Il comportamento di una rete sequenziale sincrona con ingresso X ed uscita U è specificato dalla seguente asserzione:

"
$$X^n = 1$$
 implica U^n . U^{n+1} . $U^{n+2} = 1$ ".

DOMANDA N. 1 (PUNTI 1) – Dedurre dalla precedente descrizione la dipendenza di U^n dai valori di X:

"U" è uguale a uno se, e solo se, "

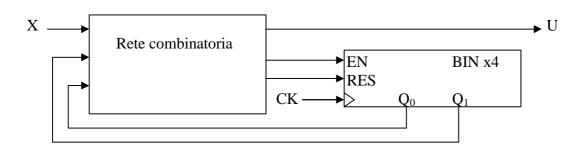
DOMANDA N. 2 (PUNTI 3) – Individuare l'automa minimo che presenta questo comportamento.

GRAFO

TABELLA

Sn	$X^n = 0$	$X^n = 1$
A		
В		
C		
S^{n+1} , U^n		

DOMANDA N. 3 (PUNTI 2) – Si deve realizzare l'automa con una rete combinatoria e con un contatore binario x4 dotato di comandi EN e RES. Individuare una codifica degli stati che lo consenta e la corrispondente tabella delle transizioni.



S ⁿ	$(\mathbf{Q}_1 \ \mathbf{Q}_0)^{\mathbf{n}}$	X ⁿ =0	X ⁿ =1
A			
В			
С			
$(Q_1 Q_0)^{n+1}, U^n$			$^{n+1}, U^{n}$

DOMANDA N. 4 (PUNTI 3) – Fare la sintesi a AND, OR, NOT dei segnali U, EN e RES.

	X ⁿ	
$Q_1^n Q_0^n$	0	1
00		
01		
11		
10		
	T.	T ⁿ

	X^{n}	
$Q_1^n Q_0^n$	0	1
00		
01		
11		
10		
	EN ⁿ	

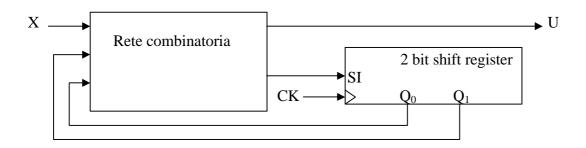
	X ⁿ	
$Q_1^n Q_0^n$	0	1
00		
01		
11		
10		
	RES ⁿ	

U =

EN =

RES =

DOMANDA N. 5 (PUNTI 2) – La precedente rete sincrona può essere realizzata anche con un registro a scorrimento a due bit. Individuare le espressioni della parte combinatoria.



U =

SI =

SOLUZIONE

Il comportamento di una rete sequenziale sincrona con ingresso X ed uscita U è specificato dalla seguente asserzione:

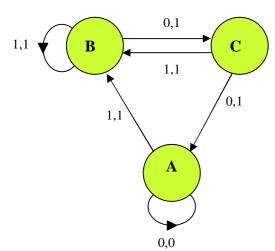
"
$$X^n = 1$$
 implica U^n . U^{n+1} . $U^{n+2} = 1$ ".

DOMANDA N. 1 (PUNTI 1) – Dedurre dalla precedente descrizione la dipendenza di U^n dai valori di X:

per la definizione di AND possiamo dire che $X^n = 1$ provoca uscita 1 per il medesimo intervallo ed i due successivi, quindi " U^n " è uguale a uno se, e solo se, $X^n = 1$ oppure $X^{n-1} = 1$ oppure $X^{n-2} = 1$ "

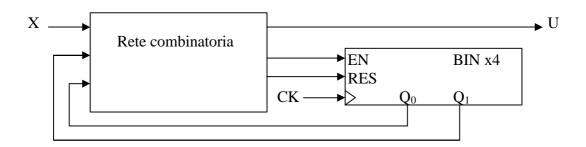
DOMANDA N. 2 (PUNTI 3) – Individuare l'automa minimo che presenta questo comportamento.

Fintanto che si presenta 1 in ingresso, ci deve essere 1 in uscita. L'uscita deve mantenersi ad 1 anche per i due periodi successivi alla scomparsa dell'1 in ingresso.



Sn	$X^n = 0$	$X^{n}=1$
A	A,0	B,1
В	C,1	B,1
C	A,1	B,1
	S^{n+1}	, U ⁿ

DOMANDA N. 3 (PUNTI 2) – Si deve realizzare l'automa con una rete combinatoria e con un contatore binario x4 dotato di comandi EN e RES. Individuare una codifica degli stati che lo consenta e la corrispondente tabella delle transizioni.



La rete combinatoria deve pilotare il contatore <u>per 4</u> in modo da realizzare il grafo della domanda precedente. Notiamo che nel grafo si "avanza" da **B** a **C**, poi da **C** ad **A**, e che sia **A** che **C** hanno frecce che riportano ad **B**. È evidente quindi che **B** deve essere associato alla configurazione **00** in modo da poter essere raggiunto da qualsiasi altro stato mediante il comando di RESET. Di conseguenza **C** deve essere associato a **01** in modo da poter essere raggiunto da **B** mediante un comando di conteggio, e analogamente **A** deve essere associato a **10**.

S ⁿ	$(\mathbf{Q}_1 \ \mathbf{Q}_0)^{\mathbf{n}}$	X ⁿ =0	X ⁿ =1
A	10	1 0, 0 (hold)	0 0, 1 (reset)
В	0 0	0 1, 1 (count)	0 0, 1 (reset)
C	0 1	10, 1 (count)	0 0, 1 (reset)
	1 1	- ,-	-, -
	$(O_1 O_0)^{n+1}, U^n$		

DOMANDA N. 4 (PUNTI 3) – Fare la sintesi a AND, OR, NOT dei segnali U, EN e RES.

Ricordando che

RESET \rightarrow EN=-; RES=1

	Χ	n
$Q_1^n Q_0^n$	0	1_
00	1	1
01	1	1
11	-	 -

COUNT \rightarrow EN=1; RES=0

		X^n		
$Q_1^n Q_0^n$		0	1	
00		1	-	
01		1	-	
11		-	-	
10		0	-	
	EN ⁿ			

 $HOLD \rightarrow EN=0$; RES=0

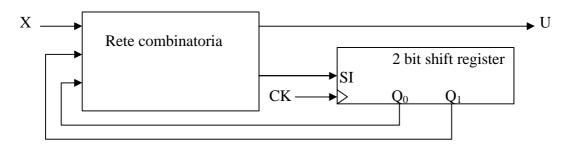
	X ⁿ		
$Q_1^n Q_0^n$	0	_1_	
00	0	1	
01	0	1	
11	-	-	
10	0	1	
	RES ⁿ		

$$U = Q_1' + X$$

$$EN = Q_1$$

$$RES = X$$

DOMANDA N. 5 (PUNTI 2) – La precedente rete sincrona può essere realizzata anche con un registro a scorrimento a due bit. Individuare le espressioni della parte combinatoria.



In modo totalmente intuitivo, se si pone si ha immediatamente che $Q_0^n = X^{n-1}$ e $Q_1^n = X^{n-2}$, e dalla risposta alla domanda 1: