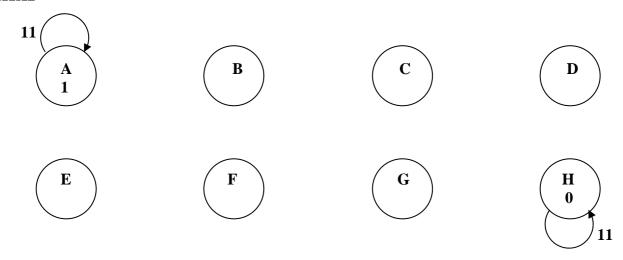

I ^a Prova Finale	MATRICOLA	COGNOME	NOME
26/06/2008			

ESERCIZIO 1, pagina 1

In una macchina automatica vengono utilizzati due segnali binari X1, X2 per verificare la corretta esecuzione di una certa attività su ciascun prodotto in corso di lavorazione. In particolare un prodotto è da ritenersi correttamente lavorato se e soltanto se il segnale X2 presenta lo stesso valore (0 o 1) in corrispondenza del fronte di discesa e del successivo fronte di salita del segnale X1.


Si esegua il progetto di una rete sequenziale asincrona che, ricevendo in ingresso i segnali X1 e X2, provveda, allorché X1=1, ad indicare tramite il segnale di uscita Z se un prodotto è stato correttamente lavorato (Z=1) o meno (Z=0). Il segnale Z deve comunque assumere il valore logico Z0 allorché Z1 = Z1 segnali Z2 non cambiano mai di valore contemporaneamente.

DOMANDA N.1 (PUNTI 1) – Tracciare la forma d'onda di Z in corrispondenza delle sequenze di valori di X1, X2 indicate in figura

DOMANDA N.2 (PUNTI 4) – Individuare il grafo primitivo degli stati.

X1X2

ESERCIZIO 1, pagina 2

DOMANDA N.3 (PUNTI 3) -Tracciare la tabella di flusso secondo il modello di Mealy ed individuare la tabella di flusso dell'automa minimo (barrando le righe che non servono nella tabella a destra).

	X1 X2				
S	00	01	11	10	
A					
В					
B C					
D					
E					
F					
G					
Н					
	s*, z				

		x1 x2			
classe	S	00	01	11	10
{ , }					
{ , }					
{ , }					
{ , }					
{ , }					
{ , }					
{ , }					
{ , }					
	•	•	s*	. Z	•

DOMANDA N.4 (PUNTI 2) – Individuare una codifica priva di corse critiche per l'automa minimo e tracciare la conseguente tabella delle transizioni, denominando le variabili di stato presente e di stato futuro, cerchiando le condizioni di stabilità e barrando le righe che non servono.

Grafo delle adiacenze & Mappa di codifica

		X1 X2				
S	00	01	11	10		
			, Z			

DOMANDA N.3 (PUNTI 2) – una tabella delle transizioni priva di corse critiche;

	x1 x2			
y2 y1	00	01	11	10
00				
01				
11				
10				0
	y3 = 0			

	x1 x2				
y2 y1	00	01	11	10	
00					
01					
11					
10		1	1	1	
	y3 = 1				

Y3 =