RTOS, Spring 2015 — Lab #6: RTAI Tasks

Paolo Torroni, paolo.torroni@unibo.it
Davide Chiaravalli, davide.chiaravalli@studio.unibo.it

Objective: to learn how to release tasks in RTAI

1. Background

Make sure you have understood Lab #1: RTAI and Linux kernel modules. Then
use the following text as a reference throughout.

(source: http://www.cs.ru.nl/lab/rtai/)

Scheduling in RTAI Linux

* The real-time scheduler is started together with the real-time timer by
the command start rt_timer.

+ In RTAI Linux, the real-time scheduler is driven by timer interrupts from
the PC's 8254 Programmable Interval Timer (PIT) chip, which can be
programmed to generate timing interrupts at certain moments. (This chip
is also used by the normal Linux scheduler.) The resolution is based on
frequency of the 8254 chip frequency (1,193,180 Hz), i.e., there is tick of
the 8254 chip every 838 nano seconds. In addition we can use the Time
Stamp Clock (TSC) of the PC, based on an internal crystal which drives the
PC.

» Each separate CPU has its own real-time timer and each can run in
periodic or one-shot mode independent of all the other CPU's. Internal
count units measure the amount of elapsed time; how this is done
depends on the mode. The type of these internal count units is RTIME.

* In pure periodic mode:

o The internal count units are the ticks of the 8254 chip.

o The parameter of the start_rt_timer is used to specify a so-called
base period in terms of internal count units (i.e., 8254 ticks). The
8254 PIT is programmed to expire repeatedly after the specified
amount of internal counts, providing interrupts with the frequency
of the base period. All tasks will run at a multiple of this base
period.

o The function rt_get_time() returns the numbers of internal count
units (i.e., 8254 ticks) passed since start_rt_timer was called.

o The advantage is that timer reprogramming is avoided, which
saves about 3 microseconds.

o The disadvantage is that all tasks are forced to run at multiples of
the base period.

* In one-shot mode:
o The internal count units used equal the TSC count.
o The 8254 PIT is reprogrammed at the end of each task, such that it
expires exactly when the next task is scheduled to run.

o Function rt_get_time() again returns the numbers of internal count
units, now this corresponds to the TSC count.

o The advantage is that the timing of tasks can vary dynamically
and new tasks can be added without having to bother about any
base period.

o The disadvantage is repeated timer reprogramming overhead.
Notice that the timer will always run on a frequency lower than the
TSC of the CPU, but the TSC frequency is usually much higher than
that of the 8254 chip (300 times for a 300 MHz CPU).

Starting the Timer and Realtime Scheduler
The first thing we always have to do at the start of a real-time program is to
start the real-time timer and the scheduler using the start_rt_timer command.

We start the timer to expire in pure periodic mode by calling the
functions

void rt_set_periodic_mode(void);
RTIME start_rt_timer (RTIME period);

The value passed to 'start_rt_timer()' in periodic mode is the, above
mentioned, desired base period, specified in internal counts (i.e.

8354 ticks). The return value of type RTIME yields the realized number
of counts.

We start the timer to expire in one-shot mode by calling the functions

void rt_set_oneshot_mode(void);
RTIME start_rt_timer (RTIME period);

The argument for start_rt_timer is chosen randomly because we don't
have a period, and it will therefore be ignored by rt_start_timer. So we can
for instance use start_rt_timer(1).

The function

RTIME nano2counts(int nanoseconds);

can be used to convert time in nanoseconds to these RTIME internal count
units. In periodic mode this is quantized to the resolution of the 8254 chip
frequency (1,193,180 Hz).

The Task Function

Each task is associated with a function that is called when the task is
scheduled to run. This function is a usual C function running in period mode
that typically reads some inputs, computes some outputs and waits for the next
cycle. Such a task function should enter an endless loop, in which is does its
work, and then calls

void rt_task _wait_period(void);

to wait for its next scheduled cycle.

Typical code looks like this:

void task function(int arg) {
while (1) {
/* Do your thing here */
rt task wait period();

}

return;

}
Setting Up the Task Structure

« An RT_TASK data structure is used to hold all the information about a
task.
» The task structure is initialized by calling

rt_task_init(
RT TASK *task,
void *rt thread,
int data,
int stack_size,
int priority,
int uses_fp,
void *sig handler);

o 'task'is a pointer to an RT_TASK type structure which must have
been declared before and whose structure is filled.

'rt_thread' is the entry point of the task function.

'data’ is a single integer value passed to the new task.

'stack_size' is the size of the stack to be used by the new task.
'priority’ is the priority to be given the task. The highest priority is
RT_SCHED_HIGHEST_PRIORITY (which equals 0), while the lowest
is RT_SCHED_LOWEST_PRIORITY (which equals 1,073,741,823)
(both are defined in rtai_sched.h).

o 'uses_fp'is a flag. Nonzero value indicates that the task will use
floating point, and the scheduler should make the extra effort to
save and restore the floating point registers.

o 'sig_handler’ is a function that is called, within the task
environment and with interrupts disabled, when the task becomes
the current running task after a context switch.

+ The newly created real time task is initially in a suspended state. It
can be made active either with 'rt_task_make_periodic()’,
'rt_task_make_periodic_relative_ns()' or 'rt_task_resume()'.

O O O O

Scheduling the Task

periodic mode

» The task can now be started by passing a pointer to the initialized
RT_TASK structure to the function

int rt_task _make_periodic(
RT TASK *task,
RTIME start time,
RTIME period);

'task’ is the address of an earlier initialized RT_TASK structure,
'start_time' is the absolute time, in RTIME units, when the task
should begin execution. Typically this is "now" (i.e., calling
'rt_get_time()').
o 'period'is the task's period, in RTIME units, which will be rounded
to the nearest multiple of the base period.
» The task will now execute indefinitely every 'period' counts.

one-shot mode

» The task can be simple start immediately by calling the function

int rt_task_resume(RT_TASK *task)

+ However the task can be started after a delay with

int rt_task _make_periodic(
RT TASK *task,
RTIME start time,
RTIME period);

'task’ is the address of the RT_TASK structure,
'start_time' is the absolute time, in RTIME units, when the task
should begin execution. Typically this is "now" (i.e., calling
'rt_get_time()').

o 'period'is now a dummy value which is not used by the
scheduler in one-shot mode

Clean up

Always remember to clean up by deleting the tasks and the timer! For example:
void cleanup module(void)

{
stop _rt timer();
rt_task delete(&first task);
rt task_delete(&second task);
}

2. Aperiodic Task activation
Define two tasks, tau_1 and tau_2, and activate them at different times
You can download an example source file at
http://lia.deis.unibo.it/RTOS
NOTICE: before you install the modules of the example, you should install the
RTAI modules:
/usr/realtime/modules/rtai_hal.ko and
/usr/realtime/modules/rtai_sched.ko

3. Periodic task activation
Modify the code, in order to turn tau_1 and tau_2 into periodic tasks.

l .|M er
el e

/'fif;ackc R254 < luline .__;-rqn

INSIDE Init—m (Noid)

b set 10 "oneska™" Arpde_
e initialine tesks
4
GEAA S <
ST RS —Mu_/l/'
’]) Name. 7\
22 -lw)r\cih’or\
) argumesT (int)
4) %e of stade 1026
=50

5% Yad

6) ﬁ‘g\)/ S}gﬂqf()/ whi ek ¢pu

4
§> Aachvate tAska

r'ngC&\Sk iy mp\,[ée) PQ{\ Oo{/(G

Q[@Qﬂup _moedule

KCFHQ[modules

oneshdt- example . Ko
load lermed modules -}-Or

onesho*—emm#ax
Kbdf[cl

(Yw\ke —4 Kbuilc{

29m;

nanoZ covnt (VASPILESTICNS|

oa= KE RN Jermame
Faks” paetond
Nnaneeconds l_iﬁt'l
nanoZ ey

S0 o e

SJV\FTX
'im dei;,uﬂ]bo.']}/

Covises / Falies

Si_OP_,{\T__-I-jM U()
rt_dask - delede (ﬁhu_«)

|

R

ol o . |sude d
e 3 % /U‘;‘I'S}?:o\lﬁme_/...
1) ctai_hal ko
Zjhhi_sd\d. o
I sudo wrsmod oneshe -exqule ko
B 7
NWindays 11 Jj \A/i"\cLaL\f
T r wmpilin
gt R
/\mr/log[/Kvﬂ.loﬂ e&"knf Jay

ELBIESY
\/\)N\C (i) {

What sy o lesdy,
) notve there

P @j){ ,wdﬂL_f@j}oJ ()//\

)

