
Context-based Security Management for Multi-Agent Systems
Rebecca Montanari 1

Alessandra Toninelli 1

Jeffrey M. Bradshaw 2

1 Dipartimento di Elettronica, Informatica e Sistemistica (DEIS)
University of Bologna

Viale Risorgimento 2, 40136 Bologna, Italy
{rmontanari, atoninelli}@deis.unibo.it

2 Institute for Human and Machine Cognition (IHMC)

40 S.Alcaniz Street, Pensacola, FL 32502, USA
jbradshaw@ihmc.us

Abstract
Policies are being increasingly used for controlling the
behavior of complex multi-agent systems. The use of poli-
cies allows administrators to specify both agent permis-
sions and duties without changing source code or requiring
the consent or cooperation of the agents being governed.
However, policy-based control can encounter difficulties
when applied to agents that act in pervasive environments
characterized by frequent and unpredictable changes. In
this case, policies cannot be all specified a priori to face
any operative run time situation, but require continuous
adjustments to allow agents to behave in a contextually
appropriate manner. Current approaches to policy repre-
sentation have been restrictive in many ways, as they typi-
cally follow a subject-centric model, which assigns agent
permissions and obligations on the basis of agent
role/identity information. However, in the new pervasive
scenario the roles/identities of interacting agents may not
be known a-priori and most important, may not be infor-
mative or sufficiently trustworthy. We claim that the design
of policy-based agent systems for pervasive environments
requires a paradigm shift from subject-centric to context-
centric policy models. This paper discusses some issues
concerning the specification and enforcement of context-
driven policies and presents a novel context-based policy
approach that considers context as a first-class principle to
guide both policy specification and enforcement. In this
perspective, “context” explicitly appears in the specifica-
tion of security policies and context changes trigger the
evaluation process of applicable agent permissions and
obligations.

1. INTRODUCTION
Novel programming paradigms based on the agent comput-
ing model are increasingly being adopted for the engineer-
ing of complex distributed applications [1]. Software
agents acting on behalf of end-users can autonomously
fulfill user-specific goals, can execute in dynamic and un-
certain environments, and can operate within changing
organizational structures by responding in a timely fashion
and by adapting their behavior to environmental variations.

However, research on agent systems still has to address
a number of issues. With rare exception, today’s agents
have not been deployed in critical, long-lived, secure, or
high-risk tasks. Nor do they undertake missions that require
widespread agent collaboration among large numbers of
agents interacting in complex, unpredictable ways [2].

The non-transparent complexity and inadequate direct-
ability of agents remain a major reason for the slow uptake
of new research results in fielded agent systems [3]. In re-
sponse to this concern, agent researchers have focused in-
creasingly on developing means for controlling aspects of
agent autonomy in a fashion that can be both dynamically
specified and easily understood. Policies represent a prom-
ising technique to dynamically regulate a system’s behavior
without changing code or requiring the cooperation of the
components being governed [4]. Through policy, people
can precisely express the dynamic bounds within which an
agent is permitted to function autonomously and limit the
possibility of unwanted events occurring during operations.
Policies can be exploited to control agent-to-resource and
agent-to-agent interactions (authorization policies) and to
impose requirements upon agents to perform given actions
(obligation policies), thus ensuring that an adequate level
of predictability, security and responsiveness to human
control are maintained.

However, policy-based control of agent behavior can
encounter difficulties when applied to agents that act and
cooperate in pervasive and other highly dynamic environ-
ments. The design of agent systems needs to take into ac-
count the high heterogeneity of the agent execution envi-
ronments in terms of resources and computing devices and
the high dynamicity that causes frequent changes in the
agent execution context. In order to function adequately,
agents need to sense and reason about their current context
and dynamically adapt their behavior to rapidly changing
situations—in other words, they need to be context-aware.

In this case, policies cannot be all specified a priori to
face any operative run-time situation, but require dynamic
and continuous adjustments to allow agents to act in any
execution context in the most suitable way and to follow a
contextually-appropriate behavior. Controlling context-
aware agents by means of policies requires the specifica-

tion of actions that agents can or should perform whenever
the agent context of execution changes. Thus, whenever the
context changes, a new policy should be specified in order
for agents to adapt their behavior to meet the requirements
of the new context.

Current approaches to policy representation have been
restrictive in many ways. The specification of policies typi-
cally follow a subject-based approach where permissions
and obligations are assigned depending on the identity or
role of the agent requesting authorization or being required
to perform an action.

However, pervasive scenarios often consist of previ-
ously unknown agents that move and come dynamically
and whose identity may be underspecified or known to be
insufficiently trustworthy to allow decisions to be made
about what agents can or must do. In fact, it is almost im-
possible for policy-based agent system administrators to
know in advance the identities or roles of all agents that are
likely to interact and to request access to their managed
resources and services. Instead, administrators can more
easily define the conditions for making resources available
to agents and for determining agent resource visibility and
access according to the context of their operating condi-
tions.

We claim that the design of policy-based agent systems
for pervasive and other highly dynamic environments re-
quires a paradigm shift from subject-centric policy models
to context-centric ones. In this perspective, context explic-
itly appears as a key building element in the specification
of security policies and the context of execution should
determine the set of applicable agent permissions and obli-
gations. Instead of managing agent principals and their
policy constraints individually, administrators define for
each context the set of applicable permission or obliga-
tions. When an agent operates in a specific context, it in-
stantaneously acquires the set of permissions active for the
related context. When it changes its operating context, its
previous permissions are automatically revoked and new
permissions are acquired.

In this paper, we compare three approaches to policy
representation, reasoning, and enforcement, that have been
specifically designed and extensively tested for manage-
ment of multi-agent and distributed systems. In particular,
we highlight similarities and differences between Ponder,
KAoS, and Rei, and sketch out some general criteria and
properties for more adequate approaches to context-aware
policy specification and enforcement. The paper also pre-
sent the implementation of these criteria and properties
within our context-aware policy framework.

The paper is organized as follows. Section 2 highlights
the novel policy requirements for context-aware agent sys-
tems and analyses how some relevant well-known ap-
proaches to policy representation and enforcement, i.e.,
Ponder, KAoS, and Rei, deal with context information [5],
[6], [7]. The comparison allows us to sketch out some gen-
eral criteria and properties for more adequate approaches to

context-based policies. Section 3 presents our proposed
context-based policy model and its applicability is dis-
cussed in Section 4 through the implementation of a com-
mon example of authorization policy. Finally, in Section 5
we present some conclusions.

2. CONTEXT-BASED POLICIES

Novel Policy Requirements for Context-aware
Agents
Some initial research efforts are starting to recognize the
importance of using context information to secure perva-
sive and other highly dynamic distributed applications [8],
[9]. Context-based security is an emerging approach to
cope with the new security problems introduced by the
high dynamicity and heterogeneity that characterize perva-
sive and highly dynamic computing environments.

Traditional security solutions seem inadequate to rule ac-
cess to resources and interoperation among entities in cases
of frequent context changes. In particular, traditional sub-
ject-based access control systems exploit user identity or
role information to determine the set of user permissions.
Permissions are tightly coupled to the identity or role of the
subject requesting a resource access, whereas context in-
formation can only further limit the applicability of the
available permissions. This coupling requires security ad-
ministrators to foresee all contexts client users are likely to
operate. In pervasive environments where client users are
typically unknown and where context operating conditions
frequently change even unpredictably, the traditional ap-
proach to specify access control policy may lead to a com-
binatorial explosion of the number of policies to be written
and may force a long development time and can induce
potential bugs. This approach also lacks flexibility: new
access control policies need to be designed and imple-
mented from scratch for any user when new context situa-
tions occur.

Novel security solutions are required that consider con-
text as the criteria to deduce which policies to apply to a
subject acting in the system. Novel approaches should draw
inspiration from the RBAC model that exploits the concept
of role as a mechanism for grouping subjects based on their
properties [10]. In RBAC systems, permissions are first
associated with roles, and subsequently subjects are as-
signed to roles. We claim that, in a fashion analogous to
roles, contexts can provide an additional level of indirec-
tion between users and permissions. Permissions and obli-
gations are first associated to contexts and subsequently
subjects are associated to the contexts they are currently
operating in.

The exploitation of context as a mechanism for grouping
applicable policies (not as a limit to applicability of already
retrieved policies as in traditional access control solutions)
simplifies access control management by increasing policy
specification reuse and by simplifying policy update and
revocation.

The adoption of a context-based policy approach to con-
trol agent systems requires the definition of a complete
context-based policy model where with complete we mean
that the model can precisely identify the basic types of
policies required to control agents, can specify how to ex-
press and represent the supported policies and how to en-
force them. Some general properties have to be considered
during the development of context-based policy models for
controlling agent systems. We consider the following as
basic requirements:
• the ability to model and represent the contexts in

which agents operate and to which policies are associ-
ated to.

• the ability to define what actions are permitted or for-
bidden to do on resources in specific contexts (authori-
zations policies);

• the ability to define the actions that must be performed
on resources in specific contexts (obligations).

• the ability to dynamically associate agents with con-
texts.

Considering context in security is a very recent research
direction with only a few novel context-based policy model
proposals. Belokosztolszki et al. [8] define context as a
particular section of an access control application and ex-
ploit this notion in order to control information flow during
policy evaluation. In this way, they intend to prevent the
accidental or malicious overflow of information towards
non authorized entities. Covington et al. [9] propose to
generalize traditional role-based access control (RBAC), by
allowing policy designers to specify environmental context
through a new type of role called environmental role. Be-
cause permissions are associated to roles, which may be
both traditional roles or environmental ones, this model
aims at overcoming the inherent subject-centric nature of
RBAC.

However, the proposed solutions focus on the problem
of access control and cannot be exploited to govern and
control agent behavior. The aim of this paper is not to pro-
vide a general survey of the state-of-the-art in context-
based policy representation, but to focus on the analysis of
how context information is treated in Ponder, KAoS and
Rei. In particular, we first present Ponder which is one of
the most well-known policy-based systems for network
management that is being evaluated in several universities
and industrial organizations also for the control of agent
systems, followed by KAoS and Rei, both of which were
originally designed for governing agent behavior.

Context-awareness in Policy Models for Agent
Control

Ponder
Ponder is a declarative, object-oriented (OO) language that
supports the specification of several types of management
policies for distributed object systems, such as security
policies [5]. Ponder has been extensively deployed and
tested in several applications, including large enterprise

information systems, and is being evaluated also for the
control of agent systems [10]. A Ponder policy is a rule that
defines a choice in the behavior of a system. The rule es-
tablishes a relationship between a set of subjects and a set
of targets by defining how subjects can or must operate on
targets. Ponder uses the term subject to refer to users, prin-
cipals, or automated manager components, which have
management responsibilities, i.e., they have the authority to
initiate a management decision. A subject can operate on
target objects (resources or service providers) by invoking
methods visible in the target interface. Ponder distinguishes
between basic and composite policies. The fundamental
basic policy types are authorizations and obligations. In
particular, authorizations policies define “what operations a
subject is authorized to do on target objects” while obliga-
tion policies define “the actions that policy subjects must
perform on target entities when specific relevant events
occur”.

Ponder offers various possibilities to define contextual
constraints within policies, i.e., in which contexts policies
should be considered valid and applicable. The simplest
way to specify contextual information within a Ponder pol-
icy is to exploit the Ponder language construct named pol-
icy constraint. Policy developers can use the Ponder policy
constraint to define the conditions that must hold for the
policy to be applied. Developers can specify these condi-
tions in terms of both application state and environment
variables. Three different types of constraints can be speci-
fied on the basis of:
• Subject/target state – the constraint is based on the ob-

ject state as reflected in terms of object interface;
• Action/event condition – constraints can be based on

event parameter values in obligations or action parame-
ter values in authorizations;

• Time constraint – used to specify the time validity of a
policy.

Context is used to limit the applicability of the policy. For
example, let us consider an authorization policy that states
that from 2 p.m. to 6 p.m. Doctor Green’s patients can in-
voke a music playing service while they are located in the
waiting room of the doctor’s. The corresponding Ponder
authorization policy is shown in Figure 1a. In this policy,
several elements are related to context, such as location and
time information and kinds of elements that characterize
the involved entities, namely the qualification of the sub-
ject as “a patient of Doctor Green” and the type of service
(playing music).

In addition, Ponder allows to specify parameterized
context conditions through the definition of policy types.
Ponder policy types favor policy reusability in different
application deployment scenarios. Policy templates can be
used to encode common choices in agent behavior and thus
facilitate their reuse. An example of policy type is shown in
Figure 1b. It defines an authorization policy that rules the
access of a subject to a certain kind of service (target) on

the basis of location and time conditions. Once defined the
appropriate policy type, the developer will only have to
instantiate it for every combination of context conditions,
thus avoiding the burden of specifying a new policy for
each possible case.

The second possibility that Ponder offers to specify
context-based policies is to exploit the group policy type.
Ponder group policies aggregate authorization and obliga-
tion polices together on the basis of some unifying criteria.
For instance, we could group together all the policies that
govern the provisioning of services within the doctor’s
waiting room (see Figure 1c), thus establishing the context
as the guiding grouping principle.

inst auth+ playMusic {
subject s = /patients/doctorGreen_patients;
action invoke_service();
target /services/music_play;
when s.location = “waiting room” and time.between (“1400”, “1800”); }

type auth+ invokeService (subject s, target t, string t1, string t2) {
action invoke_service();

when s.location = “waiting room” and time.between (t1,t2); }

inst group waitingRoomGroup {
inst auth+ playMusic {
subject s = /patients/doctorGreen_patients;
action invoke_service();
target /services/music_play;
when s.location = “waiting room” and time.between (“1400”, “1800”);

}
inst auth- playVideo {

subject s = /patients/doctorGreen_patients;
action invoke_service();
target /services/video_play;
when s.location = “waiting room” and time.between (“1600”, “1800”);

}
}

a)

b)

c)

inst auth+ playMusic {
subject s = /patients/doctorGreen_patients;
action invoke_service();
target /services/music_play;
when s.location = “waiting room” and time.between (“1400”, “1800”); }

type auth+ invokeService (subject s, target t, string t1, string t2) {
action invoke_service();

when s.location = “waiting room” and time.between (t1,t2); }

inst group waitingRoomGroup {
inst auth+ playMusic {
subject s = /patients/doctorGreen_patients;
action invoke_service();
target /services/music_play;
when s.location = “waiting room” and time.between (“1400”, “1800”);

}
inst auth- playVideo {

subject s = /patients/doctorGreen_patients;
action invoke_service();
target /services/video_play;
when s.location = “waiting room” and time.between (“1600”, “1800”);

}
}

a)

b)

c)

Figure 1. Ponder authorization policies

While Ponder generally proves to be founded on a pow-
erful expressive model, especially for its capability to en-
able the flexible reusability of policy components, some
limitations may arise during the deployment and enforce-
ment of context-based policies. In fact, according to Ponder
distribution model, authorization policies have to be in-
stalled close to target objects, while obligation policies
have to be installed close to subject objects. Therefore,
even if the developer is allowed to define a set of policies
that can be conceptually driven by context, the Ponder pol-
icy deployment model does not reflect this approach being
essentially subject/target oriented [12].

Let us consider, for example, the policy group shown in
Figure 3c. and the run time situation of a patient of Doctor
Green trying to invoke the music playing service while
waiting within the room at 5 p.m. From a context perspec-
tive, both policies should be enforced because of the loca-
tion and time condition. However, policy evaluation is trig-
gered when the patient tries to invoke the music service.
The Ponder Access Controller Agent evaluates the contex-
tual conditions only at user access request time because it is
not actually context-aware. If then the patient tries to in-
voke the video service, the same conditions will be evalu-
ated again by the Access Controller Agent responsible for
the video service management without any possibility for
the Ponder policy framework to be aware that the same
context is still active. The subject/target oriented policy

deployment model does not avoid this second unnecessary
context condition check.

To summarize, Ponder seems to offer a powerful lan-
guage model that allows for the specification of context
information within policies and the conceptual manage-
ment of context-based groups of policies. However, the
subject/target-oriented deployment scheme prevents the
actual enforcement of a truly context-centric policy model.
Moreover, because Ponder does not adopt a semantic-based
approach, its expressive capabilities may not be flexible
enough to properly model context information and to con-
trol the context-driven behavior of agent systems.

KAoS
KAoS is a framework that provides policy and domain
management services for agents and other distributed com-
puting platforms [13], [14]. It has been deployed in a wide
variety of applications. KAoS policy services allow for the
specification, management, conflict resolution and en-
forcement of policies within agent domains. In KAoS, a
policy constrains the actions that an agent is allowed or
obliged to perform in a given context. Policies are currently
represented in OWL [15] as ontologies. In particular, the
KAoS policy ontologies distinguish between authorizations
and obligations. Each policy controls a well defined action,
while the subject, the action target and other conditions that
are used to narrow the scope of the action are all included
within the action description, defined as property restric-
tions on the action type.
In KAoS, context conditions must be directly specified as
property restrictions within the action definition. This
means that context information is used to limit the scope of
the action that is going to be authorized or obliged. Figure
2 shows the example policy we have previously described:
from 2 p.m. to 6 p.m. Doctor Green’s patients can invoke a
music playing service while they are located in the waiting
room of the doctor’s. Context-related elements, i.e., time
and location, and agent qualification (Doctor Green pa-
tient), are all defined as property restrictions on the con-
trolled action type. Once specified the action type, the ad-
ministrator can only define the corresponding policy to
allow/forbid or oblige/not oblige the agent to perform that
action. Let us note that the ontology-based approach of
KAoS allows for flexible definitions of context conditions.
For example, the restriction on the subject (denoted by the
property performedBy) includes both the location and the
qualification, i.e., patient, information within a single term.
The choice on how to express and possibly aggregate con-
text conditions is left to the policy designer through the use
of ontologies. It is worth noting that the action subject must
always be defined: in case it is not explicitly stated within
the action, then the framework assumes that the policy ap-
plies to every possible subject.
The KAoS action-based approach to policy specification,
which is particularly suited to control the behavior of
agents that are performing some tasks, may limit policy

reusability in scenarios where agents are unknown and act
in environments with frequent changes. Let us now con-
sider, for instance, a policy that only slightly differs from
the one described in Figure 2a: Doctor Smith’s patients are
allowed from 4 p.m. to 6 p.m. to access a music service
when they are located in the doctor’s waiting room.

Figure 2. KAoS policy specification

If compared with the previous policy, this one controls
the same action, i.e., accessing a music service, but context
conditions have changed as the time constraints apply from
4 p.m. instead of 2 p.m. and the location is Doctor Smith
waiting room. In this case, a new action, and consequently
a new policy, would have to be written from scratch to take
the new context conditions into account. As a general rule,
the definition of a new action is required for every possible
context, thus leading to the specification of an increasing
number of policies when context conditions are supposed
to change frequently and even unpredictably.

To solve the problem of how to govern the behavior of
previously unknown agents KAoS provides an additional
mean to specify policies. In particular, this problem is ad-
dressed in KAoS through the use of domains. In fact,
KAoS domain services enable to define domain-based
policies, i.e., policies that apply to all subjects belonging to
a certain domain. In particular, membership in domains can
be extensional, i.e., defined by explicit registration, or in-

tensional, i.e., defined by dynamic conditions or states or
properties that the agents belonging to the domain must
own. Hence, for instance, if a domain is defined of all
agents in a given location at a given time, any agent that is
in that location at a given time will automatically become a
member of that domain for so long as those conditions hold
for it, and will be subject to any policies defined on that
domain. The inherent subject-centric definition of inten-
sional domains can be useful to handle context information
but may limit the types of context that can be specified. In
fact, some context conditions, like for instance properties
regarding the state of an application, e.g., the number of
running threads, or the state of the surrounding world, e.g.,
date or weather information, cannot be expressed as agents
properties or states because they are not directly related to
the agent activity. For this kind of context conditions,
KAoS domain specification does not enable the flexible
definition of context-based policies.

As far as the policy enforcement model is concerned, at
present KAoS framework supports the enforcement of both
authorization and obligation policies by adopting an action-
based approach. The deployment model basically consists
of some basic components, i.e., Guards and Enforcers.
Each actor in the system is associated with a guard, which
is responsible to interpret policies and pass them on enforc-
ers. In particular, when the guard receives a new policy, it
determines the types of actions controlled by this policy
and takes appropriate decisions in order to install an en-
forcer for each type of action. The enforcer is in charge of
intercepting every tentative action of that type and of de-
termining whether the agent is authorized or not to perform
that action.

Rei
Rei is a policy framework specifically designed for policy
specification, analysis and reasoning in a pervasive envi-
ronment [7].1 Rei policy language allows to define the de-
ontic concepts of right, prohibition, obligation and dispen-
sation, which are formally expressed using the first order
logic.
A policy consists of several has rules.

has(Subject, PolicyObject)
The field Subject may be a URI identifying a certain entity
or a variable, allowing any entity that satisfies the policy
object conditions to own the corresponding policy object.
The construct denoted as Policy Object, which corresponds
to the concepts of right, prohibition, obligation and dispen-
sation, is represented as

PolicyObject(Action, Condition)
The field Condition within a policy object is used to ex-
press constraints about the actor, the action or the environ-
ment, e.g., context conditions.

1 Rei is currently being redesigned. The current analysis is based

on the available version of Rei.

<owl:Class rdf:ID=”ContextExample1Action”>
 <rdfs:subClassOf rdf:resource=”& action;AccessAction”/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty
rdf:resource=”&action;performedBy”/>
 <owl:allValuesFrom
 rdf:resource=”#DoctorGreenPatientLocatedInWaitingR
oom”/>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty
rdf:resource=”&action;accessedEntity”/>
 <owl:allValuesFrom rdf:resource=”#MusicService”/>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource=”#startingTime”/>
 <owlhasValue rdf:resource=””#14”/>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource=”#endingTime”/>
 <owl:hasValue rdf:resource=””#18”/>
 </owl:Restriction>
 </rdfs:subClassOf>

< policy:PosAuthorizationPolicy rdf:ID=”ContextExample1”>
 < policy:controls rdf:resource=”# ContextExample1Action”/>
 <policy:hasSiteOfEnforcement rdf:resource=”#ActorSite”/>
 <policy:hasPriority>10</policy:hasPriority>
</policy:PosAutihorizationPolicy>

Let us now examine Rei approach to policy specification,
with particular regard to the specification of context condi-
tions. Figure 3a represents the example policy stating that
Doctor Green patients are allowed from 2 p.m. to 6 p.m. to
access a music service when they are located in the doc-
tor’s waiting room. In the first row, a policy object model-
ing the right is created, while in the second row this right is
associated to the variable Var, so that every entity that is a
patient of Doctor Green and is currently located in the
waiting room is granted the permission to invoke the music
service. This construct may also be used to define group or
role based policies, by specifying the role or group charac-
teristics, which are typically domain dependent, as part of
the condition of the policy object.

right (invokeMusicService, (and(patient(doctorGreen, Var)), a)
(located(waitingRoom, Var), (timeBetween(14, 18)))

has(Var, right invokeMusicService, (and (patient(doctorGreen,Var), b)
located(waitingRoom, Var), timeBetween(14, 18))))

newConstraint (patient, [doctor:String, patient:String], [2])
has(john, right (phoning, located(john, room5))) c)

right (invokeMusicService, (and(patient(doctorGreen, Var)), a)
(located(waitingRoom, Var), (timeBetween(14, 18)))

has(Var, right invokeMusicService, (and (patient(doctorGreen,Var), b)
located(waitingRoom, Var), timeBetween(14, 18))))

newConstraint (patient, [doctor:String, patient:String], [2])
has(john, right (phoning, located(john, room5))) c)

Figure 3. Rei policy specification

As far as the specification of context conditions in con-
cerned, Rei allows the policy administrator to define appli-
cation specific constraints, since conditions are typically
dependent from the particular domain of application. This
is especially true for context conditions, which normally
have to be defined with regard to the specific application
they refer to. The definition of the constraint used as a pol-
icy object condition in Figure 3a is shown in Figure 3b.
The newConstraint clause allows to describe the parame-
ters of the condition and to specify the positions of those
parameters that the associated agent can be bound to. In our
example, the parameter patient, which is located in the sec-
ond position, can be bound to the subject of the policy by
means of variable unification. It is worth noting that all
policy objects only have one value, i.e., Subject, that can be
used for binding with variables in conditions. We believe
that this restriction may impose some limitations to the
definition of context conditions. In particular, in order to
assign a policy object to an agent, the only types of condi-
tion that can be dynamically evaluated are those directly
referring to the subject. For instance, let us consider the
following policy: “John is granted some rights, e.g., using
the printer or using the phone, depending on the room
where he is currently located in”. The rationale behind this
kind of policy definition is to allow actions to be performed
on the basis of conditions that are not directly related to a
certain subject, not even a role, but are determined by a
certain context. For the sake of simplicity, we consider here
a constant, i.e., John, to be the policy subject; however, the
following considerations are intended to hold even in case
of a variable subject. In order to specify a Rei policy rule (a
has association), we first need to know which are the

rooms where John is allowed to perform some actions, for
example using the phone. Let us suppose that this authori-
zation is valid for room n.3, n.5 and n.7: for each of them,
we will have to write a policy rule like the one shown in
Figure 3d. Let us now suppose that the rooms where the
policy is to be enforced are not three, but three hundred:
then, we will have three hundred identical policy rules all
referring to John as a subject. Moreover, if the building
administrator decides to change the policy for some rooms,
then the involved policy rules applying to John must be
revised. The problem is that we are not enabled to define
any variable within conditions except the subject, because a
policy object can only be associated with an agent and not,
for instance, with a place.

Rei offers another possibility to express context condi-
tions. In fact, to allow more contextual information to be
captured and permit a deeper understanding of the action
and its parameter, Rei provides a representation of action
that follows the pattern below:

action(ActionName, TargetObject, Pre-Conditions,
 Effects)

Pre-conditions are defined as the conditions that need to be
true before the action can be performed in a safe, consistent
and correct way. For instance, a pre-condition for the ac-
tion of invoking a music service is that the service is cur-
rently available. Pre-conditions may possibly be used to
express additional context conditions. However, this use of
pre-conditions may result to be not coherent and even
tricky with respect to their original purpose. In fact, be-
cause in Rei the execution of the action is supposed to be
performed outside the policy engine, pre-conditions are not
supposed to be directly evaluated by the policy engine.
Therefore, the use of pre-conditions to express context in-
formation would require the forcing of the original model
to evaluate pre-conditions inside the policy engine.
With regard to the deployment model, the Rei framework
provides a policy engine in charge of reasoning about the
policy specification, which currently supports both a
Prolog and a RDF-S interface. The framework does not
provide any enforcement model, since it has not been ex-
plicitly designed for this purpose.

3. A CONTEXT-BASED POLICY MODEL
We propose a policy model based on context to control the
behavior of agents that exploits context as a guiding princi-
ple for both policy specification and enforcement. Figure 4
depicts the conceptual model of policy, which is defined as
an association between a context and an action.
Agents enter a certain context, thus being automatically
associated to the corresponding action. The association
between a context and an action may be of two basic types,
i.e., a context may authorize or oblige an action. This defi-
nition is logically represented in Figure 5a using a Cmap
[http://cmap.ihmc.us/].

Context is a complex notion that has many definitions.
Here we consider context as any information that is useful
to characterize the state or the activity of an entity, in par-
ticular of an agent, and any useful information about the
world in which this entity operates. This may include in-
formation about agent location, about the characteristics of
the underlying device, about relationships with other agents
and possibly past interactions, and many others. In addi-
tion, context may include information about the state of an
application, e.g., the number of threads currently running
or the amount of used resources, or about the state of the
surrounding world, e.g., time, date or weather conditions.
Let us note that, while the first type of context is specifi-
cally bound to the agent activity or state, the latter is sup-
posed to hold regardless of the agent state because it de-
pends on characteristics of the external world where the
agent is currently situated.

The core ontology of context is depicted in Figure 5b.
The SimpleContext class represents a group of information
that all refer to the same kind of context, like for example
location information, time or details about the acting agent.
We have defined in our basic ontology some subclasses of
a simple context, like for example LocationContext, Time-
Context, IdentityContext, which respectively express in-
formation about the location of the agent, about the time
and about the identity, possibly the role, of the agent. Other
subclasses may be derived from the root class of context,
depending on the requirements of the specific application.
A CompositeContext corresponds to the concept of “set of
contexts” and it is composed of different single contexts,
which may be bound by an associative or disjunctive rela-
tion, or logically negated. We exploit the OWL constructs
that map the AND, OR and NOT operators on classes,
namely unionOf, intersectionOf and complementOf.

Non Active

Active

ActionsContext

AgentAgent

ActionsContext

Agent

Security Policy

Non Active

Active

ActionsContext

AgentAgent

ActionsContext

Agent

Security Policy

Non Active

Active

ActionsContext

AgentAgent

ActionsContext

Agent

Security Policy

Figure 4. Context-based security policy
The basic ontology of action includes a definition of the
action itself and the target on which the action is per-
formed, which is not mandatory. Various types of actions
may be sub-classed from the root class Action, on the basis
of the specific applications. In addition, the ontology may
be extended by defining properties that are directly related

to the execution of the action, like for instance an encryp-
tion mechanism on a communication action or the quality
of a printing action.

Figure 5. Context-based policy ontologies

We exploit the Web Ontology Language (OWL) to formal-
ize the specification of concepts and properties within the
model. Figure 6 shows an excerpt of the OWL specifica-
tion of the example policy that we have previously dis-
cussed.

It is worth stating that our model defines context as a
basic element within policy specification, since a policy
actually consists of two building blocks, i.e., context and
action. This approach significantly differs from the ap-
proaches we have previously discussed, where context in-
formation is essentially used to restrict the applicability
scope of a policy. In those cases, context typically repre-
sents an optional, but not fundamental element, while in
our model it is not possible to define a policy without a
context specification.

Another key issue regards the specification of the action
subject. Unlike the previously described models, our model
doesn’t allow for the explicit specification of the subject of
a policy, because we consider policies to be associated with
contexts and not with subjects. The subject of a policy is
implicitly defined as the agent for whom the policy context
conditions currently hold. For instance, the policy repre-
sented in Figure 6 applies to every agent that is located in
Doctor Green’s waiting room between 2 p.m. and 6 p.m.,
regardless of the agent specific identity This kind of ap-
proach is particularly suited to pervasive applications,
where interacting agents and interaction modalities may not
be always known in advance to the security administrator
that is in charge of controlling the behavior of agents.

Moreover, the adoption of an ontological approach to
the specification of context-based policies presents some
peculiar advantages with respect to a simple attribute-based
approach. In fact, it is possible to exploit the information
expressed within ontologies and the reasoning capabilities
of policy engines to define policies for general contexts
that will automatically apply also in specific sub-contexts.
Let us consider, for instance, a policy that apply to all stu-

a)

b)

dents of a faculty. This policy would automatically apply to
the PhD students of the computer science department with-
out the need of any further specification, because reasoning
over ontologies would allow to recognize that PhD students
are a subclass of students and the computer science de-
partment is part of the faculty structure.

Let us note that this context-based approach may also
be used to model traditional role/identity-based policies as
role/identity information can be represented as particular
kinds of contexts.

Policy enforcement model
Our model includes five middleware components that are
in charge of providing support for the specification, instal-
lation and enforcement of context-aware access control
policies. They are a context manager, a policy specification
and a policy installation module, a context-aware security
manager and an authorization manager.

<owl:Class rdf:ID=”ContextExample”
 <owl:UnionOf rdf:parsetype=”Collection”>
 <owl:Class rdf:resource=”#IdentityContextGreenPatient”/>
 <owl:Class rdf:resource=”#LocationContextGreen”/>
 <owl:Class rdf:resource=”#TimeContext1418”/>
 </owl:UnionOf>
</owl:Class>
<owl:Class rdf:ID=”MusicServiceAction”>
 <rdfs:subClassOf rdf:resource=”& action;AccessAction”/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource=”&action;accessedEntity”/>
 <owl:allValuesFrom rdf:resource=”#MusicService”/>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>
<policy:Authorization rdf:ID=”AuthC271”>
 <policy:activatedBy rdf:resource=”#ContextExample”/>
 <policy:controls rdf:resource=”#MusicServiceAction”/>
 ...
</policy:Authorization>

Figure 6. Context-based policy specification

The Context Manager (CM) is responsible for dy-
namically establishing the context conditions of any agent
and of the execution environments where agents currently
act, thus determining its currently active contexts. The
agent context is determined on the basis of agent location
and characteristics, device description and current condi-
tions that hold within the locality, like for instance time and
date. CM needs to coordinate with all the available sources
of context information, e.g., a calendar or an agent profile,
in order to define context for any agent that tries to perform
some action.

The Policy Specification Manager (PSM) provides se-
curity administrators with editing and browsing tools that
assist them in policy specification, revision, static decon-
fliction and application. We are currently implementing the
PSM editor as a graphical user interface that automatically
generates policy representation, thus relieving the user
from dealing with the complexity of direct policy specifica-

tion. Policy and context templates allow various classes of
policy and context definitions to be expressed as high-level
domain-specific abstractions.

The Policy Installation Manager (PIM) is in charge of
translating the semantic level policies generated by PM into
the platform specific representation, and to store them for
subsequent retrieval. In particular, PIM installs security
policies into the system by storing the specified associa-
tions between (set of) contexts and actions into a suitable
format, e.g., hash tables. Let us note that, unlike PSM that
relies on the use of OWL, PIM is a platform dependent
module and must be implemented according to the specific
requirements and characteristics of the underlying plat-
form.
The Context Aware Security Manager (CASM) is re-
sponsible for dynamically computing the set of valid access
control policies that apply to a mobile agent, on the basis of
holding context conditions. In particular, CASM coordi-
nates with the context management service (CM) in order
to be provided with up-to-date context information. For
each currently active context, CASM retrieves from the
information stored by PIM the associated permissions.
Among the whole set of retrieved permissions, CASM se-
lects the ones applying to each agent that is currently lo-
cated within the domain and generates a view of agents
permissions whose visibility is propagated up to the appli-
cation level. Different updating strategies for the permis-
sion view can be adopted, depending on how often context
information is refreshed [16]. In particular, an eager strat-
egy requires CASM to constantly coordinate with the con-
text management (CM) service in order to update permis-
sion views whenever any significant change in the involved
entity context occurs. This strategy is expensive especially
in environments with frequent context modifications, but
guarantees the prompt update of agents permissions. On the
other hand, a lazy strategy updates the permission set on
demand, i.e., when the agent requests access to a resource.
This reduces CASM management load, but may impose a
greater delay within agent-resource interaction due to con-
text updating and permission recalculating. The choice of
the most appropriate strategy to adopt depends on several
factors, ranging from service requirements to the character-
istics of the service deployment setting and to the trade-off
tolerated between service provisioning optimal choices and
context update overheads. Similar considerations guide
implementation of protection domains in JDK 1.2 security
architecture.

The Authorization Enforcement Manager (AEM)
mediates agent-resource interactions by granting or deny-
ing users the permission to access resources basing on the
active context-based policies holding in the system. Agents
are not enabled to directly access resources, but their access
requests are intercepted by AEM, which decides whether to
accept or deny the requests. In particular, AEM coordinates
with CASM in order to compute the set of permissions that
currently hold for the considered agent. Let us note that, in

case CASM keeps the active permissions view always up-
to-date (eager strategy), AEM only needs to check whether
the requested action is currently included in the list of au-
thorized actions, i.e., the permission view. Another key
issue is concerned with users mobility, and specifically
with possible inconsistencies arising when user context,
e.g., location, changes while the user is performing an ac-
tion. The most problematic case is when user is performing
an access and the newly determined contextual information
does not allow her to perform that access any more. In such
cases, it is necessary to reach a trade-off between security
guarantees and preservation of action consistency. At pre-
sent we privilege the integrity of transactions, hence the
newly determined context and its associated permissions
become active only when the user has completed the ac-
tion.

4. CASE STUDY
We have started to evaluate the feasibility of our proposed
approach by implementing it in a prototype application,
which supports access control for services available within
a certain locality, like for instance a building or a shopping
center.
Let us consider the following scenario. A newly opened
music store has launched a promotional campaign: during
the month of April, every Saturday afternoon, people visit-
ing the store are allowed to download an MP3 music file on
their portable MP3 reader.

Policy specification
According to our context-centric model, the corresponding
access control policy can be informally described as below:
• Composite Context = AND (month is april, day is sat-

urday, client is located in the store, NOT (client has al-
ready downloaded), device is mp3 reader)

• Action = access store music service
• Type of policy = authorization
The security administrator is allowed to specify the policy
using the PSM service. Using PSM interface, the policy
maker defines the context conditions that are going to drive
the policy, starting from the simple contexts, i.e., time, lo-
cation, history and device context, and subsequently defin-
ing their logical relation, i.e., AND, as the composite con-
text. Then, the controlled action must be defined, possibly
choosing from a set of application-specific predefined ac-
tions: in our case the action is a resource access action on a
music service. Finally, the administrator must define the
kind of policy that binds context and action, which in this
case is an authorization policy. PSM is in charge of auto-
matically producing the OWL specification of the policy,
which is shown in Figure 7.
The OWL policy specification is then passed to PIM in
order to translate it into a platform-specific format and to
subsequently store the associated information. In particular,
the prototype implementation of PIM parses the OWL pol-
icy description to extract the different kinds of information,

i.e., context information and action information, then it
encodes this information in a string format and finally store
it into hash-tables that map the association between context
and action.

Policy enforcement
Let us now consider the case of a client that wishes to ac-
cess the promotional music service on Saturday afternoon.
When the agent running on her device connects to the store
local network for the first time, the middleware compo-
nents interact to create the agent context. In particular,
CASM retrieves context information about the agent, e.g.,
location and used device, and about the environment, e.g.,
date and time, from CM. Then, on the basis of the policy
association table, CASM extracts the actions that result to
be authorized because the corresponding context is active.
These actions are included in a permission view that
CASM in charge of keeping up-to-date. For instance, if the
client exits the store, she automatically looses the right to
access the music service, due to her changed context condi-
tions. In addition, at start-up, the client agent is provided
with a reference to AEM that will be invoked in order to
access the service.

<owl:Class rdf:ID=”ContextPromo”>
 <owl:UnionOf rdf:parsetype=”Collection”>
 <owl:Class rdf:resource=”#LocationContextMusicStore”/>
 <owl:Class rdf:resource=”#DeviceContextMp3Reader”/>
 <owl:Class rdf:resource=”#TimeContextMonthApril”/>
 <owl:Class rdf:resource=”#TimeContextDaySaturday”/>
 <owl:Class>
 < owl:complementOf >
 <owl:Class
 rdf:resource=”#HistoryContextDownload”/>
 </owl:complementOf>
 </owl:Class>
 </owl:UnionOf>
</owl:Class>

<owl:Class rdf:ID=”PromoServiceAction”>
 <rdfs:subClassOf rdf:resource=”& action;AccessAction”/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource=”&action;accessedEntity”/>
 <owl:allValuesFrom rdf:resource=”#PromoService”/>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

Figure 7. Case study policy specification

When the agent running on the mp3 reader tries to access
the music service, its request is actually intercepted by
AEM, which decides whether to authorize or forbid the
action. In particular, AEM looks at the agent’s list of per-
mitted actions (permission view) that is maintained by
CASM. If the access action results in the list, which means
that all required context conditions are currently active for
the agent, then AEM grants the agent the right to access the
download service. Let us note that, in case the permission
view is not currently up-to-date (lazy strategy), AEM first
needs to coordinate with CASM in order to update the con-

text of the requesting agent. After the permission view has
been refreshed, AEM can properly evaluate the agent re-
quest.

5. CONCLUSIONS AND FUTURE WORK
The high dynamicity and heterogeneity of agent execution
contexts in pervasive scenarios raise new challenges for the
policy-based management of agents behavior. A paradigm
shift in the approach to policy representation and enforce-
ment is needed, to move the focus from the identity/role of
the acting agent to the context it is operating in. We have
proposed a novel context-based policy model, which treats
context as a first-class principle both in the specification
and enforcement of policies.

From our analysis it seems that the new context centric
approach to policy specification and management is start-
ing to attract increasing research efforts with some initial
proposals. However, further work is needed to investigate
the expressive capabilities of the considered models and to
evaluate their suitability and their extendibility to enable
effective control of context-aware agents.

ACKNOWLEDGMENTS
Our work is supported by the MIUR FIRB WEB-MINDS and the
CNR Strategic IS-MANET Projects. We thank Renia Jeffers,
Andrzej Uszok for valuable discussions on context-based policy
management for multi agent systems.

REFERENCES
[1] J.M. Bradshaw, An introduction to software agents, in

Software Agents, J.M. Bradshaw, Editor. 1997, AAAI
Press/The MIT Press: Cambridge, MA. p. 3-46.

[2] J.M. Bradshaw, et al., Making agents acceptable to
people, in Intelligent Technologies for Information
Analysis: Advances in Agents, Data Mining, and Sta-
tistical Learning, N. Zhong and J. Liu, Editors.
Springer Verlag: Berlin. p. 361-400 (2004).

[3] J.M. Bradshaw, et al., Taking back cyberspace. IEEE
Computer, July, pp. 89-92 (2003).

[4] S. Wright, et al. (eds.), Special Issue on Policy Based
Networking. IEEE Network, Vol. 16, No. 2, March,
(2002), 8-56

[5] N. Damianou, et al., The Ponder Policy Specification
Language, Proceedings of the Workshop on Policies
for Distributed Systems and Networks (POLICY
2003), Bristol, UK, 29-31 January, Springer Verlag,
LNCS 1995 (2001).

[6] Bradshaw, J.M., et al., Representation and reasoning
for DAML-based policy and domain services in KAoS

and Nomads. in Proceedings of the Autonomous
Agents and Multi-Agent Systems Conference
(AAMAS 2003). 2003. Melbourne, Australia: New
York, NY: ACM Press.

[7] L.Kagal, Rei: A Policy Language for the Me-Centric
Projec, HP Labs Technical Report, HPL-2002-270
(2002). http://www.hpl.hp.com/techreports/2002/HPL-
2002-270.html

[8] A. Belokosztolszki, et al., Policy Contexts: Controlling
Information Flow in Parameterised RBAC,
Proceedings of the IEEE Fourth International
Workshop on Policies for Distributed Systems and
Networks, (POLICY 2003), Lake Como, Italy, 4-6
June. IEEE Computer Society Press, pp. 99- 110
(2003). [9] M.J. Covington, et al., Securing Context-Aware
Applications Using Environmental Roles, Proceedings
of the 6th ACM Symposium on Access Control
Models and Technologies (SACMAT 2001), May 3-4,
Chantilly, Virginia, USA. ACM (2001).

[10] Sandu, et al., Role based access control models, IEEE
Computer, Vol.29, No.2, February (1996).

[11] A. Corradi, et al., Policy-driven Management of
Mobile Agents Systems, Proceedings of the Workshop
on Policies for Distributed Systems and Networks
(POLICY 2003), Bristol, UK, 29-31 January, Springer
Verlag, LNCS 1995 (2001).

[12] N. Dulay, et al., A policy deployment model for the
Ponder language, Proceedings of the IEEE/IFIP
International Symposium on Integrated Network
Management 2001, 14-18 May, pp.529 – 543 (2001).

[13] J.M. Bradshaw, et al., Terraforming cyberspace, in
Process Coordination and Ubiquitous Computing, D.C.
Marinescu and C. Lee, Editors. 2002, CRC Press.

[14] A. Uszok, et al., KAoS policy management for
semantic web services. IEEE Intelligent Systems,
2004. 19(4): p. 32-41.

[15] F. van Harmelen, et al., OWL Web Ontology
Language Reference, W3C Recommendation 10
February 2004. http://www.w3.org/TR/owl-ref/.

[16] A. Corradi, et al., Context-based Access Control for
Ubiquitous Service Provisioning, Proceedings of
the28th Annual International Computer Software and
Applications Conference (COMPSAC 2004), Hong
Kong, 28 – 30 September. IEEE Computer Society
Press, pp. 444-501 (2004).

