
Università degli Studi di Bologna

DEIS

Monitoring Business Constraints
with the Event Calculus

MARCO MONTALI FABRIZIO M. MAGGI

FEDERICO CHESANI PAOLA MELLO

WIL M. P. VAN DER AALST

June 4, 2012

DEIS Technical Report no. DEIS-LIA-002-11 LIA Series no. 100

Monitoring Business Constraints with the Event Calculus

MARCO MONTALI 1 FABRIZIO M. MAGGI 2

FEDERICO CHESANI 3 PAOLA MELLO 3

WIL M. P. VAN DER AALST 2

1Free University of Bozen-Bolzano
Research Centre for Knowledge and Data (KRDB)

montali@inf.unibz.it
2Eindhoven University of Technology

Department of Mathematics & Computer Science
{f.m.maggi | w.m.p.v.d.aalst}@tue.nl

3University of Bologna
Department of Electronics, Computer Science and Systems (DEIS)

{federico.chesani | paola.mello}@unibo.it

June 4, 2012

Abstract. Today, large business processes are composed of smaller, au-
tonomous, interconnected sub-systems, achieving modularity and robustness.
Quite often, these large processes comprise software components as well as hu-
man actors, they face highly dynamic environments, and their sub-systems are
updated and evolve independently of each other. Due to their dynamic nature
and complexity, it might be difficult, if not impossible, to ensure at design-time
that such systems will always exhibit the desired/expected behaviours. This in
turn trigger the need for runtime verification and monitoring facilities. These
are needed to check whether the actual behaviour complies with expected busi-
ness constraints.

In this work we present mobucon, a novel monitoring framework that tracks

streams of events and continuously determines the state of business constraints.

In mobucon, business constraints are defined using ConDec, a declarative pro-

cess modelling language. For the purpose of this work, ConDec has been suit-

ably extended to support quantitative time constraints and non-atomic, dura-

tive activities. Then, the logic-based language Event Calculus (EC) has been

adopted for the formal specification of constraints, and a light-weight, logic

programming-based EC axiomatization has been exploited for dynamically rea-

soning about partial, evolving execution traces. mobucon has been integrated

within the operational decision support architecture of ProM. To demonstrate

the applicability of our proposal, we provide also a concrete case study dealing

1

with maritime safety and security.

Keywords: Business Constraints, Event Calculus, Runtime Verification, Mon-

itoring, Operational Decision Support

Contents

1 Introduction 4

2 The ConDec Notation 5
2.1 ConDec models . 6
2.2 Constraints . 6
2.3 Extending ConDec with Metric Constraints and Non-Atomic Activities 9

3 The Event Calculus 10
3.1 A Brief Introduction to EC . 10
3.2 The EC Ontology . 11
3.3 EC Theories . 12
3.4 Reasoning About EC Theories . 13

4 Formalizing ConDec in the Event Calculus 14
4.1 Process Execution Traces . 14
4.2 Formalizing the Activity Lifecycle . 15
4.3 Business Constraint Instances and Their States 18
4.4 Formalization of ConDec Constraints 19

4.4.1 Existence Constraint . 20
4.4.2 Absence Constraint . 21
4.4.3 Metric Response Constraint 22
4.4.4 Metric Chain Response Constraint 23

4.5 Implementation . 23

5 Case Study 25
5.1 Monitoring the behavior of a vessel 25

5.1.1 Passenger Ships . 26
5.1.2 Cargo Ships . 28

5.2 Benchmarks and Performance Evaluation 29

6 Related Work 32

7 Conclusion 34

DEIS Technical Report no. DEIS-LIA-002-11 LIA Series no. 100

1 Introduction

Many systems operate today in a dynamic, complex and interconnected environ-
ment. Larger systems are composed of smaller systems and evolve over time. These
characteristics make it difficult to ensure that the composed system behaves as ex-
pected. Nevertheless, organizations need to guarantee the correct and safe execution
of processes. For example, new legislation is forcing organizations to put more em-
phasis on compliance. Moreover, there is a continuous pressure to meet deadlines
and improve response times. We us the term (business) constraint [14] to refer to
any rule that restricts the set of acceptable behaviors.

Some constraints can be enforced by an explicit and machine-interpretable model
representing the acceptable execution flows for one system in isolation. However,
it is unreasonable to think that all the constraints can be incorporated in the exe-
cutable description. First, the integration of diverse and heterogeneous constraints
would quickly make models unreadable and tricky. This difficulty would become
even more critical when system behavior is modeled using procedural, workflow-like
approaches, as business constraints are inherently declarative [18, 15]. Second, busi-
ness constraints often target uncontrollable aspects, such as activities carried out by
internal entities working in an autonomous way (e.g., people) or by external compo-
nents, independently from the system itself. Nevertheless, as argued by [22], detailed
information about the executed activities of a system is nowadays stored and made
available in high-quality event logs. This makes it possible to apply process mining
[23] techniques to “evaluate all events in a business process, and do so while it is
still running”. The runtime aspect is of particular importance: non-compliant state
of affairs could be associated to wrong behaviors, dangerous situations or fraud;
they must be therefore promptly detected, possibly generating suitable alerts and
triggering recovery or compensation mechanisms. The application of process mining
techniques to monitor and guide running cases is relatively new as most authors
and systems focused on offline analysis, The application process mining techniques
at runtime is referred to as operational (decision) support [22]. Operational support
helps business practitioners in the evaluation of all relevant factual data, not only
of selected samples, and works in a push-button way.

In particular, operational support exploits process mining techniques to check
conformance, predict the future and recommend what to do next. In the context
of this work, we focus on the first task, proposing a novel verification framework,
called mobucon (MOnitoring BUsiness CONstraints), able to dynamically monitor
streams of events characterizing the process executions (i.e., running cases) and check
whether the constraints of interest are currently satisfied or not. mobucon relies
on the Event Calculus (EC) [10, 20] as a logic-based, expressive language for the
formal specification of constraints, and on a light-weight, logic programming-based
EC axiomatization for dynamically reasoning about partial, evolving traces. Unlike

4

approaches that bind the notion of constraints violation to logical inconsistency
(thus halting when the first violation is encountered), mobucon provide continuous
support, without interrupting its functioning even after a violation. This is desirable,
because the monitored system evolves in an autonomous manner, and there is no
guarantee that it will halt when a violation is encountered.

To demonstrate the potential of our approach, we show how mobucon can be
equipped with an EC-based formalization of ConDec [18], a graphical language for
the declarative and open specification of business constraints. In particular, we focus
on an extended version of ConDec which supports quantitative time aspects, such
as delays and deadlines [15, 14]. We do not tackle data-related aspects, but they
can be incorporated in our approach.

mobucon has been fully implemented inside ProM [24], one of the most widely
used process mining frameworks. ProM 6 embeds an operational decision support
infrastructure. It can be applied to monitor any system whose dynamics is repre-
sented by event streams. To demonstrate its applicability, we present a case study
in the context of maritime safety and security, where constraints pose requirements
on the behavior of vessels that cross a specific area.

The remainder is organized as follows. Sects. 2 and 3 provide some preliminaries,
introducing the ConDec language and the EC. Sect. 4 discusses how ConDec con-
straints and process execution traces can be formalized as an EC theory, and how
mobucon has been implemented inside the ProM operational support architecture.
Sec. 5 then discusses the application of the framework in the context of maritime
safety and security. An overview of related work and a conclusion complete the
paper.

2 The ConDec Notation

We provide a brief introduction to ConDec. For a comprehensive description of the
language and its features, including the complete listing of all constraints supported
by the language, we refer the interested reader to [18, 16, 14].

ConDec is a graphical, constraint-based, declarative language for the specification
of processes. Instead of rigidly defining the control flow, it focuses on the (minimal)
set of rules that must be satisfied in order to correctly execute the process. It hence
accommodates flexibility by design, providing a set of modeling abstractions that
suitably mediate between control and flexibility.

Differently from procedural specifications, where activities can be interconnected
by means of sequence patterns, mixed with constructs that explicitly tackle the split-
ting and merging of control flows, ConDec provides a number of control-independent
business constraints to interconnect activities, alongside the more traditional ones.
It is possible to use constraints referring to the future or to the past, as well as
constraints that do not impose any ordering among activities. Furthermore, Con-

5

Dec models are open: activities can be freely executed, unless they are subject to
constraints. On the one hand, openness guarantees flexibility: all the executions
that do not violate any constraint are implicitly supported by the business process.
On the other hand, to tune the degree of openness supported by the model, suitable
abstractions are dedicated to explicitly capture not only what is indispensable, but
also what is forbidden. In this way, the modeler is not bound to explicitly enumer-
ate the acceptable executions and models remain compact: they specify the desired
and undesired events, leaving unconstrained all the courses of interaction that are
neither mandatory nor forbidden.

Even if concurrency constructs are not explicitly present in the ConDec nota-
tion, concurrency is implicitly supported at the best: as long as the stakeholders
involved in a process instance behave within the boundaries imposed by the ConDec
constraints, they are free to choose the most appropriate way of executing activities.
For example, a ConDec constraint stating that “activities a and b must coexist in
the same process instance” supports executions in which neither a nor b are exe-
cuted, or executions in which a and b are both executed in any possible ordering,
including the case in which they are executed in parallel.

2.1 ConDec models

A ConDec monitoring model is composed of a set of business constraints to be
monitored, applied to a set of activities. In the basic setting, each activity represents
an atomic units of work and is therefore traced by means of a single event occurring
at some time point during the execution of a case. In the following, we first give
an overview of ConDec constraints applied over atomic activities, and then discuss
extensions of such basic setting that are fully covered by our monitoring framework.

A ConDec model is typically designed in two steps. First, the relevant activities
of the application domain are elicited and inserted into the model. At this stage, the
model is completely unconstrained, and the activities can be performed an arbitrary
number of times, in whatever order (flexibility). Then, ConDec constraints are added
to capture the business constraints of the system, leading to a partially closed model
(compliance).

2.2 Constraints

To support different application domains, ranging from closed, prescriptive settings
to more flexible, adaptive ones, ConDec supports a variety of business constraints.
They are grouped into four families: existence, choice, relation and negation con-
straints. Existence constraints are unary cardinality constraints expressing how

6

many times an activity can or must be executed. For example, the ConDec model

2..∗

get info

0

publish info

contains an existence 2 and absence 1 constraints, specifying that activity get info
must be executed twice and that activity publish info should not be executed at
all (i.e., it is forbidden to execute it once). Such constraints are parametric in the
actual numbers; in the general case, existence N states that the involved activity
must be executed at least N times, while absence N states that the involved activity
can be executed at most N − 1 times. Choice constraints are an extension of exis-
tence constraints that tackles multiple activities at the same time; more specifically,
they are n-ary constraints expressing that one or more activities must be executed,
choosing them inside a set of possible alternatives.

Relation constraints are binary constraints requiring the execution of some ac-
tivity when certain circumstances hold. In particular, every time the source activity
of the constraint is executed, the relation constraint expects the execution of another
(target) activity. As shown in Tab. 1, depending on the type of relation constraint,
additional requirements may be imposed on the target activity, hardening or soft-
ening the constraint.

Furthermore, it is worth noting that relation constraints cover all possible quali-
tative temporal relationships among two distinct activities: responded existence does
not impose any ordering, response requires an “after” ordering, while precedence (not
shown in the Table, but included in Fig. 1) imposes a “before” ordering. In fact, the
basic version ConDec only supports a qualitative notion of time: constraints could
specify the expected relative positions among two event occurrences, but they can-
not express with metric distances between them. This limitation was due a result
of the LTL-based semantics of the initial language. Later in this paper, we show
that this limitation can be removed by using the Event Calculus as a semantical
foundation.

Another important aspect of the language is that relation constraints can be gen-
eralized in such a way that multiple source activities and/or multiple target activities
can be interconnected by a single constraint. In this case, the constraint is called a
branching constraint. The semantics of branching corresponds to disjunction among
event occurrences, which translates in the following behavior: a branching on the
source side means that the constraint triggers whenever one of the source activities
is executed, whereas a branching on the target side implies that the constraint is
satisfied by the (proper) execution of any target activity. For example, a branching
chain response that has a as source and b and c as targets is satisfied if, whenever a
is executed, one among b and c is executed next. In other words, constraints with
a branching target contain an implicit choice.

Negation constraints are the negative version of relation constraints, since they

7

a •−−−− b
Responded existence When a is
executed, so must b, either before
or afterwards

a •−−−−‖ b
Responded absence If a is exe-
cuted, b can be never executed in
the same case

a •−−−I b
Response Every time a is exe-
cuted, b must be eventually exe-
cuted as well

a •−−−I‖ b
Negation response When a is ex-
ecuted, b cannot be executed after-
wards

a •===I b

Alternate response Every time a
is executed, b must be consequently
executed, before a further occur-
rence of a

a •===I‖ b

Negation alternate response If
a is executed twice, b cannot be ex-
ecuted between the two occurrences
of a

a •=−=−=−I b

Chain response Every time a is
executed, b must be executed next
(i.e., as the first consequent activ-
ity)

a •=−=−=−I‖ b

Negation chain response Every
time a is executed, b cannot be ex-
ecuted next (i.e., as the first conse-
quent activity)

Table 1. Some ConDec relation constraints, together with their corresponding
negated version

deliver
orderpay

order
submit
order

choose
good send

receipt

negation response

precedence (1)
precedence (2)

responded existence

response

Figure 1. An order management process in ConDec

forbid the execution of some activity when a certain state of affairs is reached.
Tab. 1 shows the correspondence between some relation constraints and their neg-
ative counterpart; the parallel clearly attests that each negation constraint forbids
the presence of an activity where the same activity is expected by the corresponding
positive constraint. Notice also that negation constraints can branch as well, with
the same disjunctive semantics adopted for relation constraints.

Fig. 1 shows a sample process modeled in ConDec. It deals with the flexible
management of an order. A customer has the possibility of adding items to an order
by means of the choose good activity, of submitting the order to the seller, and of
paying it. The seller, in turn, handles the delivery of orders and of the corresponding
payment receipts. The execution of activities is governed by constraints, which
implicitly identify the acceptable courses of execution. In particular, an order can
be submitted only if at least one good has been chosen (precedence (1)), and no
further goods can be chosen after having submitted an order (negation response).
An order can be paid only if has been previously submitted (precedence (2)), and
the payment triggers two expectations: the order must be delivered either before
or afterwards (responded existence) and a receipt must be consequently sent as well
(response).

This example shows the flexibility of ConDec: the same model accommodates

8

many possible executions. For example, it is acceptable that a case is ended by the
customer before submitting an order, or after having submitted an order without
paying it (but when the order is paid, the seller is expected to deliver the order and
the receipt). Hence, trace choose good → choose good → submit order is compliant
with the model. Trace choose good → submit order → choose good is instead non-
compliant: it violates the negation response constraint. Thanks to the loose nature
of the responded existence constraint, the model seamlessly supports the situation
in which the seller waits for the payment before delivering the order, but also the
case in which an order is delivered before the payment (trusted customer) or even
without the payment (free gifts orders).

2.3 Extending ConDec with Metric Constraints and Non-Atomic
Activities

The basic ConDec notation has been extended to deal also with a non-atomic model
of activities [16, 14], quantitative time constraints [15], and activity-related data
as well as data-aware conditions [14]. In this work, we mainly focus on the first
two extensions, showing how they can be both formalized in the EC for monitoring.
Nevertheless, the approach used for modeling non-atomic activities can be exploited
to incorporate data-aware conditions as well.

Non-atomic, durative activities are activities whose execution spans over a time
period and is driven by multiple event occurrences. Their incorporation in the
language therefore requires three steps: (i) the identification of the atomic events
characterizing the execution of an activity; (ii) the definition of the activity lifecycle,
i.e., a description of the acceptable orderings in which such events may occur; (iii) an
extension of the graphical notation to properly handle non-atomic activities. In this
paper, we adopt the simple activity lifecycle proposed by Pesic for ConDec but the
approach is seamlessly able to cover more complex lifecycles as well. In this lifecycle,
each activity instance is associated to a start event, marking the beginning of the
activity instance, and a consequent completion or cancelation event, respectively
marking the proper or premature termination of the activity instance. These three
event types are connected by the following lifecycle constraints:
• activity instance termination - every start event must be eventually followed

by a corresponding single completion or cancelation event;
• completion consistency - every completion event must be preceded by a corre-

sponding single start event;
• cancelation consistency - every cancelation event must be preceded by a cor-

responding single start event.
Notice that the lifecycle does not only impose a suitable ordering among events, but
also requires that there is a one-to-one matching between every start event and a
consequent completion or cancelation one.

9

While non-atomic activities are common in a multitude of different domains,
especially those in which complex processes are modeled at multiple levels of ab-
straction, quantitative time constraints are especially interesting in the context of
monitoring. In fact, monitoring is not concerned with the enforcement of a desired
behavior, but rather in checking whether an uncontrollable process instance is evolv-
ing within the expected behavioral boundaries. As illustrated by our case study in
Sec. 5, it is common for business constraints to incorporate metric time aspects,
such as delays and deadlines. As proposed in [15], time-ordered ConDec constraints
can be augmented with metric time aspects, by annotating them with two numerical
values that delimit the time span inside which the triggered constraints has effect.
This time span is interpreted as relative with respect to the time at which the source
activity of the constraint is executed. For example, we can easily extend the order
management process shown in Fig. 1 to state that when an order is paid, the receipt
must be sent between 2 and 4 time units after the payment. The response constraint
looks, in this case, as follows:

pay order
(2,4)
•−−−I send receipt

3 The Event Calculus

We provide an overview of the basic concepts underlying the Event Calculus (EC),
which is the formal framework underlying mobucon. In particular, we introduce
the calculus, describe its main primitives (called the EC ontology) and then sketch
the problem of monitoring EC specifications, relating it to deductive reasoning.

3.1 A Brief Introduction to EC

In 1986, Kowalski and Sergot [10] proposed the EC as a general framework to reason
about time, events and change, overcoming the inadequacy of time representation
in classical logic. It adopts an explicit representation of time, accommodating both
qualitative and quantitative time constraints. Furthermore, it is based on (a frag-
ment of) first-order logic, thus providing great expressiveness (such as variables and
unification). The three fundamental concepts are that of event, happening at a point
in time and representing the execution of some action, and of properties whose va-
lidity varies as time flows and events occur; such properties are called fluents. An
EC specification is constituted by two theories:

• a domain-independent general theory axiomatizing the meaning of the predi-
cates supported by the calculus, i.e., the so called EC ontology ;

• a domain theory which exploits the predicates of the EC ontology to formalize
the specific system under study in terms of events and their effects, i.e., fluents.

10

happens(Ev, T) Event Ev happens at time T

holds at(F, T) Fluent F holds at time T

initially(F) Fluent F holds in the initial state of the system

initiates(Ev, F, T) Event Ev initiates fluent F at time T

terminates(Ev, F, T) Event Ev terminates fluent F at time T

Table 2. The basic Event Calculus ontology

Our domain theory will focus on the formalization of the ConDec language.

Starting from the seminal work of Kowalski and Sergot, a number of EC dialects
have been proposed [19] and a plethora of domain-independent theories have been
developed to formalize them and provide reasoning capabilities. In this work, we
abstract away from the domain-independent theory, and limit ourselves to describe
which predicates are provided by the EC ontology. Since the majority of EC-based
approaches rely on the Horn clause fragment of first-order logic with negation as
failure [6], we will use Prolog as the specification language.

3.2 The EC Ontology

[20] intuitively characterizes the EC as “a logical mechanism that infers what is true
when, given what happens when and what actions do”. These are the three aspects
tackled by the EC ontology, which contains the predicates shown in Tab. 2.

“What actions do” is the domain knowledge about actions and their effects. It is
expressed inside the domain theory and captures how the execution of actions (i.e.,
the occurrence of events) impact the state of fluents. In the EC terminology, the
capability of an event to make a fluent true (false respectively) at some time is for-
malized by stating that the event initiates (terminates) the fluent. More specifically,
when an event e occurs at time t, so that initiates(e, f , t) and f does not already
hold at time t, then e causes f to hold. In this case, we say that f is declipped at
time t. There is also the possibility to express that some fluent holds in the initial
state, using the initially predicate. Conversely, if terminates(e, f, t) and f holds at
time t, then e causes f to not hold anymore, i.e., f is clipped at time t. Note that
fluents still hold when they are clipped, but they do not hold at the time they are
declipped, i.e., the maximal validity interval of fluents are left-open and right-closed.

“What happens when” is the execution trace characterizing a (possibly partial)
instance of the system under study. An execution trace is composed of a set of
occurred events. As in the case of ConDec, the basic forms of EC assume that events
are atomic, i.e., bound to a single time point. In particular, an execution trace is
composed of a set of happens predicates, listing the occurrences of events and their

11

corresponding timestamps. Concerning timestamps, the EC adopts a time structure
with a minimal element, usually associated to time point 0, that represents the initial
state of the system. Since event occurrences are associated to discrete timestamps,
we rely on the natural numbers (N0) to represent time values. The mapping of a
real timestamp to a corresponding number depends on the chosen time granularity
(such as milliseconds or days). E.g., by choosing ms as the time granularity, each
timestamp ts could be mapped to the number of milliseconds between 1/1/1970
00:00 and ts.

The combination of the domain knowledge and a concrete execution trace leads
to infer “what is true when”, i.e., the intervals during which fluents hold. The
holds at(f , t) predicate of the EC ontology is specifically used to test whether f
holds at time t.

3.3 EC Theories

An EC theory exploits the predicates of the EC ontology in order to formalize how
domain-specific events affect domain-specific fluents. In our setting, it is constituted
by a logic program whose clauses define the initial state of the system and relate
the occurrence of events with the initiation and termination of fluents, possibly
providing a set of conditions that should be met to effectively declip or clip them.
As usual, variables are universally quantified with scope the entire clause. Hence,
the fact initiates(e, f, T)1 states that event e initiates f at every time (with the
proviso that f is not already holding; in this case, e has no effect). A simple yet
nontrivial example of EC theory is provided in the following example. Sec. 4 will
present an EC theory which formalizes ConDec.

Example 1. Let us consider a system characterized by a single payment event,
used to inform the system that some monetary transaction has occurred: pay(P)
represents a transaction of P euros. We would like to infer, timepoint by timepoint,
the total amount of exchanged euros. In the EC, we can answer this question by
introducing a multi-valued fluent tot(V) to represent that the current total amount
corresponds to V , and use the following EC theory to relate it to the payment event:

initially(tot(0)).

terminates(pay(P), tot(OV), T).

initiates(pay(P), tot(NV), T)← holds at(tot(OV), T) ∧NV = OV + P.

The first clause models that the total amount is initially 0. The second clause states
that when a payment event occurs, the currently computed total ceases to hold. The
third clause updates the total amount by initiating a new fluent whose amount cor-
responds to the current amount plus the paid euros.

1Which corresponds to clause initiates(a, f, T)← true.

12

events' effects
[initiates/terminates]

validity of fluents
[holds_at]

EC
abductive
reasoning

initial state
[initially]

trace
[happens]

(a)

events' effects
[initiates/terminates]

EC
backward
reasoning

initial state
[initially]

trace
[happens]

validity of fluents
[holds_at]

(b)

events' effects
[initiates/terminates]

EC
reactive

reasoning

initial state
[initially]

partial trace
[happens]

evolution of fluents
[holds_at]

(c)

Figure 2. Abductive, backward and reactive reasoning in the EC setting

3.4 Reasoning About EC Theories

Two main reasoning tasks are usually exploited in the EC setting: abductive and
deductive reasoning [20]. Abductive reasoning (Fig. 2(a)) starts from an EC domain
theory and a query representing a desired state of affairs (expressed as a conjunc-
tion of [¬]holds at predicates), and tries to generate a sample trace which respects
the domain theory and at the same time achieves that state of affairs. Conversely,
deductive reasoning (Fig. 2(b)) takes an external trace and combines it with an
EC domain theory, inferring the validity intervals of fluents and answering to given
queries (again expressed as conjunctions of [¬]holds at predicates). Usually, deduc-
tive reasoning is carried out in a starting from the query and reasoning backward.

In our work, we are interested in exploiting the EC as a monitoring framework,
which requires a reasoning paradigm able to account for a dynamic, evolving domain.
Indeed, monitoring focuses on a running execution, which cannot be described by a
single, complete trace, but by a stream of event occurrences. Second, there is no ex-
plicit query, because the purpose is to track the running execution, inferring how the
occurring events impact on the evolution of fluents. Therefore, monitoring calls for
reactive reasoning (Fig. 2(c)), where fluents’ validity intervals are revised/extended
as new event occurrences get to be known. One could think that reactive reasoning
can be simply reduced to an iterative application of backward reasoning, where the
query is always bound to true. While this approach would in principle work, it is
computationally expensive, because it must be restarted from scratch every time the
trace is updated, completely forgetting the previously calculated result. This makes
backward deductive reasoning practically inapplicable even for small-size problems.

[5] studied this issue in the context of active temporal databases, where the dy-
namic acquisition of new facts changes the validity of timed data. In particular,
they showed the inefficiency of deductive reasoners when dealing with such kinds
of update, and proposed an alternative reasoning paradigm, which caches the com-
puted results for future use. In particular, they developed a Prolog-based Cached
EC (CEC), which cashes the MVIs of fluents. An MVI is a Maximal Validity In-
terval inside which a fluent uninterruptedly holds. Upon a new event occurrence,

13

Figure 3. The evolution of a (multi-valued) fluent as graphically depicted by mobu-
con

CEC exploits the cached MVIs to compute the new result. mobucon adopts a
CEC-inspired implementation for monitoring EC-based specifications (see Sec. 4.5).

Example 2. Let us consider the EC theory described in Ex. 1, and a specific stream
of events. At the beginning of the execution, CEC infers that a total value of 0
has an MVI spanning from time point 0 to an unknown future time point (∞ if the
execution remains quiescent). Using notation f(t1,t2] to state that fluent f has an
MVI starting from t1 and ending in t2, we thus have: Res∅ = {tot(0)(0,∞]}. Now
suppose that a payment of 50 euros occurs at time 3. According to the EC theory,
the current total value of 0 is clipped, and a new total amount of 50 is declipped:
Res{happens(pay(50),3)} = {tot(0)(0,3], tot(50)(3,∞]}. Finally, another payment event of
70 euros happens at time 7, and CEC extends the previously computed result as fol-
lows: Res{happens(pay(50),3),happens(pay(70),7)} = {tot(0)(0,3], tot(50)(3,7], tot(120)(7,∞]}.
Fig. 3 shows how mobucon visualizes the evolution of the multi-valued fluent. For
convenience, all the MVIs related to different total values are grouped together, thus
giving an intuitive idea of how values change over time.

4 Formalizing ConDec in the Event Calculus

In this section we show how the EC can be used to formalize ConDec. As mentioned
in Sect. 2.3 this formalization overcomes limitations of the classical LTL-based for-
malization, e.g., the metric time extension allows for the specification of arbitrary
intervals, e.g., after each occurrence of activity a, activity b should happen within
50 time units. We discuss the representation of process execution traces, and then
focus on ConDec constraints. The core idea of the formalization is to capture the
evolution of multiple constraint instances, created and manipulated by the occur-
ring events. This enables a fine grained assessment of “how much” a running case
is complying with the constraints model under study.

4.1 Process Execution Traces

A plethora of systems supporting the execution of multi-party interactions and ac-
tivities provide logging capabilities. For example, most information systems log all

14

the events tracing the execution of business processes inside the organization.
On the one hand, each organization is characterized by its own specific events,

whose semantics and content depends on the domain, and whose format is de-
termined by the underlying information system. On the other hand, all systems
share a set of common abstractions, such as the ones of execution trace and event.
Throughout this work, we will rely on a small number of such abstractions, which
are widespread across different domains. They correspond to the minimal set of
information needed to trace the execution of non-atomic activities. In particular,
we will take into account, for each event occurrence (or event instance): the event
type, an event instance identifier, the name of the involved activity, and the times-
tamp at which the event instance has occurred. We assume that the identifier is
used to correlate event instances that belong to the same lifecycle, i.e., to bind each
start event instance to a corresponding cancelation/completion ones. The event
type corresponds to e (“executed”) for atomic activities, whereas it corresponds to
one of the characteristic lifecycle event types (s for “start”, x for “cancelation”,
c for “completion”) for non-atomic ones. An execution trace, which is simply a
set of correlated events (e.g., a business process case), can be then formalized in
the EC by means of happens predicates. More specifically, an execution trace T
is a finite set T = {happens(ev(idi, typei, ai), ti) | id is an event identifier, type ∈
{e, s, x, c}, ai is an activity name, ti is a timestamp}.

Note that, by default, traces are interpreted as partial traces, i.e., as traces that
could possibly be extended in the future with new event occurrences. However, it
could also be the case that a specific execution of the process under study eventually
reaches an end, i.e., that the trace becomes a closed, complete trace. For this
purpose, a special case complete atomic activity is supposed to be implicitly included
in each ConDec model, and that its (only) execution marks the termination of the
process instance.

Definition 1. An EC trace T is well-formed if T is partial, i.e. happens(ev(, d, case complete),) 6∈
T , or T is total, i.e., only one case complete event belongs to T and case complete
is the last event occurrence in T .

In the following, we will always assume that traces are well-formed.

4.2 Formalizing the Activity Lifecycle

The formalization of event occurrence and trace is not sufficient to capture the
execution of instances of non-atomic activities. Indeed, when an event occurs, it
must obey to the activity lifecycle described in Sec. 2.3. If this is not the case, a
monitoring error must be reported, and at the same time it must be ensured that
such event does not affect the status of any constraint attached to the corresponding
activity. In fact, we assume that only “correct” event occurrences have an impact
on constraints.

15

active
(id)initial completed

(id)

canceled
(id)

s,id c,id

x,id

error
(id)

s,id or case_completec,id or x,id s,id or c,id or x,id

s,id or c,id or x,id
s,id or c,id or x,id

Figure 4. A simple lifecycle for non-atomic activities using a correlation identifier
and including an error state

To tackle this issue, we introduce a set of EC rules that formalize the lifecycle
shown in Fig. 4, where transitions are mapped onto events, and fluents represent the
active, completed and canceled states. We employ fluent l state(i(id, a), s) to model
that the instance identified by id of activity a is currently in state s.

The activity is instantiated every time a start event occurs, using the event
identifier attached to the start event as an identifier for the activity instance. The
evolution of the instance through the lifecycle is then tracked by correlating the event
identifiers, following the structure described in Sec. 4.1. More specifically, an event
occurrence advances some activity instance if it refers to that activity and contains
the same identifier. This is needed to properly manipulate activity instances and to
support the parallel execution of multiple instances of the same activity. Without
such correlation mechanism, when two start events of the same activity are followed
by a completion, it would not possible to decide which of the two active instances
has been completed.

Let us first focus on the portion of the lifecycle dealing with the correct transi-
tions, i.e., the ones that do not lead to an error state. To this purpose, we introduce
and define three “inferred” event occurrences, which are not explicitly contained in
the execution trace, but are used to conceptually identify the situation in which
a possible start/completion/cancelation event correctly leads to start, complete or
cancel an activity instanceSuch inferred events will be used in the formalization of
ConDec, in order to guaranteed the aforementioned principle that only correct event
occurrences affect the constraints to be monitored. A further set of axioms is used
to bind such inferred events to the corresponding state transitions.

Axiom 1 (Effective start). An activity instance is effectively started by a start event
occurrence, if such occurrence does not lead to an error:

happens(start(ID,A), T)←happens(ev(ID, s,A), T)

∧ ¬initiates(ev(ID, s,A), l state(i(ID,A), error), T).

The effective start triggers a creation of the corresponding activity instance, trans-
ferring the identifier and placing the instance in the active state:

initiates(start(ID,A), l state(i(ID,A), active), T).

16

Axiom 2 (Effective completion). An activity instance with name A and identifier
ID is effectively completed at time T if a completion event matching with A and ID
occurs at some time T , such that the activity instance is active at time T .

happens(compl(ID,A), T)←happens(exec(ID, c, A), T)

∧ holds at(l state(i(ID,A), active), T).

The effective completion triggers a transition to the completed state:

terminates(compl(ID,A), l state(i(ID,A), active), T).

initiates(compl(ID,A), l state(i(ID,A), completed), T).

Axiom 3 (Effective cancelation). The effective cancelation of an activity instance
mirrors the axioms used for effective completion.

happens(cancel(ID,A), T)← happens(exec(ID, x,A), T)

∧ holds at(l state(i(ID,A), active), T).

terminates(cancel(ID,A), l state(i(ID,A), active), T).

initiates(cancel(ID,A), l state(i(ID,A), canceled), T).

Beside the three aforementioned states, we also introduce a further set of rules
used to identify undesired situations, which correspond to a transition to a special
error state used for monitoring purposes. The transitions to the error state corre-
spond to the ones shown in Fig. 4. It is worth noting that some errors configurations
capture the functionality of instance identifiers with respect to the pair constituted
by activity name and event type. This principle guarantees that two active instances
of the same activity necessarily have distinct identifiers.

Axiom 4 (Error state). Any event occurrence causing an error has the effect of
terminating the permanence in the current state (provided that it is not already an
error state):

terminates(Ev, l state(i(ID,A), S), T)←holds at(l state(i(ID,A), S), T) ∧ S 6= error

∧ initiates(Ev, l state(i(ID,A), error), T).

Completion and cancelation events cause an error if they occur when the correspond-
ing activity instance is not active:

initiates(ev(ID, c,A), l state(i(ID,A), error), T)← ¬holds at(l state(i(ID,A), active), T).

initiates(ev(ID, x,A), l state(i(ID,A), error), T)← ¬holds at(l state(i(ID,A), active), T).

The start event causes an error if the corresponding activity instance has been already
activated in the past, by means of another start event that refers to the same activity
and is associated to the same identifier:

initiates(ev(ID, s,A), l state(i(ID,A), error), T)← happens(ev(ID, s,A), Tp) ∧ Tp < T.

17

Figure 5. Sample evolutions of four instances of activity “foo”

Finally, a last source of error is determined by the execution of a case complete
event when the activity instance is still active, which is in fact a temporary state.

initiates(ev(, e, case complete), l state(i(ID,A),error), T)←
holds at(l state(i(ID,A), active), T).

Fig. 5 shows the outcome produced by applying the EC-based formalization of
the activity lifecycle on a simple execution trace. The same activity is executed four
times, showing three possible errors as well as a correct execution.

4.3 Business Constraint Instances and Their States

During the execution of a case, the events composing its partial execution trace
impact on the state of each modeled business constraint. Furthermore, while some
constraints are active from the beginning of the execution and follow a unique evo-
lution as events occur, other constraints are characterized by multiple, parallel and
independent evolutions. We present two examples that highlight these aspects.

Example 3. Let us consider a generic existence constraint stating that activity a
must be executed at least n times. It is initially in a pending state, waiting for n
executions of activity a. When the n-th execution of a occurs, it becomes satisfied.
Conversely, if the case reaches an end and the constraint is still pending, it becomes
violated.

Example 4. Let us consider a metric response constraint, with a and b source and
target activity respectively, and associated to delay m and deadline n. The constraint
is triggered every time activity a is completed, expecting the start of a consequent b
occurring inside the desired time interval [m,n]. Such a time interval is grounded on
the basis of the time at which a occurred. To capture this behavior, every execution
of a starts a new, separate instantiation of the constraint. The specific instance
is placed in a pending state, waiting for the occurrence of b inside the time interval

18

obtained by combining the time at which a occurred and the constraint’s time window.
In particular, an instance created at time t becomes satisfied if b is executed inside
[t+m, t+ n], or violated if the actual deadline t+ n expires and the instance is still
pending.

The two examples intuitively introduce the notion of constraint instance, with
existence a single-instance constraint, and response a multiple-instance one. More
generally, “cardinality” and choice constraints are single-instance, while all the re-
lation and negation constraints are instantiated multiple times, every time the con-
straint’s source occurs. The notion of constraint instance resembles the one of ac-
tivity instance: as different executions of the same activity inside a business process
determine separate instances of that activity, each one grounded in a specific context
(data, timestamp, . . .), so it can trigger multiple instances of the same constraint.

Summarizing, each constraint instance represents the application of the con-
straint in a particular context. In this work, we limit our analysis to activities and
temporal aspects, hence the contextual information for event occurrences and con-
straint instances is composed of the name of the executed activity and its timestamp.
More specifically, by associating a unique identifier to each modeled constraint, term
i(id, a, t) denotes the instance of constraint id that has been created by the execution
of a at time t. At each time point, every constraint instance can be in one among
the following states:
• pending is a transient state representing the fact that the constraint is waiting

for the occurrence of some event;
• satisfied is a transient or permanent state indicating that the execution trace

is currently compliant with the constraint;
• violated is a permanent state attesting that the instance has been violated by

the ongoing case.
In order to represent these states, we rely on a (multi-valued) fluent state(I, S),
where I is the constraint instance and S the current state of I, ranging over the three
possible values discussed above. For example, state(i(id, a, t), pending) represents
the fact that instance i(id, a, t) is currently pending.

4.4 Formalization of ConDec Constraints

We now describe the axiomatization of constraints’ semantics as an EC theory. Since
the semantics focuses on the creation and state transitions of constraints’ instances in
response to event occurrences, we first define a set of supporting predicates for state
manipulation2. The first two rules deal with the creation of an instance, putting it
in the specified state, either at the beginning of the execution or when some event

2Remember that state(I, S) represents that instance I is in state S.

19

occurs:

initially(state(I, S))← init state(I, S).

initiates(E, state(I, S), T)← creation(E, T, I, S).

The cur state predicate is instead defined to test the current state of an instance:

cur state(I, S, T)← holds at(state(I, S), T).

A group of two rules is finally used to capture state transitions. A transition from
state s1 to state s2 is executable only if the instance is currently in state s1, and is
applied by terminating the fluent associated to s1 and initiating the one bound to
s2.

terminates(E, state(I, S1), T)← trans(E, T, I, S1, S2).

initiates(E, state(I, S2), T)← trans(E, T, I, S1, S2) ∧ holds at(state(I, S1), T).

Let us now describe how the machinery discussed so far can be used to formalize
constraints Each constraint is formalized by means of a set of EC axioms. Two
constraints of the same kind share the “form” of such axioms, customized with its
specific activities and parameters. The formalization of an entire ConDec model
consists of the union of axioms used to formalize each one of its constraints. In the
following, we assume that the activities involved in the constraints are non-atomic,
and we make use of the inferred event occurrences formalized in Sec. 4.2. The same
formalization can be applied to atomic activities as well, by just substituting each
mentioned event type associated to the atomic execution.

4.4.1 Existence Constraint

Let us consider an existence constraint of the form

n..∗

a , identified by id. Following

Ex. 3, it can be formalized by means of three axioms, respectively managing the
creation, fulfillment and violation of the unique instance associated to the constraint.

Axiom 5 (existence creation). Each existence constraint is associated to a single
instance, created and put in the pending state when the case is started 3:

init state(i(id, start, 0), pend).

Axiom 6 (existence fulfillment). A pending existence constraint instance becomes
satisfied when the n-th execution of the involved activity a is completed:

trans(compl(, a), T, i(id, start, 0), pend, sat)← hap(compl(, a), n, T).

3Since no specific event is responsible for the instance creation, we use the keyword “start” as
event name.

20

where hap(Ev,N, T) tests whether Ev occurred N times before or at T , and it is
obviously called by abstracting away from the specific event identifier4:

hap(Ev,N, T)←findall(, (happens(Ev, Tp), Tp ≤ T), L) ∧ length(L,N).

A violation of the existence constraint is detected when it is pending, and a case
complete event is received. This attests that the case has reached an end, and, con-
sequently, that no further event will occur to move the instance from the pending to
the satisfied state. This observation does not only hold for the existence constraint,
but it captures the inherent semantics of the pending state, and is therefore applied
to any constraint instance in the pending state, independently from the constraint it
belongs to. Indeed, a constraint instance is pending if it is waiting for the execution
of some activity, and such an expectation cannot be fulfilled anymore if the case is
complete.

Axiom 7 (semantics of pending). When the case reaches an end, all pending in-
stances are declared as violated: trans(ev(, d, case complete), T, i(, ,), pend, viol).

4.4.2 Absence Constraint

Let us now focus on absence constraints, considering the specific case of

0..n

a , with

id as identifier. Like existence constraints, each absence is associated to a single
instance. However, the instance follows a complementary evolution with respect to
the one of existence. In particular, the instance is initially put in the satisfied state,
and it persists in that state unless the target activity is executed N times, leading
to its violation.

Axiom 8 (absence creation). Each absence constraint is associated to a unique
instance, created and put in the satisfied state when the case is started:

init state(i(id, start, 0), sat).

Axiom 9 (absence violation). The active absence constraint instance becomes vio-
lated when the n-th execution of activity a is completed:

trans(compl(, a), T, i(id, start, 0), sat, viol)← hap(compl(, a), N, T).

It is worth noting that absence constraint instances are never pending, because
they do not place any (positive) expectation about the execution of their associated
activity.

4The Prolog predicate findall(Objects,Goal, List) produces the List of all Objects that satisfy
Goal, while length(L,N) is true if N is the length of list L.

21

4.4.3 Metric Response Constraint

Let us consider now the “prototypical” response constraint

s1
[m,n]

s2

sk

...

t1

t2

tl

...

It includes branches (i.e., the presence of multiple sources and targets) and quantita-
tive time constraints. We suppose that it is identified by id. To deal with branching
response constraints, we make use of the member predicate5: instead of directly
checking if an activity is the source or target of a response constraint, we test if it
belongs to the set of sources [s1, . . . , sk] or targets [t1, . . . , tl].

Axiom 10 (response creation). A new instance of the response constraint identified
by id is created every time an activity A is completed, and A is inside the set of
sources. The instance is put in the pending state, waiting for a future suitable
execution of a target activity.

creation(compl(, A), T, i(id, A, T), pend)← member(A, [s1, . . . , sk]).

A pending instance becomes then satisfied if a target activity is executed after-
wards, within the time boundaries associated to the instance. We use the current state
predicate to extract the reference point from the time contained in the instance con-
text (which corresponds to the time at which the instance has been created). Such
reference point is then suitably combined with the constraint’s delay m and dead-
line n, determining the time window inside which one among the target activities is
expected to be started.

Axiom 11 (Response fulfillment). A pending response instance becomes satisfied
when one of its target activities is executed, at a time that falls within the actual
time boundaries.

trans(start(, B), T, i(id, A, Ti), pend, sat)←cur state(i(id, A, Ti), pend, T)

member(B, [t1, . . . , tl]) ∧ T ≥ Ti + m ∧ T ≤ Ti + n.

When m is not specified (no delay), we consider it to be 0, while when n is not
specified (no deadline), we consider it to be virtually∞, and we consequently remove
constraint T ≤ Ti + n from the axiom.

5member(El, L) is true if list L contains El.

22

The last two axioms deal with the violation of a response instance. Two possible
undesired situations may arise: either the instance is pending and the case reaches
an end (this behavior is already captured by Axiom 7), or the instance is pending but
its actual associated deadline is expired. Both cases identify a state of affairs where
no possible future evolution exists, such that the pending instance will be eventually
satisfied. The deadline expiration case must be managed only when the constraint
is associated to an actual value for the deadline. In particular, this situation is
handled with a best effort approach: since the EC has no intrinsic notion of the
time flow, but “extracts” the current time from the occurring events, a deadline
expiration is detected at the first following time at which some event occurs. An
external component could be employed to constantly send clock events to the EC-
based monitor, keeping it updated about the current time and enabling the prompt
evaluation of deadlines expiration.

Axiom 12 (Response violation due to deadline expiration). A response instance
becomes violated if it is still pending after the maximum time at which a target
activity is expected to be executed.

trans(, T, i(id, A, Ti), pend, viol)←cur state(i(id, A, Ti), pend, T) ∧ T > Ti + n.

This axiom is only present when n (the deadline) is an actual value.

4.4.4 Metric Chain Response Constraint

Let us consider the same prototypical constraint used in Sec. 4.4.3, but now employ-
ing a chain response instead of a simple response. This constraint can be formalized
as an extension of the response one. More specifically, all the axioms discussed in
Sec. 4.4.3 are seamlessly maintained, and a new axiom is introduced. Such axiom
poses the additional requirement that the target activity must be executed next to
the source one, i.e., between the execution of the source and the target all other
events are forbidden.

Axiom 13 (Chain response violation due to intermediate event). A pending instance
of the chain response identified by id becomes violated if an event related to a non-
target activity occurs.

trans(start(, X), T, i(id, A, Ti), pend, viol)← ¬member(X, [t1, . . . , tl]).

trans(compl(, X), T, i(id, A, Ti), pend, viol)← ¬member(X, [t1, . . . , tl]).

trans(cancel(, X), T, i(id, A, Ti), pend, viol)← ¬member(X, [t1, . . . , tl]).

4.5 Implementation

mobucon has been fully implemented inside the latest version of the well-known
ProM process mining framework [24]. ProM 6 is natively equipped with an Oper-
ational Support (OS) service, which accommodates techniques for runtime process

23

ProM

OS
Service

provider event log

business
constraints

process
modelsprovider

provider
response

request

TCP/IPOS
ClientPAIS

Figure 6. Operational support in ProM 6

monitoring, recommendations and predictions. As sketched in Fig. 6, the OS ser-
vice takes care of receiving TCP/IP streams of event occurrences from an external
system6. Each request from the external system must come with a process and a
case identifier. In this way, the OS support can handle multiple running cases at the
same time, correlating each incoming event to the corresponding stream. Each OS
provider encapsulates the business logic of a specific OS functionality, while the OS
service mediates the interaction between providers and the external system. mobu-
con has been therefore implemented as a monitoring OS provider. Each instance
of mobucon is associated to a ConDec model, which can be loaded from the XML
file produced by the DECLARE [17] editor.

In order to facilitate testing and exploitation of mobucon, two client prototypes
have been developed, one accepting the realtime acquisition of events, and the other
loading partial or complete traces from event logs. Both clients exploit an interface
which gives an intuitive, graphical feedback to the user, showing the evolution of
each constraint’s instance (see Sect. 5 for examples). The interface groups together
all the instances referring to the same constraint, under the name of the constraint
itself. The evolution of each constraint can be visualized in a summarized version,
highlighting the number of instances and giving a combined flavor of their contribu-
tions, or in a detailed way, which separately shows the evolution of each instance.

Finally, the top part of the interface is devoted to show the evolution of a met-
ric which measures the system health, reporting “how much” the running case is
complying with the ConDec model. Different metrics can be easily accommodated
into mobucon. In the remainder of this paper, we will use a simple but significant
metric, which computes the system health by considering the number of violated
(#viol) and satisfied (#sat) instances (and ignoring pending states). In particu-

lar, at some time t the system health corresponds to 1− #viol(t)
#viol(t)+#sat(t) otherwise.7

Obviously, more sophisticated metrics could be designed, taking, e.g., into account
metric temporal aspects or giving different weights to the ConDec constraints.

6Typically a workflow system, but any system logging streams of correlated events can seamlessly
benefit of the OS support.

7If #viol(t) + #sat(t) = 0, then the system health is defined to be 1.

24

5 Case Study

mobucon has been applied to a case study in the domain of maritime safety and
security. It concerns monitoring a vessel’s behavior in a specific area using a sensor
network. The case study has been conducted in the context of Poseidon [12], a
project partially supported by the Dutch Ministry of Economic Affairs under the
BSIK program. In Poseidon, we have closely collaborated with practitioners from
the sector of maritime safety and security. This collaboration revealed that when
monitoring the behavior of vessels, it is crucial to combine information from different
data sources. In this sense, mobucon demonstrated to be extremely useful in this
setting.

We have enriched the ConDec models presented in [13] with quantitative time
constraints that have been empirically assessed by analyzing the behavior of the
monitored vessels in ideal conditions. In general, our approach can be applied to
monitor the behavior of a system (in this case a vessel) evaluating the system health
on the basis of the number of anomalies detected.

5.1 Monitoring the behavior of a vessel

Every vessel has an on-board AIS (Automatic Identification System [9]) transponder
that uses several message types and reporting frequencies to broadcast information
about the vessel. An AIS receiver collects these broadcasted AIS messages, and
produces a TCP/IP stream of them.

AIS messages contain information such as the mmsi number of the reporting
vessel, which is a maritime vessel identifier, its navigational status and its ship type.
This information can be used to monitor the behavior of the vessel in a specific
area. In particular, when monitoring a vessel using the broadcasted stream of AIS
messages, we can consider as an event a change in the navigational status of the
vessel (e.g. moored, under way using engine, aground, at anchor, not under command,
constrained by her draught, restricted maneuverability, etc.). Every change in the
navigational status is associated to a single timepoint, and consequently the ConDec
model will only contain atomic activities.

Each case corresponds to the sequence of events referring to the same mmsi
number (i.e., to the same vessel). Vessels are expected to behave differently on
the basis of their ship type, i.e. for each ship type only sequences of events with
specific characteristics are allowed. Some characteristics also involve metric time
constraints that the event stream must satisfy, e.g. when a change in the vessel’s
navigational status is expected to occur within a given interval of time. The changes
in the navigational status of a vessel conform to a less-structured process and their
behavior can be effectively represented in ConDec.

Therefore, the first step of our experimentation has been the construction of
a ConDec model representing the observed behavior of every possible ship type

25

not under
command aground

00 1..* 1..*[3600,10800]

[32400,39600]

moored under way
using engine

Figure 7. Expected behavior for vessel type passenger ship. Time granularity: sec-
onds.

(e.g. passenger or cargo ship). These models can be extracted using process discovery
techniques as presented in [13]. Each ConDec model has been enriched with metric
aspects. The ship type in an AIS message is used to identify the reference ConDec
model with respect to which the corresponding vessel must be monitored.

For this experimentation, the stream of AIS messages has been recorded in an
event log. Experiments have been carried out by loading an excerpt of the log
(corresponding to a period of one week) in mobucon while using a time granularity
of seconds.

5.1.1 Passenger Ships

The observed behavior for passenger ship is tackled by the ConDec model in Fig. 7.
Events aground and not under command must never occur. Moreover, the vessel’s
behavior must show a regular alternation of events moored and under way using
engine (represented by the chain response constraints in the model).

The monitored passenger ships are required to go back and forth between two
resorts. Considering the distance between the harbors and the speed of this type of
ship, we can estimate that each journey must take more than 9 hours (32400 seconds)
and less than 11 hours (39600 seconds). Therefore, constraint chain response([under
way using engine], [moored]) is associated to this time window. Moreover, for con-
straint chain response([moored], [under way using engine]) we specify a delay of 1
hour (3600 seconds) and a deadline of 3 hours (10800 seconds) considering the time
that each ship must spend in a harbor (for refueling, restocking etc.).

Fig. 8 shows the results for the monitoring of a specific case (i.e. of a specific
vessel) with respect to the ConDec model in Fig. 7. The instance related to con-
straint absence([not under command], 1) and the instance related to constraint ab-
sence([aground], 1) are always satisfied because in the stream of messages, events
not under command and aground never occur. The instance related to constraint
existence([under way using engine], 1) is initially pending (because it is waiting for
the occurrence of at least one event under way using engine). When at 06-01-2007
02:00:02 under way using engine occurs, this instance becomes satisfied. Constraint
existence([moored], 1) has a similar behavior.

Fig. 8 also shows the 13 instances related to constraint chain response([under
way using engine], [moored]) (delay: 9 hours, deadline: 11 hours). Every instance
corresponds to a different occurrence of event under way using engine. Note that,

26

Figure 8. Monitoring of a passenger ship.

in this specific case, each instance of the constraint corresponds to a period of time
spent by the considered vessel under way using engine, i.e. for a different journey.
The constraint specifies that when under way using engine occurs, it must be imme-
diately followed by moored. This is always the case except for the last occurrence of
under way using engine where the instance remains pending (instance 13). This is
due to the fact that the considered data, being extracted from a larger event log, is
not complete. However, also when under way using engine is immediately followed
by moored, not always the corresponding instances become satisfied. In fact, only in
instances 2, 3, 4, 5, 8, 10 and 11 event under way using engine is followed by moored
complying with the defined temporal specifications. In contrast, in instance 1, event
moored occurs after less than 9 hours (after 7 hours and 55 minutes). In instances
6, 7, 9 and 12 event moored occurs after more than 11 hours (after 11 hours and 6

27

not under
command

0 0

1..*

[0,172800] constrainted by
her draught

under way
using engine

0
restricted

manoeuvrability

1..*

moored

1..*

at anchor

[0,25200][0,86400]

Figure 9. Expected behavior for vessel type cargo ship having a cargo of type “hazard
pollutant A”.

minutes, after 11 hours and 8 minutes, after 11 hours and 25 minutes and after 11
hours and 33 minutes respectively).

Constraint chain response([moored], [under way using engine]) (delay: 1 hour,
deadline: 3 hours) behaves similarly. In this case, every instance corresponds to
a different occurrence of moored, i.e. to a period of time spent by the vessel in a
harbor.

The overall trend of the health of the system is in this case quite homogeneous
and varies around an average value of 0.86 (see top of Fig. 8).

5.1.2 Cargo Ships

The observed behavior for the ship type cargo ship is represented by the ConDec
model in Fig. 9. In the remainder, we refer to this as simply a cargo ship (although
there are multiple cargo types). Events constrained by her draught, restricted ma-
neuverability and not under command must never occur. Moreover, event at anchor
must be followed by under way using engine. A cargo ship can anchor for at most
7 hours, therefore we specify a deadline of 25200 seconds for constraint chain re-
sponse([at anchor], [under way using engine]). Event moored must be also followed
by under way using engine and considering that a cargo ship cannot be moored in
a harbor more than 24 hours, we specify a deadline of 86400 seconds for constraint
chain response([moored], [under way using engine]). Finally, event under way using
engine can be followed by at anchor or moored. We express this behavior by using a
branched chain response constraint. Considering the distance that must be covered,
we can estimate that each journey of this type of ships can take up to 2 days. There-
fore, we specify a deadline of 172800 seconds for constraint chain response([under
way using engine], [moored, at anchor]).

Fig. 10 shows the monitoring of the stream of messages received by two different
cargo ships. Let us first focus on Fig. 10(a). Unlike the other absence constraints
of the reference model, the instance related to the constraint absence([not under
command], 1) is initially satisfied but, when at 06-05-2007 18:47:45 not under com-
mand occurs, it becomes violated. Furthermore, constraint existence([at anchor], 1)
is initially pending and it remains pending because at anchor does not occur during
the monitored period.

28

There are 6 instances related to the branched constraint chain response([under
way using engine], [moored, at anchor]) (deadline: 2 days) corresponding to dif-
ferent journeys of the vessel. In instances 2, 3 and 4 under way using engine is
followed by not under command so that, when this event occurs, they become vi-
olated. In instances 1 and 5 under way using engine is followed by moored within
the specified deadline so that they become both satisfied, while instance 6 remains
pending. There are 2 instances related to constraint chain response([moored], [under
way using engine]) (deadline 24 hours) corresponding to different stops in a harbor.
In both of them moored is followed by under way using engine complying with the
specified deadline so that they become both satisfied. There are no instances re-
lated to constraint chain response([at anchor], [under way using engine]) (deadline
7 hours).

The health of this vessel is initially 1 (see Fig. 10(a)), then it varies around 0.77.
Let us now briefly comment on the diagram in Fig. 10(b). The constraint ex-

istence([at anchor], 1) is initially pending (because it is waiting for the occurrence
of at least one event at anchor). However, differently from the previous case, at
06-04-2007 08:11:47 at anchor occurs and this instance becomes satisfied. There
are 4 instances related to the branched constraint chain response([under way using
engine], [moored, at anchor]) (deadline: 2 days) corresponding to different journeys
of the vessel. In instances 1, 2 and 3 under way using engine is followed by moored
within the specified deadline so that it becomes satisfied. Instance 4 remains pend-
ing. Only 2 instances are related to constraint chain response([at anchor], [under
way using engine]) (deadline 7 hours) corresponding to different stops of the consid-
ered vessel at anchor. In instance 1 at anchor is followed by under way using engine
complying with the specified deadline so that it becomes satisfied. In instance 2
under way using engine occurs after the deadline expiration. There are 3 instances
related to constraint chain response([moored], [under way using engine]) (deadline
24 hours) corresponding to different stops in a harbor. In instance 1 moored is
followed by at anchor so that it becomes violated. In instances 2 and 3 moored is
followed by under way using engine complying with the specified deadline so that
they become satisfied.

As shown in Fig. 10(b) the health of this vessel is initially 1. Then, it varies from
a minimum value of 0.83 and a maximum value of 0.94. Note that the health trend
clearly decreases in accord with the violations.

5.2 Benchmarks and Performance Evaluation

For the practical application of our approach, the performance of mobucon is of
the utmost importance. Note that unlike classical process mining approaches, mon-
itoring requires short-term feedback every time the current state of affairs evolves
and new event occurrences are acquired.

29

(a) (b)

Figure 10. Monitoring of two cargo ships: the health of ship (a) drops to approxi-
mately 0.77 while the health of ship (b) varies from 0.83 to 1

The current implementation of mobucon is modular, and the reasoning com-
ponent is loosely connected to the other parts of the system. The formalization
of a ConDec model leads to a domain-independent EC specification, which is then
combined with a light-weight axiomatization of the CEC (see Sect. 3.4) written in
standard Prolog. Hence, virtually any Prolog engine can be seamlessly used as the
reasoning component of mobucon. We have currently experimented two alterna-
tive solutions. The first relies on TuProlog8. The main advantage of TuProlog is
that, being developed completely in JAVA, its it can be seamlessly integrated inside
ProM; the main drawback relies however in its performance, which is being cur-
rently greatly improved but cannot still compete with the one of mainstream Prolog
systems. The other solution relies on YAP 9, one of the highest-performance state
of the art Prolog engines. Unlike TuProlog, YAP cannot be directly invoked from

8tuprolog.alice.unibo.it
9yap.sourceforge.net

30

JAVA code, but requires an intermediate bridge (such as InterProlog10).
In this work, we are specifically interested in evaluating the performance of our

EC-based approach, and therefore we focus on the core monitoring task, that is, on
the reasoning engine per sè, without considering the interaction among components
inside ProM nor the time spent for visualization. Furthermore, we are interested in
studying how scalable is mobucon when the number of constraints to be monitored
increases; therefore, our tests abstract away from the further constraints used to
formalize the lifecycle of non-atomic activities, by generating ConDec models that
contain atomic activities only.

To empirically assess the performance of mobucon, we have set up a generator of
ConDec models starting from a set of configuration parameters targeting the “size”
and structure of the model. In particular, given:
• A, a set of activity names,
• L, the length of the trace to be monitored,
• N , the number of constraints to be included in the model,
• C, the minimum/maximum cardinality associated to existence constraints,
• B, the maximum branching factor of relation/negation constraints,
• d and D, the minimum delay and maximum deadline that can be associated

to timed constraints
the generator produces a self-contained Prolog test containing a lightweight axiom-
atization of CEC, a randomly generated trace of L events occurrences related to the
atomic activities in A, and the EC-based formalization of N randomly generated
constraints attached to activities in A, tuned according to the parameters B, d and
D.

We have used this generator to produce a benchmark containing 1000 tests. All
ConDec models contained in such tests are tuned with |A| = 10, L = 1000, C = 5,
B = 3, d = 0 and D = 50. The benchmark contains 10 groups of tests by increasing
number of constraints in the ConDec model (with N = 10, 20, 30, . . . , 100). Each
group contains 100 tests obtained by combining 10 randomly generated traces with
10 randomly generated models. Tests are run by simulating the incremental acquisi-
tion of the event occurrences contained in the trace (which are ordered according to
their timestamps), and measuring the latency time required by the reasoner to pro-
duce the updated monitoring result after having acquired a new event. The obtained
average results are reported in Fig. 11. They attest the scalability of mobucon and
its feasibility in dealing with models of real-life size. In fact, the 1000 event is
processed in less than 100ms for models containing up to 50 constraints, and for
large models with 100 constraints, still less than 300ms are required to update the
monitoring result.

10www.declarativa.com/interprolog/

31

!"

#!"

$!!"

$#!"

%!!"

%#!"

&!!"

!" #!" $!!" $#!" %!!" %#!" &!!" &#!" '!!" '#!" #!!" ##!" (!!" (#!")!!")#!" *!!" *#!" +!!" +#!"

!"
#$
%&

'(
%)

"(
*)

+,
(

-.&$"++"/("0"'1+(*2,(

10
20
30

40

50

60

70

80

90

100

#	
 Constraints

1000

Figure 11. Monitoring performance of mobucon with a set of randomly generated
benchmarks; the reaction time denotes the time needed to produce the updated
monitoring result after having processed a new event

6 Related Work

The problem of runtime verification and monitoring is omnipresent and has been
investigated in different research communities. Similar problems have been stud-
ied in a variety of application domains ranging from runtime checking of software
execution and hardware systems to self-adaptive and service-oriented applications.

We will limit our discussion focusing on approaches that adopt logic-based tech-
niques with a well-founded theoretical basis. [21] present a framework for monitoring
the compliance of a BPEL-based service compositions with assumptions expressed
by the user, or with behavioral properties that are automatically extracted from
the composition. The EC is exploited to monitor the actual behavior of interacting
services and to report different kinds of violations. [7] focus on the application of
EC to track the normative state of contracts. They formalize the deontic notions of
obligation, power and permission, propose an XML-based dialect of the EC to model
contractual statements, and dynamically reason upon contract events reporting vi-
olations and diagnostics about the reached state of affairs. These proposals exploit
ad-hoc event processing algorithms to manipulate events and fluents, written in
JAVA. Hence, differently from mobucon they do not have an underlying formal ba-
sis, and they cannot take advantage of the expressiveness and computational power

32

of logic programming, such as unification and backtracking.
Although mobucon is based on logic programming, it exploits an axiomatiza-

tion of the CEC by [5], which employs assert and retract predicates to manipulate
the MVIs of fluents. Even if there are approaches that aim to define a declarative
semantics of such predicates [], in the standard logic programming setting they are
considered as extra-logical predicates. An alternative reactive but purely declarative
axiomatization of the EC, called REC, has been proposed in [4], exploiting an ab-
ductive logic programming-based proof procedure for runtime compliance checking.
The application of REC for monitoring service choreographies [3] constitutes a pre-
liminary investigation of the EC-based axiomatization of ConDec proposed in this
work. Here we have extended it with the notion of constraint instances and their
states, providing a more systematic support for quantitative time constraints and
system health evaluation. While the declarative nature of REC makes it possible to
study its formal properties (such as soundness, completeness and termination [4]),
the lightweight axiomatization of CEC in Prolog that is exploited by mobucon is
more efficient.

A plethora of authors have investigated the use of temporal logics – Linear Tem-
poral Logic (LTL) in particular – as a declarative language for specifying properties
to be verified at runtime. The construction of monitors requires to modify the LTL
semantics to reflect that reasoning cannot always provide a definitive answer, but
must be open to the acquisition of new events, and to handle partial, finite traces.
Consequently, also the verification techniques must be revised. [2] introduce a three-
valued semantics (with truth values true, false and inconclusive) for LTL or timed
LTL properties on finite traces. These truth values strictly resemble the satisfied,
violated and pending values adopted by mobucon to characterize the state of con-
straint instances. In [1], the authors introduce a four-valued variant of LTL that
yields possibly true and possibly false whenever the system’s behavior is inconclusive
in the three-valued sense. [8] present an approach to LTL runtime checking, where
the standard LTL to Büchi automata conversion technique is modified to deal with
finite traces. The algorithm produces a finite state automaton that is then used as
observer of the system’s behavior.

When compared with these approaches, mobucon relies on a more expressive
logic, supporting quantitative time constraints, non-atomic activities with identifier-
based correlation, and data. Furthermore, techniques based on finite-trace LTL
usually associate the notion of violation to the one of logical inconsistency, and are
therefore not suitable for continuous support. An exception to this is [11], where
the automaton constructed for monitoring carries specific information that can be
used to realize different recovery strategies for continuous support. An advantage of
techniques relying on automata is their efficiency: their most expensive step is the
construction of the automaton, which is done before the execution. Furthermore,
they are not only able to check whether the current trace is compliant with the given

33

LTL specification, but also to identify whether unavoidable violations will occur in
the future. When it comes to ConDec, this ability is exploited to identify whether
the interplay of two or more constraints will surely lead the execution to incur in a
violation. Our EC-based approach is not able to foresee these violations: it treats
each constraint separately from the others, combining it only with the trace.

7 Conclusion

We have presented mobucon, a non-intrusive framework for monitoring systems
whose dynamics is characterized by means of event streams. The framework is based
on the Event Calculus (EC), which is used to specify the constraints to be monitored.
It has been embedded inside the operational decision support infrastructure of ProM.

One of the key advantages of logic-based approaches is the separation between
declarative knowledge (what is the problem about) and control aspects (how to
solve it). By exploiting the functionality of mobucon, ConDec constraints can be
formalized without specifying how to concretely monitor them. Furthermore, as long
as the EC ontology does not change, different EC reasoners can be seamlessly applied
to deal with alternative forms of reasoning, without affecting the formalization of
ConDec.

An interesting aspect is related to the nature of runtime verification and finiteness
of traces. At each time point, a running execution is characterized by a finite trace.
However, it is an evolving trace, extended as new events get to be known. This
process could potentially continue forever. From the modeling point of view, this
means that the ConDec diagrams could contain cyclic relationships, accounting for
expected situations that must be repeatedly achieved. This is the case for the vessel
and cargo ships models shown in Figs. 7 and 9. No finite trace will fully comply with
them: at least one of their chain response constraints would be pending (if the trace
is partial) or violated (if the trace is complete). This has no impact on reasoning,
which is always triggered by the occurrence of new events, taking into account the
partial finite trace stored so far.

As ongoing work, we are extending our approach along different dimensions,
incorporating data and also recovery and compensation mechanisms to be instanti-
ated in the case of a violation. Thanks to its first-order nature, the EC is able to
seamlessly accommodate both aspects. For what concerns data, we will extend the
formalization of ConDec including the data-related extensions proposed in [14]. Re-
garding recovery and compensation, we will rely on the preliminary proposal made
in [3], where the violations are reified as special events. Another active research
line concerns a comprehensive experimental evaluation of the reasoner, to assess its
performance and scalability. Our preliminary evaluation shows that the current im-
plementation can be improved to deal with more challenging application scenarios.

34

Acknowledgements The authors would like to thank Arjan Mooij for his valuable

hints and comments on the paper.

References

[1] Andreas Bauer, Martin Leucker, and Christian Schallhart. Comparing LTL
Semantics for Runtime Verification. Logic and Computation, 2010.

[2] Andreas Bauer, Martin Leucker, and Christian Schallhart. Runtime verification
for LTL and TLTL. ACM Transactions on Software Engineering and Method-
ology, expected 2011.

[3] F. Chesani, P. Mello, M. Montali, and P. Torroni. Verification of Choreographies
During Execution Using the Reactive Event Calculus. In Proceedings of the 5th
International Workshop on Web Service and Formal Methods (WS-FM2008),
volume 5387 of LNCS, pages 55–72. Springer, 2009.

[4] Federico Chesani, Paola Mello, Marco Montali, and Paolo Torroni. A Logic-
Based, Reactive Calculus of Events. Fundamenta Informaticae, 105(1-2):135–
161, 2010.

[5] L. Chittaro and A. Montanari. Efficient Temporal Reasoning in the Cached
Event Calculus. Computational Intelligence, 12:359–382, 1996.

[6] Keith L. Clark. Negation as Failure. In Logic and Data Bases, pages 293–322.
Plenum Press, 1978.

[7] Andrew D. H. Farrell, Marek J. Sergot, Mathias Sallé, and Claudio Bartolini.
Using the Event Calculus for Tracking the Normative State of Contracts. In-
ternational Journal of Cooperative Information Systems, 14(2-3):99–129, 2005.

[8] Dimitra Giannakopoulou and Klaus Havelund. Automata-Based Verification of
Temporal Properties on Running Programs. In Proceedings of the 16th IEEE In-
ternational Conference on Automated Software Engineering (ASE 2001), pages
412–416. IEEE Computer Society, 2001.

[9] International Telecommunications Union. Technical characteristics for a uni-
versal shipborne Automatic Identification System using time division multi-
ple access in the VHF maritime mobile band, 2001. Recommendation ITU-R
M.1371-1.

[10] Robert A. Kowalski and Marek J. Sergot. A Logic-Based Calculus of Events.
New Generation Computing, 4(1):67–95, 1986.

35

[11] Fabrizio Maggi, Marco Montali, Michael Westergaard, and Wil van der Aalst.
Monitoring business constraints with linear temporal logic: An approach based
on colored automata. In Stefanie Rinderle-Ma, Farouk Toumani, and Karsten
Wolf, editors, Business Process Management, volume 6896 of Lecture Notes in
Computer Science, pages 132–147. Springer Berlin / Heidelberg, 2011.

[12] Fabrizio M. Maggi, Arjan J. Mooij, and Wil M. P. van der Aalst. Analyzing
Vessel Behavior using Process Mining, chapter Poseidon book. to appear.

[13] Fabrizio M. Maggi, Arjan J. Mooij, and Wil M. P. van der Aalst. User-Guided
Discovery of Declarative Process Models. In 2011 IEEE Symposium on Com-
putational Intelligence and Data Mining, 2011.

[14] Marco Montali. Specification and Verification of Declarative Open Interaction
Models: a Logic-Based Approach, volume 56 of LNBIP. Springer, 2010.

[15] Marco Montali, Maja Pesic, Wil M. P. van der Aalst, Federico Chesani, Paola
Mello, and Sergio Storari. Declarative Specification and Verification of Service
Choreographies. ACM Transactions on the Web, 4(1), 2010.

[16] Maja Pesic. Constraint-Based Workflow Management Systems: Shifting Con-
trols to Users. PhD thesis, Beta Research School for Operations Management
and Logistics, Eindhoven, 2008.

[17] Maja Pesic, Helen Schonenberg, and Wil M. P. van der Aalst. DECLARE: Full
Support for Loosely-Structured Processes. In Proceedings of the 11th IEEE In-
ternational Enterprise Distributed Object Computing Conference (EDOC 2007),
pages 287–300. IEEE Computer Society, 2007.

[18] Maja Pesic and Wil M. P. van der Aalst. A Declarative Approach for Flexible
Business Processes Management. In Proceedings of the BPM 2006 Workshops,
volume 4103 of LNCS, pages 169–180. Springer, 2006.

[19] Fariba Sadri and Robert A. Kowalski. Variants of the Event Calculus. In
Proceedings of the 12th International Conference on Logic Programming (ICLP
1995), pages 67–81. MIT Press, 1995.

[20] M. Shanahan. The Event Calculus Explained. In Artificial Intelligence To-
day: Recent Trends and Developments, volume 1600 of LNCS, pages 409–430.
Springer, 1999.

[21] George Spanoudakis and Khaled Mahbub. Non-Intrusive Monitoring of Service-
Based Systems. Cooperative Information Systems, 15(3):325–358, 2006.

36

[22] Wil M. P. van der Aalst, Kees M. van Hee, Jan Martijn E. M. van der Werf,
and Marc Verdonk. Auditing 2.0: Using Process Mining to Support Tomorrow’s
Auditor. IEEE Computer, 43(3):90–93, 2010.

[23] B. Van Dongen, A. K. de Medeiros, and L. Wen. Process Mining: Overview
and Outlook of Petri Net Discovery Algorithm. Transactions on Petri Nets and
Other Models of Concurrency, 2:225–242, 2009.

[24] Eric Verbeek, Joos Buijs, Boudewijn van Dongen, and Wil van der Aalst. ProM
6: The Process Mining Toolkit. In Demo at the 8th International Conference
on Business Process Management (BPM 2010), 2010.

37

