CRAYPIIONE,

LABS

Practical Security Guide

For Java Developers

Pavt |

Luca Capacci
luca.capacci@cryptonetlabs.it

Vittorio Ballestra
vittorio.ballestra@cryptonetlabs.it

Bologna, 26/11/2018

mailto:luca.capacci@cryptonetlabs.it
mailto:Vittorio.ballestra@cryptonetlabs.it

CRYPTONET

® SsAMM & BSIMM
® OWASP Top 10

©® Lab & playeround

Copyright CryptoNet Labs sl 2

CRYPTONET

Sofware Security Initiative

An organization-wide program to instill, measure, manage, and evolve software
security activities in a coordinated fashion.

Every organization that develops or integrates software needs a software
security initiative

THE WEB SITE

I BROKE INTO
TO HELP YOU/

Reference frameworks:

THANKS, 8UT IT'S BETTER
IF WE DON'T KNOW THE
SITE IS INSECLIPE.

SAMM: Software Assurance Maturity Model

BSIMM: Building Security In Maturity Model

Copyright CryptoNet Labs sl 3

CRYPTONET

BSIMM vs SAMM

(ml[s¢] SAMM
——————4 methodology to improve the company’s security posture
=)

Q BSIMM

1 metric to check the company’s security posture against a

O O global benchmark

Copyright CryptoNet Labs sl 4

CRYPTONET

SAMM: Software Assurance Maturity Model

The Software Assurance Maturity Model (SAMM) is an
OWASP project

It's an open framework to help organizations formulate
and implement a strategy for software security that is
tailored to the specific risks facing the organization.

SAMM was defined with flexibility in mind such that it
can be utilized by small, medium, and large organizations
using any style of development. Additionally, this model
can be applied organization-wide, for a single line-of-
business, or even for an individual project.

Copyright CryptoNet Labs sl 5

CRYPTONET

SAMM - Business Functions

Start with the core activities tied to
any organization performing
software development

Named generically, but should (' :
resonate with any developer or \ Verification
manager

Operations

Copyright CryptoNet Labs sl 6

CRAYPIIONE

LABS

SAMM - Business Functions

Governance is centered on the processes and
activities related to how an organization
manages overall software development
activities. More specifically, this includes
concerns that impact cross-functional groups
involved in development, as well as

business processes that are established at
the organization level.

Copyright CryptoNet Labs sl

CRAYPIIONE

LABS

SAMM - Business Functions

Construction concerns the processes and
activities related to how an organization
defines goals and creates software within
development projects. In general, this will
include product management, requirements
gathering, high-level architecture
specification, detailed design, and
implementation.

Copyright CryptoNet Labs sl

CRAYPIIONE

LABS

SAMM - Business Functions

Verification is focused on the processes and
activities related to how an organization
checks, and tests artifacts produced
throughout software development. This
typically includes quality assurance work such
as testing, but it can also include other
review and evaluation activities.

Copyright CryptoNet Labs sl

CRAYPIIONE

LABS

SAMM - Business Functions

Operations entails the processes and activities
related to how an organization manages
software releases that has been

created. This can involve shipping products to
end users, deploying products to internal or
external hosts, and normal

operations of software in the runtime
environment.

Copyright CryptoNet Labs sl 10

CRAYPIIONE

LABS

SAMM - Security Practices

* From each of the Business Functions, 3 Security Practices are defined

* The Security Practices cover all areas relevant to software security assurance
 Eachoneisa’‘silo’ forimprovement

o 3 levels for each Security Practice

SAMM Overview
Software
Development

Business Functions

= Rt

Security Practices

Strategy & Education & Security Design Security Environment
Metrics Guidance Requirements Review Testing Hardening
Policy & Threat Secure Implementation Issue Operational
Compliance Assessment Architecture Review Management Enablement

Copyright CryptoNet Labs sl Ll

CRYPTONET

Per Level, SAMM defines...

BT)
* Objective T
 Activities

e Results

e Success Metrics

e (osts

e Personnel
e Related Levels

Copyright CryptoNet Labs sl 12

CRYPTONET

Approach to iterative improvement

Simply put, improve an assurance program in phases by:

Select Security Practices to improve in next phase of assurance program

{’:J Achieve the next Objective in each Practice by
.. ° performing the corresponding Activities at the
Q) .-~

specified Success Metrics

w
-
-
L4

and the next objective ...

Copyright CryptoNet Labs sl 13

CRAYPIIONE

LABS

BEN BN B

OBJECTIVE Consider security explicitly Increase granularity of security = Mandate security
during the software requirements derived from requirements process for
requirements process business logic and known risks all software projects and

third-party dependencies

ACTIVITIES A.Derive security requirements A.Build an access control matrix A.Build security requirements
from business functionality for resources and capabilities into supplier agreements
B. Evaluate security and compliance B. Specify security requirements B. Expand audit program for
guidance for requirements based on known risks security requirements

The Security Requirements (SR) Practice is focused on
proactively specifying the expected behavior of software with

respect to security.

Copyright CryptoNet Labs sl 14

CRAYPIIONE

LABS

—

Strategy & Metrics — framework, roadmap, KPI
< Policy & Compliance — policies, procedures, contracts

Construction

{ Verification

Operations

<

Education & Guidance — education, guidelines, best practices

Threat Assessment — threat model, abuse cases

< Security Requirements — requisiti di sicurezza

Secure Architecture — principi di progettazione sicura

Design Review — review with respect to requirements
and best practices
Implementation Review — manual or automated
assessments of the source code
Security Testing — manual or automated penetration tests

and vulnerability assessments
(&

(" lIssue Management — remediation process

Environment Hardening — configuration and patch
management

Operational Enablement — documentation for operators

_ and users

Copyright CryptoNet Labs sl

15

CRYPTONET

BSIMM: Building Security In Maturity Model

The Building Security In Maturity Model (BSIMM, pronounced “bee simm”) is a
study of existing software security initiatives. By quantifying the practices of
many different organizations, we can describe the common ground shared by
many as well as the variations that make each unigue.

BSIMM is not a how-to guide, nor is it a one-size-fits-all prescription. Instead, it
is a reflection of software security.

e Framework derived from SAMM Beta
 Based on collected data from > 100 firms

Q

£ BSIMM

QQ.)

Copyright CryptoNet Labs sl 16

CRYPTONET

What the BSIMM enables you to do

o @

0 Start a software security initiative (SSI) using real data
If you don't have a software security initiative yet, you need one. Before
you start down that path, the BSIMM will help you identify the core
activities that all successful initiatives undertake — no matter what

industry you're in.

6 Compare your SSI to other firms in your industry
Measure how your SSI stacks up against the rest of your industry peers.
With your goals in mind, you can determine where you stand relative to

your needs.

Copyright CryptoNet Labs sl 17

CRYPTONET

What the BSIMM enables you to do

o @

Q Benchmark and track your SSI growth
A repeatable way to measure your SSI's effectiveness. Once your SSIis
established, you can use it to measure your continuous improvement year
over year. It will also provide concrete details to show your executive team
and board how your security efforts are making a difference.

G Evolve your initiative using lessons learned from mature initiatives
The BSIMM is a “what works” report on building and evolving a software
security initiative. It comprises proven activities that mature organizations
are performing today.

Copyright CryptoNet Labs sl 18

CRAYPIIONE

LABS

More than 100 firms in BSIMM
verizon’ @ W VERITAS

3
- SN L~ . TARGET JPMORGAN ORACLE
S TRANE % j \\j Uaxway e”uC|an CHASE & Co.
Symantec. - ‘ \ DT c c o l

L] L L) < /-w |

00 BMO 9 Financial Group Linkedm Elavon e[)Sl Oy B
N1 LRY] [= NAVI=NT

CISCO Bvorar PU {\ AUTODESK
' ‘@ BLACK &} KNIGHT" WELLS FARGO ZEPHYR [|[3] Ameritrade
CiTy NATIONAL BANK H ‘ FINANCIAL sERvIcEs HEALTH

AN RBC C

Py
Adobe @ betfair citl [Cbank NVIDIA.
QUuALCOMMW Independent

Anda>> | ComericA \QI@VTHIM aetna CapitalO HSBC < @9 Health.
A

“FIGHMARK. . i
AMGEN ") HP Fortify X$ CitizensBank: ' " Fidelity Medtronic
Th
ML E M C NetApp E Fanni(%Ma(é SONY SIEMENS \ Ad%voiis%ry L
ompany HH
Lenovo - SG HH
" “ BankOfAmerica BE CIBC SCIENTIFIC GAMES
e = = ———y —— : v
Genetec == Froeore 7 Horizon. M<KESSON i . aﬁh ‘:
CRYPTOGRAPHY RESEARCH } ['Freddle = iPipeline zendesk
2017 Symopays g Mac P PayPal SYNoPSys

Copyright CryptoNet Labs sl 19

CRYPTONET

BSIMM Firms

Dataset:
* 120 organizations

Industries:
* financial services
* independent software vendors
V4 % * technology
* healthcare
* the cloud
 the Internet of Things (loT)
* insurance

Copyright CryptoNet Labs sl 20

CRAYPIIONE

LABS

The BSIMM Framework

4 Domains — 12 Practices — 116 Activities

Practices that help organize, manage, and measure a software security
initiative. Staff development is also a central governance practice.

Intelligence. Practices that result in collections of corporate knowledge used in carrying out
software security activities throughout the organization. Collections include both proactive security
guidance and organizational threat modeling.

SSDL Touchpoints. Practices associated with analysis and assurance of particular
software development artifacts and processes. All software security methodologies
include these practices.

Deployment. Practices that interface with traditional network security and software
maintenance organizations. Software configuration, maintenance, and other environment
issues have direct impact on software security.

SO0

Copyright CryptoNet Labs sl 21

CRAYPIIONE

LABS

The BSIMM Framework

4. Attack Models (AM)
Intel “g@ﬂ ce 5. Security Features & Design (SFD)

6. Standards & Requirements (SR)

7. Architecture Analysis (AA)

SSDL Touchpoints 8. Code Review (CR)
9. Security Testing (ST)

10. Penetration Testing (PT)

Deployment 1. Software Environment (SE)
12. Configuration Management & Vulnerability Management (CMVM)

Copyright CryptoNet Labs sl 22

CRAYPIIONE

LABS

BSIMM Activities

ATTACK MODELS (AM)

ACTIVITY DESCRIPTION

LEVEL 1

ACTIVITY

PARTICIPANT %

LEVEL 2

Create a data classification scheme and inventory. AM1.2 62.5
Identify potential attackers. AM1.3 317
Gather and use attack intelligence. AM1.5 442

Build attack patterns and abuse cases tied to potential attackers. AM2.1 8.3
Create technology-specific attack patterns. AM2.2 8.3
Build and maintain a top N possible attacks list. AM2.5 13.3
Collect and publish attack stories. AM2.6 n.7
Build an internal forum to discuss attacks. AM2.7 9.2

LEVEL 3
Have a science team that develops new attack methods. AM3.1 3.3
Create and use automation to mimic attackers. AM3.2 1.7

Copyright CryptoNet Labs sl

23

CRYPTONET

BSIMM 12 Core Activities

12 activities were observed in at least 62% of the firms

€
“Although we can't directly conclude that these 12 activities are
necessary for all 551s, we can say with confidence that these
activities are commonly found in highly successful initiatives.
This suggests that if you are working on an initiative of your
own, you Should consider these 12 activities particularly

carefully.”

Copyright CryptoNet Labs sl 24

CRAYPIIONE

LABS

BSIMM 12 Core Activities

ACTIVITY DESCRIPTION

[AM1.2] Create a data classification scheme and inventory.

[SFD1.1] Build and publish security features.

[SR1.2] Create a security portal.

[AA1.1] Perform security feature review.

[CR1.2] Have SSG perform ad hoc review.

[ST1.1] Ensure QA supports edge/boundary value condition testing.

[PT1.1] Use external penetration testers to find problems.

[SE1.2] Ensure host and network security basics are in place.

[CMVM1.2] Identify software bugs found in operations monitoring and feed them back to development.

Copyright CryptoNet Labs sl 25

CRYPTONET

Global security posture according to BSIMM

30
Configuration Mgmt. & Vulnerability Mgmt.
20
L]
. L] L]
Software Environment 15
10
[]
L]
05
Penetration Testing ° 00 .
L]
L]
L]
L)
Security Testing .
Code R w

Architecture Analysis

L] Earth (120)

Copyright CryptoNet Labs sl 26

CRAYPIIONE

LABS

Global security posture according to BSIMM

Configuration Mgmt. & Vulnerability Mgmt.

Software Environment

Penetration Testing

Security Testing

Code Review tandard qu

Architecture Analysis

W= |nsurance (10 of 120} = J= Healthcare (19 0f120) ®w= Financial (50 of 120)

Copyright CryptoNet Labs sl 27

CRYPTONET

SO ... WHAT'S THIS SECURE
PROGRAMMING THING?

Copyright CryptoNet Labs sl 28

CRYPTONET

Secure Programming

* First rule of “Secure Programming”
* There's no such a thing as “Secure Programming”
* Remember:

e Securityis an "emergent” feature

WHATIFITTOLDYOU

* No “silver bullet” for security

THEREISINO;SILVER BULLET?,

Copyright CryptoNet Labs sl 29

CRYPTONET

Security is an "emergent feature”

 Whatis an “emergent feature” ?

e Afeature that "emerges” only in an aggregation of smaller elements.

* Example:
* Temperature:
* There's no such a thing as the “temperature of a single atom”.

 “Temperature” is a feature that arises only within an aggregation
of atoms like for instance a gas.

Copyright CryptoNet Labs sl 30

CRYPTONET

Security is an "emergent feature”

* |nthe same way
* Asingle line of code is not “secure”, it all depends on the whole system

* Securityis a feature that “emerges” from the whole software
development process, the deployment environment

e |et'sseeitin more details

* Inorder to better understand this concept let's look at some of the
most relevant security vulnerabilities

 |norderto fix it learn how to break it !

Copyright CryptoNet Labs sl 31

CRAYPIIONE

LABS

OWASP TOP 10 / 2017

A1/2017 - Injection
0 Injection flaws, such as SQL, NoSQL, OS, and LDAP injection, occur when untrusted data is sent to an interpreter
as part of a command or guery. The attacker's hostile data can trick the interpreter into executing unintended
commands or accessing data without proper authorization.
A2/2017 - Broken Authentication
Application functions related to authentication and session management are often implemented incorrectly,
allowing attackers to compromise passwords, keys, or session tokens, or to exploit other implementation flaws to
assume other users' identities temporarily or permanently.
A3/2017 - Sensitive Data Exposure
Many web applications and APIs do not properly protect sensitive data, such as financial, healthcare, and PII.
Attackers may steal or modify such weakly protected data to conduct credit card fraud, identity theft, or other
crimes. Sensitive data may be compromised without extra protection, such as encryption at rest or in transit, and
requires special precautions when exchanged with the browser.
A4/2017 - XML External Entities (XXE)
Many older or poorly configured XML processors evaluate external entity references within XML documents.
External entities can be used to disclose internal files using the file URI handler, internal file shares, internal port
scanning, remote code execution, and denial of service attacks.
A5/2017 - Broken Access Control
Restrictions on what authenticated users are allowed to do are often not properly enforced. Attackers can exploit
these flaws to access unauthorized functionality and/or data, such as access other users' accounts, view sensitive
files, modify other users' data, change access rights, etc.

Copyright CryptoNet Labs sl 32

CRAYPIIONE

LABS

A6/2017 - Security Misconfiguration

Security misconfiguration is the most commonly seen issue. This is commonly a result of insecure default
configurations, incomplete or ad hoc configurations, open cloud storage, misconfigured HTTP headers, and verbose
error messages containing sensitive information. Not only must all operating systems, frameworks, libraries, and
applications be securely configured, but they must be patched/upgraded in a timely fashion.

A7/2017 - Cross-Site Scripting (XSS)

XSS flaws occur whenever an application includes untrusted data in a new web page without proper validation or
escaping, or updates an existing web page with user-supplied data using a browser API that can create HTML or
JavaScript. XSS allows attackers to execute scripts in the victim's browser which can hijack user sessions, deface web
sites, or redirect the user to malicious sites.

A8/2017 - Insecure Deserialization

Insecure deserialization often leads to remote code execution. Even if deserialization flaws do not result in remote
code execution, they can be used to perform attacks, including replay attacks, injection attacks, and privilege
escalation attacks.

A9/2017 - Using Components with Known Vulnerabilities

Components, such as libraries, frameworks, and other software modules, run with the same privileges as the
application. If a vulnerable component is exploited, such an attack can facilitate serious data loss or server takeover.
Applications and APIs using components with known vulnerabilities may undermine application defenses and enable
various attacks and impacts

A10/2017 - Insufficient Logging & Monitoring

Insufficient logging and monitoring, coupled with missing or ineffective integration with incident response, allows
attackers to further attack systems, maintain persistence, pivot to more systems, and tamper, extract, or destroy
data. Most breach studies show time to detect a breach is over 200 days, typically detected by external parties rather
than internal processes or monitoring.

Copyright CryptoNet Labs sl 33

CRAYPIIONE

LABS

OWASP TOP 10 / 2017

Every threat is evaluated according to the
following criteria:

« Exploitability
How easy or hard is to exploit that

vulnerability (1=hard, 2=medium, 3=easy) o P ,‘ ‘

« Detectability
How easy or hard is to find systems
affected by the vulnerability (1=hard,
2=medium, 3=easy)

* Technical
The technical impact on the system
(1=minor, 2=moderate, 3=severe)

* Prevalence
The spread of the vulnerability
(T=uncommon, 2=common, 3=widespread)

Exploitability
3,0
AN

Detectability

Copyright CryptoNet Labs sl

34

CRAYPIIONE

LABS

OWASP TOP 10 / HistoryASP TOP

2017

A1 = Injection -
A2 = Broken Authentication -
A3 +++ Sensitive Data Exposure =
Ad NEW XXE =
A5 - Broken Access Confrol +
A6 - Security Misconfiguration +4+
A7 --— XSS +
A8 NEW Insecure Deserialization --
A9 = Thirdy party vulnerabilities

A10 NEW Insufficient Logging & Monitoring =

2013

Injection
Broken Authentication
XSS

Broken Access Control /
Insecure Direct Object References

Security Misconfiguration
Sensitive Data Exposure

Broken Access Control /
Missing Function Level Access Control

CSRF

NEW Thirdy party vulnerabilities

Unvalidated Redirects and Forwards

2010
Injection
XSS
Broken Authentication

Insecure Direct Object References
CSRF
Security Misconfiguration

Sensitive Data Exposure /
Insecure Cryptogrpahic Storage

Missing Function Level Access Control
(Failure to Restrict URL Access)

Sensitive Data Exposure /
Insufficient Transport Layer Protection

Unvalidated Redirects and Forwards

Copyright CryptoNet Labs sl

35

CRAYPIIONE

LABS

A1/2017 - Injection

When it happens ?

«External» input used without validation / sanitization:
* query SQL /JPA-QL / HQL / MongoDB / Elasticsearch / ecc.
e XPath query
* (Generating HTML output
* (Query LDAP

@ How can we prevent it ?

Always try to use parametrics queries

Validate through Pattern matching

Implement sanitization

OWASP Injection_Prevention_Cheat_Sheet_in_Java

o O O O

Copyright CryptoNet Labs sl 36

https://www.owasp.org/index.php/Injection_Prevention_Cheat_Sheet_in_Java

CRAYPIIONE

LABS

A1/2017 - Injection / Esempio JDBC

void updatePassword(String username, String password) {

String query = "UPDATE users SET password = + password

+ " WHERE username="" + username + """
PreparedStatement ps = con.prepareStatement(query);
ps.executeUpdate();
ps.close();

updatePassword(“mario”, RaEEel(sMife]a=V/=|as s s\VAEEH) ;

UPDATE users SET password="Password_for_everybody' -- * WHERE username="mario’

Copyright CryptoNet Labs sl 37

CRYPTONET

A1/2017/ - Injection / JDBC - soluzione

void updatePassword(String username, String password) {
String query = "UPDATE users SET password = ? WHERE username=?";
PreparedStatement ps = con.prepareStatement(query);
ps.setString(1,username);
ps.setString(2,password);
ps.executeUpdate();

ps.close();

Copyright CryptoNet Labs sl 38

CRYPTONET

A1/2017 - Injection / JDBC - lab

* Labsample
* QOpen playground
* Rundemo

* Inspect code

Copyright CryptoNet Labs sl 39

CRYPTONET

A1/201/ - Injection: not only SQL

 JPA/HQL / ecc.
* Always use parametric queries
* es.:
session.createQuery(“FROM MyEntity WHERE id IN :collection”)
setParameter(“collection”,Arrays.fromList(1,2,3))

list()

* Use OBE
* es.:
session.createCriteria(MyEntity.class)
.add(Criteria.in("id”,Arrays.fromList(1,2,3)))
Jist();

Copyright CryptoNet Labs sl 40

CRAYPIIONE

LABS

A1/2017 - Injection: not only SQL

» XPath query
e Use avariable resolver

* Resolver in order to define parameter for XPATH expression

/%

*/

public class SimpleVariableResolver implements XPathvariableResolver {

private final Map<QName, Object> vars

= new HashMap<QName, Object>();

Ve

* External methods to add parameter

* @param name Parameter name
* @param value Parameter value
*/
public void addVariable(QName name, Object value) {
vars.put(name, value);
}
Jxr
* {@inheritDoc}
*

* @see javax.xml.xpath.XPathVariableResolver#resolveVariable(javax.xml.namespace.QName)
./

public Object resolveVariable(QName variableName) {
return vars.get(variableName);

}

W

/*Create and configure XPATH expression*/
XPath xpath = XPathFactory
xpath.setXF |

newilns

ance().n

wXPath();
er(variableResolver);
XPathExpression xPathExpression = xpath.compile("//book[@id=$bookId]");

r

athVariable

Copyright CryptoNet Labs sl 41

CRYPTONET

A1/201/ - Injection: not only SQL

More examples:

* LDAP (e.g. used as an authentication backend):
String searchlogin="(&(uid="+user+")(userPassword="+encrypt(password)+"))";

user = “*)(uid="))(|(uid=*";

Resulting:
(&(uid=*)(uid=*))

\Onl\/ the first part of the query gets

executed

Copyright CryptoNet Labs sl 42

CRAYPIIONE

LABS

A1/201/ - Injection: not only SQL

More examples:

 Command Injection:
Process p = Runtime.getRuntime().exec String[]1{ })
PrintWriter w = PrintWriter(OutputStreamWriter(p.getOutputStream()))

w.println(+Username+)
w.println()

w.close()

p.waitFor()

+
username = |

P o~ /tmp/passwd
newuser:newpassword

Copyright CryptoNet Labs sl 43

CRYPTONET

A1/201/ - Injection: not only SQL

More examples:

* Command Injection:

String appHome = System.getProperty(

Runtime.getRuntime() .exec| appHome+

 APP_HOME is not sanitized, what will happen if it is set to

e "/bin/bash —¢ 'rm —xrf /' ;" ?

Copyright CryptoNet Labs sl 44

A1/201/ - Injection: not only SQL

* Labsample
* QOpen playground
* Runcommand example

* Inspect code

Copyright CryptoNet Labs sl 45

CRYPTONET

A1/2017 - Injection

What can we do when there are no “safe” way of parametrize your query ?

 Validate the input, e.g.:
* use regular expressions to validate the data
 try to convert to typed data (es.: int / long / Date)
* Adatashould be adata, anint should be anint, ...

* Sanitize input
* Escape «dangerous» characters:
input.replaceAll("","\\"");
* Remove ‘dangerous’ characters

input.replaceAll(“[-&]“,"_");

Copyright CryptoNet Labs sl 46

CRYPTONET

A1/2017 - Injection

* Ingeneral:
* Use parametrized query when available
* Validate and sanitize external data before using it
* Where to do input data validation ?

* Validate outputs!

Copyright CryptoNet Labs sl 47

CRYPTONET

Data Validation

Q method /
—

g eiross
/

—

Copyright CryptoNet Labs srl 48

Entrypoint

Sink

CRYPTONET

Data Flow

* Entrypoint

* Where un-trusted data "enters” the system

* Sink
* Where data get "used” :
* Toquery adata source
* Toexecute a command

« Togenerate a template

Copyright CryptoNet Labs sl 49

CRAYPIIONE

LABS

Data validation

* When should | do data validation ?
* Everywhere:
* Performance problem
* Introduces DOS
* Entry-points:

* Only validation should be done here (to avoid data mangling, e.g. escaping multiple
times, wrong comparisons)

* Different path of execution can lead to injection
* Atsink:
* Both sanitization and validation is possible

* Sinks are generally more difficult to identify than entry points

Copyright CryptoNet Labs sl 50

CRYPTONET

A8/2017 - Insecure Deserializatic ~ *

10 X
Techincai - BPrevalence

{%} When it happens ?
o Every time you use an deserialization mechanism

= Deserialization can be exploited to execute
arbitrary code

How can we prevent it ?

o Use safer serialization formats (e.e. json, google protobuf)
o Strict type checking

o Digital signatures to avoid tampering

o Logand monitoring

Copyright CryptoNet Labs sl 51

CRAYPIIONE

LABS

A8/2017 - Insecure Deserialization

* Malicious code execution
* (adget classes
* (lasses that can execute code during deserialization
e (ustomized serialization can be implemented using the following two methods:

» private void writeObject(ObjectOutputStream oos) throws Exception: This
method will be executed automatically by the jvm(also known as Callback
Methods) at the time of serialization. Hence to perform any activity during
serialization, it must be defined only in this method.

» private void readObject(ObjectinputStream ois) throws Exception: This
method will be executed automatically by the jvm(also known as Callback
Methods) at the time of deserialization. Hence to perform any activity during
deserialization, it must be defined only in this method.

Copyright CryptoNet Labs sl 52

CRAYPIIONE

LABS

A8/2017 - Insecure Deserialization

* (adget classes example

org.acme.security.playground.deser

java.io.IOException
java.io.Serializable

Runnable, Serializable {

(String command) {
= command

}

@Override

run() {

it

Runtime.getRuntime() .exec(
(IOException e) {

e.printStackTrace()

.acme.security.playground.deser

i0.I0Exception
io.0ObjectInputStream
io.Serializable

Serializable {

Runnable

(Runnable initHook) {
= initHook

(ObjectInputStream ois) IOException
ois.defaultReadObject()

.run()

ClassNotFoundException {

Copyright CryptoNet Labs sl

53

CRYPTINET
A8/2017 - Insecure Deserialization

* Insecure deserialization example

ObjectinputStream

readObject()

defaultReadObiject|()

“calc.exe”

-

SampleGadget:

command

run()

Copyright CryptoNet Labs sl 54

CRYPTONET
L ab

* Labdemo
* Normal method execution
* (reate a malicious payload

* Use malicious payload

Copyright CryptoNet Labs sl 55

CRYPTONET

A8/2017 - Insecure Deserialization

* Libraries containing gadget classes:
* Apache common collections
* Apache FileUpload
Yo dawg, | heard you like deserializing stufi
* Mozilla Rhino
 BSH

e ...and many other

|
so | put some lnvokerTransformers
in an AnnotationinvecationHandler

.50 | can execl) while you readOhjectl)

Copyright CryptoNet Labs srl 56

CRYPTONET

A secure development process

Copyright CryptoNet Labs sl 57

CRYPTONET

Software development process

S +

Specs Devs Code

&

5

Implements

Copyright CryptoNet Labs sl 58

CRYPTONET

Software development process

* A possible definition :

“A process performed by human beings to bring the best algorithmical
approximation from a set of ambiguous and incomplete requirements”

* The "Halting Problerm”, computational theory

* Alan Turing proved in 1936 that a general algorithm to solve the halting
problem for all possible program-input pairs cannot exist. A key part of
the proof was a mathematical definition of a computer and program,
which became known as a Turing machine; the halting problem is
undecidable over Turing machines. It is one of the first examples of a
decision problem.

Copyright CryptoNet Labs sl 59

CRYPTONET

Software, bugs and vulnerabilities

Input Internal State Output

“unexpected /

‘ unwanted” states
.. vulnerability

. bug
“unexpected” inputs

Copyright CryptoNet Labs sl 60

CRYPTONET

Secure Development Process

* A secure development process should

e Limit the occurrence of “unexpected/unwanted states”, in other words
limit bugs:

e asecure development process should be first of all a quality
rewarding development software process

* Limit the range of acceptable inputs ISEEYOU TEST.YOUR CODEIN

* Inputs validation PRODUCTION

* Inputs sanitization v

Sy,
1TOO LIKETO LIVE DANG

Copyright CryptoNet Labs sl Y

CRYPTONET

Focus on integration step

Copyright CryptoNet Labs srl 62

CRYPTONET

Integration/merge Step

* A good integration step
* Should preserve
* Should not introduce new bugs

* Should not introduce regressions

* How to achieve this goal ?
« (ClI/CD
* Test automation
* Metrics

e (ode Review

Copyright CryptoNet Labs sl 63

CRYPTONET

A sample SDLC (1)

@\ —\— N

Build errors

Bugs retressions

Prerequisite : USE
SVC

Copyright CryptoNet Labs sl 64

CRYPTONET

s this enough ?

e Test automation

* Inorder to be meaningful a sufficient code coverage should be achieved
AND preserved

* Enters “Test coverage”
e Lab:
* jacoco test coverage

° Improve test coverage

Copyright CryptoNet Labs sl 65

CRYPTONET

A sample SDLC (2)

@ || -y oy
\ }

|

Errors, regresstons, coverage threshold

Copyright CryptoNet Labs sl 66

CRYPTONET

s this enough ?

e Software metrics

* We can generalize the concept by measuring a set of “software metrics”
that should be preserved between merges

* Enters “Static Application Security Testing”
e Lab:
* Sonarqube analysis
* |dentify vulnerabilities

* Improve security

Copyright CryptoNet Labs sl 67

CRYPTONET

A sample SDLC (3)

Check cov.

Run Test

o
QO

Copyright CryptoNet Labs sl 68

CRYPTONET

s this enough ?

* Are automated tools enough ?

* Some bugs / vulnerabilities aren’t detected (silver bullet ?)

e Enters “Code Review”
e |ab:

* |nspect code and find not detected vulnerabilities

Copyright CryptoNet Labs sl 69

CRYPTONET

A sample SDLC (4)

Check cov.

o

o

o
o

Code Review

Copyright CryptoNet Labs srl 70

CRYPTONET

s this enough ?

* How to further improve security ?
* Require more than one review
* Dedicated security reviews

* Security checks in the integration steps aren’'t enough to guarantee the
final result security

 DAST : dynamic analysis security testing

Copyright CryptoNet Labs sl 71

CRYPTONET

Q/A

tesi@cryptonetlabs.it

Copyright CryptoNet Labs sl 72

