS to find out if a service is locally available that fulfills
their request.
The Knowledge Management Service is designed to coor-
dinate with PDS to organize, classify and semantically
characterize the advertised semantic services. Our current
implementation of KMS is able to parse and reason about
service profiles, e.g., to compare the capabilities listed in
the profiles of two reasoning engines. KMS can perform its
tasks on demand, i.e., whenever it receives an explicit re-
quest from a user or from PDS, or it can automatically exe-
cute tasks at the occurrence of certain events, e.g., every
time a new repository is advertised. Although KMS is

equipped with a dedicated set of knowledge management
tools, it may also rely on tools provided by mobile devices,
which are retrieved via PDS.

<rdf:Description rdf:about="#UserA">
<profile:OntologyStrategyPreference

rdf:resource="#Embedded"/>
<profile:OntologySourcePreference

rdf:resource="#Web"/>
<profile:ReasoningStrategyPreference rdf:resource="#Embedded"/>

...

<rdf:RDF
xmlns:dev “http://daml.umbc.edu/ontologies/cobra/0.4/device#”
xmlns:xsd “http://www.w3.org/2001/XMLSchema#”

>
<dev:DeviceMemory rdf:ID=“20GBMemory”>

<dev:amountOfMemory
rdf:datatype=“&xsd;nonNegativeInteger”>20</amountOfMemory>

<dev:memorySizeUnit

rdf:datatype=“&xsd;string”>Gigabyte</memorySizeUnit>

<rdf:Description rdf:about="#LaptopA">
<profile:techCapability

rdf:resource="#20GBMemory"/>
<profile:semanticCapability

rdf:resource="#JTPReasoner"/>
<profile:semanticCapability

rdf:resource="#PhotoOntology"/>

</rdf:Description> ...
</rdf:RDF>

 Figure 3. MASS Example Profile

The Semantic support Configuration Service component
acquires the profile of each user that enters the locality and
parses it to determine user and device technical characteris-
tics. On the basis of profile information and currently hold-
ing configuration policies, SCS takes appropriate configu-
ration decisions. For instance, let us consider a configura-
tion policy that imposes to adopt the remote strategy for
ontology provisioning if the device overall storage space
capacity does not reach a minimum threshold. Let us sup-
pose that a user states in her profile that she would prefer to
download updated ontologies on her device. SCS will
evaluate both the policy and the profile and, if the device
storage space dimension results to be under the predefined
threshold, it will set a remote support strategy for ontology
provisioning. The selected settings are then collected and
stored by SCS within a user configuration profile that is
maintained in a dedicated repository, the Configuration
Settings Repository. In addition, if the user device hosts a
semantic support service on-board that the user wishes to
locally advertise, SCS automatically coordinates with PDS
to publish this service.
The Semantic support Access Service mediates user access
to semantic resources by both exploiting the information
recorded within the configuration profile and by enforcing
the rules encoded in dynamic configuration policies. SAS
is designed in two layers, the Decision Layer (SAS-DL)
and the Interface Layer (SAS-IL). In particular, the SAS-
DL component reads the configuration profile to determine
which type of support strategy, i.e., remote, download or
embedded, has been chosen for the required support by
SCS. In case semantic support must be externally provided
to the user application, i.e., in case a remote or download

strategy has been set by SCS, SAS-DL interacts with PDS
to discover a candidate semantic service that fulfils the user
application request. If dynamic configuration policies hold,
SAS-DL is responsible for retrieving applicable policies
and for testing their activating conditions to determine
which actions has to be taken. For instance, a policy may
allow the download of semantic support on a device only if
the device battery level storage space exceeds a certain
value. In this case, SAS-DL component will test the device
battery level before allowing any support download. Once
an appropriate semantic support service has been found,
SAS-DL coordinates with SAS-IL in order to actually en-
able access to the semantic service functionalities. SAS-IL
represents the interface between the middleware and the
semantic support services supplied by third parties. There-
fore, it provides a set of APIs that allow some basic seman-
tic-specific operations such as adding/removing knowledge
to/from repositories, forwarding queries to reasoners and
asking for support to knowledge management elements.
SAS-DL forwards the portable device request to the se-
lected semantic support service provider by exploiting the
APIs offered by SAS-IL. Let us note that the APIs are in-
dependent from the particular semantic support component
being accessed, in order to grant portability and interopera-
bility between MASS middleware and various externally
provided semantic services. Therefore, whenever a new
semantic support needs to be integrated to the middleware,
a specific implementation of SAS-IL must be implemented.
At present we have implemented a SAS-IL version for Ses-
ame.
Finally, the Metadata Management Service is currently
implemented as a graphical user interface that permits the
specification of user/device profile and semantic support
service profile according to the underlying semantic OWL
profile ontologies. Another graphical tool is provided to
specify static and dynamic configuration policies. Profiles
and policies are stored in a LDAP-compliant Metadata Re-
pository managed by MMS, which is in charge of retriev-
ing them when needed by PDS.

MASS at Work
We have tested MASS in the design and implementation of
a prototype semantic-based discovery application, which
retrieves services available in the vicinity on the basis of
semantic requirements specified by the user. Our testbed
setting consists of a wireless network composed by several
802.11 network localities, with each locality modeled as a
CARMEN domain, as depicted in Figure 4. Each domain
provides execution environments (places) for shadow prox-
ies on each physical node, offers MASS middleware facili-
ties and hosts third-party semantic support service provid-
ers. Resources, entities and services are described by means
of semantic metadata. In this application prototype, each
place hosts an instance of PDS, SCS, SAS and MMS,
whereas KMS is implemented as a centralized element that
reside only on one predefined place within the domain. In
addition to this, each place is provided with a configuration

settings repository and a metadata repository to store
user/device profiles and configuration policies. MASS ser-
vice functionalities are accessible from wireless devices
through several access points and users interact with the
infrastructure via device-specific clients running on their
wireless access devices.
The clients allow users to subscribe to the MASS-based
semantic discovery application, by filling in a form pro-
vided by MMS with user/device and semantic support ser-
vice profile, and to authenticate themselves to the service
before starting any semantic discovery session. When a
user first accesses the service, MASS instantiates a shadow
proxy in the domain where the user is currently attached.

CARMEN
Domain

CARMEN
Place B

CARMEN
Place A

CARMEN
Place C CARMEN

Place D

Ontology Repository

Reasoning Engine

Shadow
Proxy

Shadow
Proxy

Ontology Repository

PDS

MMS

SCS

MASS
Facilities

SAS
Decision Layer
Interface Layer
Decision Layer
Interface Layer

PDS

MMS

SCS

MASS
Facilities

SAS
Decision Layer
Interface Layer
Decision Layer
Interface Layer

PDS

MMS

SCS

MASS
Facilities

SAS
Decision Layer
Interface Layer
Decision Layer
Interface Layer

PDS

MMSSCS

MASS Facilities

SAS
Decision Layer
Interface Layer
Decision Layer
Interface Layer

KMS

Figure 4. MASS Deployment Scenario

Let us examine how MASS services interact by considering
the case of a laptop that is equipped with an ontology re-
pository on-board, but hosts no reasoner. The user specifies
her profile via the MMS local facility. In particular, in the
preference section of the profile, the user states that she
needs to access an external reasoner and that she prefers to
use the repository hosted on her laptop. In case new on-
tologies are needed to deduce inference, she would like to
download and store them in the laptop repository. In addi-
tion, she sets the Web as the default source for download-
ing ontologies. In the semantic capabilities part of the pro-
file, a semantic support service is listed, i.e., the ontology
repository. After the specification phase, SCS initiates the
configuration of the laptop, by parsing the information in-
cluded in user/device profile. In particular, following user
preferences, SCS sets the remote support strategy and the
embedded strategy for, respectively, reasoning and ontol-
ogy service provisioning. Then, it sets the download strat-
egy for ontology provisioning in case needed ontologies
are not included in the laptop repository and indicates the
Web as the first-choice source from which ontologies
should be retrieved. In case the preferred source is not
available, SCS decides that ontologies will be searched
among the repositories hosted by portable devices in the
locality. These configuration settings are recorded within a
configuration profile that is stored at the current place.
Subsequently, SCS sends to local PDS registry the profile
of the semantic support service hosted by the laptop, i.e.,
the repository, so that PDS can publish it.

Let us now suppose that the laptop user is looking for a
local service providing digital photo printing. To this ex-
tent, the user wishes to exploit the semantic-enabled dis-
covery service that is available on her laptop to find an
appropriate service. The semantic discovery application
needs semantic facilities to execute a match between the
functionalities required by the user, i.e., high quality photo
printing, and the functionalities offered by locally available
services, as expressed in the service profiles [21]. Let us
note that this task requires both a reasoner and the ontolo-
gies that are used to express service properties within ser-
vice profile.

Figure 5. Case study Interaction Flow

Therefore, the semantic-enabled discovery application in-
teracts with MASS to obtain proper access to semantic sup-
port services, namely to a reasoner and to needed ontolo-
gies. The interaction flow between the discovery applica-
tion and the middleware components is shown in Figure 5.
Let us now suppose that, during discovery, the reasoner
occurs to be in need of some ontologies that are not avail-
able at the on-board repository. Hence, the reasoner re-
quests to MASS to be provided with missing ontologies,
according to the configuration settings stored within the
configuration profile (see Figure 5).

CONCLUSIONS AND FUTURE WORK
Semantic languages have recently gained attention as a
means of expressing context-related metadata in pervasive
computing applications. However, the exploitation of se-
mantic support requires a considerable amount of memory
and computational resources that may not fit resource-
limited devices. We propose a novel middleware which is
capable of adapting semantic support to the different char-
acteristics of mobile devices and provides mobile users

DISCOVERY
APPLICATION

SAS -DL SAS - IL PDS

1. request for semantic
support

3. request external
reasoner

5. return reasoner
reference

6. request appropriate
IL instance

8. set reference to
external reasoner +
local ontology base

4. search a suitable
reasoner

7. send IL instance

3. try to access the Web

4. notify access
failure

9. return ref to reasoner
and ontology base

10. return ontology
base reference

2. read config file

1. request for missing
ontologies

2. read config file

Web
interface

5. request missing
ontology

7. return ontology base
reference

8. request IL instance

6. search a suitable
ontology base

9. send IL instance

with the visibility on semantic functionalities hosted by
nearby devices.
Although the proposed middleware provides mobile de-
vices with enhanced capabilities to exploit heavyweight
semantic support, it is responsible for introducing some
overhead that may degrade system performance. This over-
head is partly due to the initial configuration phase and
partly caused by the complexity of the semantic matching
algorithms that are used to compare semantic support re-
quests and offers. We are analyzing the effect of such
overhead by evaluating performance parameters of the pro-
totype discovery application, such as delay time for a dis-
covery request.
We are currently testing MASS prototype in different sce-
narios to evaluate its applicability and usefulness. Current
and future work is primarily concentrating on the analysis
of various available semantic support services and tools for
subsequent integration with our prototype middleware. We
also believe that in such an open and dynamic scenario it
will be necessary to deal with security issues. Therefore,
we are planning to enhance the MASS framework with
security features, e.g., access control features.

REFERENCES
[1] Chen, H., et al.: Semantic Web in a Pervasive Context-

Aware Architecture. In: Artificial Intelligence in Mo-
bile Systems 2003, Universitat des Saarlandes, Saar-
brucken, Germany (2003).

[2] Masuoka, et al.: Task Computing – the Semantic Web
meets Pervasive Computing. In: Proc. of ISWC 2003,
Sanibel Island, Florida, October 2003.

[3] Bellavista, et al.: Context-Aware Middleware for Re-
source Management in the Wireless Internet. IEEE
Transactions on Software Engineering, 29 - 12 (2003).

[4] Agostini, A., et al.: Integrated Profile and Policy Man-
agement for Mobile-Oriented Internet Services. Tech-
nical Report Firb-Web-Minds N. TR-WEBMINDS-04.

[5] Wang, X., et al.: Semantic Space: An Infrastructure for
Smart Spaces. IEEE Pervasive Computing, Vol. 3, No.
3, July-September 2004.

[6] Uszok, A., et al.: KAoS policy and domain services:
toward a description-logic approach to policy repre-
sentation, deconfliction, and enforcement. In: Proc. of
POLICY 2003, 4-6 June 2003.

[7] Fuggetta, et al.: Understanding Code Mobility, IEEE
Transactions on Software Engineering, Vol. 24, Issue
8 (1998).

[8] The Jena SW Framework, http://jena.sourceforge.net/.
[9] Guo, Y., et al.: An Evaluation of Knowledge Base

Systems for Large OWL Datasets. In: Proc. of ISWC
2004, Springer-Verlag, Heidelberg, LNCS 3298, 2004.

[10] Davies, et al. (eds.): Towards the Semantic Web, John
Wiley &Sons, England, 2003.

[11] Omelayenko, B.: RDFT: A Mapping Meta-Ontology
for Web Service Integration, In: Omelayenko, B.,
Klein, M. (eds.), Knowledge Transformation for the
Semantic Web, IOS Press (2005).

[12] Corradi, A., et al.: Policy-driven Management of Mo-
bile Agent Systems, In: Proc. of POLICY 2001, Bris-
tol, UK. Springer-Verlag, LNCS 1995 (2001).

[13] Broekstra, J., et al.: Sesame: a Generic Architecture for
Storing and Querying RDF and RDF Schemas. In:
Proc. of ISWC 2002, Sardinia, Italy. LNCS 2342,
Springer-Verlag (2002) 54-68.

[14] Pan, Z., et al.: DLDB: Extending Relational Databases
to Support Semantic Web Queries. In: Workshop on
Practical and Scalable Semantic Systems, ISWC 2003,
Sanibel Island, Florida, USA, October. LNCS 2870,
Springer-Verlag, Berlin (2003).

[15] Kopena, et al.: DAMLJessKB: A Tool for Reasoning
with the Semantic Web. In: Proc. of ISWC 2003, Sani-
bel Island, Florida, USA, October. LNCS 2870,
Springer Verlag, Berlin (2003).

[16] Fikes, R., et al.: JTP: A System Architecture and Com-
ponent Library for Hybrid Reasoning. In: Proc. of SCI
2003, Orlando, Florida, USA (2003).

[17] Fact. http://www.cs.man.ac.uk/~horrocks/FaCT/
[18] Haarslev V., et al.: Racer: An OWL Reasoning Agent

for the Semantic Web. In: Proc. of WSS ‘04, in conj.
with WI 2004, IEEE Computer Society Press.

[19] Tummarello, G., et al.: RDFGrowth, a P2P annotation
exchange algorithm for scalable Semantic Web appli-
cations. In: Proc. of P2PKM 2004, in conj. with Mo-
biquitous 2004, Boston, Massachusetts, USA (2004).

[20] Klein, M., et al.: Ontoview: Comparing and versioning
ontologies. In: Collected Posters ISWC 2002, Sardinia,
Italy (2002).

[21] Toninelli, A., et al.: Semantic Discovery for Context-
Aware Service Provisioning in Mobile Environments.
In: Proc. of MCMP Workshop, in conj. with MDM
2005, Ayia Napa, Cyprus, May 9-13 (2005).

[22] Schlosser, et al.: A scalable and ontology-based P2P
infrastructure for Semantic Web Services. In: Proc. of
P2P 2002, Linkoeping, Sweden, (2002).

[23] Cannataro, M., et al.: Semantics and knowledge grids:
building the next-generation grid. In: IEEE Intelligent
Systems, 19 (1), Jan-Feb 2004 Page(s):56 – 63.

[24] Hao Ding, et al.: A vision on semantic retrieval in P2P
network. In: Proc. of AINA 2004, Fukuoka, Japan,
March 29-31 (2004).

