

A Context-centric Security Middleware for Service Provisioning in Pervasive
Computing

Antonio Corradi, Rebecca Montanari, Daniela Tibaldi, Alessandra Toninelli

Dipartimento di Elettronica, Informatica e Sistemistica
Università di Bologna

Viale Risorgimento, 2 - 40136 Bologna - Italy
{acorradi, rmontanari, dtibaldi, atoninelli}@deis.unibo.it

Abstract

Pervasive user mobility, wireless connectivity and the
widespread diffusion of portable devices raise new
challenges for ubiquitous service provisioning. An
emerging architecture solution in the wireless Internet is
based on mobile proxies (implemented as mobile agent-
based middleware components) over the fixed network that
follow the movements and act on behalf of the limited
wireless clients. It is crucial that mobile proxies have full
visibility of their context, i.e., the set of available and
relevant resources, depending on access control rules,
client location, user preferences, privacy requirements,
terminal characteristics, and current state of hosting
environments. The paper presents the design and
implementation of a context-centric security middleware,
called UbiCOSM, for MA-based service provisioning in
pervasive computing. UbiCOSM dynamically determines
the contexts of mobile proxies, and effectively rules the
access to them, by taking into account different types of
metadata (user profiles and authorization policies),
expressed at a high level of abstraction and cleanly
separated from the service logic. The paper also shows the
functioning of UbiCOSM in the design and the
development of a mobile context-centric airport business
assistant.

1. Introduction
The widespread availability of wireless network
connectivity in the environments where users live and
work together with the increasing diffusion of portable
devices creates novel opportunities for users to access
services anywhere, at any time and from various access
devices. In particular, the recent proliferation of
heterogeneous portable devices and of different
technologies for wireless connectivity in home/office
environments suggests not only to extend to mobile

users/devices the access to traditional Internet services,
designed and implemented for the fixed network
infrastructure, but also to develop new classes of services
that can provide results that depend on the relative position
of clients and on the consequent resource visibility
(context-aware services).

However, the design and deployment of ubiquitous
services impose new challenges to the retrieval and
operation on distributed resources, undermining several
assumptions of traditional service provisioning solutions.
Whereas traditional service provisioning relies on a static
characterization of context operating conditions where
changes in the set of both service clients (users/devices)
and accessible resources are relatively small, rare, or
predictable, user/device mobility causes frequent changes
in physical user location and in consequently available
resources. As users roam across different network
localities, they have different resource visibility, depending
on their location and other context-dependent information,
such as device characteristics, local security policies and
resource state.

The complexity of the above scenario calls for novel
middleware solutions for facilitating context-aware service
development and for supporting service delivery to
wireless devices in mobility environments. We claim that
this novel middleware should exhibit the non-traditional
property of context-awareness and should enable the
dynamic installation/migration of client-side
middleware/service components and their seamless
discarding when no longer needed. An emerging guideline
is to have active middleware components that are deployed
at service provision time to act as user/device proxies over
the fixed network and to carry on the needed service
configuration, tailoring and management. The relevance of
implementing middleware components as mobile proxies
that follow client movements and execute in their same
network locality starts to be recognized [4], [5]. We claim

the suitability of designing and implementing mobile
proxies for the wireless Internet in terms of Mobile Agents
(MAs). MA-based proxies can carry on service requests
autonomously even in case of temporary device
disconnection, can migrate among different network
localities by maintaining the session state, and can exploit
the full context visibility typical of the MA programming
paradigm to support context-based service configuration
and tailoring [6].

However, the deployment of MA-based proxies also
raises novel and challenging security concerns [7], [8], [9].
On the one hand, the possible injection of malicious
proxies can compromise the security of the wireless
Internet fixed nodes similarly to the case of viruses and
worms. On the other hand, malicious nodes may try to
disclose the private information carried by the hosted
proxies and to tamper with the MA code and state.

The paper focuses on the novel access control issues
stemming from the adoption of MA-based proxies for the
support of context-dependent service provisioning over the
wireless Internet. Several practical techniques have been
already proposed to control and confine the interactions
between MAs and hosting execution environments. Type-
safe languages permit to determine whether incoming MAs
respect safety properties, such as address space
confinement. Sandboxing techniques have been used to
rigidly limit resource visibility and access scope of MAs
while executing and have evolved to propose more
advanced access control solutions [9]. However, these
solutions are not flexible enough for the addressed highly
dynamic pervasive environments: they typically evaluate
permissions depending on the identity/role of the client
requesting access to resources. The new ubiquitous
scenario makes service providers also deliver services to
unknown entities and, more important, whose identity may
be un-informative or not sufficiently trustworthy. In fact, it
is almost impossible to know in advance the identities/roles
of all subjects that are likely to request access to their
managed resources/services. Instead, service providers can
more easily define the conditions for making resources
available and for allowing/denying users resource visibility
and access according to their context operating conditions.

The paper presents the design and implementation of a
security middleware, called UbiCOSM (Ubiquitous
COntext-based Security Middleware), for context-centric
access control in the wireless Internet. UbiCOSM
dynamically determines the contexts of MA-based proxies,
and effectively rules the access to resources, by taking into
account different types of metadata (user/device/resource
profiles and authorization policies), expressed at a high
level of abstraction and cleanly separated from the service

logic. UbiCOSM provides an integrated environment for
both the specification of metadata and for their runtime
enforcement. The proposed access control middleware
integrates with the CARMEN framework which offers the
support facilities for user/terminal mobility and for the
proxy-based discovery/binding of wireless devices to the
needed resources in their contexts [6].

The paper finally presents the case study of a context-
centric airport business assistant service prototype, built on
top of UbiCOSM and deployed over a group of
coordinated IEEE 802.11 localities, to evaluate the
usability and effectiveness of the proposed middleware.

2. UbiCOSM Security Framework
UbiCOSM is an access control middleware for securing
agent-to-agent and agent-to-environment interactions in
service provisioning scenarios with context awareness
requirements. In particular, UbiCOSM focuses on three
main peculiar aspects: context-centric access control,
active context view provisioning to middleware
components and support for disclosure of the security
properties of UbiCOSM agents and resources to interested
entities. UbiCOSM access control decisions depend on
dynamic context attributes, such as resource state and
availability, in addition to more traditional attributes, e.g.,
the identity of the MA code implementer, or the
identity/role of the principal on behalf of whom MAs are
executing.

Another distinctive feature of UbiCOSM is to provide
MAs entering a new locality with a controlled visibility of
the directly accessible physical/logical resources and of the
other MAs locally executing (active context views). Active
context views contain resources that both MAs are willing
to access and the UbiCOSM access control function have
qualified as accessible. The provision of active context
views to MAs has many benefits. MAs can exploit the
visibility of available resources to adjust their behaviour
accordingly and to reduce the risk of undesired task failure
during execution. Active context views can also help MAs
to decide whether it is more profitable to stay in a locality
than to move from it and to explore a new computing
environment.

UbiCOSM addresses also the security issues that arise
in dynamic environments where different actors sharing
little or no prior knowledge about each other have to
interact in order to achieve some kind of result. When
invoking a service or choosing an entity to interact with, it
is crucial to know its security attributes and policies. The
visibility of security properties allows to reason about the
security effects of enabling a proxy to invoke a service or
to interact with another proxy. Security property disclosure

is also important to facilitate service/interaction agreement
negotiation between the interacting parties. UbiCOSM
enables users and service providers to specify their security
characteristics in terms of both what they are capable to do
and what they require from other subjects to do. UbiCOSM
facilities are then in charge of translating these
specifications into a system-compliant form and of storing
them.

2.1 Security Model

To support context-centric access control and interaction
based on disclosure of security properties, UbiCOSM
allows system administrators and final users (on behalf of
whom MAs act over the network) to specify their
functional and security characteristics at a high level of
abstraction in terms of metadata. Metadata are declarative
rules that describe the attributes of users, devices and
service components and the desired access control
requirements.

A primary advantage of exploiting metadata is the
possibility to separate security logic from security control.
Metadata govern access control decisions, but are
decoupled from the implementation of the system
components in charge of enforcing access control
accordingly to the metadata specifications. This favors the
rapid prototyping of secure MA-based services, their
runtime configuration and maintenance. By changing
metadata to accommodate evolving security requirements,
the behaviour of a running agent system can be
dynamically and rapidly varied without any intervention on
agent and system code. In addition, developers do not need
to manually insert calls to security checking code inside
each resource that a host may want to protect from
illegitimate agent usage. Metadata can also facilitate
automated security reasoning: all basic elements involved
in access control decisions can be easily extracted from
declarative notations, analyzed and checked for conflicts.
The relevance of metadata adoption to decouple
management logic from mechanism implementation details
has been recently recognized in network, systems and
service management [10]. UbiCOSM supports two kinds of
metadata: profiles and policies. Profiles generally represent
the synthetic description of a subject and have been wide
adopted in the context of mobile applications (e.g. W3C
Composite Capability/Preference Profiles). Profiles
facilitate interoperability: when an entity (a user, a device
or a resource/service) joins the system, it presents its
profile to provide other entities it may wish to interact with
an explicit description of its characteristics. This allows an
entity to predict (part of) the exhibited behaviour of
another possibly unknown entity.

Profiles are composed of Capabilities and Preferences.
Capabilities include all the information needed to qualify
an entity in terms of what it is capable of, both from a
functional and from a security-related perspective. For
instance, the Capabilities profile part of a service describe
the operations it can perform, as well as the security
mechanisms it is able to enact (security capabilities). Note
that, in case of a user profile, the described capabilities
actually refer to the mobile proxy acting on the user behalf.

Preferences are used to express the desired context
visibility of an entity, i.e., the kind of resources it is
looking for, their expected properties and also the security
features it requires from the entities it wishes to interact
with. For example, User Preferences specify which kind of
resources the user is willing to use as well as which other
users she wishes to see, and her requirements in terms of
security solutions.

Figure 1. UbiCOSM metadata taxonomy.

UbiCOSM adopts RDF-compliant formats for profile
representation to deal with the heterogeneity of data
representation over different architectures, i.e., the
Ontology Web Language (OWL) for the interoperable
description of user/device/resource profiles [10]. The
adoption of a semantic language, such as OWL, provides a
significant expressivity enhancement in profile
specification. Semantic languages allow machines to learn
and reason about components’ properties, instead of simply
performing syntactic comparisons between words and
expressions. Moreover, it provides more flexibility to the
system, since it enables different levels of compatibility
between components. For instance, if a service profile
declares a P1 property stating “XML-based Encryption” as
a security capability and a user specifies the P2 property
“Encryption” as a security requirement, semantic reasoning
enables to recognize that P1 can fulfil P2 because the
concept of P1 is included in the concept of P2.

Metadata

Profiles Policies

ObligationAutorization

<rdf:Description rdf:about="#UserA">
<profile:capability rdf:resource="#Cap1"/>

...
<profile:securityCapability

rdf:resource="#SecCap1"/>
<profile:securityCapability

rdf:resource="#SecCap2"/>
...

</rdf:Description>
</rdf:RDF>

PreferencesCapabilities

<rdf:Description rdf:about="#UserA">

<profile:preference rdf:resource="#Pref1"/>
<profile:preference rdf:resource="#Pref2"/>

...
</rdf:Description>
</rdf:RDF>

inst auth Pol1 {

subject s = /Proxies/ProxyID;

target t = services/videogames/MedievalKingdom
do t.access();
when
s.holdsTicket(BusinessClass, Alitalia)== TRUE;
}

Figure 2. UbiCOSM user profile

Policies are high-level directives regulating resource
access control and defining choices in security
management operations. UbiCOSM distinguishes between
authorization and obligation policies. Authorization
policies rule access control by defining what a subject can
or cannot do on specific target resources if certain context
conditions are met. These conditions may depend on the
runtime resource/system state and on the subject
identity/role. Obligation policies allow to automate security
management tasks by specifying when the system must
perform a specific management action on a set of target
objects. For instance, MA system administrators can
exploit obligation policies to block the execution of an
agent when its CPU consumption is higher than a tolerated
threshold. In the following, we focus only on authorization
policies, essential for UbiCOSM context-centric access
control model, whereas for details about obligation policies
please refer to [11].

Each system entity (user, device or resource) can
specify its own policies. It is possible to create individual-
specific policies, in order to protect a component against
malicious code or to determine its behaviour without any
static control. Other policies may apply to the system as a
whole, e.g. policies concerning performance issues, such as
load balancing and availability.

UbiCOSM exploits the Ponder language for expressing
both types of authorization policies [11]. In Figure 1 Pol1

is an example of system access control policy that allows
an entering MA (the subject clause) to access the
Videogame service (the target clause) depending on the
current context conditions (the when clause). In particular,
the entering MA can access the service if the user it is
acting on behalf of holds a “Business Class” ticket for an
Alitalia flight. Note that a subject can operate on target
objects, by only invoking methods visible on the target
interface and that the when clause allows to limit the
applicability of authorization policies on the basis of
context conditions.

UbiCOSM exploits all the described metadata
information to take access control decisions, to determine
the active context view to return to incoming MAs, and to
perform a security property matching procedure between
two system components. In particular, a user/software
component can exploit the UbiCOSM metadata support to
verify if the declared capabilities of one entity fulfil her
requirements.

3. UbiCOSM Middleware
UbiCOSM has been built on top of the Java-based
CARMEN system that supports the accessibility of mobile
users/terminals to both traditional Web and to new context-
dependent services [6]. CARMEN is centered on the
distributed deployment of active middleware proxies over
the fixed network to support service provisioning to
portable devices. CARMEN provides any portable device
with a companion middleware proxy (shadow proxy) that
autonomously acts on its behalf, possibly negotiates
service tailoring to fit user/device characteristics and
follows user/device movements among network localities.
CARMEN implements shadow proxies by exploiting the
MA programming paradigm. In particular, CARMEN
provides proxies with execution environments, called
places, that typically model nodes. Places can be grouped
into domains that correspond to network localities, e.g.,
either Ethernet-based LANs or IEEE 802.11b-based
wireless LANs. With a finer degree of detail, a shadow
proxy is implemented by one CARMEN agent running on
a place in the domain where the portable device is
currently located. CARMEN domains can facilitate policy
evaluation and enforcement for context-centric access
control. In fact, the domain abstraction allows to define a
well-specified management boundary: each domain holds
references to the entities currently members of the domain
(both MAs and resources) and to the applicable metadata.
In particular, profiles and individual policies are
maintained in the CARMEN directory service with global
visibility and are accessible via the local domain directory

<?xml version='1.0'?>
<!--OWL Language-->
<rdf:RDF>

<cesa:CESAUser rdf:ID="Bob">
</cesa:CESAUser>

<action:ServiceRequestAction rdf:ID="Cap1">
<action:target rdf:resource=“&cesa;CESAEntertainmentService"/>

</action:ServiceRequestAction>

<action:MobilityAction rdf:ID="Cap2">
</action:MobilityAction>

...
<airport:Ticket rdf:ID="Cap3">

<ticket:Company rdf:resource=“&ticket;Alitalia"/>
<ticket:Class rdf:resource=“&ticket;BusinessClass"/>

</airport:Ticket>
...

<preference:LocalityPreference rdf:ID="Pref1">
<preference:locality rdf:resource=“&airport;Terminal"/>
<preference:sameLocalityAs rdf:resource="#Bob"/>

</preference:LocalityPreference>

<preference:ResourcePreference rdf:ID="Pref2">
<preference:target rdf:resource=“&entertainement;Videogame"/>

</preference:ResourcePreference>
...

<rdf:Description rdf:about="#Bob">
<profile:capability rdf:resource="#Cap1"/>
...
<profile:securityCapability rdf:resource="#SecCap2"/>
...
<profile:preference rdf:resource="#Pref1"/>
...

</rdf:Description>
</rdf:RDF>

<?xml version='1.0'?>
<!--OWL Language-->
<rdf:RDF>

<cesa:CESAUser rdf:ID="Bob">
</cesa:CESAUser>

<action:ServiceRequestAction rdf:ID="Cap1">
<action:target rdf:resource=“&cesa;CESAEntertainmentService"/>

</action:ServiceRequestAction>

<action:MobilityAction rdf:ID="Cap2">
</action:MobilityAction>

...
<airport:Ticket rdf:ID="Cap3">

<ticket:Company rdf:resource=“&ticket;Alitalia"/>
<ticket:Class rdf:resource=“&ticket;BusinessClass"/>

</airport:Ticket>
...

<preference:LocalityPreference rdf:ID="Pref1">
<preference:locality rdf:resource=“&airport;Terminal"/>
<preference:sameLocalityAs rdf:resource="#Bob"/>

</preference:LocalityPreference>

<preference:ResourcePreference rdf:ID="Pref2">
<preference:target rdf:resource=“&entertainement;Videogame"/>

</preference:ResourcePreference>
...

<rdf:Description rdf:about="#Bob">
<profile:capability rdf:resource="#Cap1"/>
...
<profile:securityCapability rdf:resource="#SecCap2"/>
...
<profile:preference rdf:resource="#Pref1"/>
...

</rdf:Description>
</rdf:RDF>

component [6]; system policies are stored locally at the
domains where they have to be enforced to increase
management decentralization and local policy access.

Figure 3. UbiCOSM middleware facilities

At first proxy instantiation, UbiCOSM creates a secure
trust relationship between the device and the proxy
according to the protocol steps described in [12]. At run-
time, proxy interactions with the hosting environments are
protected by means of the UbiCOSM middleware facilities
shown in Figure 3. The Metadata Manager enables users
to specify the needed metadata. The Authorization
Enforcement Manager is responsible for enacting
authorization policies. The Context-aware Security
Manager returns to proxies active context views on the
basis of specified metadata and the Security Matching
Engine performs a matching between desired and
expressed security properties of system components.
UbiCOSM facilities exploit CARMEN lower-level
functions for proxy identification, resource discovery,
directory, context monitoring, and event
registration/dispatching [6].

Metadata Manager (MM). MM provides various tools
for metadata editing, updating, removing, and browsing. In
particular, with regards to policies, MM integrates tools for
syntactic analysis of policy specifications and for
transforming both system authorization and obligation
policies into Java objects, which act as policy information
containers to be interpreted at runtime [13]. MM also
provides a semantic tool for parsing OWL profiles and
translating them into ontological concepts which are
represented as Java objects.

Moreover, MM is in charge of distributing specified
metadata (both in the high-level and low-level formats) to
the CARMEN directory component responsible for
storage, i.e., the one in the domain of first user registration
(user home domain). At its first instantiation, any shadow
proxy exploits the CARMEN directory to retrieve its

profile and individual policies, which become part of its
carried state.

Context-Aware Security Manager (CASM). CASM is
responsible for establishing the active context view of any
entering MA. When a new shadow proxy enters a domain,
CASM calculates and returns to the proxy a valid active
context view on the basis of the proxy responsible user
profile’s preferences, of the active system access control
policies and of the individual policies imposed by the other
proxies currently executing in the domain. The active
context view sent to the proxy is a copy of the active view
maintained by CASM for any proxy in the locality, until
the proxy exits from the domain.

CASM is also in charge of maintaining active context
views up-to-date when relevant variations in context
information occur, such as changes in the MAs executing
in a locality, in resource availability, or in individual
policies specifications. CASM allows service providers to
choose among differentiated view update strategies,
ranging from an eager strategy, which requires to update
active context views at the occurrence of any relevant
context change, to a lazy strategy, consisting in updating
the active context view only on user-demand. The choice
of the most appropriate strategy to adopt depends on
several factors, such as service requirements, trade-off
between tailoring/configuration optimal choices and
context update overhead. Similar considerations guided the
implementation of protection domains in the JDK 1.2
security architecture [9].

Authorization Enforcement Manager (AEM). AEM
mediates proxy-resource interactions by granting/denying
proxies the access to resources, possibly depending on
runtime conditions. Shadow proxies cannot directly access
the resources included in their active context view, but
have to interface with AEM at any resource access request.
Active context views provide proxies with only the
identifiers of accessible resources along with the permitted
actions; no direct handles to the resources listed in the
active view are returned to proxies.

When a proxy requests to access a resource, AEM
intercepts the request and evaluates whether to deny/accept
it. The type of access control checks needed depends on
the update strategy adopted by CASM. In the case CASM
adopts an eager update strategy, AEM grants/denies the
proxy request by simply checking whether the requested
resource and action are included in the already updated
active context view maintained by CASM. On the contrary,
in the case of lazy update strategy, AEM has to calculate
the set of permissions that currently applies to the
requesting proxy.

U
bi

C
O

SM
Fa

ci
lit

ie
s

C
A

R
M

E
N

Fa

ci
lit

ie
s

Context-Aware Security Manager

Authorization Enforcement Manager

Heterogeneous Distributed System

Java Virtual Machine

Directory Discovery Interoperability Event

Identification Communication MonitoringMigration

Security Matching Engine

Metadata Manager

U
bi

C
O

SM
Fa

ci
lit

ie
s

C
A

R
M

E
N

Fa

ci
lit

ie
s

Context-Aware Security Manager

Authorization Enforcement Manager

Heterogeneous Distributed System

Java Virtual Machine

Directory Discovery Interoperability Event

Identification Communication MonitoringMigration

Security Matching Engine

Metadata Manager

Security Matching Engine (SME). SME is in charge of
performing a security-related matching on behalf of the
requesting user and to verify if one component’s security
properties fulfil those requirements, according to the
desired level of accuracy. First of all, SME exploits
CARMEN directory facilities to retrieve stored metadata
about both the requester entity and the security profile of
the selected component. Let us note that the requester
entity (user, service or device) has previously selected the
component from all entities currently included in the active
context view on the basis of its functional properties and
capabilities. Finally, SME executes a matching algorithm
to verify if a compatibility exists between required and
declared security properties. Depending on the options
expressed by the requester, SME returns successfully if all
the requirements or at least one or a specific one have been
satisfied.

SME is able to perform both a syntactic and a semantic
matching. Syntactic matching verifies whether security
capabilities are expressed exactly in the same way as
required properties. This means that the security properties
of the requester and the security capabilities of the possibly
matching component must be described using the same
syntax and vocabulary. This matching technique is
particularly suitable for environments where a common
syntax exists and interacting parties share an agreement
about the meaning of the adopted vocabulary.

Semantic matching enhances this technique by adding
support to ontology definition and reasoning. In order to
determine whether the security capabilities of an entity are
compatible with the expressed requirements, SME retrieves
the ontological concepts created by MM while parsing
profiles and then reasons about them. It must be noted that
reasoning about ontologies could be a very consuming task
in terms of computational power and memory usage:
therefore, this matching modality may not fit resource-
constrained devices.

4. Case Study
We have tested UbiCOSM in the design and
implementation of a Context-centric Entertainment Service
Assistant (CESA) that allows mobile users to find available
entertainment services at each airport terminal. CESA
exploits the visibility of user location to retrieve only those
services which are situated at the airport terminal where the
user is currently located. Moreover, CESA ensures that
only passengers with required context-related capabilities,
such as flying with a company, or being a business or
economy class passenger, can access the services. In
addition, CESA

Figure 4. CESA scenario.

enables users to select the services that fulfill user security
requirements.

Our simulated airport testbed setting for CESA consists
of a wireless local network composed by several 802.11
network localities, with each locality modeled as a
CARMEN domain (see Figure 4). Each domain provides
execution environments (places) for shadow proxies on
each physical node, offers UbiCOSM middleware facilities
on each place and hosts info service components providing
information about the terminal locally available resources.

CESA users interact with the UbiCOSM infrastructure
via device-specific clients running on their wireless access
devices (Toshiba e740 Pocket PCs with Wi-Fi
connectivity).

The clients allow users to subscribe to CESA, by filling
in a form with user profile and security policy information
and to authenticate themselves to the service before starting
any CESA session. After successful authentication, the
user interacts with the MM service component in order to
specify her profile, e.g., her preferences and security
requirements. CESA instantiates a shadow proxy in the
domain where the user is currently attached, and the proxy
loads the user profile in its state part. At service provision
time, the clients are only in charge of forwarding user
requests (and of visualizing the received service results) to
(from) their responsible proxies.

Let us consider the case of a flying company, Alitalia,
that decides to offer to its “business class” passengers
waiting for their flight departure some entertainment
services, such as video on demand, music download and

Waiting Room
Terminal B

Bob

CARMEN Place

CARMEN Place
Shadow

Proxy
Medieval Kingdom

Context-Aware Security Manager

Authorization Enforcement Manager

Directory Discovery Interoperability Event

Identification Communication MonitoringMigration

Security Matching Engine

Metadata Manager

Context-Aware Security Manager

Authorization Enforcement Manager

Directory Discovery Interoperability Event

Identification Communication MonitoringMigration

Security Matching Engine

Metadata Manager

UbiCOSM

UbiCOSM

Waiting Room
Terminal B

Bob

CARMEN Place

CARMEN Place
Shadow

Proxy
Medieval Kingdom

Context-Aware Security Manager

Authorization Enforcement Manager

Directory Discovery Interoperability Event

Identification Communication MonitoringMigration

Security Matching Engine

Metadata Manager

Context-Aware Security Manager

Authorization Enforcement Manager

Directory Discovery Interoperability Event

Identification Communication MonitoringMigration

Security Matching Engine

Metadata Manager

UbiCOSM

Context-Aware Security Manager

Authorization Enforcement Manager

Directory Discovery Interoperability Event

Identification Communication MonitoringMigration

Security Matching Engine

Metadata Manager

Context-Aware Security Manager

Authorization Enforcement Manager

Directory Discovery Interoperability Event

Identification Communication MonitoringMigration

Security Matching Engine

Metadata Manager

UbiCOSM

UbiCOSM

Waiting Room
Terminal ACARMEN Place

CARMEN Place

Context-Aware Security Manager

Authorization Enforcement Manager

Directory Discovery Interoperability Event

Identification Communication MonitoringMigration

Security Matching Engine

Metadata Manager

Context-Aware Security Manager

Authorization Enforcement Manager

Directory Discovery Interoperability Event

Identification Communication MonitoringMigration

Security Matching Engine

Metadata Manager

UbiCOSM

UbiCOSM
Space Wars

Waiting Room
Terminal ACARMEN Place

CARMEN Place

Context-Aware Security Manager

Authorization Enforcement Manager

Directory Discovery Interoperability Event

Identification Communication MonitoringMigration

Security Matching Engine

Metadata Manager

Context-Aware Security Manager

Authorization Enforcement Manager

Directory Discovery Interoperability Event

Identification Communication MonitoringMigration

Security Matching Engine

Metadata Manager

UbiCOSM

Context-Aware Security Manager

Authorization Enforcement Manager

Directory Discovery Interoperability Event

Identification Communication MonitoringMigration

Security Matching Engine

Metadata Manager

Context-Aware Security Manager

Authorization Enforcement Manager

Directory Discovery Interoperability Event

Identification Communication MonitoringMigration

Security Matching Engine

Metadata Manager

UbiCOSM

UbiCOSM
Space Wars

videogames. Service are available at different terminals,
for instance videogames at Terminal A and video on
demand at Terminal B.

Now let us consider a videogame named “Medieval
Kingdom” which is offered by the flying company to
business class passengers boarding at Terminal B. The
videogame is represented as a UbiCOSM service and is
associated with a profile and a set of policies. Figure 4 and
Figure 1 show an extract of the videogame profile and
policies set, respectively. The authorization policy Pol1
states that “Medieval Kingdom” game is accessible only by
Alitalia “business class” passengers. Thus, other travellers
currently waiting to board at Terminal B are not allowed to
access the game.

In addition, two different configuration settings are
available for the videogame execution. It is possible to
install some plug-ins on- board on the client side or not to
install them. The game profile specifies the available
configuration settings as a security property.

Suppose now that a traveler, Bob, holding a business
class ticket for a Alitalia flight enters Terminal B. Figure 2
shows an excerpt of the traveler’s profile. As specified in
the profile Preferences part, the user is willing to have
resource visibility within the terminal area he is currently
located and, in particular, he is looking for a videogame
service. Moreover, he holds a “business class” ticket of
Alitalia flying company.

When the proxy, acting on Bob behalf, enters the
network locality, CASM retrieves and interprets Bob
profile and the policies to apply to his proxy. CASM
evaluates these policies by coordinating with the
CARMEN monitoring facilities. On the basis of
profile/policy metadata and of context conditions currently
holding in the system, CASM generates Bob active context
view. The view lists the services that are situated in the
same terminal area where the user is currently located,
namely at Terminal B, and that satisfy Alitalia security
requirements. For example, if an “economy class”
passenger who has subscribed to CESA enters Terminal B,
she cannot see in his Active Context View the “Medieval
Kingdom” videogame, because she does not hold a
“business class” ticket. In fact, CESA ensures that
videogame services are available to only business class
passengers.

Note that the user profile preference is not bounded to a
specific terminal, but simply refers to “the terminal where
the user is currently located”. CASM automatically
translates this specification into a precise location
information, by retrieving user current location via
coordination with the underlying CARMEN monitoring
facility. For example, if a videogame (“Space Wars”) is

situated in the waiting area at Terminal A, the game is not
visible to the user while the user resides at Terminal B. If
the user moves to Terminal A, CASM updates the active
context view by adding “Space Wars” and removing
“Medieval Kingdom” from the list of available games,
provided that both services are accessible to the user.

Figure 4. Entertainment service profile.

Suppose now that Bob decides to play a videogame on his
laptop while waiting for his flight to board. He does not
want to have external plug-ins installed on his laptop, to
avoid the risk of security breach. In the testbed, Bob selects
the videogame service “Medieval Kingdom” from the list
of available resources in his active context view. Then, he
asks the UbiCOSM middleware to verify if the selected
service actually fulfils his security requirements, i.e., if
“Medieval Kingdom” game does not install any plug-in
module on the client side. The user responsible proxy
exploits the MM semantic tool to translate the profile-
compliant query into an ontological information, and
forwards the ontological request to SME, which adopts as
default matching modality the semantic one. Depending on
application requirements, UbiCOSM users can also
command SME to exploit only a syntactic matching. Then,
SME retrieves from the UbiCOSM repository all the Java
objects created by MM to represent the ontological
concepts related to “Medieval Kingdom” and Passenger
profiles. Finally, it performs the matching algorithm
between the videogame service profile and the security
requirements expressed by the user. In particular, SME
parses the “Medieval Kingdom” profile, takes each single
security capability and semantically compares it with the

<?xml version='1.0'?>
<!--OWL Language-->

...
<rdf:RDF>

<cesa:CESAEntertainmentService rdf:ID="Medieval Kingdom">
<cesa:typeOfService rdf:resource=“&entertainment;Videogame"/>
<cesa:serviceOfferLocation rdf:resource=“&airport;TerminalB"/>

</cesa:CESAEntertainmentService>

<owl:ObjectProperty rdf:ID="PlugInConfigProperty">
<rdfs:subPropertyOf rdf:resource=“&service;ServiceConfigProperty"/>
<rdfs:range rdf:resource=“&service;PlugIn"/>

</owl:ObjectProperty>
...

<preference:DataPreference rdf:ID="Pref1">
<preference:dataFormat rdf:resource=“&data;Binary"/>

</preference:DataPreference>
...

<rdf:Description rdf:about="#MedievalKingdom">
<profile:capability rdf:resource="#Cap1"/>

...
<profile:securityCapability rdf:resource="#PlugInConfigProperty"/>

...
<profile:preference rdf:resource="#Pref1"/>

...
</rdf:Description>
</rdf:RDF>

<?xml version='1.0'?>
<!--OWL Language-->

...
<rdf:RDF>

<cesa:CESAEntertainmentService rdf:ID="Medieval Kingdom">
<cesa:typeOfService rdf:resource=“&entertainment;Videogame"/>
<cesa:serviceOfferLocation rdf:resource=“&airport;TerminalB"/>

</cesa:CESAEntertainmentService>

<owl:ObjectProperty rdf:ID="PlugInConfigProperty">
<rdfs:subPropertyOf rdf:resource=“&service;ServiceConfigProperty"/>
<rdfs:range rdf:resource=“&service;PlugIn"/>

</owl:ObjectProperty>
...

<preference:DataPreference rdf:ID="Pref1">
<preference:dataFormat rdf:resource=“&data;Binary"/>

</preference:DataPreference>
...

<rdf:Description rdf:about="#MedievalKingdom">
<profile:capability rdf:resource="#Cap1"/>

...
<profile:securityCapability rdf:resource="#PlugInConfigProperty"/>

...
<profile:preference rdf:resource="#Pref1"/>

...
</rdf:Description>
</rdf:RDF>

user requirement. This means that SME exploits its
knowledge base and its reasoning engine to determine if
the capability can fulfil the requirement. In our case, SME
finds out that “Medieval Kingdom” can execute either by
installing some plug-ins on the client side or by not
installing them. On the other side, Bob has required a
service which does not install any plug-in on his laptop. It
is worth stating that these two features do not match
syntactically. Nevertheless, they are compatible from a
semantic point of view: if “Medieval Kingdom” supports
both execution settings, with and without plug-ins, it
certainly supports each of them and specifically the second
one. So, SME returns successfully reporting the security
property exhibited by “Medieval Kingdom”.

UbiCOSM introduces different forms of overhead
depending on the performance of the different UbiCOSM
middleware functions involved, from the access control
checks to semantic matching actions.

During the testing of the CESA prototype, we have
carried out several measurements to give an evaluation of
the overhead induced by UbiCOSM services. In particular,
CASM and SME introduce the main performance
penalties. Thus we here specifically focus on the evaluation
of their overhead.

In particular, with regard to CASM we have compared
the overhead introduced by the lazy and the eager update
strategies. We have verified that the adoption of an eager
strategy introduces a performance penalty of one
magnitude more than the adoption of a lazy one. Let us
note that the penalty is due to the fact that in the case of the
lazy strategy CASM has to calculate the current active
context view at any user resource access request time.

With regard to the SME overhead, it is worth stating
that semantic matching represents the main overhead
impact factor in terms of both memory and computational
consumption. This overhead, however, is counterbalanced
by the increased interoperability between system
components and by the possibility to support security
attribute disclosure and reasoning.

5. Conclusions and Ongoing Work
Effective service provisioning over the wireless Internet
requires the full visibility and the flexible management of
context information. Requirements for context visibility
start to be recognized in the security area also for
traditional fixed networks, where interesting novel
proposals are emerging to enhance protection techniques
with context awareness [19], [20]. By focusing on mobile
environments, UbiCOSM proposes and implements a novel
security model for context-centric access control that

exploits different types of metadata to express articulated
security strategies, separately from the application logic.
This separation of concerns increases flexibility,
dynamicity and reusability of middleware/service
components. In addition, the choice of the most proper
evaluation strategy allows administrators to tune the access
control overhead, which is acceptable for most wireless
Internet services, usually having no hard real-time
constraints.

First experiences in implementing services on top of
UbiCOSM are encouraging further research to extend the
middleware prototype. We are working on how to deal
with possible runtime conflicts among policies to be
enforced, and we are investigating and prototyping
solutions based on policy prioritization. Finally, we are
integrating UbiCOSM with mechanisms for inter-cell
mobility prediction based on IEEE 802.11 signal strength
variations, in order to anticipate the migration of (copies
of) shadow proxies towards the new locality and the
determination of the new active views in advance.

References
1. A.K. Dey, G.D. Abowd, “Towards a Better Understanding

of Context and Context-Awareness”, Proc. of CHI, The
Hague, The Netherlands, April 2000.

2. T. Rodden, K. Cheverst, K. Davies, A. Dix, “Exploiting
Context in HCI Design for Mobile Systems”, Proc. of
Workshop on Human Computer Interaction with Mobile
Devices, Scotland, May 1998.

3. P. Bellavista, A. Corradi, R. Montanari, C. Stefanelli,
“Dynamic Binding in Mobile Applications: a Middleware
Approach”, IEEE Internet Computing, Special Issue on
"Mobile Applications", Vol. 7, No. 2, March/April 2003.

4. P. Bellavista, A. Corradi, C. Stefanelli, "The Ubiquitous
Provisioning of Internet Services to Portable Devices", IEEE
Pervasive Computing, Vol. 1, No. 3, July-September 2002.

5. IKV++ Technologies AG, enago Open Service Platform,
http://www.ikv.de

6. P. Bellavista, A. Corradi, R. Montanari, C. Stefanelli,
“Context-Aware Middleware for Resource Management in
the Wireless Internet”, IEEE Transactions on Software
Engineering, Vol. 29, No. 12, December 2003.D.

7. R. Montanari, C. Stefanelli, N. Dulay, “Flexible Security
Policies for Mobile Agents Systems”, Microprocessors and
Microsystems, Elsevier Science, Amsterdam, Olanda, Vol.
25, No. 2, 2001.

8. N. Mitrovic, U. Arronategui Arribalzaga, “Mobile Agent
security using Proxy-agents and Trusted domains”, Proc. of
SEMAS 2002, Bologna, Italy, July 2002.

9. L. Gong, “Inside Java 2 Platform Security”, Addison
Wesley, 1999.

10. L. McGuinness, F. van Harmelen, OWL Web Ontology
Language Overview, W3C Recommendation 10 February
2004.

11. N. Damianou, N. Dulay, E. Lupu, M. Sloman, “The Ponder
Policy Specification Language”, Proc. of Policy 2001,
Springer-Verlag, LNCS 1995, pp. 18-39, Bristol, January
2001.

12. M. Winslett, T. Yu, K. E. Seamons, A. Hess, J. Jacobson, R.
Jarvis, B. Smith, L. Yu, “Negotiating Trust on the Web”,
IEEE Internet Computing, Vol. 6, No. 6,
November/December 2002.

13. A. Corradi, N. Dulay, R. Montanari, C. Stefanelli, “Policy-
driven Management of Mobile Agent Systems”, Proc. of
Policy 2001, Springer-Verlag, LNCS 1995, Bristol, January
2001.

