

Analysis and Classification of Android Malware

Nov 13, 2017 Department of Computer Science and Engineering University of Bologna

Lorenzo Cavallaro <lorenzo.cavallaro@rhul.ac.uk>

Research partially supported by the UK EPSRC grants EP/K033344/1 and EP/L022710/1 $\,$

Royal Holloway, University of London

- Founded in 1879 by Thomas Holloway
 - \rightarrow Entrepreneur and Philanthropist
 - ightarrow Holloway's pills and ointments
- ~10,000 students across 3 Faculty (Arts and Social Sciences, Management and Economics, and Science)
- Egham-still commuting distance to London!
- ► Featured in Avengers: Age of Ultron :-)

Academic Centre of Excellence in Cyber Security Research

▶ 1 of 14 in the UK, since its incipit in 2012

Centre for Doctoral Training in Cyber Security

▶ 1 of 2 in the UK, since its incipit in 2012

SYSTEMS SECURITY RESEARCH LAB

The research carried out at the Systems Security Research Lab (S²Lab) within the Information Security Group (ISG) at Royal Holloway University of London focuses on devising novel techniques to protect systems from a broad range of threats, including those perpetrated by malicious software. In particular, we aim at building practical tools and provide security services to the community at large. Our research, kindly sponsored by the UK Engineering and Physical Sciences Research Council (EPSRC), the European Council Framework Programme 7 (EU FP7), and Intel Security (McAfee Labs UK), crosses the boundaries of a number of different Computer Science-related topics, such as operating systems, computer architecture, program analysis, and machine learning, making our challenging journey always exciting.

Learn About Our Research Projects

SYSTEMS SECURITY RESEARCH LAB

Vision

S2Lab's underpinning research builds on program analysis and machine learning to address threats against the security of computing systems

- ▶ Practical tools to provide security services to the community at large
- http://s2lab.isg.rhul.ac.uk

Selected Highlights

- Malware analysis and (open challenges in) ML classification
 [USENIXSec17] Detecting Concept Drift in Malware Classification Models
 [IEEE TIFS17] Understanding Android App Piggybacking: A Systematic Study of
 Malicious Code Grafting

 [NDSS15] CopperDroid: Automatic Reconstruction of Android Malware Behaviors
- Software understanding and hardening [NDSS17] Stack Object Protection with Low Fat Pointers
- Automatic exploit generation
 [ACM CCS-PLAS17] Modular Synthesis of Heap Exploits
- Vulnerability discovery
 [arXiv17] BabelView: Evaluating the Impact of Code Injection Attacks in Mobile Webviews

- Antifork Research
- ► sOftpj
- Metro Olografix

- Antifork Research
- ▶ sOftpj
- Metro Olografix

- ▶ BSc & MSc in Computer Science
- PhD in Computer Science (Computer Security)

- Antifork Research
- ▶ sOftpj
- Metro Olografix

- ▶ BSc & MSc in Computer Science
- PhD in Computer Science (Computer Security)

- ▶ 2006-2008: Visiting PhD Scholar Prof. R. Sekar
- Systems security (mem err, taint tracking, anomaly detection)

- ▶ 2008-2010: PostDoc Profs G. Vigna & C. Kruegel
- Malware analysis & detection (mostly botnet)
- > 2010-2012: PostDoc Prof. A. S. Tanenbaum
- ▶ OS Dependability (MINIX3) & Systems Security

- Antifork Research
- ▶ sOftpj
- Metro Olografix

- ▶ BSc & MSc in Computer Science
- PhD in Computer Science (Computer Security)

- ▶ 2006-2008: Visiting PhD Scholar Prof. R. Sekar
- Systems security (mem err, taint tracking, anomaly detection)

- ▶ 2008-2010: PostDoc Profs G. Vigna & C. Kruegel
- Malware analysis & detection (mostly botnet)
- > 2010-2012: PostDoc Prof. A. S. Tanenbaum
- ▶ OS Dependability (MINIX3) & Systems Security

2016-Reader (Associate Professor) of Information Security

Google says there are now 1.4 billion active Android devices worldwide

BY JOHN CALLAHAM 🛛 🕒 Tuesday, Sep 29, 2015 at 12:13 pm EDT

THE RISE IN ANDROID MALWARE

McAfee Labs routinely scans major app stores for infected systems as well as apps with suspicious behavior.

Year	Method	Venue	T Det	ype Class	Feature	# Malware	DR/FP(%)	ACC(%)
2014	DroidAPIMiner	SecureComm	1	_	API,PKG,PAR	3,987	99/2.2	_
2014	DroidMiner	ESORICS	\checkmark	1	CG,API	2,466	95.3/0.4	92
2014	Drebin	NDSS	\checkmark	_	PER,STR,API,INT	5,560	94.0/1.0	_
2014	DroidSIFT	ACM CCS	\checkmark	1	API-F	2,200	98.0/5.15	93
2014	DroidLegacy	ACM PPREW	\checkmark	1	API	1,052	93.0/3.0	98
2015	AppAudit	IEEE S&P	\checkmark	_	API-F	1,005	99.3/0.61	_
2015	MudFlow	ICSE	\checkmark	_	API-F	10,552	90.1/18.7	_
2015	Marvin	ACM COMPSAC	\checkmark	_	PER, INT, ST, PN	15,741	98.24/0.0	_
2015	RevealDroid	TR GMU	\checkmark	1	PER,API,API-F,INT,PKG	9,054	98.2/18.7	93
2017	MaMaDroid	NDSS	\checkmark	_	Abstract APIs Markov Chain	80,000	99/1	_
2017	DroidSieve	ACM CODASPY	\checkmark	1	Syntactic- & Resource-centric	100,000	99.7/0	_
2016	Madam	IEEE TDSC	1	_	SYSC, API, PER, SMS, USR	2,800	96/0.2	

,	Year	Method	Venue	T Det	ype Class	Feature	# Malware	DR/FP(%)	ACC(%)
2	2014 Dr	DroidAPIMiner	SecureComm	1	-	API,PKG,PAR	3,987	99/2.2	_
► M	ost	focus on st	atically-ex	tra	cted fea	CG,API atures ^{TR,API,INT}	2,466 5,560	95.3/0.4 94.0/1.0	92
2	\rightarrow 4]	Issues with	obfuscation	, dyı	namical	ly & native code			
► H	ow	far would d	lynamically	/-ex	tracted	l features go?			
RG	1 /	Automatic re As fewer fe	econstruct atures as po	i on (of apps ole with	behaviors rich semantics)			
RG	१२ ः। (Machine lea Challenging	rning with contexts: c	high lass	ification	acy results Ms. USR h, sparse behaviors)			
RG	13 E	Decaying m a Evaluate the	achine lear e quality of	ning a cla	g mode assifier	ls: concept drift to identify drifting o	bjects)		

RQ1—CopperDroid

Automatic Reconstruction of Android Apps Behaviors

DYNAMIC ANALYSIS FOR ANDROID

- ► DroidScope/DECAF¹
 - $ightarrow\,$ Dalvik VM method, asm insn, and system call tracing
 - $\rightarrow~$ 2-level VMI to get to Dalvik VM semantics
- ► Droidbox² and TaintDroid³
- ► Other approaches generally built on top of the tools above

¹https://github.com/sycurelab/DECAF/tree/master/DroidScope/qemu ²https://github.com/pjlantz/droidbox ³http://www.appanalysis.org/

SYSTEM CALL-CENTRIC ANALYSIS

- Established technique to characterize process behaviors⁴
- ► Identifying state-modifying actions crucial to analysis

SYSTEM CALL-CENTRIC ANALYSIS

- ► Established technique to characterize process behaviors⁴
- ► Identifying state-modifying actions crucial to analysis

Can it be applied to Android?

- Android architecture is different from traditional devices
- ► State-modifying actions manifest at multiple abstractions
 - \rightarrow OS interactions (e.g., filesystem, network, process)
 - \rightarrow Android-specific behaviors (e.g., SMS, phone calls)

⁴https://www.cs.unm.edu/%2E/forrest/publications/acsac08.pdf

Key Insight

System calls provide the right semantic abstraction given the reconstruction of Inter-Component Communications (ICC) behaviors

- ▶ ICC (aka Binder transactions) are carried out as **ioctl** system calls
 - $\rightarrow~{\rm CopperDroid}$ automatically unmarshalls such calls and reconstruct Android app behaviors^a
 - ightarrow No modification to the OS
 - ightarrow It works automatically across the Android fragmented ecosystem

^aKimberly Tam, Salahuddin J. Khan, Aristide Fattori, and Lorenzo Cavallaro. **CopperDroid: Automatic Reconstruction of Android Malware Behaviors**. In 22nd Annual Network and Distributed System Security Symposium (NDSS), 2015

⁴https://www.cs.unm.edu/%2E/forrest/publications/acsac08.pdf

THE BINDER PROTOCOL

IPC/RPC

- ► Binder protocols enable fast inter-process communication
- ► Allows apps to invoke other app component functions
- Binder objects handled by Binder Driver in kernel
 - ightarrow Serialized/marshalled passing through kernel
 - $\rightarrow~\mbox{Results}$ in input output control (ioctl) system calls

Android Interface Definition Language (AIDL)

- ► AIDL defines which/how services can be invoked remotely
- Describes how to marshal method parameters

Application

```
PendingIntent sentIntent = PendingIntent.getBroadcast(SMS.this,
0, new Intent("SENT"), 0);
SmsManager sms = SmsManager.getDefault();
sms.sendTextMessage("7855551234", null, "HiuThere", sentIntent, null);
```


TRACING SYSTEM CALLS ON ANDROID ARM THROUGH QEMU

A system call induces a User -> Kernel transition

- ► On ARM invoked through the swi instruction (SoftWare Interrupt)
- ▶ r7: invoked system call number
- r0-r5: parameters
- Ir: return address

CopperDroid's Approach

- ▶ instruments QEMU's emulation of the swi instruction
- \blacktriangleright instruments QEMU to intercept every <code>cpsr_write</code> (Kernel \rightarrow User)
- ▶ Perform traditional VMI to associate system calls to threads

TRACING SYSTEM CALLS ON ANDROID ARM THROUGH QEMU

BINDER STRUCTURE WITHIN IOCTL

CopperDroid inspects the Binder protocol in detail by intercepting a subset of the ioctls issued by userspace Apps.

CopperDroid analyzes BC_TRANSACTIONs and BC_REPLYs

CopperDroid uses a modified AIDL parser to automatically generate signatures of each method (code) for each interface (InterfaceToken).

> \x4b\x00\x00\x49\x00\x20\x20 \x74\x00\x61\x00\x6b\x00\x65\x00 \x20\x00\x70\x00\x6c\x00\x65\x00 \x61\x00\x73\x00\x75\x00\x72\x00 \x65\x00\x20\x00\x69\x00\x6e\x00 \x20\x00\x68\x00\x75\x00\x72\x00 \x74\x00\x69\x00\x6e\x00\x67 ...

CopperDroid analyzes BC_TRANSACTIONs and BC_REPLYs

CopperDroid analyzes BC_TRANSACTIONs and BC_REPLYs

CopperDroid analyzes BC_TRANSACTIONs and BC_REPLYs

AUTOMATIC ANDROID OBJECTS UNMARSHALLING

- Primitive types (e.g., String text)
 - $\rightarrow~$ A few manually-written procedures
- Complex Android objects
 - ightarrow 300+ Android objects-manual unmarshalling: does not scale & no scientific
 - \rightarrow Finds object CREATOR field
 - ightarrow Use reflection (type introspection, then intercession)
- ► IBinder object reference
 - $\rightarrow~$ A handle (pointer) sent instead of marshalled object
 - $\rightarrow~$ Look earlier in trace to map each handle to an object

CopperDroid's Oracle unmarshalls all three automatically

TYPE	"string", "string", "string", "PendingIntent", "PendingIntent"
DATA	<pre>\x0A \x00 \x00 \x34 \x00 \x38 \x00 \x35 \x00 \x35 \x00 \x35 \x00 \x35 \x00 \x31 \x00 \x32 \x00 \x33 \x00 \x34 \x00 \x00 \x00 \x08 \x00 \x00 \x00 \x48 \x00 \x69 \x00 \x20 \x00 \x74 \x00 \x68 \x00 \x65 \x00 \x72 \x00 \x65 \x00 \x85*hs \x7f \x00 \x00 \x00 \xa0 \x00 \x00 \x00 \x00 \x00 \x00</pre>
OUTPUT	

ТҮРЕ	"string", "string", "string", "PendingIntent", "PendingIntent"
DATA	xx00 xx00 xx00 xx34 xx00 xx38 xx00 xx35 xx00 xx35 xx00 xx35 xx00 xx35 xx00 xx35 xx00 xx35 xx00 xx31 xx00 xx32 xx00 xx33 xx00 xx34 xx00 xx00 <th< td=""></th<>
OUTPUT	<pre>telephony.ISms.sendText(String destAddr = "7855551234",)</pre>

- ► Type[0] = Primitive "string"
- Use ReadString() (and increment data offset by length of string)

ТҮРЕ	"string", "string", "string", "PendingIntent", "PendingIntent"
DATA	x00 x00 x34 x00 x35 x00 x35 x00 x35 x00 x35 x00 x31 x00 x32 x00 x33 x00 x34 x00 x
OUTPUT	<pre>com.android.internal.telephony.ISms.sendText(String destAddr = "7855551234", String srcAddr = null, String text = "Hi there",)</pre>

- Type[1] and Type[2] are also Primitive "string"
- Use ReadString() (and increment data offset by length of strings)

ТҮРЕ	"string", "string", "string", "PendingIntent", "PendingIntent"
DATA	<pre>\x0A \x00 \x00 \x34 \x00 \x38 \x00 \x35 \x00 \x35 \x00 \x35 \x00 \x35 \x00 \x31 \x00 \x32 \x00 \x33 \x00 \x34 \x00 \x00 \x00 \x00 \x00 \x00 \x00 \x00</pre>
OUTPUT	<pre>com.android.internal.telephony.ISms.sendText(String destAddr = "7855551234", String srcAddr = null, String text = "Hi there", Intent sentIntent { type = BINDER_TYPE_HANDLE, flags = 0x7F FLAT_BINDER_FLAG_ACCEPT_FDS handle = 0xa, cookie = 0x0 },)</pre>

- Type[3] = IBinder "PendingIntent"
- ▶ Unmarshal using com.Android.Intent (AIDL) and increment buffer pointer
- Handle points to data to be unmarshalled in a previous Binder (ioctl) call

ТҮРЕ	"string", "string", "string", "PendingIntent", "PendingIntent"
DATA	\x0A \x00 \x34 \x00 \x35 \x00 \x35 \x00 \x35 \x00 \x31 \x00 \x32 \x00 \x33 \x00 \x34 \x00 \x00 \x00 \x35 \x00 \x31 \x00 \x32 \x00 \x33 \x00 \x34 \x00 \x00 \x00 \x00 \x00 \x00 \x00 \x33 \x00 \x30 \x00 \x00 \x00 \x00 \x00 \x00 \x00 \x00 \x00 \x00 \x00 \x00 \x00
OUTPUT	<pre>com.android.internal.telephony.ISms.sendText(String destAddr = "7855551234", String srcAddr = null, String text = "Hi there", Intent sentIntent { Intent("SENT") },)</pre>

- ► Each handle is paired with a parcelable object
- CopperDroid sends each handle and parcelable object to the Oracle

Outputs Observed from CopperDroid

FILESYSTEM TRANSACTIONS

```
1 "class": "FS ACCESS".
 2 "low": [
 4
           "blob": "{'flags': 131072. 'mode': 1. 'filename': u'/etc/media codecs.xml'}".
 5
           "id": 187369,
 6
           "sysname": "open",
 7
           "ts": "1455718126.798".
 8
      },
 9
10
           "blob": "{ 'size': 4096L. 'filename': u'/etc/media codecs.xml'}".
11
           "id": 187371.
12
          "sysname": "read".
13
           "ts": "1455718126.798",
14
           "vref" · 187369
15
      },
16
17
           "blob": "{'filename': u'/etc/media codecs.xml'}".
18
           "id": 187389.
19
          "svsname": "close".
20
          "ts": "1455718126.799",
21
           "xref": 187369
22
231.
24 "procname": "/system/bin/mediaserver"
```


NETWORK TRANSACTIONS

```
1 "class": "NETWORK ACCESS",
 2 "10" . [
 4
           "blob": "{'socket domain': 10, 'socket type': 1, 'socket protocol': 0}".
          "id": 62.
 6
           "sysname": "socket".
 7
           "ts": "1445024980.686",
 8
      }.
 9
          "blob": "{'host': '::ffff:134.219.148.11', 'port': 80, 'returnValue': 0}",
11
          "id": 63.
12
          "sysname": "connect",
13
           "ts": "1445024980.687".
14
      },
15
16
           "blob": "=%22%27GET+%2Findex.html+HTTP%2F1.1%5C%5Cr%5C%5CnUser-Agent%3A+Dalvik%2F1.6.0+%28Linux%3B+U%3
                B+Android+4.4.4%3B+sdk+Build%2FKK%29%5C%5Cr%5C%5CnHost%3A+s2lab.isg.rhul.ac.uk%5C%5Cr%5C%5
                CnConnection%3A+Keep-Alive%5C%5Cr%5C%5CnAccept-Encoding%3A+gzip%5C%5Cr%5C%5Cn%5C%5Cr%5C%5Cr%5C%5Cr%5C%5Cn%27%22
           "id": 164.
18
           "sysname": "sendto".
19
           "ts": "1445024980.720".
20
      }.
21 1.
22 "procname": "com.cd2.nettest.nettest".
23 "subclass": "HTTP"
```



```
L "class": "NETWORK ACCESS",
2 "low": [
3 {
4 "blob": "{'socket domain': 10, 'socket type': 1, 'socket protocol': 0}",
5 "id": 62.
```

- Composite behaviors (e.g., filesystem and network transactions)
- We perform a value-based data flow analysis by building a system call-related DDG and def-use chains
 - ightarrow Each observed system call is initially considered as an unconnected node
 - ightarrow Forward slicing inserts edges for every inferred dependence between two calls
 - ightarrow Nodes and edges are annotated with the system call argument constraints
 - \rightarrow Annotations needed for the creation of def-use chains stars accordence of the creation of def-use chains are the constant of the creation of the creation
 - $\rightarrow\,$ Def-use chains relate the output value of specific system calls to the input of (non-necessarily adjacent) others

21], 22 "procname": "com.cd2.nettest.nettest", 23 "subclass": "HTTP"


```
1 "class": "SMS SEND",
 2 "low": [
 4
           "blob": {
 5
               "method": "sendText".
 6
               "params": [
 7
                   "callingPkg = com.load.wap",
 8
                   "destAddr = 3170".
 9
                   "scAddr = null",
10
                   "text = 999287346 418 Java (256) vip 2012-02-25 17:47:56 newoperastore.ru v"
11
12
          },
13
           "method_name": "com.android.internal.telephony.ISms.sendText()",
14
          "sysname": "ioctl".
15
           "ts": "1444337887.816".
16
           "type": "BINDER"
17
181.
19 "procname": "com.load.wap"
```


COMING UP

- ► The unmarshalling oracle is the bottleneck
 - ightarrow Solution: program analysis on the Android OS framework
 - ightarrow Forward and backward slicing on Parcelable Android classes
 - ightarrow Type system
 - $\,\rightarrow\,$ Working prototype for the most common Parceleable Android classes
- ► Full Binder behavior reconstruction
 - ightarrow Devil is in the details: piggybacked Binder requests & replies, references, etc
- ▶ Python bindings (CopperDroid plug-in handles parceling and unparceling), e.g.:

def SendTextTransaction(Task, Object):
 Object.SetText("01234")

- $\rightarrow~$ It eases other analyses, e.g.:
 - $\rightarrow \ \text{ICC fuzzing}$
 - ightarrow ICC policy enforcement (requires porting to the device to be useful)
 - $\rightarrow~$ Information leakage detection via differential behavioral analysis
- ▶ RESTful API is being integrated, alive "soon"

RQ2—DroidScribe

Classifying Android Malware with Runtime Behavior

RESEARCH OBJECTIVES

- Runtime behaviors as discriminator of maliciousness
 - ightarrow Independent of any syntactic artifact
 - ightarrow Visible in managed and native code alike
- ► Family Identification
 - $\rightarrow~$ Crucial for analysis of threats and mitigation planning

Goal Dynamic analysis for classification challenging conditions

Our contributions⁵

- ▶ RQ2.1: What is the best level abstraction?
- ▶ RQ2.2: Can we deal with sparse behaviors?

⁵Dash et al., ``DroidScribe: Classifying Android Malware Based on Runtime Behavior'', in TEFF S&P Workshop MoST 2016

OVERVIEW OF THE CLASSIFICATION FRAMEWORK

TRAINING DATA

RQ2.1 What is the best level of abstraction?

- ► Experiments on the Drebin dataset (5,246 malware samples).
- ▶ Reconstructing Binder calls adds 141 meaningful features.
- ► High level behaviors added 3 explanatory features.

- Dynamic analysis is limited by code coverage
- ► Classifier has only partial information about behaviors
- ► Identify when malware cannot be reliable classified into only one family
 - ightarrow Based on a measure of the statistical confidence
- Helpful human analyst by identifying the top matching families, supported by statistical evidence

CLASSIFICATION WITH STATISTICAL CONFIDENCE

Conformal Predictor (CP)

- ► A statistical learning algorithm for classification tasks
- Provides statistical evidence on the results

Credibility

Supports how good a sample fits into a class

Confidence

Indicates if there are other good choices

Robust Against Outliers

Aware of values from other members of the same class

COMPUTING P-VALUES

- Nonconformity Measure (NCM) is a geometric measure of how well a sample is far from a class.
 - \rightarrow For SVM, the NCM \mathcal{N}_D^z of a sample *z* w.r.t. class *D* is sum distances from all hyperplanes bounding the class *D*.

$$\mathcal{N}_D^z = \sum_i d(z, \mathcal{H}_i)$$

- ▶ P-value is a statistical measure of how well a sample fits in a class.
 - $\rightarrow \mbox{ P-value } \mathscr{P}_D^z$ represents the proportion of samples in D that are more different than z w.r.t. D.

$$\mathscr{P}_D^z = \frac{|\{j = 1, \dots, n : \mathcal{N}_D^j \ge \mathcal{N}_D^z\}|}{n}$$

IN AN IDEAL WORLD

Given a new object *s*, conformal predictor picks the class with the highest p-value and return a singular prediction.

OBTAINING PREDICTION SETS

Given a new object s, we can set a significance-level e for p-values and obtain a prediction set Γ^e includes labels whose p-value is greater than e for the sample.

WHEN TO USE CONFORMAL PREDICTION?

- ► CP is an expensive algorithm
 - $\rightarrow~$ For each sample, we need to derive a p-value for each class
 - $\rightarrow\,$ Computation complexity of O(nc) where n is number of samples and c is the number of classes

WHEN TO USE CONFORMAL PREDICTION?

- ► CP is an expensive algorithm
 - $\rightarrow~$ For each sample, we need to derive a p-value for each class
 - $\rightarrow\,$ Computation complexity of O(nc) where n is number of samples and c is the number of classes

Conformal Evaluation¹

- Provide statistical evaluation of the quality of a ML algorithm
 - ightarrow Quality threshold to understand when should be trusting SVM
 - $\rightarrow~$ Statistical evidences of the choices of SVM
 - ightarrow Selectively invoke CP to alleviate runtime performance

¹Jordaney, R., Wang Z., Papini D., Nouretdinov I., Cavallaro L. ``Misleading Metrics: On Evaluating Machine Learning for Malware with Confidence.'' TR 2016-1, Royal Holloway, University of Lender 2016.

CONFIDENCE OF CORRECT SVM DECISIONS

ACCURACY VS. PREDICTION SET SIZE

RQ2.2 Can we deal with sparse behaviors?

COMING UP

- DroidScribe is a 1-gram model
 - \rightarrow We extend it with larger context sizes and Markov chain construction
 - \rightarrow We focus also on binary classification
- Preliminary experiments
 - \rightarrow Marvin dataset (~9.000 malicious and benign samples)
 - \rightarrow **130** 1-grams (unique system calls), **5,162** 2-grams and **62,677** 3-grams
- Note: Markov chains from m N-grams, transition matrices of size m^2 : huge feature space
- Possible way of addressing it:
 - 1. Feature selection
 - 2. PCA
 - 3. Composite behaviours
 - 4. Smoothing (WIP)
 - 5. Log bilinear model (WIP)

Feature Selection

Reduce the feature space by selecting the ``highest scoring" features

- F-statistic: How significantly the feature contributes to variance in the output P-value: The probability of achieving a better score by removing the feature
- \blacktriangleright Preliminary tests: top 1,000 features yields an F1-score of \sim 0.965

Feature Selection

Reduce the feature space by selecting the ``highest scoring" features

- F-statistic: How significantly the feature contributes to variance in the output P-value: The probability of achieving a better score by removing the feature
- \blacktriangleright Preliminary tests: top 1,000 features yields an F1-score of ${\sim}0.965$

PCA Reduction

Tested combination of top selected features and #of principle components

- ▶ Optimal values: 1,000 top scoring features and 75 principal components
- Interestingly (perhaps unsurprising) performance still better with 1.000 top scoring features and no PCA
 SYSTEMS SECURITY

		Number of Principle Components																															
	0	10000	9000	8000	7000	6000	5000	4000	3000	2000	1000	900	800	700	600	500	400	300	200	100	75	50	25	10	9	8	7	6	5	- 4	3	2	1
	10000	0.858	0.862	0.861	0.860	0.864	0.872	0.880	0.892	0.902	0.913	0.914	0.917	0.920	0.917	0.918	0.919	0.920	0.921	0.919	0.915	0.913	0.904	0.895	0.882	0.882	0.870	0.860	0.836	0.817	0.801	0.721	0.600
	9000		0.859	0.863	0.860	0.863	0.866	0.878	0.892	0.909	0.916	0.918	0.919	0.919	0.926	0.921	0.921	0.924	0.921	0.918	0.916	0.910	0.904	0.893	0.883	0.881	0.874	0.866	0.844	0.825	0.810	0.741	0.601
	8000			0.852	0.856	0.856	0.867	0.883	0.892	0.904	0.914	0.918	0.916	0.918	0.921	0.923	0.922	0.922	0.925	0.922	0.918	0.917	0.907	0.891	0.889	0.882	0.878	0.865	0.842	0.827	0.807	0.748	0.593
	7000				0.850	0.850	0.866	0.880	0.890	0.896	0.912	0.914	0.916	0.917	0.921	0.925	0.924	0.929	0.926	0.926	0.925	0.920	0.908	0.892	0.886	0.882	0.877	0.877	0.868	0.859	0.806	0.751	0.598
	6000					0.858	0.864	0.876	0.885	0.899	0.910	0.913	0.914	0.916	0.918	0.919	0.922	0.924	0.922	0.924	0.925	0.920	0.912	0.893	0.891	0.888	0.883	0.877	0.874	0.864	0.812	0.764	0.594
	5000						0.875	0.882	0.892	0.904	0.912	0.915	0.916	0.920	0.923	0.924	0.927	0.927	0.928	0.928	0.929	0.923	0.908	0.892	0.893	0.889	0.888	0.880	0.878	0.866	0.812	0.769	0.597
	4000							0.889	0.897	0.906	0.915	0.915	0.917	0.921	0.918	0.922	0.927	0.929	0.931	0.929	0.927	0.922	0.914	0.898	0.896	0.895	0.891	0.888	0.883	0.871	0.821	0.788	0.605
	3000								0.891	0.902	0.914	0.912	0.915	0.919	0.918	0.922	0.923	0.926	0.930	0.930	0.927	0.923	0.912	0.900	0.900	0.898	0.893	0.883	0.882	0.871	0.821	0.778	0.604
	2000									0.904	0.915	0.917	0.917	0.920	0.920	0.921	0.924	0.927	0.930	0.933	0.933	0.928	0.919	0.894	0.892	0.889	0.891	0.887	0.880	0.873	0.825	0.793	0.607
	1000										0.916	0.915	0.920	0.919	0.919	0.920	0.923	0.924	0.928	0.930	0.933	0.931	0.927	0.910	0.908	0.902	0.902	0.899	0.888	0.858	0.846	0.806	0.601
	900											0.921	0.919	0.920	0.923	0.924	0.927	0.924	0.930	0.933	0.930	0.933	0.926	0.911	0.908	0.907	0.904	0.899	0.888	0.867	0.847	0.799	0.606
	800												0.920	0.920	0.921	0.923	0.924	0.923	0.925	0.927	0.927	0.927	0.926	0.906	0.901	0.902	0.897	0.893	0.884	0.861	0.845	0.803	0.606
	700													0.923	0.923	0.926	0.923	0.926	0.926	0.928	0.928	0.930	0.927	0.914	0.912	0.908	0.904	0.895	0.885	0.861	0.844	0.798	0.602
K Bort	600														0.920	0.923	0.921	0.922	0.925	0.924	0.924	0.925	0.923	0.913	0.911	0.908	0.908	0.900	0.890	0.865	0.840	0.801	0.604
Selected	500															0.923	0.924	0.924	0.925	0.924	0.925	0.928	0.923	0.916	0.916	0.913	0.903	0.902	0.887	0.874	0.842	0.796	0.596
Eestures	400																0.921	0.923	0.923	0.924	0.924	0.925	0.923	0.913	0.915	0.913	0.903	0.897	0.881	0.859	0.823	0.785	0.598
Prior To PCA	300																	0.921	0.919	0.920	0.921	0.920	0.918	0.912	0.909	0.906	0.892	0.879	0.871	0.848	0.814	0.767	0.614
Reduction	200																		0.914	0.919	0.916	0.918	0.919	0.911	0.908	0.908	0.909	0.902	0.856	0.849	0.806	0.748	0.623
Neutron	100																			0.911	0.910	0.911	0.903	0.900	0.901	0.898	0.897	0.896	0.889	0.878	0.867	0.817	0.630
	75																				0.906	0.904	0.900	0.895	0.896	0.890	0.889	0.886	0.886	0.882	0.858	0.785	0.638
	50																					0.900	0.894	0.893	0.897	0.894	0.893	0.890	0.893	0.883	0.879	0.841	0.655
	25																						0.892	0.879	0.881	0.880	0.877	0.875	0.862	0.857	0.860	0.838	0.701
	10																							0.852	0.853	0.851	0.853	0.852	0.851	0.853	0.852	0.852	0.832
	9																								0.833	0.833	0.833	0.833	0.833	0.833	0.832	0.833	0.832
	8																									0.829	0.829	0.829	0.829	0.829	0.829	0.829	0.829
	7																										0.830	0.829	0.830	0.829	0.829	0.829	0.829
	6																											0.830	0.830	0.830	0.829	0.830	0.830
	5																												0.830	0.830	0.830	0.830	0.830
	4																													0.829	0.829	0.829	0.829
	3																														0.825	0.826	0.825
	2																															0.800	0.800
	1																								_								0.799

Figure: Heatmap of F1 scores after PCA reduction applied.

Preliminary Experiments

Early tests conducted on \sim 9,000 samples with a rough 1:1 ratio

- N-gram frequencies as features across traces with only syscalls and syscalls with Binder reconstruction
- ► Random forests classifiers (128 estimators)
- ► Hold out validation 64-33% averaged over 10 runs

Preliminary Experiments

Early tests conducted on \sim 9,000 samples with a rough 1:1 ratio

- N-gram frequencies as features across traces with only syscalls and syscalls with Binder reconstruction
- ► Random forests classifiers (128 estimators)
- ► Hold out validation 64-33% averaged over 10 runs
- 1. F1, precision and recall scores of around 0.95-0.96 with 1,000 top features
- 2. Scores over 0.9 with 25 features and over 0.8 with only 1 feature
- 3. Syscalls + Binder produces slightly higher scores and with fewer features
- 4. Binder methods also prominent in feature importance
- 5. While 2-grams outperforms 1-grams, 3-grams shows no improvement (effect of junk syscalls?).

	Granularity		SYSCALLS			SYS_BINDER	
	Ngram size	1	2	3	1	2	3
	Classifier	RF	RF	RF	RF	RF	RF
	10000			0.961		0.963	0.963
	9000			0.960		0.962	0.962
	8000			0.960		0.964	0.963
	7000			0.960		0.964	0.962
	6000			0.960		0.965	0.962
	5000			0.959		0.964	0.964
	4000		0.960	0.959		0.965	0.963
	3000		0.960	0.959		0.965	0.962
	2000		0.961	0.958		0.965	0.963
K-best	1000		0.959	0.953		0.965	0.960
features	750		0.958	0.952		0.965	0.960
	500		0.955	0.949		0.963	0.958
	250		0.951	0.939	0.953	0.959	0.953
	100	0.940	0.933	0.932	0.947	0.953	0.945
	75	0.934	0.929	0.927	0.947	0.951	0.938
	50	0.931	0.918	0.922	0.940	0.942	0.925
	25	0.924	0.904	0.908	0.927	0.923	0.911
	10	0.894	0.842	0.882	0.844	0.853	0.876
	5	0.847	0.819	0.861	0.758	0.832	0.857
	1	0 716	0.810	0.810	0 714	0.805	0.805

Figure: Heatmap of F1-scores from preliminary tests.

43

COMING UP (CONT.): DATASETS CONUNDRUM

- Datasets should be ``history-aware"⁶
- ▶ 1:1 benign to malicious ratio easy to benchmark and compare against others
- Real settings likely with unbalanced datasets
 - $\rightarrow~$ Skewing towards one class or another is possible
 - ightarrow Generally performance degrades on an imbalanced dataset (precision sensitive)
 - ightarrow AUC ROC ill-suited; better AUC precision-recall
 - $\rightarrow\,$ FPR is the same, but the proportion of false positives to true positives is much worse with a higher number negative objects
 - $ightarrow\,$ ROC curve stable given class imbalance so conceals the degradation in precision
 - $\,\rightarrow\,$ The precision-recall curve does change visually and reveals these hidden <code>effects^7</code>

⁶Are Your Training Datasets Yet Relevant? - An Investigation into the Importance of Timeline in Machine Learning-Based Malware Detection Allix, Kevin; Bissyande, Tegawende Francois D Assise; Klein, Jacques; Le Traon, Yves in ESSoS 2015

⁷ "The Relationship Between Precision-Recall and ROC Curves." Jesse Davis and Mark Goad ICML, 2006

RQ3—Concept Drift Statistical Evaluation of ML Classifiers

Usually, a 2-phase process:

- 1. Training: build a model M, given labeled objects
- 2. Testing: given M, predict the labels of unknown objects

Objects are described as vectors of features

Usually, a 2-phase process:

- 1. Training: build a model *M*, given labeled objects
- 2. Testing: given *M*, predict the labels of unknown objects

Objects are described as vectors of features

Usually, a 2-phase process:

- 1. Training: build a model *M*, given labeled objects
- 2. Testing: given *M*, predict the labels of unknown objects

Objects are described as vectors of features

- Concept drift is the change in the statistical properties of an object in unforeseen ways
- Drifted objects will likely be wrongly classified

- Concept drift is the change in the statistical properties of an object in unforeseen ways
- Drifted objects will likely be wrongly classified

- Concept drift is the change in the statistical properties of an object in unforeseen ways
- Drifted objects will likely be wrongly classified

Of course, the problem exists in multiclass classification settings...

► Multiclass classification is a generalization of the binary case

- ▶ In non-stationary contexts classifiers will suffer from concept drift due to:
 - \rightarrow malware evolution $\langle \langle \langle \rangle \rangle$
 - \rightarrow new malware families \checkmark
- Need a way to assess the predictions of classifiers
 - ightarrow Ideally classifier-agnostic assessments
- ► Need to identify objects that fit a model and those drifting away

- In non-stationary contexts classifiers will suffer from concept drift due to:
 - \rightarrow malware evolution $\langle \langle , \rangle \rangle$

 \rightarrow new malware families \checkmark

- Need a way to assess the predictions of classifiers
 - \rightarrow Ideally classifier-agnostic assessments
- Need to identify objects that fit a model and those drifting away

Our Contributions

- Conformal Evaluator: statistical evaluation of ML classifiers.
- Per-class guality threshold to identify reliable and unreliable predictions

- Assesses decisions made by a classifier
 - \rightarrow Mark each decision as reliable or unreliable
- Builds and makes use of p-value as assessment criteria
- Computes per-class thresholds to divide reliable decisions from unreliable ones

CONFORMAL EVALUATOR: P-VALUE?

- ▶ Used to measure ``how well" a sample fits into a single class
- ► Conformal Evaluator computes a p-value for each class, for each test element

Definition

$$\alpha_t = \text{Non-conformity score for test element t}$$

$$\begin{array}{lll} \forall i \in \mathscr{K}, \alpha_i &=& \text{Non-conformity score for train element i} \\ \text{p-value} &=& \frac{|\{i : \alpha_i \geq \alpha_t\}|}{|\mathscr{K}|} \\ \mathscr{K} &=& \text{Total number of element} \end{array}$$

P-value

Ratio between the number of training elements that are more dissimilar than the element under test

ROYAI

ML classifier: distance from centroid

1. Setting: 3-class classification

ML classifier: distance from centroid

1. Setting: 3-class classification

2. Test object

ML classifier: distance from centroid

- 1. Setting: 3-class classification
- 2. Test object
 - 3.1 Compute distance to blue class

ML classifier: distance from centroid

- 1. Setting: 3-class classification
- 2. Test object
 - 3.1 Compute distance to **blue** class
 - 3.2 How many objects are more dissimilar than the one under test?

ML classifier: distance from centroid

- 1. Setting: 3-class classification
- 2. Test object
 - 3.1 Compute distance to blue class
 - 3.2 How many objects are more dissimilar than the one under test?

3.3 9

ML classifier: distance from centroid

- 1. Setting: 3-class classification
- 2. Test object
 - 3.1 Compute distance to blue class
 - 3.2 How many objects are more dissimilar than the one under test?

3.4 P-value
$$\pm = \frac{9}{10}$$

Machine learning classifier: distance from centroid

- 1. Initial situation: three classes
- 2. Test object
 - 4.1 Calculate distance to green class
 - 4.2 How many objects are more dissimilar than the one under test?

4.4 P-value
$$\star = \frac{4}{12}$$

Machine learning classifier: distance from centroid

- 1. Initial situation: three classes
- 2. Test object
 - 5.1 Calculate distance to red class
 - 5.2 How many objects are more dissimilar than the one under test?

5.4 P-value
$$_{\bigstar} = \frac{0}{11}$$

Machine learning classifier: distance from centroid

- 1. Initial situation: three classes
- 2. Test object
 - 5.1 Calculate distance to red class
 - 5.2 How many objects are more dissimilar than the one under test?5.3 0

5.4 P-value
$$\star = \frac{0}{11}$$

Let's see how p-values are used within Conformal Evaluator

CONFORMAL EVALUATOR: HOW DOES IT WORK?

- 1. Extracts the non-conformity measure (NCM) from the decision making algorithm
 - $\rightarrow\,$ NCM provides non-conformity scores for p-value computations
 - $\rightarrow\,$ Example: distance from hyperplane, Random Forest probability (adapted to satisfy the non-conformity requirement)

CONFORMAL EVALUATOR: HOW DOES IT WORK?

- 1. Extracts the non-conformity measure (NCM) from the decision making algorithm
- 2. Builds p-values for all training samples in a cross-validation fashion

CONFORMAL EVALUATOR: HOW DOES IT WORK?

- 1. Extracts the non-conformity measure (NCM) from the decision making algorithm
- 2. Builds p-values for all training samples in a cross-validation fashion
- 3. Computes per-class threshold to divide reliable predictions from unreliable ones

Customizable constraints:

- > Desired performance (of the predictions marked as reliable)
 - $\rightarrow~$ E.g.: high-level performance will raise the threshold
- ► Number of unreliable prediction tolerated
 - $\rightarrow~$ E.g.: low number of unreliable prediction will lower the threshold

Assumptions & Hypothesis

- > Performance of non-drifted elements are similar to the one declared by the algorithm
- Predictions with high confidence will have higher p-values

CONFORMAL EVALUATOR: IDENTIFYING PER-CLASS THRESHOLDS

- ▶ We use the p-values and prediction labels from training samples
- From the thresholds that satisfy the constraints we chose the one that maximize one or the other

EXPERIMENTAL RESULTS: CASE STUDIES

- Binary case study: Android malware detection algorithm
 - \rightarrow Reimplemented Drebin⁸ algorithm with similar results (0.95-0.92 precision-recall on malicious apps and 0.99-0.99 precision-recall on benign apps)
 - ightarrow Static features of Android apps, linear SVM (used as NCM)
 - $\rightarrow~{\rm Concept}~{\rm drift}~{\rm scenario:}~{\rm malware}~{\rm evolution}$
- ► Multiclass case study: Microsoft malware classification algorithm
 - $\,\rightarrow\,$ Solution to Microsoft Kaggle competition 9, ranked among the top ones
 - $\rightarrow~$ Static features from Windows PE binaries, Random Forest (used as NCM)
 - $\rightarrow~{\rm Concept}~{\rm drift}~{\rm scenario:}~{\rm family}~{\rm discovery}$

⁸Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, and Konrad Rieck. Drebin: Effective and Explainable Detection of Android Malware in Your Pocket. In 21st Annual Network and Distributed System Security Symposium (NDSS), San Diego, California, USA, Febrery 878 77465

⁹ KAGGLE INC. Microsoft Malware Classification Challenge (BIG 2015). https://www.kaggle.com/c/malware-classific

EXPERIMENTAL RESULTS: CASE STUDIES

- Binary case study: Android malware detection algorithm
 - \rightarrow Reimplemented Drebin⁸ algorithm with similar results (0.95-0.92 precision-recall on malicious apps and 0.99-0.99 precision-recall on benign apps)
 - ightarrow Static features of Android apps, linear SVM (used as NCM)
 - $\rightarrow~{\rm Concept}~{\rm drift}~{\rm scenario:}~{\rm malware}~{\rm evolution}$

⁸ Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, and Konrad Rieck. Drebin: Effective and Explainable Detection of Android Malware in Your Pocket. In 21st Annual Network and Distributed System Security Symposium (NDSS), San Diego, California, USA, Febrory SYS TEMS ⁹ KAGGLE INC. Microsoft Malware Classification Challenge (BIG 2015). https://www.kaggle.com/c/malware-classific STECLURITY

- ▶ Drebin dataset: samples collected from 2010 to 2012
- Marvin dataset¹⁰: malware apps collected from 2010 to 2014 (no duplicates)
 - $\rightarrow~$ We expect some object to drift from objects in the Drebin dataset

Drebin Dataset			Marvin	Dataset
	Type Samples		 Туре	Samples
	Benign	123,435	 Benign	9,592
	Malware	5,560	Malware	9,179

¹⁰ Martina Lindorfer, Matthias Neugschwandtner, and Christian Platzer. MARVIN: Efficient and Comprehensive Mobile Applications Conference (COMPSAC), Taichung, Taiway gert

EXPERIMENTAL RESULTS: BINARY CLASSIFICATION (MALWARE EVOLUTION)

Experiment: Drift Confirmation

- Training dataset: Drebin dataset
- ▶ Testing dataset: 4,500 benign and 4,500 malicious random samples from Marvin dataset

Prediction label							
Original label	Benign	Malicious	Recall				
Benign Malicious	4, <u>498</u> 2,890	2 1,610	1 0.36				
Precision	0.61	1					

EXPERIMENTAL RESULTS: BINARY CLASSIFICATION (MALWARE EVOLUTION)

Experiment: Drift Confirmation

- ► Training dataset: Drebin dataset
- ▶ Testing dataset: 4,500 benign and 4,500 malicious random samples from Marvin dataset

Prediction label							
Original label	Benign	Malicious	Recall				
Benign Malicious	4, <u>498</u> 2,890	2 1,610	1 0.36				
Precision	0.61	1					

ROYAI

EXPERIMENTAL RESULTS: BINARY CLASSIFICATION (MALWARE EVOLUTION)

Experiment: Drift Confirmation

- ► Training dataset: Drebin dataset
- ▶ Testing dataset: 4,500 benign and 4,500 malicious random samples from Marvin dataset

Prediction label							
Original label	Benign	Malicious	Recall				
Benign Malicious	4,498 2,890	2 1,610	1 0.36				
Precision	0.61	1					

ROYAI

Experiment: Threshold Identification

- ► Training dataset: Drebin dataset
- ▶ Testing dataset: 4,500 benign and 4,500 malicious random samples from Marvin dataset
- ▶ Make use of Conformal Evaluator's prediction assessment algorithm
 - $\rightarrow~$ Constraints: F1-score of 0.99 and 0.76 of elements marked as reliable

Original label	Benign	Malicious	Recall
Benign Malicious	4,257 504	2 1,610	1 0.76
Precision	0.89	1	

Prediction label

Experiment: Retraining

- ► Training dataset: Drebin dataset + samples marked as unreliable from previous experiment
- Testing dataset: 4,500 benign and 4,500 malicious random samples of Marvin dataset (no sample overlap from previous experiment)

	5		
Sample	Benign	Malicious	Recall
Benign Malicious	4,413 255	87 4,245	0.98 0.94
Precision	0.96	0.98	

Assigned label

Experiment: Threshold Comparison

- Compare probability- and p-value-based thresholds
 - $\rightarrow~$ Central tendency and dispersion points of true positive distribution
- Training dataset: Drebin dataset
- Testing dataset: 4,500 benign and 4,500 malicious apps from Marvin dataset (random sampling)

	TPR (reliable predictions)		TPR (<mark>unreliable</mark> predictions)		FPR (reliable predictions)		FPR (<mark>unreliable</mark> predictions)	
	p-value	probability	p-value	probability	p-value	probability	p-value	probability
1st quartile	0.9045	0.6654	0.0000	0.3176	0.0007	0.0	0.0000	0.0013
Median	0.8737	0.8061	0.3080	0.3300	0.0000	0.0	0.0008	0.0008
Mean	0.8737	0.4352	0.3080	0.3433	0.0000	0.0	0.0008	0.0018
3rd quartile	0.8723	0.6327	0.3411	0.3548	0.0000	0.0	0.0005	0.0005

Experiment: Threshold Comparison

- Compare probability- and p-value-based thresholds
 - $\rightarrow~$ Central tendency and dispersion points of true positive distribution
- Training dataset: Drebin dataset
- ► Testing dataset: 4,500 benign and 4,500 malicious apps from Marvin dataset (random sampling)

	TPR (reliable predictions)		TPR (unreliable predictions)		FPR (reliable predictions)		FPR (unreliable predictions)	
	p-value	probability	p-value	probability	p-value	probability	p-value	probability
1st quartile	0.9045	0.6654	0.0000	0.3176	0.0007	0.0	0.0000	0.0013
Median	0.8737	0.8061	0.3080	0.3300	0.0000	0.0	0.0008	0.0008
Mean	0.8737	0.4352	0.3080	0.3433	0.0000	0.0	0.0008	0.0018
3rd quartile	0.8723	0.6327	0.3411	0.3548	0.0000	0.0	0.0005	0.0005

Experiment: Threshold Comparison

- Compare probability- and p-value-based thresholds
 - $\rightarrow~$ Central tendency and dispersion points of true positive distribution
- Training dataset: Drebin dataset
- Testing dataset: 4,500 benign and 4,500 malicious apps from Marvin dataset (random sampling)

	TPR (reliable predictions)		TPR (<mark>unreliable</mark> predictions)		FPR (reliable predictions)		FPR (unreliable predictions)	
	p-value	probability	p-value	probability	p-value	probability	p-value	probability
1st quartile	0.9045	0.6654	0.0000	0.3176	0.0007	0.0	0.0000	0.0013
Median	0.8737	0.8061	0.3080	0.3300	0.0000	0.0	0.0008	0.0008
Mean	0.8737	0.4352	0.3080	0.3433	0.0000	0.0	0.0008	0.0018
3rd quartile	0.8723	0.6327	0.3411	0.3548	0.0000	0.0	0.0005	0.0005

Conformal Evaluator (CE)¹

Statistical evaluation to assess predictions of ML classifiers and identify concept drift

¹ (Transcend: Detecting Concept Drift in Malware Classification Models. USENIX Sec 2017)

Conformal Evaluator (CE)¹

Statistical evaluation to assess predictions of ML classifiers and identify concept drift

¹ (Transcend: Detecting Concept Drift in Malware Classification Models. USENIX Sec 2017)

Algorithm Agnostic: Uses non-conformity measure (NCM) from the ML classifier Statistical Support: Builds p-values from NCM to statistically-support predictions Quality Thresholds: Builds thresholds from p-values to identify unreliable predictions

Conformal Evaluator (CE) 1

Statistical evaluation to assess predictions of ML classifiers and identify concept drift

¹ (Transcend: Detecting Concept Drift in Malware Classification Models. USENIX Sec 2017)

Algorithm Agnostic: Uses non-conformity measure (NCM) from the ML classifier Statistical Support: Builds p-values from NCM to statistically-support predictions Quality Thresholds: Builds thresholds from p-values to identify unreliable predictions

- ▶ We evaluate the proposed solution on different ML classifiers and case studies
 - ightarrow Android malware apps in binary classification settings
 - $\rightarrow~$ Windows PE binaries in multi-class classification settings
- ► Information on CE's python code and dataset availability at:

https://s2lab.isg.rhul.ac.uk/projects/ce

CONCLUSION

- CopperDroid: automatic reconstruction of apps behaviors¹¹
 - $\rightarrow~$ System calls to abstract OS- and Android-specific behaviors
 - $\rightarrow~{\sf Resilient}$ to changes to the runtime and Android versions

¹¹http://s2lab.isg.rhul.ac.uk/papers/files/ndss2015.pdf
¹²http://s2lab.isg.rhul.ac.uk/papers/files/most2016.pdf
¹³http://s2lab.isg.rhul.ac.uk/papers/files/aisec2016.pdf and
http://s2lab.isg.rhul.ac.uk/papers/files/usenixsec2017.pdf

CONCLUSION

- CopperDroid: automatic reconstruction of apps behaviors¹¹
 - $\rightarrow~$ System calls to abstract OS- and Android-specific behaviors
 - $\rightarrow~\mbox{Resilient}$ to changes to the runtime and Android versions
- ► Classification with such semantics: "It... Could... Work!"¹²
 - $\rightarrow~$ Selective set-based classification (CE/CP)
 - $\rightarrow~$ (WIP: binary classification and different feature engineering)

¹¹http://s2lab.isg.rhul.ac.uk/papers/files/ndss2015.pdf
¹²http://s2lab.isg.rhul.ac.uk/papers/files/most2016.pdf
¹³http://s2lab.isg.rhul.ac.uk/papers/files/aisec2016.pdf and
http://s2lab.isg.rhul.ac.uk/papers/files/usenixsec2017.pdf

CONCLUSION

- CopperDroid: automatic reconstruction of apps behaviors¹¹
 - $\rightarrow~$ System calls to abstract OS- and Android-specific behaviors
 - $\rightarrow~\mbox{Resilient}$ to changes to the runtime and Android versions
- ► Classification with such semantics: "It... Could... Work!"¹²
 - $\rightarrow~$ Selective set-based classification (CE/CP)
 - \rightarrow (WIP: binary classification and different feature engineering)
- ► Statistical evaluation of ML seems promising¹³
 - $\rightarrow~$ Identify concept drift and and when to trust a prediction
 - $ightarrow \,$ TPR from **37.5%** to **92.7%** in realistic settings
 - $\rightarrow~$ Identifies previously-unknown classes or malicious samples

¹¹http://s2lab.isg.rhul.ac.uk/papers/files/ndss2015.pdf
¹²http://s2lab.isg.rhul.ac.uk/papers/files/most2016.pdf
¹³http://s2lab.isg.rhul.ac.uk/papers/files/aisec2016.pdf and
http://s2lab.isg.rhul.ac.uk/papers/files/usenixsec2017.pdf

CP: OVERVIEW AND EXAMPLE

 P-value is the probability of truth for the hypothesis that a sample belongs to a class

COMPUTING P-VALUES

- Nonconformity Measure (NCM) is a geometric measure of how well a sample is far from a class.
 - \rightarrow For SVM, the NCM \mathcal{N}_D^z of a sample *z* w.r.t. class *D* is sum distances from all hyperplanes bounding the class *D*.

$$\mathcal{N}_D^z = \sum_i d(z, \mathscr{H}_i)$$

- ▶ P-value is a statistical measure of how well a sample fits in a class.
 - $\rightarrow \mbox{ P-value } \mathscr{P}_D^z$ represents the proportion of samples in D that more different than z w.r.t. D.

$$\mathscr{P}_D^z = \frac{|\{j = 1, \dots, n : \mathcal{N}_D^j \ge \mathcal{N}_D^z\}|}{n}$$

PROBABILITY OF MEMBERSHIP

- Standard classification algorithms calculate probability of a sample belonging to a class
- ► For the case of SVM, this is based on Euclidean distance (Platt's scaling)

Using Probabilites

- Platt's scaling is based on logistic regression
- ► Logistic regression is sensitive to outliers which introduces inaccuracies
- ▶ Probabilities to sum up to one which introduces skewing

BINARY CLASSIFICATION CASE STUDY: COMPARISON WITH PROBABILITY

	TPR		FPR		TPR		FPR		MALICIOUS		BENIGN	
	of kept elements		of kept elements		of discarded elements		of discarded elements		kept elements		kept elements	
	p-value	probability	p-value	probability	p-value	probability	p-value	probability	p-value	probability	p-value	probability
1st quartile	0.9045	0.6654	0.0007	0.0	0.0000	0.3176	0.0000	0.0013	0.3956	0.1156	0.6480	0.6673
Median	0.8737	0.8061	0.0000	0.0	0.3080	0.3300	0.0008	0.0008	0.0880	0.0584	0.4136	0.4304
Mean	0.8737	0.4352	0.0000	0.0	0.3080	0.3433	0.0008	0.0018	0.0880	0.1578	0.4136	0.7513
3rd quartile	0.8723	0.6327	0.0000	0.0	0.3411	0.3548	0.0005	0.0005	0.0313	0.0109	0.1573	0.1629

Table 4: Thresholds comparison between p-value and probability. The results show, together with the performance of the sample marked as unreliable, a clear advantage of the p-value metric compared to the probability one.

P-VALUE VS PROBABILITY: SITUATION 1

	P-value	Probability
Red	0.0	0.5
Green	0.0	0.5

P-VALUE VS PROBABILITY: SITUATION 2

	P-value	Probability
Red	0.5	0.5
Green	0.5	0.5

MULTICLASS CLASSIFICATION (NEW FAMILY DISCOVERY)

Dataset: Microsoft Malware Classification Challenge (2015)

Malware	Samples	Malware	Samples
Ramnit	1541	Obfuscator.ACY	1228
Lollipop	2 478	Gatak	1013
Kelihos_ver3	2942	Kelihos_ver1	398
Vundo	475	Tracur	751

Microsoft Malware Classification Challenge Dataset

Experiment: Family Discovery

- ► Training families: Ramnit, Lollipop, Kelihos_ver3, Vundo, Obfuscator.ACY, Gatak, Kelihos_ver1
- ► Testing family: Tracur

_

Classification results:

Lollipop	Kelihos_ver3	Vundo	Kelihos_ver1	Obfuscator.ACY
5	6	358	140	242

MULTICLASS CLASSIFICATION (NEW FAMILY DISCOVERY)

P-value distribution for samples of Tracur family; as expected, the values are all close to zero.

MULTICLASS CLASSIFICATION (NEW FAMILY DISCOVERY)

Probability distribution for samples of Tracur family; bounded to sum to one, the values are different than zero.

ROYAL