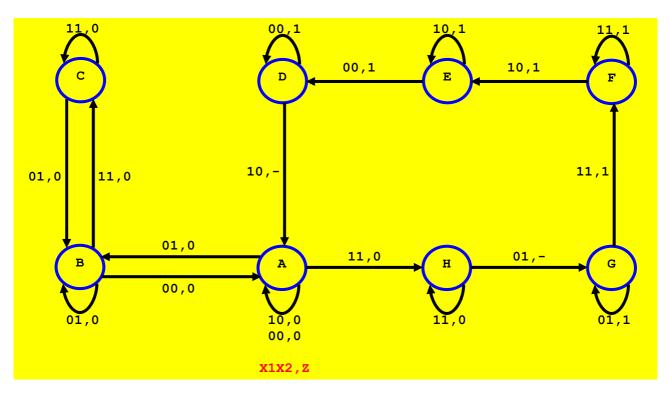

ESERCIZIO N. 1 – PAGINA 1

Una rete sequenziale asincrona ha due ingressi X1 e X2, che non cambiano mai di valore contemporaneamente.


Il segnale X1 è **periodico** ed assume dapprima il valore 1 per 0,5 T e poi il valore 0 per 0,5 T. Il segnale X2 presenta il valore 1 per un tempo T ed il valore 0 per un tempo <u>mai inferiore a</u> 2T. L'uscita Z della rete deve presentare il valore 1 e mantenerlo poi <u>esattamente per un tempo 1,5 T</u>, se e solo se in ingresso si verifica **un fronte di salita di X2 in presenza di X1=1**. L'attivazione dell'uscita, nel rispetto del vincolo di durata sopra definito, deve avvenire senza inutili attese.

DOMANDA N. 1 (PUNTI 1) – A partire dall'istante immediatamente precedente a quello in cui si verifica X2 = 1, individuare:

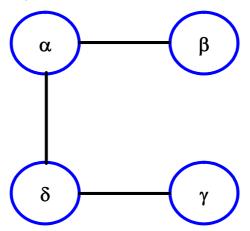
la sequenza di valori di X1,X2 che determina Z = 1 per 1,5 T : **10-11-**01-11-10-00-... la sequenza di valori di X1,X2 che mantiene Z = 0 : **00-01-**11-01-00-10-...

DOMANDA N. 2 (PUNTI 3) – Completare il grafo degli stati partendo dallo stato A, in cui la macchina attende il verificarsi di un fronte di salita di X2, e seguendo poi, passo passo, le sequenze d'ingresso precedentemente individuate.

DOMANDA N. 3 (PUNTI 3) – Individuare l'automa minimo a quattro stati.

	X1 X2			
stato	00	01	11	10
A	A,0	B,0	Н,0	A,0
В	A,0	B,0	C,0	-
C	-	B,0	C,0	-
D	D,1	-	ı	A,-
E	D,1	-	ı	E,1
F	-	-	F,1	E,1
G	-	G,1	F,1	1
H	-	G,-	Н,0	ı

$\{A\}=\alpha$
{BC}=β
{ EFG }=γ
{DH}=δ
Classi di


() -
Classi di
stati
equivalent

	$\Lambda 1 \Lambda 2$			
stato	00	01	11	10
α	α,0	β,0	δ,0	α,0
β	α,0	β,0	β,0	-
γ	δ,1	γ,1	γ,1	γ,1
δ	δ,1	γ,-	δ,0	α,-

Tabella di flusso minima

ESERCIZIO N. 1 – PAGINA 2

DOMANDA N. 4 (PUNTI 1) – Individuare una tabella delle transizioni per l'automa minimo

Grafo delle adiacenze

	y	2
y1	0	1
0	α	β
1	δ	γ

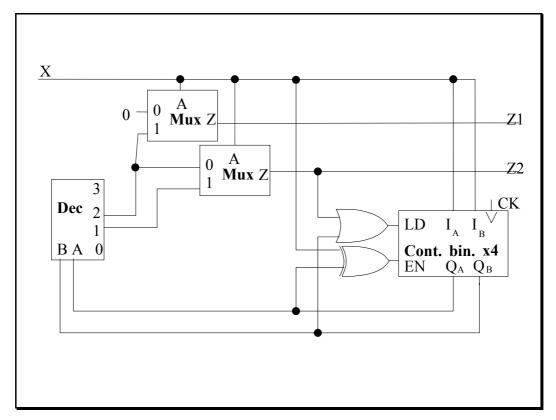
Mappa	a di	codi	fica
TATADDO	ı uı	Cour	1100

		Al AZ		
y1 y2	00	01	11	10
00	00,0	01,0	10,0	00,0
01	00,0	01,0	01,0	-
11	10,1	11,1	11,1	11,1
10	10,1	11,-	10,0	00,-

Tabella delle transizioni

DOMANDA N. 5 (PUNTI 3) – Individuare le espressioni SP di Y1 e Y2

		X1 X2			
y1 y2	00	01	11	10	
00	0	0		0	1
01	0	0	0	-	
11	71	1	1		
10	1	1	1	0	


Y1 = y1y2 + y2'x1x2 + y1x1' + y1x2

	X1 X2				
y1 y2	00	01	11	10	
00	0	1	0	0	
01	0	1	1	-	
11	0	1	1	1	
10	0	1	0	0	

$$Y2 = x1'x2 + y2x1 + y2x2$$

ESERCIZIO N. 2 - PAGINA 1

Una rete logica sequenziale sincrona ha la struttura indicata in figura:

DOMANDA N. 1 (PUNTI 2) – Individuare le espressioni SP dei segnali d'uscita (Z1,Z2) e dei segnali di aggiornamento dello stato interno (EN, LD, I_A, I_B).

$$Z1 = x'0 + xQ_BQ'_A = xQ_BQ'_A$$

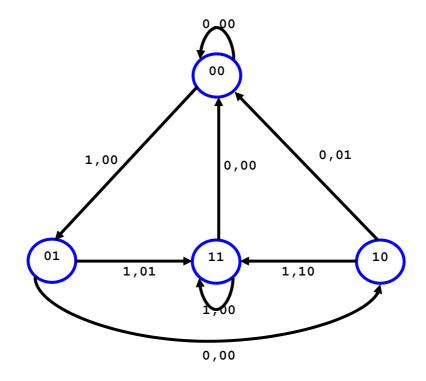
$$Z2 = x'Q_BQ'_A + xQ'_BQ_A$$

$$EN = x XOR Q_A = xQ'_A + x'Q_A$$

$$LD = Q_B + Z2 = Q_B + x'Q_BQ'_A + xQ'_BQ_A$$

$$I_A = I_B = x$$

DOMANDA N. 2 – Riportare le precedenti funzioni sulle due prime mappe (PUNTI 1) e dedurre dalla prima come deve essere riempita la terza mappa (PUNTI 3).


$Q_B Q_A$	X=0	X=1	
00	0,0,0,0	1,0,1,1	
01	1,0,0,0	0,1,1,1	
11	1,1,0,0	0,1,1,1	
10	0,1,0,0	1,1,1,1	
(EN, LD, I _P , I _A) ⁿ			

$Q_B Q_A$	X=0	X=1
00	0,0	0,0
01	0,0	0,1
11	0,0	0,0
10	0,1	1,0
$(Z1, Z2)^n$		

$Q_B Q_A$	X=0	X=1
00	0,0	0,1
01	1,0	1,1
11	0,0	1,1
10	0,0	1,1
$(O_R, O_A)^{n+1}$		

ESERCIZIO N. 2 – PAGINA 2

DOMANDA N. 3 (PUNTI 2) – Tracciare il grafo degli stati

DOMANDA N. 4 (PUNTI 3) – Dimostrare che è possibile eliminare dallo schema l'OR che genera il comando LD senza modificare il comportamento della rete.

Eliminando Q_B dall'espressione di LD: nella prima mappa compaiono degli zeri per LD nelle configurazioni $Q_BQ_Ax = 110$, $Q_BQ_Ax = 111$ e $Q_BQ_Ax = 101$. Come rilevabile, osservando la prima tabella, la presenza di LD=0 per tali configurazioni non altera il comportamento della rete.

$Q_B Q_A$	X=0	X=1	
00	0,0,0,0	1,0,1,1	'conta da 11 a <u>00</u> ' al posto di 'carica <u>00</u> ' 'mantieni <u>11</u> ' al posto di 'carica <u>11</u> ' 'conta da 10 a <u>11</u> ' al posto di 'carica <u>11</u> '
01	1,0,0,0	9,1,1,1	
11	1,0,0,0	0,0,1,1	
10	0,1,0,0	1,0,1,1	

 $(EN, LD, I_B, I_A)^n$