
Copyright CryptoNet Labs srl

Practical Security Guide
For Java Developers

Luca Capacci
luca.capacci@cryptonetlabs.it

Vittorio Ballestra
vittorio.ballestra@cryptonetlabs.it

Bologna, 26/11/2018

Part I

mailto:luca.capacci@cryptonetlabs.it
mailto:Vittorio.ballestra@cryptonetlabs.it

Copyright CryptoNet Labs srl

SAMM & BSIMM

OWASP Top 10

AGENDA

1

2

3 Lab & playground

2

Copyright CryptoNet Labs srl

Sofware Security Initiative

An organization-wide program to instill, measure, manage, and evolve software
security activities in a coordinated fashion.

Every organization that develops or integrates software needs a software
security initiative

Reference frameworks:

SAMM: Software Assurance Maturity Model

BSIMM: Building Security In Maturity Model

3

Copyright CryptoNet Labs srl

BSIMM vs SAMM

SAMM
methodology to improve the company’s security posture

BSIMM
metric to check the company’s security posture against a
global benchmark

4

Copyright CryptoNet Labs srl

SAMM: Software Assurance Maturity Model

The Software Assurance Maturity Model (SAMM) is an
OWASP project

It’s an open framework to help organizations formulate
and implement a strategy for software security that is
tailored to the specific risks facing the organization.

SAMM was defined with flexibility in mind such that it
can be utilized by small, medium, and large organizations
using any style of development. Additionally, this model
can be applied organization-wide, for a single line-of-
business, or even for an individual project.

5

Copyright CryptoNet Labs srl

SAMM – Business Functions

Start with the core activities tied to
any organization performing
software development

Named generically, but should
resonate with any developer or
manager

6

Copyright CryptoNet Labs srl

SAMM – Business Functions

Governance is centered on the processes and
activities related to how an organization
manages overall software development
activities. More specifically, this includes
concerns that impact cross-functional groups
involved in development, as well as
business processes that are established at
the organization level.

7

Copyright CryptoNet Labs srl

SAMM – Business Functions

Construction concerns the processes and
activities related to how an organization
defines goals and creates software within
development projects. In general, this will
include product management, requirements
gathering, high-level architecture
specification, detailed design, and
implementation.

8

Copyright CryptoNet Labs srl

SAMM – Business Functions

Verification is focused on the processes and
activities related to how an organization
checks, and tests artifacts produced
throughout software development. This
typically includes quality assurance work such
as testing, but it can also include other
review and evaluation activities.

9

Copyright CryptoNet Labs srl

SAMM – Business Functions

Operations entails the processes and activities
related to how an organization manages
software releases that has been
created. This can involve shipping products to
end users, deploying products to internal or
external hosts, and normal
operations of software in the runtime
environment.

10

Copyright CryptoNet Labs srl

SAMM – Security Practices
• From each of the Business Functions, 3 Security Practices are defined

• The Security Practices cover all areas relevant to software security assurance

• Each one is a ‘silo’ for improvement

o 3 levels for each Security Practice

11

Copyright CryptoNet Labs srl

Per Level, SAMM defines...

• Objective
• Activities
• Results
• Success Metrics
• Costs
• Personnel
• Related Levels

12

Copyright CryptoNet Labs srl

Approach to iterative improvement

Simply put, improve an assurance program in phases by:

Achieve the next Objective in each Practice by
performing the corresponding Activities at the
specified Success Metrics

Select Security Practices to improve in next phase of assurance program

and the next objective …

13

2

1

Copyright CryptoNet Labs srl

Construction

14

Copyright CryptoNet Labs srl

Strategy & Metrics→ framework, roadmap, KPI
Policy & Compliance → policies, procedures, contracts
Education & Guidance → education, guidelines, best practices

Threat Assessment→ threat model, abuse cases
Security Requirements → requisiti di sicurezza
Secure Architecture → principi di progettazione sicura

Design Review→ review with respect to requirements
and best practices

Implementation Review →manual or automated
assessments of the source code

Security Testing →manual or automated penetration tests
and vulnerability assessments

Issue Management → remediation process
Environment Hardening → configuration and patch

management
Operational Enablement → documentation for operators

and users

15

Copyright CryptoNet Labs srl

BSIMM: Building Security In Maturity Model

The Building Security In Maturity Model (BSIMM, pronounced “bee simm”) is a
study of existing software security initiatives. By quantifying the practices of
many different organizations, we can describe the common ground shared by
many as well as the variations that make each unique.

BSIMM is not a how-to guide, nor is it a one-size-fits-all prescription. Instead, it
is a reflection of software security.

• Framework derived from SAMM Beta
• Based on collected data from > 100 firms

16

Copyright CryptoNet Labs srl

What the BSIMM enables you to do

1

2

17

Start a software security initiative (SSI) using real data
If you don’t have a software security initiative yet, you need one. Before
you start down that path, the BSIMM will help you identify the core
activities that all successful initiatives undertake — no matter what
industry you’re in.

Compare your SSI to other firms in your industry
Measure how your SSI stacks up against the rest of your industry peers.
With your goals in mind, you can determine where you stand relative to
your needs.

Copyright CryptoNet Labs srl

What the BSIMM enables you to do

3

4

18

Benchmark and track your SSI growth
A repeatable way to measure your SSI’s effectiveness. Once your SSI is
established, you can use it to measure your continuous improvement year
over year. It will also provide concrete details to show your executive team
and board how your security efforts are making a difference.

Evolve your initiative using lessons learned from mature initiatives
The BSIMM is a “what works” report on building and evolving a software
security initiative. It comprises proven activities that mature organizations
are performing today.

Copyright CryptoNet Labs srl

More than 100 firms in BSIMM

19

Copyright CryptoNet Labs srl

BSIMM Firms

Dataset:
• 120 organizations

Industries:
• financial services
• independent software vendors
• technology
• healthcare
• the cloud
• the Internet of Things (IoT)
• insurance

20

Copyright CryptoNet Labs srl

The BSIMM Framework

4 Domains → 12 Practices → 116 Activities

21

Copyright CryptoNet Labs srl

The BSIMM Framework

22

Copyright CryptoNet Labs srl

BSIMM Activities

23

Copyright CryptoNet Labs srl

BSIMM 12 Core Activities

“Although we can’t directly conclude that these 12 activities are
necessary for all SSIs, we can say with confidence that these
activities are commonly found in highly successful initiatives.
This suggests that if you are working on an initiative of your
own, you should consider these 12 activities particularly
carefully.”

12 activities were observed in at least 62% of the firms

24

Copyright CryptoNet Labs srl

BSIMM 12 Core Activities

25

Copyright CryptoNet Labs srl

Global security posture according to BSIMM

26

Copyright CryptoNet Labs srl

Global security posture according to BSIMM

27

Copyright CryptoNet Labs srl

SO … WHAT’S THIS SECURE
PROGRAMMING THING?

28

Copyright CryptoNet Labs srl

Secure Programming
• First rule of “Secure Programming”

• There’s no such a thing as “Secure Programming”

• Remember:

• Security is an ”emergent” feature

• No “silver bullet” for security

29

Copyright CryptoNet Labs srl

Security is an “emergent feature”
• What is an “emergent feature” ?

• A feature that “emerges” only in an aggregation of smaller elements.

• Example:

• Temperature:

• There’s no such a thing as the “temperature of a single atom”.

• “Temperature” is a feature that arises only within an aggregation
of atoms like for instance a gas.

30

Copyright CryptoNet Labs srl

Security is an “emergent feature”
• In the same way

• A single line of code is not “secure”, it all depends on the whole system

• Security is a feature that “emerges” from the whole software
development process, the deployment environment

• Let’s see it in more details

• In order to better understand this concept let’s look at some of the
most relevant security vulnerabilities

• In order to fix it learn how to break it !

31

Copyright CryptoNet Labs srl

OWASP TOP 10 / 2017
A1/2017 - Injection
Injection flaws, such as SQL, NoSQL, OS, and LDAP injection, occur when untrusted data is sent to an interpreter
as part of a command or query. The attacker's hostile data can trick the interpreter into executing unintended
commands or accessing data without proper authorization.
A2/2017 - Broken Authentication
Application functions related to authentication and session management are often implemented incorrectly,
allowing attackers to compromise passwords, keys, or session tokens, or to exploit other implementation flaws to
assume other users' identities temporarily or permanently.
A3/2017 - Sensitive Data Exposure
Many web applications and APIs do not properly protect sensitive data, such as financial, healthcare, and PII.
Attackers may steal or modify such weakly protected data to conduct credit card fraud, identity theft, or other
crimes. Sensitive data may be compromised without extra protection, such as encryption at rest or in transit, and
requires special precautions when exchanged with the browser.
A4/2017 - XML External Entities (XXE)
Many older or poorly configured XML processors evaluate external entity references within XML documents.
External entities can be used to disclose internal files using the file URI handler, internal file shares, internal port
scanning, remote code execution, and denial of service attacks.
A5/2017 - Broken Access Control
Restrictions on what authenticated users are allowed to do are often not properly enforced. Attackers can exploit
these flaws to access unauthorized functionality and/or data, such as access other users' accounts, view sensitive
files, modify other users' data, change access rights, etc.

1

2

3

4

5

32

Copyright CryptoNet Labs srl

6

7

8

9

10

A6/2017 - Security Misconfiguration
Security misconfiguration is the most commonly seen issue. This is commonly a result of insecure default
configurations, incomplete or ad hoc configurations, open cloud storage, misconfigured HTTP headers, and verbose
error messages containing sensitive information. Not only must all operating systems, frameworks, libraries, and
applications be securely configured, but they must be patched/upgraded in a timely fashion.
A7/2017 - Cross-Site Scripting (XSS)
XSS flaws occur whenever an application includes untrusted data in a new web page without proper validation or
escaping, or updates an existing web page with user-supplied data using a browser API that can create HTML or
JavaScript. XSS allows attackers to execute scripts in the victim's browser which can hijack user sessions, deface web
sites, or redirect the user to malicious sites.
A8/2017 - Insecure Deserialization
Insecure deserialization often leads to remote code execution. Even if deserialization flaws do not result in remote
code execution, they can be used to perform attacks, including replay attacks, injection attacks, and privilege
escalation attacks.
A9/2017 - Using Components with Known Vulnerabilities
Components, such as libraries, frameworks, and other software modules, run with the same privileges as the
application. If a vulnerable component is exploited, such an attack can facilitate serious data loss or server takeover.
Applications and APIs using components with known vulnerabilities may undermine application defenses and enable
various attacks and impacts
A10/2017 - Insufficient Logging & Monitoring
Insufficient logging and monitoring, coupled with missing or ineffective integration with incident response, allows
attackers to further attack systems, maintain persistence, pivot to more systems, and tamper, extract, or destroy
data. Most breach studies show time to detect a breach is over 200 days, typically detected by external parties rather
than internal processes or monitoring.

33

Copyright CryptoNet Labs srl

OWASP TOP 10 / 2017
Every threat is evaluated according to the
following criteria:

• Exploitability
How easy or hard is to exploit that
vulnerability (1=hard, 2=medium, 3=easy)

• Detectability
How easy or hard is to find systems
affected by the vulnerability (1=hard,
2=medium, 3=easy)

• Technical
The technical impact on the system
(1=minor, 2=moderate, 3=severe)

• Prevalence
The spread of the vulnerability
(1=uncommon, 2=common, 3=widespread)

34

Copyright CryptoNet Labs srl

OWASP TOP 10 / HistoryASP TOP

35

Copyright CryptoNet Labs srl

A1/2017 - Injection

When it happens ?

«External» input used without validation / sanitization:
• query SQL / JPA-QL / HQL / MongoDB / Elasticsearch / ecc.
• XPath query
• Generating HTML output
• Query LDAP

How can we prevent it ?

○ Always try to use parametrics queries
○ Validate through Pattern matching
○ Implement sanitization
○ OWASP Injection_Prevention_Cheat_Sheet_in_Java

36

https://www.owasp.org/index.php/Injection_Prevention_Cheat_Sheet_in_Java

Copyright CryptoNet Labs srl

A1/2017 - Injection / Esempio JDBC

void updatePassword(String username, String password) {
String query = "UPDATE users SET password = ‘“ + password

+ ”’ WHERE username=’” + username + ”’”;

PreparedStatement ps = con.prepareStatement(query);
ps.executeUpdate();
ps.close();

...
}
…

updatePassword(“mario”,”Password_for_everybody’ -- ”);

UPDATE users SET password=’Password_for_everybody’ -- ‘ WHERE username=’mario’

37

Copyright CryptoNet Labs srl

A1/2017 - Injection / JDBC - soluzione

void updatePassword(String username, String password) {
String query = "UPDATE users SET password = ? WHERE username= ?”;
PreparedStatement ps = con.prepareStatement(query);

ps.setString(1,username);
ps.setString(2,password);
ps.executeUpdate();

ps.close();
...

}

38

Copyright CryptoNet Labs srl

A1/2017 - Injection / JDBC - lab

• Lab sample

• Open playground

• Run demo

• Inspect code

39

Copyright CryptoNet Labs srl

A1/2017 – Injection: not only SQL

• JPA / HQL / ecc.
• Always use parametric queries

• es. :
session.createQuery(“FROM MyEntity WHERE id IN :collection”)

.setParameter(“collection”,Arrays.fromList(1,2,3))

.list()

• Use QBE
• es. :

session.createCriteria(MyEntity.class)
.add(Criteria.in(“id”,Arrays.fromList(1,2,3)))
.list();

40

Copyright CryptoNet Labs srl

A1/2017 – Injection: not only SQL

• XPath query
• Use a variable resolver

41

Copyright CryptoNet Labs srl

A1/2017 – Injection: not only SQL

More examples:

• LDAP (e.g. used as an authentication backend):
String searchlogin= "(&(uid="+user+")(userPassword="+encrypt(password)+"))";

user = “*)(uid=*))(|(uid=*”;

Resulting:
(&(uid=*)(uid=*))(|(uid=*)(userPassword={MD5}X03MO1qnZdYdgyfeuILPmQ==))

Only the first part of the query gets
executed

42

Copyright CryptoNet Labs srl

A1/2017 – Injection: not only SQL

More examples:

• Command Injection:

+

=

43

Copyright CryptoNet Labs srl

A1/2017 – Injection: not only SQL

More examples:

• Command Injection:

• APP_HOME is not sanitized, what will happen if it is set to

• "/bin/bash –c 'rm –rf /' ;" ?

44

Copyright CryptoNet Labs srl

A1/2017 – Injection: not only SQL

• Lab sample

• Open playground

• Run command example

• Inspect code

45

Copyright CryptoNet Labs srl

A1/2017 - Injection

What can we do when there are no “safe” way of parametrize your query ?

• Validate the input, e.g.:
• use regular expressions to validate the data
• try to convert to typed data (es.: int / long / Date)

• A data should be a data, an int should be an int, …

• Sanitize input
• Escape «dangerous» characters:

input.replaceAll(“‘“,”\\’”);
• Remove ‘dangerous’ characters

input.replaceAll(“[-&]“,”_”);

46

Copyright CryptoNet Labs srl

A1/2017 - Injection

• In general:

• Use parametrized query when available

• Validate and sanitize external data before using it

• Where to do input data validation ?

• Validate outputs!

47

Copyright CryptoNet Labs srl

Data Validation

method1

method2

method3

method4

input
Entrypoint

Sink

48

Copyright CryptoNet Labs srl

Data Flow
• Entrypoint

• Where un-trusted data ”enters” the system

• Sink

• Where data get “used” :

• To query a data source

• To execute a command

• To generate a template

49

Copyright CryptoNet Labs srl

Data validation
• When should I do data validation ?

• Everywhere :

• Performance problem

• Introduces DOS

• Entry-points :

• Only validation should be done here (to avoid data mangling, e.g. escaping multiple
times, wrong comparisons)

• Different path of execution can lead to injection

• At sink :

• Both sanitization and validation is possible

• Sinks are generally more difficult to identify than entry points

50

Copyright CryptoNet Labs srl

A8/2017 - Insecure Deserialization

When it happens ?

○ Every time you use an deserialization mechanism

■ Deserialization can be exploited to execute
arbitrary code

How can we prevent it ?

○ Use safer serialization formats (e.g. json, google protobuf)
○ Strict type checking
○ Digital signatures to avoid tampering
○ Log and monitoring

51

Copyright CryptoNet Labs srl

A8/2017 - Insecure Deserialization
• Malicious code execution

• Gadget classes

• Classes that can execute code during deserialization

• Customized serialization can be implemented using the following two methods:

• private void writeObject(ObjectOutputStream oos) throws Exception: This
method will be executed automatically by the jvm(also known as Callback
Methods) at the time of serialization. Hence to perform any activity during
serialization, it must be defined only in this method.

• private void readObject(ObjectInputStream ois) throws Exception: This
method will be executed automatically by the jvm(also known as Callback
Methods) at the time of deserialization. Hence to perform any activity during
deserialization, it must be defined only in this method.

52

Copyright CryptoNet Labs srl

A8/2017 - Insecure Deserialization
• Gadget classes example

+

53

Copyright CryptoNet Labs srl

A8/2017 - Insecure Deserialization

ObjectInputStream

• readObject()

• defaultReadObject()
SampleGadgetFactory1

- initHook

• readObject()

SampleGadget1

- command

• run()

• Insecure deserialization example

“calc.exe”

54

Copyright CryptoNet Labs srl

Lab
• Lab demo

• Normal method execution

• Create a malicious payload

• Use malicious payload

55

Copyright CryptoNet Labs srl

A8/2017 - Insecure Deserialization
• Libraries containing gadget classes:

• Apache common collections

• Apache FileUpload

• Mozilla Rhino

• BSH

• … and many other

56

Copyright CryptoNet Labs srl

A secure development process

57

Copyright CryptoNet Labs srl

Software development process

Specs Devs Code

?
Implements

58

Copyright CryptoNet Labs srl

Software development process
• A possible definition :

“A process performed by human beings to bring the best algorithmical
approximation from a set of ambiguous and incomplete requirements”

• The “Halting Problem”, computational theory

• Alan Turing proved in 1936 that a general algorithm to solve the halting
problem for all possible program-input pairs cannot exist. A key part of
the proof was a mathematical definition of a computer and program,
which became known as a Turing machine; the halting problem is
undecidable over Turing machines. It is one of the first examples of a
decision problem.

59

Copyright CryptoNet Labs srl

Software, bugs and vulnerabilities

Input Internal State Output

“unexpected” inputs
bug

vulnerability

“unexpected /
unwanted” states

60

Copyright CryptoNet Labs srl

Secure Development Process
• A secure development process should

• Limit the occurrence of “unexpected/unwanted states”, in other words
limit bugs:

• a secure development process should be first of all a quality
rewarding development software process

• Limit the range of acceptable inputs

• Inputs validation

• Inputs sanitization

61

Copyright CryptoNet Labs srl

Focus on integration step
Waterfall Agile XP Whatever

!
V1.0V1.1

62

Copyright CryptoNet Labs srl

Integration/merge Step
• A good integration step

• Should preserve

• Should not introduce new bugs

• Should not introduce regressions

• How to achieve this goal ?

• CI / CD

• Test automation

• Metrics

• Code Review

63

Copyright CryptoNet Labs srl

A sample SDLC (1)

! Build Run Test

Prerequisite : USE
SVC

Build errors Bugs regressions

64

Copyright CryptoNet Labs srl

Is this enough ?
• Test automation

• In order to be meaningful a sufficient code coverage should be achieved
AND preserved

• Enters “Test coverage”

• Lab :

• jacoco test coverage

• Improve test coverage

65

Copyright CryptoNet Labs srl

A sample SDLC (2)

! Build Check cov. Run Test

Errors, regressions, coverage threshold

66

Copyright CryptoNet Labs srl

Is this enough ?
• Software metrics

• We can generalize the concept by measuring a set of “software metrics”
that should be preserved between merges

• Enters “Static Application Security Testing”

• Lab :

• Sonarqube analysis

• Identify vulnerabilities

• Improve security

67

Copyright CryptoNet Labs srl

A sample SDLC (3)

Build

Check cov.

Run Test

SAST

68

Copyright CryptoNet Labs srl

Is this enough ?
• Are automated tools enough ?

• Some bugs / vulnerabilities aren’t detected (silver bullet ?)

• Enters “Code Review”

• Lab :

• Inspect code and find not detected vulnerabilities

69

Copyright CryptoNet Labs srl

A sample SDLC (4)
Build

Check cov.

Run Test

SAST

Code Review

70

Copyright CryptoNet Labs srl

Is this enough ?
• How to further improve security ?

• Require more than one review

• Dedicated security reviews

• Security checks in the integration steps aren’t enough to guarantee the
final result security

• DAST : dynamic analysis security testing

• …

71

Copyright CryptoNet Labs srl

Q / A

tesi@cryptonetlabs.it

72

