RTOS, Spring 2015 — Lab #7: Rate Monotonic

Paolo Torroni, paolo.torroni@unibo.it
Davide Chiaravalli, davide.chiaravalli@studio.unibo.it

Objective: to learn how to schedule hard tasks with fixed priorities.

1. Background

This lab builds on what we have learnt in Lab #6 about RTAI timers and task
activations. Make sure you have understood concepts of periodic task scheduling
with fixed priorities, in particular, the Liu-Layland and Hyperbolic bounds, and
rate monotonic priority ordering.

2. Fixed priority scheduling
A) Define a taskset composed of N_TASKS =5 tasks, in terms of phase Phi, period
T, worst case computation time C, and priority P. These could be static global
variables. You can use

http://lia.deis.unibo.it/Courses/RTOS/src/2015-7/ rmpo.c
as a template. There, you only need to set values.

B) Define a guarantee test based on Liu-Layland. If the task set is guaranteed,
execute tasks for a hyperperiod. If it is not, visualize an error message. For
simplicity, you can use the value in Ulub[5] for the least upper bound for 5 tasks.

C) Define a guarantee test based on the Hyperbolic Bound.

D) Modify the parameters of the taskset (for example: modify the periods or
computation times), to obtain guaranteed/non-guaranteed tasksets.

E) Once you have a taskset that passes the guarantee test, apply RM to set
priorities. Then execute the tasks.

Notes:

* You can use rt_busy_sleep(RTIME n) to simulate execution for a given
number n of nanoseconds.

* Toimplement RMPO, you could sort the tasks based on their period. One
possibility is to create a copy T1 of the values of the task periods T, then sort
T1, and finally use the following code to set the priorities P of the taskset:

// assign priorities based on T1
for (1i=0;i<N_TASKS;i++) {
for (j=0; j<N_TASKS; j++) {
if(T[1]==T1[J1) {
P[i]=TOP PRIORITY+j;
break;

» Forsorting a small array T1 of integer values, you can use the following code:

// sort T1
for (i=0;i<N_TASKS;i++) {
min = 1i;

for (j=i+1;3j<N_TASKS;j++) {
1f(T1[j]1<T1[min])
min = j;
}
if (min!=1i) {
temp = T1[i];
T1[1i] = T1l[min];
Tl[min] = temp;

» Use the Kbuild file at http://lia.deis.unibo.it/Courses/RTOS/src/2015-
7 /Kbuild, which is already configured for rmpo.c

» Use rt_printk to display kernel log messages; however, notice that rt_printk
does not handle floating point numbers (only integers or strings), therefore,
if you want to display a floating point value, you can use ftoa(double, int,
char*) to convert a fp number into a string and then use that string inside
rt_printk. If the second argument is 0, ftoa shows 2 decimals; otherwise, it
shows 6 decimals. The string variable must be defined before. For Example:

char str[40];
rt_printk("Computation time:%s ms\n", ftoa(1.234567, 0, str));

will add the following line to the kernel log:

Computation time: 1.23 ms

» Before you install your kernel module, be sure to install the RTAI modules:
/usr/realtime/modules/rtai_hal.ko
/usr/realtime/modules/rtai_sched.ko
/usr/realtime/modules/rtai_math.ko

+ Ifyou want to display kernel log messages in the background, you can use

sudo tail -f /var/log/kern.log &

